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ABSTRACT

Self-supervised representation learning has achieved great success in many ma-
chine learning tasks. Many research efforts tends to learn better representations
by preventing the model from the collapse problem. Wang & Isola (2020) open a
new perspective by introducing a uniformity metric to measure collapse degrees
of representations. However, we theoretically and empirically demonstrate this
metric is insensitive to the dimensional collapse. Inspired by the finding that rep-
resentation that obeys zero-mean isotropic Gaussian distribution is with the ideal
uniformity, we propose to use the Wasserstein distance between the distribution
of learned representations and its ideal distribution with maximum uniformity as
a quantifiable metric of uniformity. To analyze the capacity on capturing sensi-
tivity to the dimensional collapse, we design five desirable constraints for ideal
uniformity metrics, based on which we find that the proposed uniformity metric
satisfies all constraints while the existing one does not. Synthetic experiments also
demonstrate that the proposed uniformity metric is capable to distinguish different
dimensional collapse degrees while the existing one in (Wang & Isola, 2020) is
insensitive. Finally, we impose the proposed uniformity metric as an auxiliary loss
term for various existing self-supervised methods, which consistently improves the
downstream performance.

1 INTRODUCTION

Self-supervised representation learning has become increasingly popular in machine learning com-
munity (Chen et al., 2020; He et al., 2020; Caron et al., 2020; Grill et al., 2020; Chen & He, 2021;
Zbontar et al., 2021), and achieved impressive results in various tasks such as object detection,
segmentation, and text classification (Xie et al., 2021; Wang et al., 2021b; Yang et al., 2021; Zhao
et al., 2021; Wang et al., 2021a; Gunel et al., 2021). Aiming to learn representations that are invariant
under different augmentations, a common practice of self-supervised learning is to maximize the
similarity of representations obtained from different augmented versions of a sample by using a
Siamese network (Bromley et al., 1994; Hadsell et al., 2006). However, a common issue with this
approach is the existence of trivial constant solutions that all representations collapse to a constant
point (Chen & He, 2021), as visualized in Fig. 1, known as the collapse problem (Jing et al., 2022).

Constant Collapse Dimensional Collapse

Figure 1: The left figure presents constant
collapse, and the right figure visualizes di-
mensional collapse.

Many efforts have been made to prevent the vanilla
Siamese network from the collapse problem. The well-
known solutions can be summarized into three types: con-
trastive learning (Chen et al., 2020; He et al., 2020; Caron
et al., 2020), asymmetric model architecture (Grill et al.,
2020; Chen & He, 2021), and redundancy reduction (Zbon-
tar et al., 2021; Zhang et al., 2022b). While these solutions
could avoid the complete constant collapse, they might
still suffer from a dimensional collapse (Hua et al., 2021)
in which representations occupy a lower-dimensional sub-
space instead of the entire available embedding space (Jing
et al., 2022), as depicted in the Fig. 1. Therefore, to show the effectiveness of the aforementioned
approaches, we need a quantifiable metric to measure the collapse degree of learned representations.
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To gain a quantifiable analysis of collapse degree, recent works (Arora et al., 2019; Wang & Isola,
2020) propose to divide the loss function into alignment and uniformity terms. For instance, recent
objective functions such as InfoNCE (van den Oord et al., 2018) and cross-correlation employed
in Barlow Twins (Zbontar et al., 2021) could be divided into two terms. These uniformity terms
could explain the degree of collapse to some extent, since they measure the variability of learned
representations (Zbontar et al., 2021). However, the calculation of these uniformity terms relies on
the choice of anchor-positive pair, making them hard to be used as general metrics. Wang et al (Wang
& Isola, 2020) further propose a formal definition of uniformity metric via Radial Basis Function
(RBF) kernel (Cohn & Kumar, 2007). Despite its usefulness (Gao et al., 2021; Zhou et al., 2022), we
theoretically and empirically demonstrate that the metric is insensitive to the dimensional collapse.

In this paper, we focus on designing a new uniformity metric that could capture salient sensitivity to the
dimensional collapse. Towards this end, we firstly introduce an interesting finding that representation
that obeys zero-mean isotropic Gaussian distribution is with the ideal uniformity. Based on this
finding, we use the Wasserstein distance between the distribution of learned representations and the
ideal distribution as the metric of uniformity. By checking on five well-designed desirable properties
(called ‘desiderata’) of uniformity, we theoretically demonstrate the proposed uniformity metric
satisfies all desiderata while the existing one (Wang & Isola, 2020) does not. Synthetic experiments
also demonstrate the proposed uniformity metric is capable to quantitatively distinguish various
dimensional collapse degrees while the existing one is insensitive. Lastly, we apply our proposed
uniformity metric in the practical scenarios, namely, imposing it as an auxiliary loss term for various
existing self-supervised methods, which consistently improves the downstream performance.

The contributions of this work are summarized as: (i) We theoretically and empirically demonstrate
the existing uniformity metric (Wang & Isola, 2020) is insensitive to the dimensional collapse, and
we propose a new uniformity metric that could capture salient sensitivity to the dimensional collapse;
(ii) By designing five desirable properties, we open a new perspective to rethink the ideal uniformity
metrics; (iii) Our proposed uniformity metric can be applied as an auxiliary loss term in various
self-supervised methods, which consistently improves the performance in downstream tasks.

2 BACKGROUND

2.1 SELF-SUPERVISED REPRESENTATION LEARNING

Self-supervised representation learning aims to learn representations that are invariant to a series
of different augmentations. Towards this end, a common practice is to maximize the similarity of
representations obtained from different augmented versions of a sample. Specially, given a set of data
samples {x1,x2, ...,xn}, a symmetric network architecture, also called Siamese network (Hadsell
et al., 2006), takes as input two randomly augmented views xa

i and xb
i from a input sample xi. Then

the two views are processed by an encoder network f consisting of a backbone (e.g., ResNet (He
et al., 2016)) and a projection MLP head (Chen et al., 2020), denoted as g. To enforce invariance to
representations of two views zai ≜ g(f(xa

i )) and zbi ≜ g(f(xb
i )), a natural solution is to maximize

the cosine similarity between representations of two views, and Mean Square Error (MSE) is a widely
used loss function to align their l2-normalized representations on the surface of the unit hypersphere:

Lθ
align = ∥ zai

∥zai ∥
− zbi

∥zbi∥
∥22 = 2− 2 · ⟨zai , zbi ⟩

∥zai ∥ · ∥zbi∥
(1)

However, a common issue with this approach easily learns an undesired trivial solution that all
representations collapse to a constant, as depicted in Fig. 1.

2.2 EXISTING SOLUTIONS TO CONSTANT COLLAPSE

To prevent the Siamese network from the constant collapse, existing well-known solutions can be
summarized into three types: contrastive learning, asymmetric model architecture, and redundancy
reduction. More details will be explained in this section.

Contrastive Learning Contrastive learning is one effective way to avoid constant collapse, and the
core idea is to repulse negative pairs while attracting positive pairs. SimCLR (Chen et al., 2020) is
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one of the most representative works, which first proposes an in-batch negative trick that employs
samples in a batch as negative samples. However, its effectiveness heavily relies on the large batch
size. To overcome the limitation, MoCo (He et al., 2020) proposes a memory bank to save more
representations as negative samples. Besides instance-wise contrastive learning approaches, some
recent works also propose clustering-based contrastive learning by bringing together a clustering
objective with contrastive learning (Li et al., 2021; Caron et al., 2020).

Asymmetric Model Architecture Asymmetric model architecture is another approach to prevent
constant collapse, the core idea is to break the symmetry of the Siamese network. A possible
explanation is that asymmetric architecture could encourage encoding more information (Grill et al.,
2020). To keep asymmetry, BYOL (Grill et al., 2020) proposes to use an extra predictor in one
branch of the Siamese network, and use momentum update and stop-gradient operator in the other
branch. An interesting work DINO (Caron et al., 2021) applies this asymmetry in two encoders, and
distills knowledge from the momentum encoder to another branch (Hinton et al., 2015). Chen et al.
propose SimSiam (Chen & He, 2021) by removing the momentum update from BYOL, its success
demonstrates the momentum update is not the key to preventing collapse. Mirror-SimSiam (Zhang
et al., 2022a) further swap the stop-gradient operator to the other branch, its failure refutes the claim
in SimSiam (Chen & He, 2021), that the stop-gradient operator is the key component to preventing
the model from collapse.

Redundancy Reduction The principle for redundancy reduction to prevent constant collapse is
to maximize the information content of the representations. The core is to achieve decorrelation
by making the matrix based on representations as close to the identity matrix as possible. Barlow
Twins (Zbontar et al., 2021) tries to achieve this end on the cross-correlation matrix, while VI-
CReg (Bardes et al., 2022) chooses on the covariance matrix. Instead of applying regularization to
the matrix, W-MSE(Ermolov et al., 2021) employs a direct way to make the covariance matrix equal
to the identity matrix via feature-wise whitening. Zero-CL (Zhang et al., 2022b) further proposes the
hybrid of instance-wise and feature-wise whitening to achieve this end.

2.3 COLLAPSE ANALYSIS

While aforementioned solutions could effectively prevent model from constant collapse, they might
still suffer from the dimensional collapse in which representations occupy a lower-dimensional
subspace instead of the entire available embedding space, as depicted in the Fig. 1. The evidence of
dimensional collapse was identified in contrastive learning by singular value spectrum of representa-
tions (Jing et al., 2022). However, the singular value spectrum is in the form of pictures, making it
hard to conduct statistical comparisons among various approaches in terms of collapse analysis.

To gain a quantifiable analysis of collapse degree, Wang et al. propose a formal definition of
uniformity metric in (Wang & Isola, 2020), via Radial Basis Function (RBF) kernel (Cohn & Kumar,
2007). More specially, given a set of representation vectors {z1, z2, ..., zn} (zi ∈ Rm), the uniformity
metric is defined as follows:

LU ≜ log
1

n(n− 1)/2

n∑
i=2

i−1∑
j=1

e
−t∥ zi

∥zi∥
−

zj
∥zj∥

∥2
2 , t > 0, (2)

Where t is a fixed parameter (generally t = 2). Despite its usefulness, we theoretically and empirically
demonstrate this metric is insensitive to the dimensional collapse in Sec. 4.2 and Sec. 4.3.

3 A NEW UNIFORMITY METRIC

In this section, we focus on designing a new uniformity metric that could capture salient sensitivity to
the dimensional collapse. In Sec. 3.1, we introduce an interesting finding that the maximum uniformity
could be achieved when learned representations obey zero-mean isotropic Gaussian distribution. To
enforce the uniqueness of the ideal distribution, we adopt its l2-normalized form. Interestingly, we
theoretically and empirically demonstrate it is an approximately Gaussian distribution in Sec. 3.2.
Based on this principle, we propose to use Wasserstein distance between the distribution of learned
representations and its ideal distribution as an uniformity metric in Sec. 3.3.
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3.1 ZERO-MEAN ISOTROPIC GAUSSIAN DISTRIBUTION, THE MAXIMUM UNIFORMITY

As shown in Theorem 1, we provide a theorem that states maximum uniformity could be achieved if
learned representations obey zero-mean isotropic Gaussian distribution (Z ∼ N (0, σ2I)).

Theorem 1. Let a random variable Z ∼ N (0, σ2Im) (Z ∈ Rm), its l2-normalized form Y =
Z/∥Z∥2 uniformly distribute on the surface of a unit hypersphere Sm−1. See App. A for the proof.

However, obeying zero-mean isotropic Gaussian distribution is a sufficient but not necessary for an
ideal uniformity of its l2-normalized form. For example, as stated in Corollary 1, a mixture of two
independent random variables following zero-mean isotropic Gaussian distribution also achieves the
ideal uniformity.

Corollary 1. For a random variable Z1,Z2 ∈ Rm that both follow Gaussian distributions. Namely,
Z1 ∼ N (0, σ2

1Im), and Z2 ∼ N (0, σ2
2Im). Let Z be a mixture distribution 1 derived from Z1 and

Z2 with any binary selection probabilities. Its l2-normalized form Y = Z/∥Z∥2 also uniformly
distribute on the surface of the unit hypersphere Sm−1.

The distribution to achieve ideal uniformity (i.e., the mixture of various zero-mean isotropic Gaussian
distributions) is not unique due to the mixture form discussed in Corollary 1; in a sense one could
define different mixtures of zero-mean isotropic Gaussian distributions, each of which might have
different norms encapsulated in σ1, · · · , σk. Therefore, we turn to investigate the l2-normalized
form of these zero-mean isotropic Gaussian distributions 2, see Sec. 3.2.

3.2 ON THE l2-NORMALIZED GAUSSIAN DISTRIBUTION

This section will discuss the characteristics regarding a l2-normalized distribution of a Gaussian
distribution mixture, which is found to be close to a Gaussian distribution N (0, 1

mIm), from both a
theoretical aspect (in Sec. 3.2.1) and an empirical aspect (in Sec. 3.2.2).

3.2.1 THEORETICAL CONNECTION BETWEEN Y AND THE GAUSSIAN DISTRIBUTION

For simplicity, we denote the l2-normalized form of zero-mean isotropic Gaussian distributions as
Y, Y = Z/∥Z∥2. Note that Y obeys uniform distribution on the surface of the unit hypersphere
Y ∼ U(Sm−1). Interestingly, we found Y approximates a Gaussian distribution N (0, 1

mIm) when
m is large enough. Particularly, each dimension of Y, denoted as Yi, degrades to a Gaussian
distribution N (0, 1

m ) in terms of the Kullback-Leibler divergence when m is large enough, see
Theorem 2.

Theorem 2. For a random variable Yi in the i-th dimension of Y = Z/∥Z∥2, where Z ∼
N (0, σ2Im) (Z ∈ Rm), then the Kullback-Leibler divergence between Yi and the variable
Ŷi ∼ N (0, 1

m ) converges to zero as m → ∞ as follows.

lim
m→∞

DKL(Ŷi, Yi) = 0

We firstly seek the probability density function (pdf) of Yi as shown in App. C. Since the probability
density functions of both distributions are known, we could derive the Kullback-Leibler divergence
between them. One trick is to expand a logarithm term using Taylor expansion. Finally, we obtain
that the divergence has a limit of zero when m approaches infinity (Theorem 2 proved). See App. D
for the detailed proof.

1A mixture distribution is the probability distribution of a random variable that is derived from a collection
of other random variables. This could be implemented by first sampling a random variable based on a given
probability distribution w.r.t a ratio of each random variable, and then sampling a value based on the selected
random variable.

2Most recent self-supervised representation learning approaches learn representations with a l2 norm con-
straint (Zbontar et al., 2021; Wang & Isola, 2020; Chen & He, 2021; Grill et al., 2020; Chen et al., 2020),
restricting the output representations to the surface of unit hypersphere, i.e., the l2-normalized representation

(Y
def
= Z/∥Z∥2) should be on the surface of the unit hypersphere Sm−1. This suggests that directions of learned

representation vectors (instead of the absolute amplitude of elements in the vectors) matter when capturing the
semantic information of instances.
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Figure 2: The binning density between Yi and Ŷi over various dimensions. See 2d visualization in App. F

Therefore, we make an assumption that l2-normalized zero-mean isotropic Gaussian distribution
(denoted Y) follows, or at least is close to, an approximated Gaussian distribution N (0, 1

mIm), even
m is moderately large. Note that N (0, 1

mIm) enjoys the merits of uniqueness (a proper distribution
to design uniformity metric), and might be used as an approximated distribution for Y.

3.2.2 EMPIRICAL CONNECTION BETWEEN Y AND THE GAUSSIAN DISTRIBUTION

The above theoretical conclusion states that the distribution of Y is infinitely close to a Gaussian
distribution when is m infinitely large; while, in practice, we have to adopt finitely large m due to the
memory limit. Here we empirically check the closeness between Y and a Gaussian distribution when
using a manageable size of dimension m in practice.
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Figure 3: Distance between Yi

and Ŷi

Without losing any generality, we analyze an arbitrary dimension
of Y. The distribution of the i-th dimension of Y, as denoted as
a random variable Yi, is visualized in Fig. 2 by binning 200,000
sampled data points (called ‘samples’ later) into 51 groups. Fig. 2
shows the distribution difference between Yi and Ŷi when selecting
m from a manageable internal [2, 4, 8, 16, 32, 64, 128, 256]. Note
that the difference becomes negligible when m is moderately large
(e.g.. m > 32) . To quantitatively measure the closeness, Fig. 3
shows the change of the distance (e.g., Wasserstein distance as
defined in App. G) between Yi and Ŷi with respect to increasing m. One could observe that the
distance is converged to zero with the large m. This also empirically evidences the conclusion in
Theorem 2. More details see App. H.

3.3 A NEW METRIC FOR UNIFORMITY

In this section, we propose to use the distance between the distribution of learned representations
and its ideal Gaussian distribution N (0, 1

mIm) as a uniformity metric. Specially, we collect a set of
data vectors from learned representations, i.e., {z1, z2, ..., zn}, and adopt l2-normalized vectors to
calculate the mean and covariance matrix as follows:

µ =
1

n

n∑
i=1

zi/∥zi∥, Σ =
1

n

n∑
i=1

(zi/∥zi∥ − µ)T (zi/∥zi∥ − µ), (3)

Where µ ∈ Rm, Σ ∈ Rm×m, and m is the dimension size of vectors. To facilitate the calculation of
distribution distance, we apply a Gaussian hypothesis to learned representations N (µ,Σ). Based on
this assumption, we employ Wasserstein distance 3, a well-known distribution distance, to calculate
the distance between two distributions, which takes the minimum cost of turning one pile into the
other when viewing each distribution as a unit amount of earth/soil, see the definition in App. G.

3We also discuss using other distribution distances as uniformity metrics, such as Kullback-Leibler Divergence
and Bhattacharyya Distance over Gaussian distribution. See more details in App. I
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Theorem 3. Wasserstein Distance (Olkin & Pukelsheim (1982)) Suppose two random variables
Z1 ∼ N (µ1,Σ1) and Z2 ∼ N (µ2,Σ2) obey multivariate normal distributions, then l2-Wasserstein
distance between Z1 and Z2 is:

W2(Z1,Z2) =

√
∥µ1 − µ2∥22 + Tr(Σ1 +Σ2 − 2(Σ

1/2
2 Σ1Σ

1/2
2 )1/2), (4)

Despite its complexity, Wasserstein distance over Gaussian distributions is easy to calculate as
illustrated in Theorem 3. We instantiate Equation 4 with the distribution of learned representations
and ideal distribution. Then, an uniformity metric via Wasserstein distance can be formulated as:

W2 ≜

√
∥µ∥22 + 1 + Tr(Σ)− 2√

m
Tr(Σ1/2), (5)

The smaller W2, indicates the larger uniformity of representations. Besides its usefulness in collapse
analysis, our proposed uniformity metric can be also used as an additional loss for various existing
self-supervised methods since it is differentiable during the backward pass. One difference is that the
mean and covariance matrix in Equation 3 is calculated by batch data during the training phase.

4 ON UNIFORMITY METRICS

In this section, we first introduce the desirable properties (called ‘Desiderata’) of any well-defined
uniformity metric in Sec. 4.1. Sec.4.2 and Sec. 4.3 compare the proposed uniformity metric −W2

with existing uniformity metric −LU theoretically and empirically respectively.

4.1 DESIDERATA OF UNIFORMITY

A uniformity metric is a function to map a set of learned representations (typically dense vectors) to a
uniformity indicator (typically a real number).

U : {Rm}n → R, (6)

D ∈ {Rm}n is a set of learned vectors (D = {z1, z2, ..., zn}), each vector is the feature representation
of a instance, zi ∈ Rm. In this section, we formally define five desiderata (i.e., desirable properties)
for any uniformity metrics.

Intuitively, uniformity is invariant to the permutation of instances, as it cannot affect the distribution.
Property 1. Instance Permutation Constraint (IPC)

U(π(D)) = U(D), (7)

π is an instance permutation operator that changes the order of representations.

The uniformity should be invariant when all representations are re-scaled, since modern machine
learning tends to use directions of learned representation vectors to capture the semantic infor-
mation of instances. For example, most recent self-supervised representation learning approaches
learn representations with a l2 norm constraint (Zbontar et al., 2021; Wang & Isola, 2020; Grill et al.,
2020; Chen et al., 2020), restricting the output representations to the surface of unit hypersphere, i.e.,
Ds = {s1, s2, ..., sn}, and si = zi/∥zi∥2 is on the surface of the unit hypersphere Sm−1.
Property 2. Instance Scaling Constraint (ISC)

U({λ1z1, λ2z2, ..., λnzn}) = U(D), ∀λi ∈ R+, (8)

The uniformity is invariant when instances are cloned, since the cloning operator does not change
the original distribution density.
Property 3. Instance Cloning Constraint (ICC)

U(D ∪D) = U(D), (9)

∪ is the union of two sets that can achieve instance cloning, D ∪D = {z1, · · · , zn, z1, · · · , zn}.

The uniformity decreases when cloning features for each instance, since the feature-level clone will
bring some redundancy, leading to dimensional collapse (Zbontar et al., 2021; Bardes et al., 2022).
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Property 4. Feature Cloning Constraint (FCC)

U(D ⊕D) ≤ U(D), (10)

⊕ is an feature-level concatenation operator that can achieve feature cloning as D⊕D = {z1⊕z1, z2⊕
z2, ..., zn ⊕ zn}, and where zi ⊕ zi = [zi1, · · · , zim, zi1, · · · , zim]T ∈ R2m. U(D ⊕D) = U(D) if
and only if z1 = z2 = ... = zn = 0m.

The uniformity decreases when adding constant features for each instance, since it introduces unin-
formative features and results in some collapsed dimensions.
Property 5. Feature Baby Constraint (FBC)

U(D ⊕ 0k) ≤ U(D), k ∈ N+, (11)

D ⊕ 0k = {z1 ⊕ 0k, z2 ⊕ 0k, ..., zn ⊕ 0k}, and zi ⊕ 0k = [zi1, zi2, ..., zim, 0, 0, ..., 0]T ∈ Rm+k.
U(D ⊕ 0k) ≤ U(D) if and only if z1 = z2 = ... = zn = 0m.

Note that these five properties are necessary but not sufficient for a well-designed uniformity metric.
That is, a well-designed uniformity metric should satisfy these properties; while only satisfying these
properties does not sufficiently lead to an ideal uniformity metric.

4.2 EXAMINING DESIDERATA OF UNIFORMITY

We employ the desiderata in Sec. 4.1 as criterion to conduct theoretical analysis for two metrics −LU
in Equation 2 and −W2 in Equation 5. The conclusion is stated in the Claim 1 and Claim 2.
Claim 1. Our proposed metric (i.e., −W2) satisfies all properties including Property 1, 2, 3, 4, and
5. See App. E.1 for the detailed proof.

Claim 2. the baseline metric (i.e., −LU ) satisfies Property 1 and 2; but it violates Property 3, 4, and
5. See App. E.2 for the detailed proof.

In terms of Property IPC and Property ISC, we can directly use their definition to demonstrate both
two metrics satisfy the two properties. To further check whether two metric could satisfy other three
properties, see App. E for the detailed proof.

Particularly, the proposed metric −W2 satisfies FBC Property while the baseline metric −LU
does not. This opens a new angle to explain the advantage of our proposed metric −W2 from the
dimensional collapse perspective. Specially, the larger k would bring the more serious dimensional
collapse for D⊕0k than D. However, −LU fails to identify the more serious dimensional collapse due
to −LU (D ⊕ 0k) = −LU (D). On the contrary, our proposed metric is sensitive to the dimensional
collapse as −W2(D ⊕ 0k) < −W2(D).

4.3 EMPIRICAL ANALYSIS VIA SYNTHETIC DATA
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-3.2

-2.4

-1.6

-0.8

0.0
Standard Gaussian
Uniform
Mixture of Gaussian
Standard Cauchy
Chi-squared
Exponential
Standard Gumbel
Gamma

Figure 4: Uniformity analysis on distribu-
tions via two metrics.

Correlation between LU and W2. We employ synthetic
experiments to study uniformity metrics. In detail, we
manually sample 50000 data vectors from different distri-
butions, such as standard Gaussian distribution N (0, I),
uniform Distribution U(0,1), the mixture of Gaussian, etc.
Based on these data vectors, we estimate the uniformity of
different distributions by two metrics. As shown in Fig. 4,
standard Gaussian distribution achieves the minimum val-
ues by both W2 and LU , which indicates that standard
Gaussian distribution could achieve larger uniformity than
other distributions. This empirical result is consistent with
Theorem 1 that standard Gaussian distribution achieves the maximum uniformity.

On the Dimensional Collapse. To synthesize data with various specified degrees of dimensional
collapse, we concatenate the zero vectors (i.e., they are full dimensional collapse) with sampled
data vectors from the standard Gaussian distribution (i.e., ideal uniformity without collapse). The
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percentage of zero-value dimensions of the concatenated vectors is η while that of non-zero vectors is
1− η. As shown in Fig. 5(a) and Fig. 5(b), W2 is capable of capturing salient sensitivity to collapse
level, while LU keeps almost no change even in 80% collapse level, indicating LU is insensitive to
the dimensional collapse.
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(a) Collapse analysis via LU
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(b) Collapse analysis via W2

Figure 5: Analysis on dimensional collapse degrees. W2 is more sensitive to collapse degrees than LU .
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Figure 6: Dimensional collapse w.r.t various dimensions. LU fails to identify the dimensional collapse with a
large dimension, while W2 is able to identify the dimensional collapse no matter how great/small m is.

Interestingly, as visualized in Fig. 6, LU becomes indistinguishable with different degrees of dimen-
sion collapse (η = 25%, 50%, and75%) when the dimension m becomes large (e.g., m ≥ 28). On the
contrary, our proposed W2 is constant to the dimension number under a specific degree of dimension
collapse; W2 only depends on the degree of dimension collapse and is independent of the dimension
number. In summary, our proposed metric W2 is a more reasonable metric to measure the uniformity
than the existing one LU from an empirical perspective.

5 EXPERIMENTS

In this section, we impose the proposed uniformity metric as an auxiliary loss term for various
existing self-supervised methods, and conduct experiments on CIFAR-10 and CIFAR-100 datasets to
demonstrate its effectiveness. Codes implemented in Pytorch will be released.

Models We conduct experiments on a series of self-supervised representation learning models: (i)
AlignUniform (Wang & Isola, 2020), whose loss objective consists of an alignment objective and
a uniform objective. (ii) three contrastive methods, i.e., SimCLR (Chen et al., 2020), MoCo (He
et al., 2020), and NNCLR (Dwibedi et al., 2021). (iii) two asymmetric models, i.e., BYOL (Grill
et al., 2020) and SimSiam (Chen & He, 2021). (iv) two methods via redundancy reduction, i.e.,
BarlowTwins (Zbontar et al., 2021) and Zero-CL (Zhang et al., 2022b). To study the behavior of
proposed Wasserstein distance in the self-supervised representation learning, we impose it as an
auxiliary loss term to the following models: MoCo v2, BYOL, BarlowTwins, and Zero-CL. To
facilitate better use of Wasserstein distance, we also design a linear decay for weighting Wasserstein
distance during the training phase, i.e., αt = αmax − t ∗ (αmax − αmin)/T , where t, T , αmax ,
αmin, αt are current epoch, maximum epochs, maximum weight, minimum weight, and current
weight, respectively. More detailed experiments setting see in App. J.

Metrics We evaluate the above methods from two perspectives: one is linear evaluation accuracy
measured by Top-1 accuracy (Acc@1) and Top-5 accuracy (Acc@5); another is representation
capacity. According to (Arora et al., 2019; Wang & Isola, 2020), alignment and uniformity are the
two most important properties to evaluate self-supervised representation learning. We use two metrics
LU and W2 to measure the uniformity, and a metric A to measure the alignment between the positive
pairs (Wang & Isola, 2020). More details about the alignment metric see in App. K.
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Table 1: Main comparison on CIFAR-10 and CIFAR-100 datasets. Proj. and Pred. are the hidden dimension in
projector and predictor. ↑ and ↓ mean gains and losses, respectively.

Methods Proj. Pred. CIFAR-10 CIFAR-100
Acc@1↑ Acc@5↑ W2 ↓ LU ↓ A ↓ Acc@1↑ Acc@5↑ W2 ↓ LU ↓ A ↓

SimCLR 256 % 89.85 99.78 1.04 -3.75 0.47 63.43 88.97 1.05 -3.75 0.50
NNCLR 256 256 87.46 99.63 1.23 -3.12 0.38 54.90 83.81 1.23 -3.18 0.43
SimSiam 256 256 86.71 99.67 1.19 -3.33 0.39 56.10 84.34 1.21 -3.29 0.42
AlignUniform 256 % 90.37 99.76 0.94 -3.82 0.51 65.08 90.15 0.95 -3.82 0.53
MoCo v2 256 % 90.65 99.81 1.06 -3.75 0.51 60.27 86.29 1.07 -3.60 0.46
MoCo v2 + W2 256 % 91.41 ↑0.76 99.68 0.33 ↑0.73 -3.84 0.63 ↓0.12 63.68 ↑3.41 88.48 0.28 ↑0.79 -3.86 0.66 ↓0.20
BYOL 256 256 89.53 99.71 1.21 -2.99 0.31 63.66 88.81 1.20 -2.87 0.33
BYOL + W2 256 256 90.31 ↑0.78 99.77 0.38 ↑0.83 -3.90 0.65 ↓0.34 65.16 ↑1.50 89.25 0.36 ↑0.84 -3.91 0.69 ↓0.36
BarlowTwins 256 % 91.16 99.80 0.22 -3.91 0.75 68.19 90.64 0.23 -3.91 0.75
BarlowTwins + W2 256 % 91.43 ↑0.27 99.78 0.19 ↑0.03 -3.92 0.76 ↓0.01 68.47 ↑0.28 90.64 0.19 ↑0.04 -3.91 0.79 ↓0.04
Zero-CL 256 % 91.35 99.74 0.15 -3.94 0.70 68.50 90.97 0.15 -3.93 0.75
Zero-CL + W2 256 % 91.42 ↑0.07 99.82 0.14 ↑0.01 -3.94 0.71 ↓0.01 68.55 ↑0.05 91.02 0.14 ↑0.01 -3.94 0.76 ↓0.01

Main Results As shown in Tab. 1 We could observe that by imposing W2 as an additional loss it
consistently improves the performance than that without the loss. Interestingly, although it slightly
harms alignment, it usually results in improvement in uniformity and finally leads to better accuracy.
This demonstrates the effectiveness of W2 as a uniformity metric. Note imposing an additional loss
during training does not affect the training or inference efficiency; therefore, adding W2 as loss is
beneficial without any tangible costs.

Convergence Analysis We test the Top-1 accuracy of these models on CIFAR-10 and CIFAR-100
via linear evaluation protocol (as described in App. J) when training them in different epochs. As
shown in Fig. 9 in App. L. By imposing W2 as an additional loss for these models, it converges
faster than the raw models, especially for MoCo v2 and BYOL with serious collapse problem. Our
experiments show that imposing the proposed uniformity metric as an auxiliary penalty loss could
largely improve uniformity but damage alignment, see more representation analysis in App. M.

Dimensional Collapse Analysis To gain a better understanding of how the additional loss W2

benefits the alleviation of the dimensional collapse, we visualize singular value spectrum of the
representations (Jing et al., 2022). As shown in Fig. 7, the spectrum contains the singular values of
the covariance matrix of representations from CIFAR-100 dataset in sorted order and logarithmic
scale. Most singular values collapse to zero in BYOL and MoCo v2 models (exclude BarlowTwins),
indicating a large number of collapsed dimensions occur in both models. By imposing W2 as an
additional loss for these two models, the number of collapsed dimensions almost decrease to zero,
indicating W2 can effectively address the issue of dimensional collapse.
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Figure 7: Dimensional collapse analysis on CIFAR-100 dataset.

6 CONCLUSION

In this paper, we theoretically and empirically demonstrate that the existing uniformity metric is
insensitive to the dimensional collapse, and focus on designing a new uniformity metric that could
capture salient sensitivity to the dimensional collapse. To this end, we propose to use the Wasserstein
distance between the distribution of learned representations and the ideal distribution as the metric of
uniformity. Furthermore, we formulate five desirable constraints (desiderata) for ideal uniformity
metrics, based on which we find that the proposed uniformity metric satisfies all desiderata while
the existing one does not. Moreover, we conduct synthetic experiments to further demonstrate that
the proposed uniformity metric is capable to deal with the dimensional collapse while the existing
one is insensitive. Finally, we apply our proposed metric in the practical scenarios, and impose the
proposed uniformity metric as an auxiliary loss term for various existing self-supervised methods,
which consistently improves the downstream performance. One limitation of our work is that five
desirable constraints (desiderata) are not sufficient for ideal uniformity metrics. In future work, we
would make further efforts to seek more reasonable properties for uniformity metrics.
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A PROOF OF THE THEOREM 1

Proof. According to the property of Gaussian distribution, the distribution of the variable Z ∼
N (0, σ2Im) is invariant to arbitrary orthogonal transformation U:

Ẑ = UZ ∼ N (U0, σ2UImUT ) ∼ N (0, σ2Im) (U0 = 0,UImUT = UUT = Im)

Therefore Ẑ is identically distributed with the random variable Z. We denote identically distributed
operation as Ẑ id↔ Z. For the l2-normalized variables:

Y = Z/∥Z∥2, Ŷ = Ẑ/∥Ẑ∥2, Ŷ
id↔ Y.

Since ∥UZ∥2 =
√
(UZ)T (UZ) =

√
ZTUTUZ =

√
ZTZ = ∥Z∥2,

Ŷ =
UZ

∥UZ∥2
=

UZ

∥Z∥2
= UY,

Therefore, Y is an identically distributed operation as UY, i.e., Y id↔ UY after an arbitrary
orthogonal transformation. To conclude that the random variable Y uniformly distributes on the
surface of the unit hypersphere Sm−1 = {y ∈ Rm : ∥y∥2 = 1}, here we use the proof by
contradiction.

Let us assume the opposite of the above conclusion: Y does not uniformly distribute on the surface
of the unit hypersphere Sm−1. In other words, the density of each specified-sized area in Y is not
identical for the unit hypersphere Sm−1. The random variable Y has a continuous density ρ. Suppose
that for r1, r2 ∈ Sm−1, r1 ̸= r2 and ρ(r1) > ρ(r2), there exists a radius ϵ for any l2-norm (also
holds for other norms) such that on

D1 = {r ∈ Sm−1 : ∥r− r1∥2 < ϵ},
D2 = {r ∈ Sm−1 : ∥r− r2∥2 < ϵ},

we still have

∀r ∈ D1,∀s ∈ D2, ρ(r) > ρ(s).

Therefore, P (D1) > P (D2). Since Y
id↔ UY, D2 can be obtained from D1 by a orthogonal

transformation 4, which implies that P (D1) = P (D2).

Contradiction! Hence ρ(r1) = ρ(r2) for ∀r1, r2 ∈ Sm−1 and r1 ̸= r2. Therefore, Y = Z/∥Z∥2
uniformly distributes on the hypersphere Sm−1.

B MEAN AND COVARIANCE MATRIX OF Y

Theorem 4. For a random variable Z ∼ N (0, σ2Im), and Z ∈ Rm, for the l2-normalized form
Y = Z/∥Z∥2, its mean and covariance matrix can be formulated as follows.

µ = 0, Σ =
1

m
Im,

Proof. Z = [z1, z2, · · · , zm] ∼ N (0, σ2Im), and its probability density function (pdf) can be written
as:

fZ(z) =
1

(2π)m/2|σ2Im|1/2
exp{−1

2
zT (σ2Im)−1z} =

1

(2πσ2)m/2
exp{−1

2

m∑
i=1

z2i /σ
2},

We denote Y = [y1, y2, · · · , ym]. Then the mean of i-th variable yi can be written as below:

E[yi] =
∫
z1

∫
z2

∫
···

∫
zm

zi√∑m
i z2i

1

(2πσ2)m/2
exp{−1

2

m∑
i=1

z2i /σ
2}dz1dz2 · · · dzm,

4Let W be a orthogonal transformation such that Wr1 = r2. D2 could be obtained by transforming every
points from D1 using orthogonal transformation W , namely D2 = {Wr : r ∈ D1},
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As zi√∑m
i z2

i

is an odd function, E[yi] = 0, and we further conclude µ = E[Y] = 0. We also derive

the covariance matrix of Y according to its definition as below:

Σ = E[(Y − E[Y])(Y − E[Y])T ] =

 E[y21 ] E[y1y2] · · · E[y1ym]
E[y2y1] E[y22 ] · · · E[y2ym]
· · · · · · · · · · · ·

E[ymy1] E[ymy2] · · · E[y2m]


Then E[yiyj ] (∀i ̸= j) can be formulated as follows:

E[yiyj ] =
∫
z1

∫
z2

∫
···

∫
zm

zi√∑m
i z2i

zj√∑m
i z2i

1

(2πσ2)m/2
exp{−1

2

m∑
i=1

z2i /σ
2}dz1dz2 · · · dzm,

As zi√∑m
i z2

i

zj√∑m
i z2

i

is an odd function, E[yiyj ] = 0 (∀i ̸= j). In terms of diagonal elements in Σ,

we employ the symmetry to conclude E[y21 ] = E[y22 ] = · · · = E[y2m]. Based on this principle, we
conclude E[y2i ] = 1

m via below equations:

E[
m∑
i

y2i ] = mE[y2i ], E[
m∑
i

y2i ] = E[
∑m

i z2i∑m
i z2i

] = 1,

Therefore, Σ = 1
mIm.

C PROBABILITY DENSITY FUNCTION OF Yi

Theorem 5. For a random variable Z ∼ N (0, σ2Im), and Z ∈ Rm, for the l2-normalized form
Y = Z/∥Z∥2, the probability density function (pdf) of a variable Yi in the arbitrary dimension is:

fYi
(yi) =

Γ(m/2)√
πΓ((m− 1)/2)

(1− y2i )
(m−3)/2

Proof. Z = [Z1, Z2, · · · , Zm] ∼ N (0, σ2Im), then Zi ∼ N (0, σ2),∀i ∈ [1,m]. We denote the
variable U = Zi/σ ∼ N (0, 1), V =

∑m
j ̸=i(Zj/σ)

2 ∼ X 2(m− 1), then U and V are independent
with each other. For the variable T = U√

V/(m−1)
, it obeys the Student’s t-distribution with m− 1

degrees of freedom, and its probability density function (pdf) is:

fT (t) =
Γ(m/2)√

(m− 1)πΓ((m− 1)/2)
(1 +

t2

m− 1
)−m/2

For the variable Yi = Zi√∑m
i=1 Z2

i

= Zi√
Z2

i +
∑m

j ̸=i Z
2
j

= Zi/σ√
(Zi/σ)2+

∑m
j ̸=i(Zj/σ)2

= U√
U2+V

, then

T = U√
V/(m−1)

=
√
m−1Yi√
1−Y 2

i

and Yi =
T√

T 2+m−1
, the relation between the cumulative distribution

function (cdf) of T and that of Yi can be formulated as follows:

FYi(yi) = P ({Yi ≤ yi}) =
{
P ({Yi ≤ yi}) yi ≤ 0

P ({Yi ≤ 0}) + P ({0 < Yi ≤ yi}) yi > 0

=

{
P ({ T√

T 2+m−1
≤ yi}) yi ≤ 0

P ({ T√
T 2+m−1

≤ 0}) + P ({0 < T√
T 2+m−1

≤ yi}) yi > 0

=

{
P ({ T 2

T 2+m−1 ≥ y2i , T ≤ 0}) yi ≤ 0

P ({T ≤ 0}+ P ({ T 2

T 2+m−1 ≤ y2i , T > 0}) yi > 0

=

P ({T ≤
√
m−1yi√
1−y2

i

}) yi ≤ 0

P ({T ≤ 0}+ P ({0 < T ≤
√
m−1yi√
1−y2

i

}) yi > 0

= P ({T ≤
√
m− 1yi√
1− y2i

}) = FT (

√
m− 1yi√
1− y2i

)
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Therefore, the pdf of Yi can be derived as follows:

fYi
(yi) =

d

dyi
FYi(yi) =

d

dyi
FT (

√
m− 1yi√
1− y2i

)

= fT (

√
m− 1yi√
1− y2i

)
d

dyi
(

√
m− 1yi√
1− y2i

)

= [
Γ(m/2)√

(m− 1)πΓ((m− 1)/2)
(1− y2i )

m/2][
√
m− 1(1− y2i )

−3/2]

=
Γ(m/2)√

πΓ((m− 1)/2)
(1− y2i )

(m−3)/2

D PROOF OF THE THEOREM 2

Proof. For the variable Ŷi ∼ N (0, 1
m ), its pdf and k-th order raw moment can be formulated as:

fŶi
(y) =

√
m

2π
exp{−my2

2
}, E[Ŷ k

i ] =

{∏k/2
j=1(2j−1)

mj k = 2j, j = 1, 2, 3...

0 k = 2j − 1

According to the Theorem 5, the pdf of Yi is:

fYi
(yi) =

Γ(m/2)√
πΓ((m− 1)/2)

(1− y2i )
(m−3)/2

For 0 ≤ y2 < 1, the Taylor expansion of log(1− y2) can be written as:

log(1− y2) = −
∞∑
j=1

y2j

j

Then the Kullback-Leibler divergence between Ŷi and Yi can be formulated as:

DKL(Ŷi, Yi) =

∫ ∞

−∞
fŶi
(y)[log fŶi

(y)− log fYi
(yi)]dy

=

∫ ∞

−∞
fŶi
(y)[log

√
m

2π
− my2

2
− log

Γ(m/2)√
πΓ((m− 1)/2)

− m− 3

2
log(1− y2)]dy

= log

√
m

2π
− log

Γ(m/2)√
πΓ((m− 1)/2)

+

∫ ∞

−∞
fŶi
(y)[−my2

2
− m− 3

2
log(1− y2)]

= log

√
m

2

Γ((m− 1)/2)

Γ(m/2)
+

∫ ∞

−∞
fŶi
(y)[−my2

2
+

m− 3

2

∞∑
j=1

y2j

j
]

= log

√
m

2

Γ((m− 1)/2)

Γ(m/2)
− m

2
E(Ŷ 2

i ) +
m− 3

2

∞∑
j=1

E(Ŷ 2j
i )/j

= log

√
m

2

Γ((m− 1)/2)

Γ(m/2)
− 1

2
+

m− 3

2
[
1

m
+

3

2m2
+

5 ∗ 3
3m3

+ o(
1

m3
)]

According to the Stirling formula, we have Γ(x+ α) → Γ(x)xα as x → ∞, therefore:

lim
m→∞

log

√
m

2

Γ((m− 1)/2)

Γ(m/2)
= lim

m→∞
log

√
m

2

Γ((m− 1)/2)

Γ((m− 1)/2)(m−1
2 )1/2

= lim
m→∞

log

√
m

2

√
2

m− 1
= 0
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Then the Kullback-Leibler divergence between Ŷi and Yi converges to zero as m → ∞ as follows:

lim
m→∞

DKL(Ŷi, Yi) = lim
m→∞

log

√
m

2

Γ((m− 1)/2)

Γ(m/2)
− 1

2
+

m− 3

2
[
1

m
+

3

2m2
+

5 ∗ 3
3m3

+ o(
1

m3
)]

= 0 + lim
m→∞

−1

2
+

m− 3

2
[
1

m
+

3

2m2
+

5 ∗ 3
3m3

+ o(
1

m3
)] = 0

E EXAMINING THE DESIDERATA FOR TWO UNIFORMITY METRICS

E.1 PROOF FOR −W2 ON DESIDERATA

The first two properties (Property 1 and 2) could be easily proved using the definition. We here to
examine the rest three properties one by one for the proposed uniformity metric −W2.

Proof. Firstly, we prove that our proposed metric −W2 could satisfy the Property 3. As D ∪ D =

{z1, z2, ..., zn, z1, z2, ..., zn}, then its mean vector and covariance matrix can be formulated as
follows:

µ̂ =
1

2n

n∑
i=1

2zi/∥zi∥ = µ, Σ̂ =
1

2n

n∑
i=1

2(zi/∥zi∥ − µ̂)T (zi/∥zi∥ − µ̂) = Σ,

Then we have:

W2(D ∪D) ≜

√
∥µ̂∥22 + 1 + Tr(Σ̂)− 2√

m
Tr(Σ̂1/2) = W2(D).

Therefore, −W2(D ∪ D) = −W2(D), indicating that our proposed metric −W2 could satisfy the
Property 3.
Then, we prove that our proposed metric −W2 could satisfy the Property 4. Given zi =

[zi1, zi2, ..., zim]T , and ẑi = zi ⊕ zi = [zi1, zi2, ..., zim, zi1, zi2, ..., zim]T ∈ R2m, for the
set: D ⊕D, its mean vector and covariance matrix can be formulated as follows:

µ̂ =

(
µ/

√
2

µ/
√
2

)
, Σ̂ =

(
Σ/2 Σ/2
Σ/2 Σ/2

)

As Σ̂1/2 =

(
Σ1/2/2 Σ1/2/2
Σ1/2/2 Σ1/2/2

)
, Tr(Σ̂) = Tr(Σ) and Tr(Σ̂1/2) = Tr(Σ1/2), Then we have,

W2(D ⊕D) ≜

√
∥µ̂∥22 + 1 + Tr(Σ̂)− 2√

2m
Tr(Σ̂1/2)

=

√
∥µ∥22 + 1 + Tr(Σ)− 2√

2m
Tr(Σ1/2),

>

√
∥µ∥22 + 1 + Tr(Σ)− 2√

m
Tr(Σ1/2) = W2(D),

Therefore, −W2(D ⊕D) < −W2(D), indicating that our proposed metric −W2 could satisfy the
Property 4.
Finally, we prove that our proposed metric −W2 could satisfy the Property 5. Given zi =

[zi1, zi2, ..., zim]T , and ẑi = zi ⊕ 0k = [zi1, zi2, ..., zim, 0, 0, ..., 0]T ∈ Rm+k, for the set: D ⊕ 0k,
its mean vector and covariance matrix can be formulated as follows:

µ̂ =

(
µ
0k

)
, Σ̂ =

(
Σ 0m×k

0k×m 0k×k

)
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Therefore, Tr(Σ̂) = Tr(Σ), and Tr(Σ̂1/2) = Tr(Σ1/2):

W2(D ⊕ 0k) ≜

√
∥µ̂∥22 + 1 + Tr(Σ̂)− 2√

m+ k
Tr(Σ̂1/2)

=

√
∥µ∥22 + 1 + Tr(Σ)− 2√

m+ k
Tr(Σ1/2)

>

√
∥µ∥22 + 1 + Tr(Σ)− 2√

m
Tr(Σ1/2) = W2(D)

Therefore, −W2(D ⊕ 0k) < −W2(D), indicating that our proposed metric −W2 could satisfy the
Property 5.

E.2 PROOF FOR −LU ON DESIDERATA

The first two properties (Property 1 and 2) could be easily proved using the definition. We here to
examine the rest three properties one by one for the existing uniformity metric −LU .

Proof. Firstly, we prove that the baseline metric −LU cannot satisfy the Property 3. According to
the definition of LU in Equation 2, we have:

LU (D ∪D) ≜ log
1

2n(2n− 1)/2
(4

n∑
i=2

i−1∑
j=1

e
−t∥ zi

∥zi∥
−

zj
∥zj∥

∥2
2 +

n∑
i=1

e
−t∥ zi

∥zi∥
− zi

∥zi∥
∥2
2)

= log
1

2n(2n− 1)/2
(4

n∑
i=2

i−1∑
j=1

e
−t∥ zi

∥zi∥
−

zj
∥zj∥

∥2
2 + n),

We set G =
∑n

i=2

∑i−1
j=1 e

−t∥ zi
∥zi∥

−
zj

∥zj∥
∥2
2 , and then we have:

G =

n∑
i=2

i−1∑
j=1

e
−t∥ zi

∥zi∥
−

zj
∥zj∥

∥2
2 ≤

n∑
i=2

i−1∑
j=1

e
−t∥ zi

∥zi∥
− zi

∥zi∥
∥2
2 = n(n− 1)/2

G = n(n− 1)/2 if and only if z1 = z2 = ... = zn.

LU (D ∪D)− LU (D) = log
4G+ n

2n(2n− 1)/2
− log

G

n(n− 1)/2

= log
(4G+ n)n(n− 1)/2

2nG(2n− 1)/2
= log

(4G+ n)(n− 1)

4nG− 2G

= log
4nG− 4G+ n2 − n

4nG− 2G
≥ log 1 = 0.

LU (D ∪ D) = LU (D) if and only if G = n(n − 1)/2, which requires z1 = z2 = ... = zn (an
extreme case that all representations collapse to a constant point, as depicted in the Fig. 1). We
exclude this extreme case for consideration in the paper, and we have −LU (D ∪ D) < −LU (D).
Therefore, the baseline metric −LU cannot satisfy the Property 3.
Then, we prove that the baseline metric −LU cannot satisfy the Property 4. Given zi =

[zi1, zi2, ..., zim]T , and zj = [zj1, zj2, ..., zjm]T , and we set ẑi = zi ⊕ zi and ẑj = zj ⊕ zj , we
have:

LU (D ⊕D) ≜ log
1

n(n− 1)/2

n∑
i=2

i−1∑
j=1

e
−t∥ ẑi

∥ẑi∥
−

ẑj
∥ẑj∥

∥2
2 ,

As ẑi = [zi1, zi2, ..., zim, zi1, zi2, ..., zim]T and ẑj = [zj1, zj2, ..., zjm, zj1, zj2, ..., zjm]T , then
∥ẑi∥ =

√
2∥zi∥, ∥ẑj∥ =

√
2∥zj∥, and ⟨ẑi, ẑj⟩ = 2⟨zi, zj⟩, we have:

∥ ẑi
∥ẑi∥

− ẑj
∥ẑj∥

∥22 = 2− 2
⟨ẑi, ẑj⟩
∥ẑi∥∥ẑj∥

= 2− 2
2⟨zi, zj⟩√

2∥zi∥
√
2∥zj∥

= ∥ zi
∥zi∥

− zj
∥zj∥

∥22,
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Therefore, −LU (D ⊕ D) = −LU (D), indicating that the baseline metric −LU cannot satisfy the
Property 4.
Finally, we prove that the baseline metric −LU cannot satisfy the Property 5. Given zi =

[zi1, zi2, ..., zim]T , and zj = [zj1, zj2, ..., zjm]T , and we set ẑi = zi ⊕ 0k and ẑj = zj ⊕ 0k,
we have:

LU (D ⊕ 0k) ≜ log
1

n(n− 1)/2

n∑
i=2

i−1∑
j=1

e
−t∥ ẑi

∥ẑi∥
−

ẑj
∥ẑj∥

∥2
2 ,

As ẑi = [zi1, zi2, ..., zim, 0, 0, ..., 0]T , and ẑj = [zj1, zj2, ..., zjm, 0, 0, ..., 0]T , then ∥ẑi∥ = ∥zi∥,
∥ẑj∥ = ∥zj∥, and ⟨ẑi, ẑj⟩ = ⟨zi, zj⟩, therefore:

∥ ẑi
∥ẑi∥

− ẑj
∥ẑj∥

∥22 = 2− 2
⟨ẑi, ẑj⟩
∥ẑi∥∥ẑj∥

= 2− 2
⟨zi, zj⟩
∥zi∥∥zj∥

= ∥ zi
∥zi∥

− zj
∥zj∥

∥22,

Therefore, −LU (D ⊕ 0k) = −LU (D), indicating that the baseline metric −LU cannot satisfy the
Property 5.

F A TWO-DIMENSIONAL VISUALIZATION FOR Y AND Ŷ

We also analyze the joint binning density and present 2D joint binning density of two arbitrary
individual dimensions, Yi and Yj (i ̸= j) in (a), and Ŷi and Ŷj (i ̸= j) in (b). More details about
binning density see in App. H. Even m is relatively small (i.e., 32), it looks that the density of two
distributions are close.
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(a) Density for two arbitrary dimensions of Y
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(b) Density for two arbitrary dimensions of Ŷ

Figure 8: Visualization of two arbitrary dimensions for Y and Ŷ when m = 32. See the binning
density in one-dimensional visualization over various dimensions in Fig. 2

G THE DEFINITION OF WASSERSTEIN DISTANCE

Definition 1. Wasserstein Distance or Earth-Mover Distance with p norm is defined as below:

Wp(Pr,Pg) = ( inf
γ∈Π(Pr,Pg)

E(x,y)∼γ

[
∥x− y∥p

]
)1/p , (12)

where Π(Pr,Pg) denotes the set of all joint distributions γ(x, y) whose marginals are respectively
Pr and Pg. Intuitively, when viewing each distribution as a unit amount of earth/soil, Wasserstein
Distance or Earth-Mover Distance takes the minimum cost of transporting “mass” from x to y in
order to transform the distribution Pr into the distribution Pg .
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H DETAILS ON BINNING DENSITY

Details for 1D Visualization The density of Yi and Ŷi visualized in Fig. 2 is estimated by binning
200000 data samples into 51 groups. We observe that the density of Yi would be more overlapped
with that of Ŷi. To further verify our observation, we instantiate Pr and Pg in Equation 12 with the
binning density of Yi and Ŷi, and employ W1(Pr,Pg) as the distribution distance between Yi and Ŷi.
We calculate W1(Pr,Pg) ten times and average them as visualized in Fig. 3.

Details for 2D Visualization The joint density of (Yi, Yj) and (Ŷi, Ŷj) (i ̸= j), visualized in Fig. 8
is estimated by 2000000 data samples into 51× 51 groups in two-axis (m = 32).

I OTHER DISTRIBUTION DISTANCES OVER GAUSSIAN DISTRIBUTION

In this section, besides Wasserstein distance over Gaussian distribution, as shown in Theorem 3, we
also discuss using other distribution distances as uniformity metrics, and make comparisons with
Wasserstein distance. As provided Kullback-Leibler Divergence and Bhattacharyya Distance over
Gaussian distribution in Theorem 6 and in Theorem 7, both calculations require the covariance matrix
is a full rank matrix, making them hard to be used to conduct dimensional collapse analysis. On the
contrary, our proposed uniformity metric via Wasserstein distance is free from such requirement on
the covariance matrix, making it easier to be widely used in practical scenarios.

Theorem 6. Kullback-Leibler Divergence (Lindley & Kullback (1959)) Suppose two random vari-
ables Z1 ∼ N (µ1,Σ1) and Z2 ∼ N (µ2,Σ2) obey multivariate normal distributions, then Kullback-
Leibler divergence between Z1 and Z2 is:

DKL(Z1,Z2) =
1

2
((µ1 − µ2)

TΣ−1
2 (µ1 − µ2) + Tr(Σ−1

2 Σ1 − I) + ln
detΣ2

detΣ1
),

Theorem 7. Bhattacharyya Distance (Bhattacharyya (1943)) Suppose two random variables Z1 ∼
N (µ1,Σ1) and Z2 ∼ N (µ2,Σ2) obey multivariate normal distributions, Σ = 1

2 (Σ1 +Σ2), then
bhattacharyya distance between Z1 and Z2 is:

DB(Z1,Z2) =
1

8
(µ1 − µ2)

TΣ−1(µ1 − µ2) +
1

2
ln

detΣ√
detΣ1 detΣ2

,

J EXPERIMENTS SETTING IN THE EXPERIMENTS

Setting To make a fair comparison, we conduct all experiments in Sec. 5 on a single 1080 GPU.
Also, we adopt the same network architecture for all models, i.e., ResNet-18 (He et al., 2016) as the
encoder, a three-layer MLP as the projector, and a three-layer MLP as the projector, respectively.
Besides, We use LARS optimizer (You et al., 2017) with a base learning rate 0.2, along with a cosine
decay learning rate schedule (Loshchilov & Hutter, 2017) for all models. We evaluate all models
under a linear evaluation protocol. In specific, models are pre-trained for 500 epochs and evaluated
by adding a linear classifier and training the classifier for 100 epochs while keeping the learned
representations unchanged. We also deploy the same augmentation strategy for all models, which is
the composition of a series of data augmentation operations, such as color distortion, rotation, and
cutout. Following (da Costa et al., 2022), we set temperature t = 0.2 for all contrastive methods.
As for MoCo (He et al., 2020) and NNCLR (Dwibedi et al., 2021) that require an extra queue to
save negative samples, we set the queue size to 212. For the linear decay for weighting Wasserstein
distance, detailed parameter settings are shown in Table 2.

Table 2: Parameter setting for various models in experiments.
Models MoCo v2 BYOL BarlowTwins Zero-CL
αmax 1.0 0.2 30.0 30.0
αmin 1.0 0.2 0 30.0
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K ALIGNMENT METRIC FOR SELF-SUPERVISED REPRESENTATION LEARNING

As one of the important indicators to evaluate representation capacity, the alignment metric measures
the distance among semantically similar samples in the representation space, and smaller alignment
generally brings better representation capacity. Wang et al (Wang & Isola, 2020) propose a simpler
approach by calculating the average distance between the positive pairs as alignment, and it can be
formulated as follows:

A ≜ E(za
i ,z

b
i )∼ppos

z
[∥ zai
∥zai ∥

− zbi
∥zbi∥

∥β2 ] (13)

Where (zai , zbi ) is a positive pair as discussed in Sec 2.1. We set β = 2 in the experiments.

L CONVERGENCE ANALYSIS ON TOP-1 ACCURACY

Here we show the change of Top-1 accuracy through all the training epochs in Fig 9. During training,
we take the model checkpoint after finishing each epoch to train linear classifier, and then evaluate
the Top-1 accuracy on the unseen images of the test set (in either CIFAR-10 or CIFAR-100 ). In both
CIFAR-10 and CIFAR-100, we could obverse that imposing the proposed uniformity metric as an
auxiliary penalty loss could largely improve the Top-1 accuracy, especially in the early stage.
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0 100 200 300 400 500
Epochs

48

54

60

66

72

To
p-

1 
A

cc
ur

ac
y

MoCo v2 + 
MoCo v2

(d) MoCo v2 in CIFAR-100

0 100 200 300 400 500
Epochs

48

54

60

66

72

To
p-

1 
A

cc
ur

ac
y

BYOL + 
BYOL

(e) BYOL in CIFAR-100
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(f) BarlowTwins in CIFAR-100
Figure 9: Convergence analysis on Top-1 accuracy during training.

M ANALYSIS ON UNIFORMITY AND ALIGNMENT

Here we show the change of uniformity and alignment through all the training epochs in Fig. 10 and
Fig. 11 respectively. During training, we take the model checkpoint after finishing each epoch to
evaluate the uniformity (i.e., using the proposed metric W2 ) and alignment (Wang & Isola, 2020)
on the unseen images of the test set (in either CIFAR-10 or CIFAR-100 ). In both CIFAR-10 and
CIFAR-100, we could obverse that imposing the proposed uniformity metric as an auxiliary penalty
loss could largely improve its uniformity. Consequently, it also lightly damage the alignment (the
smaller, the better-aligned) since a better uniformity usually leads to worse alignment by definition.

N THE EXPLANATION FOR PROPERTY 5

Here we explain why the Property 5 is an inequality instead of an equality by case study. Suppose a
set of data vectors (D) defined in Sec. 4.1 is with the maximum uniformity. When more dimensions
with zero-value are inserted to D, the set of new data vectors (D ⊕ 0k) cannot achieve maximum
uniformity any more, as they only occupy a small space on the surface of unit hypersphere. Therefore,
the uniformity would decrease significantly with large k.
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(f) BarlowTwins in CIFAR-100
Figure 10: Visualization on uniformity during training
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Figure 11: Visualization of alignment during training.
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Figure 12: Case study for Property 5 and blue point are data vectors.

To further illustrate the inequality, we visualize sampled data vectors. In Fig. 12(a), we visualize
400 data vectors (D1) sampled from N (0, I2), and they almost uniformly distribute on the S1. We
insert one dimension with zero-value to D1, and denote it as D1 ⊕ 01, as shown in Fig. 12(b). In
comparison with D2 where 400 data vectors are sampled from N (0, I3), as visualized in Fig. 12(c),
D1 ⊕ 01 only occupy a ring on the S2, while D2 almost uniformly distribute on the S2. Therefore,
U(D2) > U(D1 ⊕01). Note that no matter how great/small m, the baseline uniformity metric (Wang
& Isola, 2020) and our proposed uniformity metric have equal maximum uniformity, i.e., W2 = 0 and
LU = −4.0. Therefore, the maximum uniformity over various dimensions m should be equal, or at
least close to, then we have U(D1) ≈ U(D2) > U(D1 ⊕ 01). The Property 5 should be an inequality,
and can be used to identify the capacity on capturing sensitivity to the dimensional collapse.
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