
SALSA: Speedy ASR-LLM Synchronous Aggregation

Ashish Mittal∗1,2, Darshan Prabhu∗2, Sunita Sarawagi2, Preethi Jyothi2

1IBM Research, 2IIT Bombay
arakeshk@in.ibm.com, {darshanp, sunita, pjyothi}@cse.iitb.ac.in

Abstract
Harnessing pre-trained LLMs to improve ASR systems, particu-
larly for low-resource languages, is now an emerging area of re-
search. Existing methods range from using LLMs for ASR error
correction to tightly coupled systems that replace the ASR de-
coder with the LLM. These approaches either increase decoding
time or require expensive training of the cross-attention layers.
We propose SALSA, which couples the decoder layers of the
ASR to the LLM decoder, while synchronously advancing both
decoders. Such coupling is performed with a simple projection
of the last decoder state, and is thus significantly more training
efficient than earlier approaches. A challenge of our proposed
coupling is handling the mismatch between the tokenizers of
the LLM and ASR systems. We handle this mismatch using
cascading tokenization with respect to the LLM and ASR vo-
cabularies. We evaluate SALSA on 8 low-resource languages
in the FLEURS benchmark, yielding substantial WER reduc-
tions of up to 38%.
Index Terms: speech recognition, large language models, low-
resource languages

1. Introduction
Automatic speech recognition (ASR) systems, whether they are
cascaded or end-to-end, have been shown to benefit from both
a strong acoustic model and a strong language model. When
the acoustic model is inadequate, particularly for low-resource
languages with limited access to labeled speech, the language
model can offer effective supplementary support [1, 2]. With
the advent of pretrained large language models (LLMs) and
their superior text modeling abilities, there is growing interest in
leveraging LLMs to improve ASR performance [3, 4, 5]. This
LLM-ASR integration could be particularly beneficial for low-
resource languages on which the ASR model underperforms
and for which the LLM model has sufficient base capabilities.

There are broadly three ways in which LLMs have been
leveraged for ASR in recent work.

1. ASR error correction: The ASR system generates N -best
lists and the LLM rescores them. This could be achieved by
prompting the LLM with the N -best list and attending to the
speech encoder [6, 7].

2. Speech in-context learning: Pretrained LLMs are addition-
ally instruction-tuned with speech inputs enabling a tight
coupling between a speech encoder and the LLM to support
multiple speech tasks including ASR [3, 8, 9].

3. Deep LLM-fusion: The LLM replaces the decoder of an
encoder-decoder ASR system via gated cross-attention [5].

*These authors contributed equally to this work.

All these prior approaches are computationally expensive with
high training overhead in the deep LLM-fusion and speech in-
context learning paradigms due to fine-tuning, and high decod-
ing latency due to second-pass rescoring in ASR error correc-
tion. In this work, we propose a lightweight alternative called
SALSA1 that offers a deeper integration of LLMs with ASR be-
yond shallow fusion while incurring a low training overhead. To
the best of our knowledge, we are also the first to show the util-
ity of LLMs for ASR of a diverse set of low-resource languages;
all prior work in this area has focused on English ASR.

In SALSA, we keep the pretrained ASR and LLM backbone
architectures frozen and only train feedforward projection lay-
ers that couple the ASR decoder layers to the LLM decoder lay-
ers. SALSA requires that both ASR and LLM decoders move
forward in tandem albeit having different tokenizations. The
LLM autoregressively predicts the next token, and as soon as
a valid ASR tokenizable text is formed, advances the ASR de-
coder with the predicted text. With each synchronized step, the
learned projection layers act on the last state of the ASR de-
coder and are added as a residual connection to the LLM de-
coder layer’s representations. The advantage of such a coupling
is that the ASR’s cross-attention layers are retained, and a sim-
ple projection from the ASR decoder states to the LLM decoder
states suffices. We will show that such a coupling leads to sig-
nificantly faster training of the coupling parameters than exist-
ing approaches such as Whispering-Llama [6].

SALSA can be used to integrate any pretrained decoder-
only LLM with a pretrained encoder-decoder ASR model
using small amounts of labeled speech in the target languages.
By projecting just the last state of the ASR decoder at each
LLM decoding step, we bypass the need for learning cross-
attention modules, thus making SALSA significantly more
parameter-efficient than existing approaches. We implement
SALSA using a pretrained Whisper ASR model [10] and
LLama-2 [4]. On eight diverse languages in the FLEURS [11]
benchmark, we obtain a significant 16% on average and up
to a maximum of 38% relative reduction in WER compared
to parameter-efficient finetuning. In contrast, existing fusion
approaches that rely on n-best lists from ASR perform much
worse for low resource languages.

2. Related Work
LM adaptation in ASR. Traditional ASR systems consist of
decoupled acoustic and language models [12] which enables
easier adaptation to a target domain [13, 14, 15, 16, 17, 18].
For end-to-end ASR models, the most popular approach to

1Code for SALSA is available at https://github.com/
csalt-research/salsa.

<latexit sha1_base64="S1gnWcjKz3gdcTFsBBlpVv8/mr4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLiWbZtvYbBKSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEw1oU0iudSdCBvKmaBNyyynHaUpTiJO29H4dua3n6g2TIoHO1E0TPBQsJgRbJ3U6knFU9MvV/yqPwdaJUFOKpCj0S9/9QaSpAkVlnBsTDfwlQ0zrC0jnE5LvdRQhckYD2nXUYETasJsfu0UnTllgGKpXQmL5urviQwnxkySyHUm2I7MsjcT//O6qY2vw4wJlVoqyGJRnHJkJZq9jgZMU2L5xBFMNHO3IjLCGhPrAiq5EILll1dJ66Ia1Kq1+8tK/SaPowgncArnEMAV1OEOGtAEAo/wDK/w5knvxXv3PhatBS+fOYY/8D5/ANOQj1A=</latexit>�

<latexit sha1_base64="S1gnWcjKz3gdcTFsBBlpVv8/mr4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLiWbZtvYbBKSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEw1oU0iudSdCBvKmaBNyyynHaUpTiJO29H4dua3n6g2TIoHO1E0TPBQsJgRbJ3U6knFU9MvV/yqPwdaJUFOKpCj0S9/9QaSpAkVlnBsTDfwlQ0zrC0jnE5LvdRQhckYD2nXUYETasJsfu0UnTllgGKpXQmL5urviQwnxkySyHUm2I7MsjcT//O6qY2vw4wJlVoqyGJRnHJkJZq9jgZMU2L5xBFMNHO3IjLCGhPrAiq5EILll1dJ66Ia1Kq1+8tK/SaPowgncArnEMAV1OEOGtAEAo/wDK/w5knvxXv3PhatBS+fOYY/8D5/ANOQj1A=</latexit>�

⋮

Cross-

attention

⋮

<latexit sha1_base64="KrqMLowBeu8xD6LZV33XDOYI8yI=">AAACCHicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BL16ECOYByRJmJ7PJkJmdZWZWCEt+wLtX/QVv4tW/8A/8DGeTPWiSgoaiqpvuriDmTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKVloghtEsml6gRYU84i2jTMcNqJFcUi4LQdjG8zv/1ElWYyejSTmPoCDyMWMoKNlbo9gc2IYJ7eT/vlilt1Z0DLxMtJBXI0+uWf3kCSRNDIEI617npubPwUK8MIp9NSL9E0xmSMh7RraYQF1X46O3mKzqwyQKFUtiKDZurfiRQLrScisJ3ZiXrRy8SVXiBWyd3EhNd+yqI4MTQi8/1hwpGRKIsFDZiixPCJJZgoZl9AZIQVJsaGZ6PxFoNYJq2Lqler1h4uK/WbPKQinMApnIMHV1CHO2hAEwhIeIFXeHOenXfnw/mctxacfOYY/sH5+gVKTZqQ</latexit>M <latexit sha1_base64="YstP3APrtq8IjB4Gq8tRMzjNOEA=">AAACCHicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx48RDAPSJYwO5lNhszsLDOzQljyA9696i94E6/+hX/gZzib7EGTFDQUVd10dwUxZ9q47rdTWFvf2Nwqbpd2dvf2D8qHRy0tE0Vok0guVSfAmnIW0aZhhtNOrCgWAaftYHyb+e0nqjST0aOZxNQXeBixkBFsrNTtCWxGBPP0ftovV9yqOwNaJl5OKpCj0S//9AaSJIJGhnCsdddzY+OnWBlGOJ2WeommMSZjPKRdSyMsqPbT2clTdGaVAQqlshUZNFP/TqRYaD0Rge3MTtSLXiau9AKxSu4mJrz2UxbFiaERme8PE46MRFksaMAUJYZPLMFEMfsCIiOsMDE2PBuNtxjEMmldVL1atfZwWanf5CEV4QRO4Rw8uII63EEDmkBAwgu8wpvz7Lw7H87nvLXg5DPH8A/O1y9IspqP</latexit>L

<latexit sha1_base64="tu1wM8YLfmlnX/NMfDoehHh4kfY=">AAACAHicbZDLSgMxGIX/qbdab1WXboJFcFVmRKrLohuXFe0F2qFk0kwbmmSGJCMMQzfu3eoruBO3volv4GOYtrPQtgcCH+f8P0lOEHOmjet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY307z9hNVmkXy0aQx9QUeShYygo21HtI+65crbtWdCS2Dl0MFcjX65Z/eICKJoNIQjrXuem5s/Awrwwink1Iv0TTGZIyHtGtRYkG1n82eOkFn1hmgMFL2SINm7t+NDAutUxHYSYHNSC9mU3NlFohVdjcx4bWfMRknhkoyvz9MODIRmtaBBkxRYnhqARPF7BcQGWGFibGl2Wq8xSKWoXVR9WrV2v1lpX6Tl1SEEziFc/DgCupwBw1oAoEhvMArvDnPzrvz4XzORwtOvnMM/+R8/QLiHpcG</latexit>yi
<latexit sha1_base64="EcOkZBLQ6xAaS/oNcrcMNBoxxBc=">AAACBHicbZDLSgMxGIX/qbdab1WXboJFEIQyI1JdFt24rGAv0A4lk2ba0CQzJBlhGLp171ZfwZ249T18Ax/DtJ2Ftj0Q+Djn/0lygpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+G6at5+o0iySjyaNqS/wULKQEWys1U77GbvwJv1yxa26M6Fl8HKoQK5Gv/zTG0QkEVQawrHWXc+NjZ9hZRjhdFLqJZrGmIzxkHYtSiyo9rPZcyfozDoDFEbKHmnQzP27kWGhdSoCOymwGenFbGquzAKxyu4mJrzxMybjxFBJ5veHCUcmQtNK0IApSgxPLWCimP0CIiOsMDG2OFuNt1jEMrQuq16tWnu4qtRv85KKcAKncA4eXEMd7qEBTSAwhhd4hTfn2Xl3PpzP+WjByXeO4Z+cr1+d5ZiC</latexit>yi+1

<latexit sha1_base64="Wdn4lt9ag5+tFjngnIq0EXGHCcY=">AAACAHicbZDLTgIxGIX/wRviDXXpppGYuCIzxIBLohuXGOWSwIR0Sgca2s6k7ZiQCRv3bvUV3Bm3volv4GNYYBYKnKTJl3P+P21PEHOmjet+O7mNza3tnfxuYW//4PCoeHzS0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY387y9hNVmkXy0Uxi6gs8lCxkBBtrPYT9Sr9YcsvuXGgVvAxKkKnRL/70BhFJBJWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF2LEguq/XT+1Cm6sM4AhZGyRxo0d/9upFhoPRGBnRTYjPRyNjPXZoFYZ3cTE177KZNxYqgki/vDhCMToVkdaMAUJYZPLGCimP0CIiOsMDG2NFuNt1zEKrQqZa9art5fleo3WUl5OINzuAQPalCHO2hAEwgM4QVe4c15dt6dD+dzMZpzsp1T+Cfn6xdrdJa8</latexit>

f2

<latexit sha1_base64="3Bq4ht31yDB970Fl1kA1gefjyiM=">AAACFXicbVDLSsNAFJ3UV62vqODGzWAR6qYkItVl0Y3LCn1BE8JkOmmHziRhZiKE2O9w71Z/wZ24de0f+BlO2iy07YELh3Pu5d57/JhRqSzr2yitrW9sbpW3Kzu7e/sH5uFRV0aJwKSDIxaJvo8kYTQkHUUVI/1YEMR9Rnr+5C73e49ESBqFbZXGxOVoFNKAYqS05JknDkdqjBHL2tOaM0YqS6cevfDMqlW3ZoDLxC5IFRRoeeaPM4xwwkmoMENSDmwrVm6GhKKYkWnFSSSJEZ6gERloGiJOpJvN7p/Cc60MYRAJXaGCM/XvRIa4lCn3dWd+rVz0cnGl5/NV8iBRwY2b0TBOFAnxfH+QMKgimGcEh1QQrFiqCcKC6hcgHiOBsNJJ6mjsxSCWSfeybjfqjYeravO2CKkMTsEZqAEbXIMmuAct0AEYPIEX8ArejGfj3fgwPuetJaOYOQb/YHz9Ak9Jn1k=</latexit>T (ŷi)

⋮

<latexit sha1_base64="Ccj1ZW6JV17spnu1oJmcSTmliTE=">AAACGnicbVDLSsNAFJ34rPUVddnNYBHahSURqS6Lbly4qNAXtGmYTCft0MmDmYkQQhb+h3u3+gvuxK0b/8DPcNJmoW0PXDiccy/33uOEjAppGN/a2vrG5tZ2Yae4u7d/cKgfHXdEEHFM2jhgAe85SBBGfdKWVDLSCzlBnsNI15neZn73kXBBA78l45BYHhr71KUYSSXZeqmSDDwkJxixpJUO79PqMDk300ps06qtl42aMQNcJmZOyiBH09Z/BqMARx7xJWZIiL5phNJKEJcUM5IWB5EgIcJTNCZ9RX3kEWElsydSeKaUEXQDrsqXcKb+nUiQJ0TsOaozO1gsepm40nO8VXI/ku61lVA/jCTx8Xy/GzEoA5gFBUeUEyxZrAjCnKoXIJ4gjrBUcapozMUglknnombWa/WHy3LjJg+pAErgFFSACa5AA9yBJmgDDJ7AC3gFb9qz9q59aJ/z1jUtnzkB/6B9/QLuxKCh</latexit>

(T L)�1(yi)

<latexit sha1_base64="bGRnJEJWxqu1tiggVVwpyzhmAJU=">AAACAHicbZDLTgIxGIX/wRviDXXpppGYuCIzhoBLohuXGOWSwIR0Sgca2s6k7ZiQCRv3bvUV3Bm3volv4GNYYBYKnKTJl3P+P21PEHOmjet+O7mNza3tnfxuYW//4PCoeHzS0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY387y9hNVmkXy0Uxi6gs8lCxkBBtrPYT9Sr9YcsvuXGgVvAxKkKnRL/70BhFJBJWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF2LEguq/XT+1Cm6sM4AhZGyRxo0d/9upFhoPRGBnRTYjPRyNjPXZoFYZ3cTE177KZNxYqgki/vDhCMToVkdaMAUJYZPLGCimP0CIiOsMDG2NFuNt1zEKrSuyl61XL2vlOo3WUl5OINzuAQPalCHO2hAEwgM4QVe4c15dt6dD+dzMZpzsp1T+Cfn6xduqJa+</latexit>

f4

yu and cross-attends on the audio states h1, . . . ,hT to generate
the next token via multi-layer self-attention layers. Let d denote
the number of decoder layers. Let su,` denote the vector output
from the decoder at layer ` 2 [1, d]. The last layer is a softmax
layer that yields P (y|su,h) where y 2 V , the vocabulary of the
ASR model.

We assume the LLM model L is a decoder-only architec-
ture consisting of dL layers. Conditioned on a prompt denot-
ing the instruction, and the partially generated text, the model
generates the next token autoregressively. Let VL denote the
vocabulary of the LLM and let T L denote its tokenization al-
gorithm. Since the ASR and LLMs are assumed to have been
trained independently, in general, both of these could be differ-
ent from the vocabulary V and tokenizer T of the ASR model.
At any step t of generation, let sL

t,` denote the decoder output
from each layer ` 2 [1, dL] of the decoder.

For fine-tuning we are provided with a small set of labeled
audio-transcript pairs D = {(xn, yn) : n = 1 . . . N} in a
target low-resource language. We assume that the LLM has
been pre-trained with significantly more text data in the lan-
guage, compared to the speech transcription data used in the
ASR model. We present a method of verifying this assumption
before proposing to use an LLM to improve an ASR model in
Section ??. Sine the LLM is

Notations used: (this is only for our reference) The overall
trend is we use the same variables for both L and M. For M we
dont have any superscript, and for L we add L as the superscript
in the variables (inspired by notations in section 2).

1. Input audio: X = {x1, x2, . . . , xT }
2. Ground truth character sequence: C = {c1, c2, . . . , cm}
3. M encoder output: H = {h1,h2, . . . ,hT }
4. dimensionality

(a) For M: d

(b) For L: dL

5. decoder output sequence (i.e decoder states):

(a) For M: s = {s1, s2, . . . , sw}
(b) For L: sL = {sL

1 , sL
2 , . . . , sL

l }
6. Tokenizers used

(a) For M: T with T () for encoding and T �1() for decoding
(b) For L: T L

7. decoder ground truth token sequence

(a) For M: Y = {y1, y2, . . . , yw}
(b) For M: Yinit = {y1, y2, . . . , yw0}. For whisper, w0 = 4.
(c) For L: YL = {yL

1 , yL
2 , . . . , yL

l }
8. for indexing we use the following

(a) For M: layer is indexed with ith

(b) For L: layer is indexed with j th

(c) For L: state is indexed with tth, i.e sL
t,i is the tth frame in

the ith decoder layer of llama.
(d) For projection layer: rth. Also, the total number of projec-

tion layers is F .

Our proposed approach aims at learning a composite model
C that combines the representation power and language mod-
elling capability of M and L. To combine both these mod-
els, we employ a set of F projection layers that consists of

✓C learnable parameters. Each projection layer, denoted as
fc : Rd ! RdL

combines the output from every d/F th de-
coder layer of M with every dL/F th layer of L respectively 1.
Given that L is mainly responsible for generating the transcrip-
tions, the role of the rth projection layer fr

c is to incorporate
the output from the j th decoder layer of M into the output of
the ith layer of L. However, due to the mismatch in the token
vocabulary between M and L, there exists a discrepancy in the
number of decoder states used by both M and L while predict-
ing the target text. Although, a simple solution here would be to
use the last decoder state of M for every state of L, we find this
approach to be sub-optimal. In this work, our main goal is to
tightly couple both M and L together such that they can utilize
each other’s intermediate states while predicting the target se-
quence. To achieve this, during training, we use a deterministic
mapping function G, that determines which decoder state from
M, the tth state of L should attend to. The exact procedure
of generating the state mappings is described in Algorithm 1.
Broadly speaking, if Y = {y1, y2, . . . , yw} 2 is the token se-
quence used by M and YL = {yL

1 , yL
2 , . . . , yL

l } is the token
sequence used by L with T and T L being their respective tok-
enizers, then for the tth state of L responsible for predicting yL

t ,
the mapping function G(C, t) returns k if

T �1({y1, y2, . . . , yk}) = T L�1
({yL

1 , yL
2 , . . . , yL

i�1}) (1)

In simpler terms, this means that if the tth state of L is respon-
sible for generating character c, we select a state of M that is
also responsible for predicting c. It is possible that for low re-
source language, a character is tokenized into multiple tokens,
which, when used independently produce non-comprehensible
characters. We ensure that for such tokens, the corresponding
decoder states used always produces a valid sequence of char-
acters. Once we have this mapping, the integration of represen-
tation from M to L for the tth state using the projection layer
fr

c can be written as:

sL
t,i = sL

t,i + fr
c (sG(C,t),j) (2)

where sG(C,t),j 2 Rdw

and sL
t,i 2 RdL

. This new representa-
tion is then used as input to the (v + 1)th layer of L. It is worth
noting our intervention only alters the state space of L, and no
changes are made to M. Finally, we train C using cross-entropy
loss and freeze all the parameters of both M and L, except the
parameters ✓C used by the projection layers.

The mismatch between the token vocabulary of L and M
presents a challenge for the inference algorithm. Algorithm 2
outlines the SALSA’s inference algorithm. To obtain the ini-
tial decoder states for M and L, we feed these models with
the start tokens. In each subsequent step, we first advance the
state of L by utilizing the decoder states of M. We use nucleus
sampling with topk and topp values of 10 and 0.9, in place
of greedy decoding for predicting the next token. This crucial
step in our inference algorithm helps address the issue of hal-
lucination, which is a common occurrence in such large mod-
els. The predicted token sequence is then decoded and checked
for completeness. In the case of low resource languages, the

1For simplicity, we employ a symmetric configuration where the
projection layers are placed at equal intervals. A more complex setup,
with either shared projection layers or assymetrically spaced projection
layers can also be explored.

2It is not necessary for this sequence to be the same as the one ob-
tained when ground truth text sequence is directly tokenized.

<latexit sha1_base64="xjJQHyms7Ka0Eba7VUdAdzpYlcA=">AAACCXicbVDLSgNBEOyNrxhfUY9eBoPgKewGiR6DXjxGMA/IhjA7mU2GzMwuM7NCWPIF3r3qL3gTr36Ff+BnOJvsQZMUNBRV3XR3BTFn2rjut1PY2Nza3inulvb2Dw6PyscnbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyV3md56o0iySj2Ya077AI8lCRrCxku8LbMZBmOrZoDYoV9yqOwdaJV5OKpCjOSj/+MOIJIJKQzjWuue5semnWBlGOJ2V/ETTGJMJHtGepRILqvvp/OYZurDKEIWRsiUNmqt/J1IstJ6KwHZmN+plLxPXeoFYJ/cSE970UybjxFBJFvvDhCMToSwXNGSKEsOnlmCimH0BkTFWmBibno3GWw5ilbRrVa9erT9cVRq3eUhFOINzuAQPrqEB99CEFhCI4QVe4c15dt6dD+dz0Vpw8plT+Afn6xfy1Zrp</latexit>s2

<latexit sha1_base64="OzxIQigFGsRP9nRI5dCFC+tthH0=">AAACCXicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB6DXjxGMA/IhjA7mU2GzMwuM7NCWPIF3r3qL3gTr36Ff+BnOJvsQZMUNBRV3XR3BTFn2rjut1PY2Nza3inulvb2Dw6PyscnbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyV3md56o0iySj2Ya077AI8lCRrCxku8LbMZBmOrZoDYoV9yqOwdaJV5OKpCjOSj/+MOIJIJKQzjWuue5semnWBlGOJ2V/ETTGJMJHtGepRILqvvp/OYZurDKEIWRsiUNmqt/J1IstJ6KwHZmN+plLxPXeoFYJ/cSE970UybjxFBJFvvDhCMToSwXNGSKEsOnlmCimH0BkTFWmBibno3GWw5ilbSvql69Wn+oVRq3eUhFOINzuAQPrqEB99CEFhCI4QVe4c15dt6dD+dz0Vpw8plT+Afn6xf2CZrr</latexit>s4

<latexit sha1_base64="ZFCpCLoFFDo6+17piYwlnEY9hiQ=">AAACC3icbVDLSgNBEOyNr/iOevQyGARPYVclegx68eAhgnlAXsxOZpMhM7PLzKwQlnyCd6/6C97Eqx/hH/gZziZ70CQFDUVVN91dfsSZNq777eRWVtfWN/KbW9s7u3v7hYPDug5jRWiNhDxUTR9rypmkNcMMp81IUSx8Thv+6Db1G09UaRbKRzOOaEfggWQBI9hYqdsW2Az9INGT3kX3vlcouiV3CrRIvIwUIUO1V/hp90MSCyoN4VjrludGppNgZRjhdLLVjjWNMBnhAW1ZKrGgupNMr56gU6v0URAqW9Kgqfp3IsFC67HwbWd6pZ73UnGp54tlcis2wXUnYTKKDZVktj+IOTIhSpNBfaYoMXxsCSaK2RcQGWKFibH52Wi8+SAWSf285JVL5YfLYuUmCykPx3ACZ+DBFVTgDqpQAwIKXuAV3pxn5935cD5nrTknmzmCf3C+fgFY55uo</latexit>

sL
3

<latexit sha1_base64="5aqRYPU39WAF29tJklSOyPUjo18=">AAACC3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx48RDAPyIvZyWwyZGZ2mZkVwpJP8O5Vf8GbePUj/AM/w9lkD5qkoKGo6qa7y48408Z1v53c2vrG5lZ+u7Czu7d/UDw8augwVoTWSchD1fKxppxJWjfMcNqKFMXC57Tpj29Tv/lElWahfDSTiHYFHkoWMIKNlXodgc3IDxI97Vd69/1iyS27M6Bl4mWkBBlq/eJPZxCSWFBpCMdatz03Mt0EK8MIp9NCJ9Y0wmSMh7RtqcSC6m4yu3qKzqwyQEGobEmDZurfiQQLrSfCt53plXrRS8WVni9Wye3YBNfdhMkoNlSS+f4g5siEKE0GDZiixPCJJZgoZl9AZIQVJsbmZ6PxFoNYJo2LslcpVx4uS9WbLKQ8nMApnIMHV1CFO6hBHQgoeIFXeHOenXfnw/mct+acbOYY/sH5+gVdu5ur</latexit>

sL
6

Figure 1: SALSA: Overall schematic illustrating the coupling of
the ASR model M and the LLM L using select projection layers.
For the sake of simplicity, we will assume yi corresponds to a
single token in this illustration.

integrate an external LM is shallow fusion and its variants,
where an external LM is log-linearly interpolated with the ASR
model [19, 20, 21, 22, 23, 24, 25].

LLM adaptation in ASR. With the rapid progress on various
natural language tasks using LLMs, their integration with ASR
models is emerging as an area of significant interest. One of the
early application of LLMs was to use them for ASR error cor-
rection by providing an n-best list and a prompt to generate the
correct prediction [7, 26, 27, 28]. These solutions are heavily re-
liant on the ASR outputs and will not fare well on low-resource
languages owing to large errors in the n-best predictions.

Deep LLM integration with an ASR system. An active area
of research is to integrate the audio modality within an LLM.
Whispering-Llama [6] learns adapter layers [29, 30] to cross-
attend to the audio features and prompts with an n-best list to
improve English ASR. Another popular approach is to provide
the output of an audio encoder directly as an input to decoder-
only LLMs. Full fine-tuning is done to semantically map the
acoustic features with the underlying textual features within an
LLM [3, 5, 9, 31, 32, 33]. The closest to our work is [34], that
does a late integration of the ASR and LLM decoders. How-
ever, they work with n-best lists (that is not conducive to low-
resource languages) and finetune the ASR decoder using the
LLM’s tokenizer to match the LLM vocabulary. SALSA does
not need such an additional finetuning step and can work with
different ASR/LLM tokenizations.

3. Our Approach: SALSA
The input to our model is a trained ASR model M, an LLM
model L, and a small set of labeled audio-transcript pairs
D = {(xn,yn) : n = 1 . . . N} in a target low-resource
language. We assume that the LLM has been pre-trained with
significantly more text data in the target language, compared to
the speech transcription data used in the ASR model. We first
present a brief background of the ASR and LLM models.

Background: ASR model. We assume the ASR system M is
an encoder-decoder model as used in state-of-the-art ASR sys-
tems like Whisper [10]. The encoder MS converts an input
audio X comprising of T frames x1, . . . ,xT into their latent

vectors h = h1, . . . ,hT . The transcript y is generated auto-
regressively as per the vocabulary V and a tokenization algo-
rithm T . Let yu=y1, . . . , yu denote the token sequence of the
transcript generated so far. The decoder takes as input the prefix
yu and cross-attends on the audio states h1, . . . ,hT to generate
the next token via multiple self-attention layers. Let d denote
the number of decoder layers. Let sℓ ∈ ℜm denote the vector
output from the decoder at layer ℓ ∈ [1, d].

Background: LLM model. We assume the L is a decoder-only
model consisting of dL layers. Conditioned on an instruction
prompt and the partially generated text, the LLM also generates
the next token autoregressively. Let VL denote the vocabulary
of the LLM and let T L denote its tokenizer. In general, both
VL and T L could be different from V and T respectively of
the ASR model. At any step t of generation, let sLℓ ∈ ℜmL

denote the decoder output from each layer ℓ ∈ [1, dL]. Finally,
a softmax yields P (y|sLdL) where y ∈ VL.

Our method of coupling the ASR model M with the LLM
model L is to just add a lightweight bridge from the latest state
of the ASR decoder to the LLM decoder state as shown in Fig-
ure 1. We choose a subset F ⊆ {1 . . . , dL} of LLM decoder
layers to connect to |F | different ASR decoder layers. Let I(ℓ)
denote the index of the ASR decoder layer to which a LLM de-
coder layer ℓ ∈ F is connected. We use fℓ : Rm → RmL

to
denote the feed forward network for the ℓth layer. The output of
this function is used to add a residual connection to the LLM’s
decoder output at layer ℓ as:

sLℓ = sLℓ + fℓ(sI(ℓ)) (1)

The set of parameters over all fℓ : ℓ ∈ F is denoted as θC .
We experimented with different methods of choosing the set
F and I . Our default method, if size of F is k, is to make
F every dL/F th layer of L, and I(F) be the corresponding
d/F th decoder layer of M. We will present ablation on size of
F , and alternative methods of choosing F .

Transcript generation. The LLM model L generates the next
token auto-regressively. The LLM’s softmax layer yields a
distribution P (y|sLd) over its vocabulary VL. From this, the
sampled yt+1 forms the next generated token. In general, this
token may not be valid text recognized by the ASR tokenizer T .
Often for low resource languages the tokenizers for L and M
can use different multi-token sequences to encode a character in
the target language. So, the LLM keeps generating tokens until
a valid text piece recognizable by ASR’s T is formed. As soon
as the LLM decodes a complete character sequence (which can
be a single character or a set of characters), the just generated
text is re-tokenized with the ASR’s tokenizer to convert into
a sequence of tokens that can be understood by M. Finally,
the decoder state of M is advanced with the newly predicted
sequence of tokens. This updated decoder state is then used
by L in its subsequent decoding iterations. The synchronous
invocation of different decoders with different vocabularies
is a distinctive aspect of our approach. Algorithm 1 gives an
overview of decoding in SALSA.

Training. We train only the coupling parameters θC using the
limited training dataset D in the target language. The parame-
ters of both the ASR and LLM models are kept frozen. During
training, an added detail is to tokenize a gold transcript y first
using the LLM’s tokenizer T L, then tokenize using the con-
ditional tokenization of the ASR model as elaborated above,
and finally remember for each index in the LLM’s token se-

Algorithm 1: SALSA Decoding Algorithm
Input : ASR Model M, LLM Model L, Audio: X

Tokenizers T of ASR, T L of LLM
fℓ, F, I : coupling model specification.

Output: Transcript {y0, . . . ,yu}
1 h: ASR Encoder State (X)
2 s = ASR Decoder State initialized with SOT token
3 sL = Initial LLM Decoder State
4 pi = 0, y = []
5 for i ∈ {1 . . . max estimated tokens in X} do
6 sLℓ = sLℓ + fℓ(sI(ℓ)), ∀ℓ ∈ F

7 yi, sL = L(sL)
8 y.append(yi)
9 textY = (T L)−1(y)

10 if textY ends with a valid utf-8 character then
11 new tokens = T (textY[pi:])
12 s = M(h, s, new tokens)
13 pi = len(textY)

14 If yi == T L.eos break;

15 return y

quence, the aligned sequence in the ASR tokenization. Oth-
erwise, training proceeds using teacher forcing as in normal
encoder-decoder models with cross entropy loss on the prob-
abilities produced by LLM’s decoder.

In spite of the need to handle such differences in tokeniza-
tion, we found two advantages of such a coupling: (1) Since
the ASR decoder has already been trained for cross-attention
on the encoded audio, the LLM decoder does not need to be
retrained for this task. Instead, since both the ASR and LLM
decoders are auto-regressive, the LLM only needs to consult
the last ASR decoder state. (2) Since the LLM is assumed to
be better at modeling the target language, the final text gener-
ation is with the LLM’s decoder with a residual connection to
the ASR decoder.

4. Experimental Setup
Models. We use the Whisper Large-v2 encoder-decoder model
for ASR (1.55B parameters). For the LLM, we experiment
with two models of varying size, namely LLaMA2-7B and
LLaMA2-13B. SALSA additionally uses 8 projection layers
that each first reduce the dimensionality down from 768 (match-
ing Whisper Large-v2’s dimensionality) to 192, use SiLU ac-
tivations, and then project up from 192 to match the dimen-
sionality of the corresponding LLaMA2 model (i.e 4096 for
LLaMA2-7B and 5120 for LLaMA2-13B). For all our SALSA
experiments, we use Lit-GPT [36] library to modify the LLM
decoding to work in tandem with the ASR decoder.

Dataset. We evaluate on a subset of the FLEURS multilin-
gual benchmark dataset [11]. This is an n-way parallel dataset
that consists of roughly 12 hours of supervision for over 100
languages. Our conjecture is that SALSA could be beneficial
in improving the ASR performance of those low-resource lan-
guages for which Whisper’s ASR performance is poor, incur-
ring moderate to high word error rates (WERs), and for which
the LLM has reasonable text generation capabilities. The lat-

10 20 30 40 50
Accuracy (%) of Next Character Prediction (NCP-acc) for LLaMA2

0

20

40

60

80

100

120

140

W
or

d
Er

ro
r R

at
e

(W
ER

) o
f W

hi
sp

er

English

Hindi
Vietnamese

Gujarati

Marathi

Telugu

Tamil

Amharic

Hausa
Somali

Mongolian
Malayalam

Pashto
Tajik

Uzbek Yoruba

Shona

Punjabi

Occitan

Burmese

Maltese

Persian

Figure 2: 2D plot comparing the accuracy (%) of LLaMA2
on Next Character Prediction (NCP-acc) with the Word Er-
ror Rate (WER %) of Whisper on a subset of languages from
FLEURS. The plot serves as a point of reference for select-
ing languages that might benefit from SALSA. Specifically, we
chose languages (colored in blue) that have high NCP-acc and
medium to high WER using Whisper.

ter is quantitatively measured using the following metric. For a
validation set of roughly 500 sentences in each evaluation lan-
guage, we use the LLM to autoregressively predict only the next
character given the past history. We loosely treat a single char-
acter across languages as having roughly similar durations in its
underlying speech. For each evaluation language, we measure
the fraction of next character predictions (NCP-acc) that exactly
match the ground-truth characters. Figure 2 shows both Whis-
per’s WERs and NCP-acc scores for a subset of FLEUR lan-
guages. We are interested in languages that appear in the upper
and lower right quadrants. That is, those languages that incur
moderate to high WERs and have fairly high NCP-acc scores.
Based on this analysis, our final set of evaluation languages are
Hindi, Gujarati, Marathi, Malayalam, Persian, Punjabi, Tamil
and Telugu. We do not choose Burmese because severe under-
tokenization results in most utterances exceeding Whisper de-
coder’s fixed length of 448 tokens. We do not choose Viet-
namese as the WER with pretrained Whisper is already quite
good (10.3%).

Training and Inference. For all our chosen evaluation lan-
guages, we train the model for 35 epochs with a batch size of
32, a learning rate of 0.001 and a maximum of 2000 steps. We
use the AdamW [37] optimizer with a weight decay of 0.02. To
alleviate hallucinations during inference, we use nucleus sam-
pling with top-p value of 0.9 and top-k value of 10. For some
utterances on which the ASR performs very poorly, the LLM
is prone to repetitions and gets stuck in a loop predicting up to
maxl tokens without predicting the end-of-sentence token. To
mitigate this issue, we train a simple duration-to-length regres-
sor for each language that takes the duration of the speech as its
input and predicts an estimate of the number of output tokens.
If the length of the LLM prediction far exceeds this predicted
length, we truncate the overall prediction to the estimated length
from the regressor.

Baselines. We compare SALSA with Whisper-v2 finetuned on
the labeled data in each language using LoRA fine-tuning [35].
We also compare against a recent ASR-LLM fusion model
Whispering-Llama [6] that prompts the LLM with n-best lists
from the Whisper ASR and trains the LLM via cross-attention
adapter modules to attend to the Whisper encoder states.

Table 1: Comparison of WERs (%) of SALSA using LLaMA-7B and LLaMA-13B models against Whispering-LlaMA and different
variants of Whisper model on eight languages of FLEURS. Numbers in bold without denote the best across baselines and with
denotes the best WER across all experiments. † indicates that the performance gains are statistically significant at p < 0.001.

Method # params Gujarati Hindi Malayalam Marathi Persian Punjabi Tamil Telugu Average

Our Baselines (Reproduced using official repositories)
Whisper (Large-v2) [10] – 108.2 35.9 107.8 84.7 35.8 101.8 48.0 104.4 78.3

w/ LORA fine-tuning [35] 15M 55.7 19.3 54.9 35.8 16.9 † 46.7 38.0 † 47.5 39.4
Whispering-LlaMA [6] 26M 90.8 53.2 101.1 105.9 86.1 92.6 89.1 106.4 90.7

SALSA-7B (w/ LLaMA2-7B)
w/ Whisper (Large-v2) 17M 37.8 18.2 40.9 37.5 18.6 37.0 40.1 44.9 34.4
w/ LORA fine-tuned Whisper 17M 34.6 † 17.6 35.3 35.6 † 18.2 34.8 42.6 45.1 33.0

SALSA-13B (w/ LLaMA2-13B)
w/ Whisper (Large-v2) 19M 37.1 17.4 40.4 37.8 18.6 37.0 40.1 45.0 34.1
w/ LORA fine-tuned Whisper 19M 34.9 16.8 † 34.8 † 36.5 17.6 34.5 † 41.4 45.0 † 32.7 †

Table 2: Comparison of the performance (WER %) of multilingual SALSA using LLaMA2-7B.

Method # params Gujarati Hindi Malayalam Marathi Punjabi Tamil Telugu Average

Whisper (Large-v2) [10] – 108.2 35.9 107.8 84.7 101.8 48.0 104.4 84.4
w/ LORA fine-tuning [35] 15M 56.8 19.8 39.8 † 37.4 55.8 39.8 † 50.5 42.8

SALSA-7B w/ Whisper (Large-v2) 17M 36.4 † 17.5 † 40.0 36.7 † 36.1 † 40.2 43.2 † 35.8 †

5. Experimental Results and Analysis
Table 1 shows the overall ASR results across eight languages
comparing SALSA with the two baseline systems. Whispering-
Llama underperforms due to the poor quality of the n-best
lists derived from Whisper for these low-resource languages.
SALSA can be used either with a pretrained or a finetuned
Whisper ASR model. We are careful to train the same num-
ber of parameters using SALSA and LoRA finetuning. We ob-
serve that SALSA on top of a finetuned Whisper significantly
outperforms the finetuned Whisper baseline by an overall rela-
tive WER reduction of 16%. This attests to SALSA’s ability to
derive complementary benefits over and above finetuning. The
bigger Llama-13B model does not offer any consistent advan-
tage over Llama-7B; the latter yields the best WERs for four
test languages.

Multilingual SALSA. We test how SALSA performs with
multilingual data used to train projection layers shared across
all languages. We pick seven of the Indian languages for this
experiment. As shown in Table 2, SALSA outperforms the
multilingual fine-tuned Whisper model by 20% signifying the
superior adaptation capability of SALSA with similar number
of parameters.

Ablation Analysis. We study the effect of the number of
adaptation parameters and the positions of adaptation layers on
SALSA, as shown in Table 3. We observe that using 8 adapter
layers all at the end of the decoder yields almost similar per-
formance as the model which has adaptation layers uniformly
distributed. Reducing the number of adaptation layers for both
SALSA-7B and SALSA-13B results in a degradation of around
relative 5% WER, but is still significantly better than LoRA
finetuning which yields an average WER of 39.4%. This shows
that SALSA can adapt and generalize much better than existing
baselines even with a small number of parameters.

Runtime Complexity. We compare the real-time factor (RTF)
of SALSA with the original Whisper model and Whispering-
Llama model. That is, the amount of time it takes to decode

Table 3: Ablation study comparing the number of adapter layers
and the position of adapter layers averaged across 8 languages.

Method # params Average WER

SALSA-7B (w/ LLaMA2-7B)
8 adapter layers (uniformly distributed) 17M 34.4
8 adapter layers (all at the end) 17M 34.8
4 adapter layers (uniformly distributed) 8.5M 36.4
4 adapter layers (all at the end) 8.5M 36.9

1 sec of audio. RTFs of Whisper, SALSA and Whispering-
Llama on an A100 80GB GPU are 0.42 secs, 0.64 secs and
1.3 secs, respectively. For the Whispering-Llama model, a sig-
nificant fraction of the total time (> 60%) is spent in gener-
ating n-best lists which adversely affects the overall RTF. For
training, SALSA takes around 1 hour on an A100 80GB GPU,
while Whispering-Llama takes around 6 hours owing to high
training overhead in generating n-best lists and learning expen-
sive cross-attention over significantly long audio embeddings.
LoRA finetuning takes roughly the same time as Whispering-
Llama on a smaller A100 40GB GPU (as there are no Llama2
weights to load). SALSA is much faster to train in comparison
to the baselines owing to its simple architecture.

6. Conclusion
In this paper we presented SALSA, a light-weight fusion of an
ASR system with an LLM that retains the ASR model’s exper-
tise in encoding and decoding audio, while harnessing the su-
perior language modeling capabilities of the LLM. Our method
provides significant reductions in WER compared to fine-tuning
the ASR model alone, while providing efficient one-pass de-
coding, and much faster training than existing LLM-ASR fu-
sion methods. In this paper, we focused on improving the tran-
scription of isolated utterances. In future, we plan to harness
the instruction-following capabilities of LLMs for more appli-
cations that require stateful contextual biasing.

7. References
[1] P. Xu and P. Fung, “Cross-lingual language modeling for

low-resource speech recognition,” IEEE transactions on audio,
speech, and language processing, vol. 21, no. 6, pp. 1134–1144,
2013.

[2] A. Gandhe, F. Metze, and I. Lane, “Neural network language
models for low resource languages,” in Fifteenth Annual Con-
ference of the International Speech Communication Association,
2014.

[3] J. Wu, Y. Gaur, Z. Chen, L. Zhou, Y. Zhu, T. Wang, J. Li, S. Liu,
B. Ren, L. Liu et al., “On decoder-only architecture for speech-
to-text and large language model integration,” in Proceedings of
ASRU. IEEE, 2023, pp. 1–8.

[4] H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat
models,” arXiv preprint arXiv:2307.09288, 2023.

[5] Y. Fathullah, C. Wu, E. Lakomkin, J. Jia, Y. Shangguan, K. Li,
J. Guo, W. Xiong, J. Mahadeokar, O. Kalinli et al., “Prompting
large language models with speech recognition abilities,” arXiv
preprint arXiv:2307.11795, 2023.

[6] S. Radhakrishnan et al., “Whispering llama: A cross-modal gen-
erative error correction framework for speech recognition,” in
Proceedings of EMNLP, 2023, pp. 10 007–10 016.

[7] C. Chen, Y. Hu, C.-H. H. Yang, S. M. Siniscalchi, P.-Y. Chen,
and E.-S. Chng, “Hyporadise: An open baseline for generative
speech recognition with large language models,” Proceedings of
NeurIPS, vol. 36, 2024.

[8] D. Zhang, S. Li, X. Zhang, J. Zhan, P. Wang, Y. Zhou, and
X. Qiu, “Speechgpt: Empowering large language models with
intrinsic cross-modal conversational abilities,” arXiv preprint
arXiv:2305.11000, 2023.

[9] J. Pan, J. Wu, Y. Gaur, S. Sivasankaran, Z. Chen, S. Liu, and J. Li,
“Cosmic: Data efficient instruction-tuning for speech in-context
learning,” arXiv preprint arXiv:2311.02248, 2023.

[10] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak su-
pervision,” in Proceedings of ICML, ser. ICML’23. JMLR.org,
2023.

[11] A. Conneau et al., “Fleurs: Few-shot learning evaluation of uni-
versal representations of speech,” in Proceedings of SLT. IEEE,
2023, pp. 798–805.

[12] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state trans-
ducers in speech recognition,” Computer Speech & Language,
vol. 16, no. 1, pp. 69–88, 2002.

[13] T. Hori, D. Willett, and Y. Minami, “Language model adapta-
tion using wfst-based speaking-style translation,” in Proceedings
of ICASSP, vol. 1. IEEE, 2003, pp. I–I.

[14] J. R. Bellegarda, “Statistical language model adaptation: review
and perspectives,” Speech communication, vol. 42, no. 1, pp. 93–
108, 2004.

[15] G. Neubig, S. Mori, and T. Kawahara, “A wfst-based log-linear
framework for speaking-style transformation,” in Tenth Annual
Conference of the International Speech Communication Associ-
ation. Citeseer, 2009.

[16] S. R. Gangireddy, P. Swietojanski, P. Bell, and S. Renals, “Un-
supervised adaptation of recurrent neural network language mod-
els.” in Proceedings of Interspeech, 2016, pp. 2333–2337.

[17] J. Park, X. Liu, M. J. Gales, and P. C. Woodland, “Improved neural
network based language modelling and adaptation,” in Eleventh
Annual Conference of the International Speech Communication
Association, 2010.

[18] H. Xu, T. Chen, D. Gao, Y. Wang, K. Li, N. Goel, Y. Carmiel,
D. Povey, and S. Khudanpur, “A pruned rnnlm lattice-rescoring
algorithm for automatic speech recognition,” in Proceedings of
ICASSP. IEEE, 2018, pp. 5929–5933.

[19] A. Kannan, Y. Wu, P. Nguyen, T. N. Sainath, Z. Chen, and
R. Prabhavalkar, “An analysis of incorporating an external lan-
guage model into a sequence-to-sequence model,” in Proceedings
of ICASSP, 2018, pp. 1–5828.

[20] E. McDermott, H. Sak, and E. Variani, “A density ratio approach
to language model fusion in end-to-end automatic speech recog-
nition,” in Proceedings of ASRU. IEEE, 2019, pp. 434–441.

[21] Z. Meng, S. Parthasarathy, E. Sun, Y. Gaur, N. Kanda, L. Lu,
X. Chen, R. Zhao, J. Li, and Y. Gong, “Internal language model
estimation for domain-adaptive end-to-end speech recognition,”
in Proceedings of SLT. IEEE, 2021, pp. 243–250.

[22] Z. Meng, Y. Wu, N. Kanda, L. Lu, X. Chen, G. Ye, E. Sun,
J. Li, and Y. Gong, “Minimum Word Error Rate Training with
Language Model Fusion for End-to-End Speech Recognition,” in
Proceedings of Interspeech, 2021, pp. 2596–2600.

[23] T. Udagawa, M. Suzuki, G. Kurata, N. Itoh, and G. Saon, “Effect
and analysis of large-scale language model rescoring on competi-
tive asr systems,” arXiv preprint arXiv:2204.00212, 2022.

[24] A. Mittal, S. Sarawagi, and P. Jyothi, “In-situ text-only adapta-
tion of speech models with low-overhead speech imputations,” in
Proceedings of ICLR, 2023.

[25] A. Mittal, S. Sarawagi, P. Jyothi, G. Saon, and G. Kurata,
“Speech-enriched memory for inference-time adaptation of asr
models to word dictionaries,” in Proceedings of EMNLP, 2023.

[26] P. Dighe, Y. Su, S. Zheng, Y. Liu, V. Garg, X. Niu, and A. Tew-
fik, “Leveraging large language models for exploiting asr uncer-
tainty,” arXiv preprint arXiv:2309.04842, 2023.

[27] C.-H. H. Yang, Y. Gu, Y.-C. Liu, S. Ghosh, I. Bulyko, and A. Stol-
cke, “Generative speech recognition error correction with large
language models and task-activating prompting,” in Proceedings
of ASRU. IEEE, 2023, pp. 1–8.

[28] R. Ma, M. Qian, P. Manakul, M. Gales, and K. Knill, “Can gener-
ative large language models perform asr error correction?” arXiv
preprint arXiv:2307.04172, 2023.

[29] R. Zhang, J. Han, A. Zhou, X. Hu, S. Yan, P. Lu, H. Li, P. Gao, and
Y. Qiao, “Llama-adapter: Efficient fine-tuning of language mod-
els with zero-init attention,” arXiv preprint arXiv:2303.16199,
2023.

[30] P. Gao, J. Han, R. Zhang, Z. Lin, S. Geng, A. Zhou, W. Zhang,
P. Lu, C. He, X. Yue et al., “Llama-adapter v2: Parameter-efficient
visual instruction model,” arXiv preprint arXiv:2304.15010,
2023.

[31] C.-I. J. Lai, Z. Lu, L. Cao, and R. Pang, “Instruction-following
speech recognition,” arXiv preprint arXiv:2309.09843, 2023.

[32] Y. Shu, S. Dong, G. Chen, W. Huang, R. Zhang, D. Shi, Q. Xiang,
and Y. Shi, “Llasm: Large language and speech model,” arXiv
preprint arXiv:2308.15930, 2023.

[33] Z. Ma, G. Yang, Y. Yang, Z. Gao, J. Wang, Z. Du, F. Yu, Q. Chen,
S. Zheng, S. Zhang et al., “An embarrassingly simple approach for
llm with strong asr capacity,” arXiv preprint arXiv:2402.08846,
2024.

[34] C. Chen, R. Li, Y. Hu, S. M. Siniscalchi, P.-Y. Chen, E. Chng,
and C.-H. H. Yang, “It’s never too late: Fusing acoustic informa-
tion into large language models for automatic speech recognition,”
arXiv preprint arXiv:2402.05457, 2024.

[35] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang,
L. Wang, and W. Chen, “LoRA: Low-rank adaptation of large
language models,” in Proceedings of ICLR, 2022. [Online].
Available: https://openreview.net/forum?id=nZeVKeeFYf9

[36] L. AI, “Lit-gpt,” https://github.com/Lightning-AI/lit-gpt, 2023.

[37] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” arXiv preprint arXiv:1711.05101, 2017.

	 Introduction
	 Related Work
	 Our Approach: SALSA
	 Experimental Setup
	 Experimental Results and Analysis
	 Conclusion
	 References

