
FlowHMM: Flow-based continuous hidden Markov
models

Paweł Lorek
Mathematical Institute
University of Wrocław

Tooploox
pawel.lorek@math.uni.wroc.pl

Rafał Nowak
Institute of Computer Science

University of Wrocław
Tooploox

rafal.nowak@cs.uni.wroc.pl

Tomasz Trzciński
Warsaw University of Technology
Jagiellonian University of Cracow

Tooploox, IDEAS NCBR
tomasz.trzcinski@pw.edu.pl

Maciej Zięba
Department of Artificial Intelligence

Wrocław University of Science and Technology
Tooploox

maciej.zieba@pwr.edu.pl

Abstract

Continuous hidden Markov models (HMMs) assume that observations are gener-
ated from a mixture of Gaussian densities, limiting their ability to model more
complex distributions. In this work, we address this shortcoming and propose
novel continuous HMM models, dubbed FlowHMMs, that enable learning general
continuous observation densities without constraining them to follow a Gaussian
distribution or their mixtures. To that end, we leverage deep flow-based architec-
tures that model complex, non-Gaussian functions and propose two variants of
training a FlowHMM model. The first one, based on gradient-based technique, can
be applied directly to continuous multidimensional data, yet its application to larger
data sequences remains computationally expensive. Therefore, we also present
a second approach to training our FlowHMM that relies on the co-occurrence
matrix of discretized observations and considers the joint distribution of pairs of
co-observed values, hence rendering the training time independent of the training
sequence length. As a result, we obtain a model that can be flexibly adapted to the
characteristics and dimensionality of the data. We perform a variety of experiments
in which we compare both training strategies with a baseline of Gaussian mixture
models. We show, that in terms of quality of the recovered probability distribution,
accuracy of prediction of hidden states, and likelihood of unseen data, our approach
outperforms the standard Gaussian methods.

1 Introduction

Hidden Markov models (HMMs) are a standard tool in modeling and analysis of time series data.
Although structurally simple, they have been successfully applied in a wide variety of applica-
tions, ranging from finance [1], speech recognition [2] to computational biology [3] and climate
modeling [4].

HMMs are capable of solving complex problems, but their adoption is limited due to several reasons.
First, the training process of HMMs typically relies on the Baum-Welch algorithm [5] — a particular
case of expectation-maximization (EM) method, which offers a relatively slow convergence to a local
maximum. To reduce this burden, several discrete HHMs introduce the so-called co-occurrence matrix
that aggregates information about the probability of jointly observed values in the chain and estimate

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

it together with the parameters of the whole model [6, 7, 8, 9, 10]. Although the co-occurrence matrix
is computed only once and then used to significantly reduce convergence time during optimization, its
application is strictly limited to discrete HMMs and cannot be easily generalized to their continuous
variants.

Figure 1: The concept of FlowHMM for L = 3
states and transition matrix A. Each emis-
sion distribution characterised by density fβl(·)
is modeled using a separate flow component.
Thanks to this, they can adjust to complex, non-
Gaussian distributions.

Secondly, continuous HMM models are restricted
to follow standard parametrized distributions when
modeling the observations. Most of them use either
Gaussians or other parametric families of distribu-
tions [11, 12], while the others rely on the mixtures
of Gaussians or apply semiparametric distribution
estimation [13, 14]. As a result, the existing HMMs
have limited ability to model complex observations
that do not follow the distributions mentioned above.
This, in turn, hinders their application in real-life
use cases, e.g., in human action recognition [15].

In this work, we address the shortcomings of the
existing HMMs and introduce FlowHMM, a novel
continuous hidden Markov model that learns a gen-
eral continuous distribution of observations by ex-
ploiting the properties of flow-based models [16].
The core idea of our approach is to model the distri-
butions of the observations with normalizing flows,
instead of Gaussians or their mixtures. Flows map
a simple Gaussian prior to more complex distribu-
tions using a parametrized neural network. This formulation enables flow-based models to overpass
parametric models in their flexibility to handle data samples of unknown distributions. Moreover,
flow-based models naturally extend to a multimodal setting, which effectively renders obsolete the
tedious process of tuning the number of hidden states.

Practically, training the model with flow-based components requires a gradient-based optimization.
To achieve that, we propose two variants of training the FlowHMM model. The first approach is based
on maximum likelihood (ML) technique and can be applied directly to continuous multidimensional
data. In the second method, we discretize the continuous values during training and leverage the
co-occurrence matrix. As a result, we provide an end-to-end training procedure that jointly optimizes
the flow-based component parameters and the co-occurrence matrix using standard gradient-based
techniques. Since the model is trained in a discretized form, the optimization process is simple and
more efficient than the competing HMM training procedures, while during inference, we can still use
a continuous version of our FlowHMM model.

To summarize, the main contribution of our paper is a novel continuous HMM method dubbed
FlowHMM with two alternative training scenarios, capable of modeling complex multimodal distri-
butions of observations without constraining them to follow Gaussians. Not only does it outperform
the competing approaches, but it also increases the efficiency of the required optimization procedure.

2 Background

2.1 Hidden Markov models

Let {Xk}k≥0 be an ergodic, time homogeneous Markov chain over hidden states S = {s1, . . . , sL}
with a stationary distribution π = (π1, . . . , πL), and a transition matrix A, i.e., for any k we have
P(Xk+1 = sj |Xk = si) = A(i, j). Let {Yk}k≥0 be a sequence of random variables taking values
in V (the observation space), which can be continuous or discrete. Let us fix some time horizon
T . Random variables Y0:T = (Y0, . . . , YT) are independent conditionally on the state sequence
X0:T = (X0, . . . , XT), i.e.:

p(Y0:T = y0:T |X0:T = x0:T) =

T∏
k=0

p(yk|xk), (1)

2

where p(y|x) ≡ P(Y = y|X = x) represents the so-called emission probabilities for discrete
observations. We will shortly write p(y0:T) for p(Y0:T = y0:T) and similarly e.g., p(y0:T |x0:T)
for p(Y0:T = y0:T |X0:T = x0:T) to simplify the notation. Considering the continuous case, p(y|x)
represents the conditional emission density function for a given state x. For a Gaussian Mixture HMM
(which we simply call Gaussian HMM) we assume that p(y|x) =

∑K
k=1 αx,kN (y;µx,k, σ

2
x,k), where

αx,· is a distribution on {1, . . . ,K}. The values of parameters {αx,k, µx,k, σ
2
x,k}Kk=1 are determined

by the conditioning value x. Note that we assume that each mixture has the same number of
components K. For K = 1 we have a classic Gaussian HMM.

HMM model can be parametrized by θ = {π,A,β}, where β = {β1, . . .βL}, and βl stays
behind the parameters of p(y|l), for a given state l. For discrete case, βl represents the parameters
for categorical distribution, while for a Gaussian HMM we have βl = {αl,k, µl,k, σ

2
l,k}Kk=1. The

probability of observing the sequence of observations y0:T can be expressed as:

p(y0:T ;θ) =
∑

x0:T∈ST+1

p(y0:T |x0:T ;β)p(x0:T ;A,π), (2)

where p(y0:T |x0:T ;β) is given by Eq. (1), and p(x0:T ;A,π) can be expressed as:

p(x0:T ;A,π) = P(x0)
T∏

k=1

P(xk|xk−1) = πx0

T∏
k=1

A(xk−1, xk). (3)

2.2 Normalizing Flows

Normalizing flows [16] are generative models that can be efficiently trained via direct likelihood
estimation thanks to the application of the change-of-variable formula. Practically, they utilize
sequence of parametric and invertible transformations: y = hn ◦ · · · ◦ h1(z). The goal of the
transformation is to map z from the known, normal distribution N (z;0, I) to the more complex
distribution described by a density function f(y) from the observation domain. The log-probability
for y can be expressed as:

log f(y) = logN (z;0, I)−
N∑

n=1

log

∣∣∣∣det ∂hn

∂zn−1

∣∣∣∣ . (4)

One of the main challenges while designing the normalizing flows is selection of a proper form of
transformation functions hn. The sequence of discrete transformations can be replaced by continuous
equivalent by application of Continuous Normalizing Flows (CNFs) [17], where the aim is to solve
differential equation of the form dz

dt = gβ(z(t), t), where gβ(z(t), t) represents the function of
dynamics, described by parameters β. Our goal is to find a solution of the equation in t1, y := z(t1),
assuming the given initial state z := z(t0) with a known prior. The transformation function hβ and
its inverse are defined as defined as:

y = hβ(z) = z +

∫ t1

t0

gβ(z(t), t) dt, h−1
β (y) = y −

∫ t1

t0

gβ(z(t), t) dt. (5)

The log-probability of y can be computed by (where h−1
β (y) = z):

log fβ(y) = logN (h−1
β (y);0, I))−

∫ t1

t0

dgβ(z(t), t)

dz(t)
dt. (6)

The choice of using CNFs is motivated by the fact, that we are focused on modeling distributions
of one or low-dimensional data. CNFs were successfully applied in such models as NGGP [18],
PointFlow [19], or StyleFlow [20], where the dimensionality and characteristic of data are similar.
It is somehow confirmed by the empirical results provided by the authors of FFJORD ([17] Table
2), the proposed approach performs better than discrete flows like RealNVP [21] or Glow [22]
for low-dimensional data in terms of normalized log-likelihood. Such models were used in [23].
Moreover, flows that use coupling layers (RealNVP, Glow) and autoregressive flows (MAF [24])
do not make sense for 1D data. While operating on 1D data, we do not care about simplifying the
estimation of the Jacobian, and any invertible differentiable transformation can be applied. At the
same time, we need a complex, well-parameterized transformation that is delivered by a dynamic
function of CNF.

3

3 FlowHMM

In this section we introduce FlowHMMs - HMM variants of continuous flow capable to model the
observations using complex, non-Gaussian distributions. The idea behind this approach is to model
each of conditional densities p(y|x = sl) = fβl

(y), for each of the considered states, sl ∈ S, using
a separate CNF module. In practice, p(y|x = sl) can be calculated using formula given by Eq. (6)
with the parameters βl dedicated for the state sl. The idea of our approach is illustrated in Fig. 1.

In FlowHMM we assume that {Xk} is stationary, i.e., the stationary distribution π is also its initial
distribution. In such a case, instead of using A, the model can be equivalently represented by the
state joint probabilities:

S(i, j) = P(Xk = si, Xk+1 = sj) = P(Xk+1 = sj |Xk = si)P(Xk = si) = A(i, j)πi. (7)

Note that πi can be computed as
∑

j S(i, j), what can be written as πi = 1iS1
T , where 1 denotes

a vectors consisting of ones and 1i consists of 1 on position i and zeros otherwise. For such
a formulation, the FlowHMM model can be parametrized by θ = {S,β1, . . .βL}.
We propose two variants of FlowHMM models, which differ mainly in a training process: gradient-
based model FML which is trained with an maximum likelihood approach directly on continuous
data, and co-occurrence matrix-based model FQ, that utilizes co-occurrence matrix and is trained in
end-to-end setting using discretized sequences. The first of the proposed methods does not require
discretisation step, but is costly and ineffective for larger sequences. FQ eliminates that problem, and
makes the training time independent of the length of the training sequence (only estimating empirical
co-occurrence matrix depends on T , but the time is marginal). In upcoming sections we are going to
introduce both models in more details.

3.1 Training FlowHMM FML model

Given a sequence of observations y0:T = (y0, . . . , yT), the model is trained by optimizing the
log-likelihood log p(y0:T ;θ) (see Eq. (2)), where we aim at finding the optimal values of S∗

(and thus A∗ and π∗) and parameters of flow models β∗
l , such that θ∗ = {S∗,β∗

1, . . . ,β
∗
L} =

argmaxθ log p(y0:T ;θ). In order to satisfy the constraints on S (i.e., that 1S1T = 1 and each entry
is non-negative, what we denote by S ≥ 0) we parametrize the matrix S by a real-valued matrix S̃
also of size L× L, using the following softmax function:

S(s1, s2) =
exp(S̃(s1, s2))∑

si,sj
exp(S̃(si, sj))

. (8)

Thanks to that representation, we train the S and βl’s iteratively with gradient-based approach,
by maximizing the incomplete log-likelihood log p(y0:T ;θ), calculated directly using the forward
algorithm.

3.2 Training FlowHMM FQ model

Considering FQ model we introduce the co-occurrence matrix that represents the joint distribution
of two consecutive observations: Q(y1, y2) = p(Yk+1 = y2, Yk = y1). The matrix represents a
categorical distribution, (i, j)-th entry represents the probability of observing a pair of states (vi, vj)
at some fixed two consecutive steps k and k + 1. Note that it is independent of k, since throughout
the paper we assume that underlying Markov chain on hidden states is stationary, thus a bivariate
distribution of (Xk, Xk+1) is independent of k. The matrix can be rewritten as:

Q(y1, y2) =
∑

si,sj∈S
p(y1|si)S(i, j)p(y2|sj). (9)

Assuming the discrete set of observations, V = {v1, . . . , vM}, it can be further expressed as Q =
PTSP, where P collects probabilities of all possible observations at each hidden state in a matrix
P(si, vj) = p(vj |si). In this case there are M2 possible observation pairs (y1, y2) ∈ V × V . Note
that matrices Q,S,P are of sizes M ×M , L × L and L ×M , respectively. Moreover, we have∑

vi,vj∈V Q(vi, vj) =
∑

si,sj
S(si, sj) = 1 and

∑
v∈V P(si, v) = 1 for all si ∈ S. In a matrix

4

form, these can be written as 1Q1T = 1S1T = 1 and P1T = 1T (note that 1 must be of an
appropriate size). Given observations y0:T the matrix Q can be empirically estimated by:

Q̂(vi, vj) =
1

T

T−1∑
k=0

I(yk = vi)I(yk+1 = vj), (10)

for all pairs (vi, vj) ∈ V × V . The problem of training the HMM is to find such parameters (matrices
S and P) so that the co-occurrence matrix Q is close (in some sense) to the empirical co-occurrence
matrix Q̂. We can formulate the problem as (for some distance dist)

min
P∈RN×M ,
S∈RL×L

dist(Q̂,PTSP), subject to 1S1T = 1,P1T = 1T ,P ≥ 0,S ≥ 0.
(11)

This problem formulation has a couple of advantages compared to standard likelihood-based op-
timization. First, the empirical co-occurrence matrix Q̂ is independent of the sequence length T .
Second, the given objective can be easily optimized using gradient-based techniques. On the other
hand, the constraints for matrices P and S should be satisfied. The set V is discrete, while we aim
to design the model for continuous observations. In order to satisfy the constraints for matrix S we
use the representation given by Eq. (8). In order to represent matrix P we use Flow-based emission
probabilities.

Flow-based emission probabilities. With each hidden state l we associate the flow model described
by a density function fβl

, that can be calculated from Eq. (6), where βl is a set of trainable parameters
of the flow. We construct P based on these models (in such a case P ≡ Pβ). The i-th row of the
matrix is a density fβi

(·) evaluated at v1, . . . , vM and normalized as follows:

Pβ(si, vj) =
fβi

(vj)∑M
k=1 fβi

(vk)
. (12)

Similarly, the optimization problem (11) becomes:

min
β,S∈RL×L

dist(Q̂,PT
βSPβ). (13)

As a distance function, we propose to use Kullback–Leibler divergence,

min
β,S∈RL×L

L, L =
∑
i,j

Qβ(i, j) log
Qβ(i, j)

Q̂(i, j)
, (14)

where Qβ = PT
βSPβ. We postulate to apply divergence instead to L2 distance used e.g., in [7].,

because it is more natural measure for comparing two distributions. We observed during empirical
evaluation, that using this divergence gives better stability and convergence of the training process.

The final training procedure of FlowHMM FQ model is as follows. Let ytrain0:T be the training set
and let ytest0:T ′ be the test set. For the fixed M we construct the grid Γ = (γ1, . . . , γM) using one
of the approaches described in A.1. Next, we create the discretized training data ytrain,Γ0:T , where
ytrain,Γi = argminγ∈Γ ||γ − ytraini ||2. The values of the grid represent further the set V , V = Γ.
Next, we calculate the empirical co-occurrence matrix Q̂:

Q̂(vi, vj) =
1

T

T−1∑
k=0

I(ytrain,Γk = vi)I(ytrain,Γk+1 = vj), (15)

and matrices S and Pβ (using Eqs. (8), (12)) that are further used to calculate the loss given by Eq.
(14). Practically, we add Gaussian perturbations to the grid values, while calculating the matrix P:

Pβ(si, vj) =
fβi

(vj + ϵ)∑M
k=1 fβi

(vk + ϵ)
, (16)

where ϵ is a random sample from N (0, σ2
noise), and σ2

noise is a hyperparameter of the method.

This is one of the standard tricks applied while training normalizing flows, that imitates the situation
where we have an access to an infinite number of training examples. These perturbations prevent
from overfitting of the flow-based components caused by observing the same grid while training.
Next, all of the parameters of FlowHMM are updated with gradient based approach. The procedure
is repeated until convergence. The procedures of training is presented in Algorithm 1.

5

3.3 Inference with FlowHMM Algorithm 1 Training using FQ technique

Require: Q̂: — empirical co-occurrence matrix from Eq. (10).
Parameters: β = {β1, . . . ,βL}— flow parameters, S̃ parame-
ters representing un-normalised co-occurrence matrix.
Hyperparameters: L - number of hidden states, α- step size,
noise variance σ2

noise.

1: function TRAIN(Q̂, L, α)
2: Initialize β, and S̃.
3: while not convergent do
4: Calculate S from Eq. (8). and Pβ from Eq. (16).
5: Calculate loss function L from Eq. (14) using Q̂.
6: S̃← S̃− α∇S̃L
7: for each l ∈ {1, . . . , L} do
8: βl ← βl − α∇βl

L
9: end for

10: end while
11: return β1, . . . ,βL, S̃
12: end function

As we postulated before, our
model is designed for continuous
problems, due to the fact, that
both of the training techniques re-
turn estimated S, and the param-
eters, that represent emission dis-
tributions for each of the states.
Thus, during the inference stage,
we simply calculate A and π
from S and apply forward proce-
dure on the test data ytest0:T ′ to cal-
culate p(ytest0:T ′ ;θ). We can also
determine the hidden state values
using the Viterbi procedure. Con-
cluding, FlowHMM can be used
in the same applications as stan-
dard continuous HMM models,
but with no restrictions to emis-
sion distributions.

FlowHMM for multidimensional observations. Our approach can be easily extended to multidi-
mensional observations, i.e., to the case where ytrain0:T are from Rd. For such a case, the FML model
is straightforward, let us focus on a description of FQ. On one hand the extension is straightforward:
we construct some grid Γ = (γ1, . . . , γM) of d-dimensional points, we create discretized training set
ytrain,Γ0:T and the empirical co-occurrence matrix Q̂ from (15), afterwards we compute Pβ from Eq.
(16) and the gradient∇βl

L of L given in (14). In other words we proceed with an Algorithm 1. Note
that CNFs are well-suited for multivariate observations. On the other hand, there is a challenging
aspect of training FQ model for multidimensional data: an effective discretization technique. We
elaborate on that in A.1 proposing a new grid search method. We suggest using FQ model for
lower-dimensional data, especially with long observation sequence (recall, the matrix Q is computed
once) – in such a case FML will usually be very slow, each epoch loops through a whole observation
sequence. On the other hand, for FML is better suited for high-dimensional data and short observation
sequence – for longer observation sequences, in order to shorten the execution time, we apply small
trick, at each epoch we sample a subsequence of fixed length, e.g., 103. There is a trade-off between
execution time and performance, see Table 7 in A.7.

4 Related work

One of the most popular way to train HMM models is the Baum-Welch algorithm (a name for EM
applied to HMMs). However, one of (several) drawbacks of using Baum-Welch algorithm for training
is that it is prohibitively slow for long sequences. The complexity of the forward-backward algorithm
(which must be run for each epoch) is O(N2T), where N is the number of hidden states and T is the
length of the observation sequence. In order to eliminate this issue, the authors [6] propose to use
pairwise co-occurrence probabilities (also higher order statistics are also discussed there) and prove
that it is possible to recover the structure of an HMM based only on co-occurrences. An interesting
extension (both, of pairs and triplets) was considered in [25]. Authors used there non-consecutive
tuples, which outperforms consecutive tuples in some cases.

Our approach is, in a sense, close to the technique used in [7], with however significant differences:
authors use alternating least square methods for optimization (in our case, all the matrices are real-
valued and, softmax is applied whenever needed) and for the continuous case, they assume that
the observation densities are a mixture of the predefined number of kernels.The "softmax trick" is
also used in [9] (their model learns so-called dense representations of hidden states and observation
probabilities – it is designed only for discrete HMMs).

As already mentioned, typically continuous HMMs assume that observations were sampled from
a Gaussian distribution or a mixture of such distributions. For a non-Gaussian distribution, one usually

6

assumes some parametric family of distributions. In [11] authors propose a decoupling method
to learning the parametric HMMs which are stationary. Instead of estimating the parameters of
hidden states and observations jointly, they learn the parameters of observation densities using some
parametric mixture learner, and then hidden states by solving some convex quadratic programming
problem. In [13] a method is proposed for a case where at least one state-dependent distribution
is modeled with some nonparametric technique (e.g., maximum likelihood estimation under shape
constraints), some broader review of methods is presented in [26]. In [14] authors use a Gaussian
copula to model the dependence structure. A semiparametric data transformation is also proposed
to ensure one may indeed use such copulas (the final observation distribution is a finite mixture
of the copula models). In [27] authors present an efficient learning for parametric continuous
HMMs sampled at finite irregular time instants (they incorporate some ideas from the theory of
continuous-time Markov chains).

In [28], the authors consider the extension of a Kalman filter (which you can think of as a version of
a HMM with continuous both, observations and hidden states), where the pseudo-observations (as
authors call it) are transformed through a normalizing flow producing the actual observation.

The most similar model to our approach was introduced in Ghosh et al. [29] and further developed in
[23], where the authors employ normalizing flows in observation densities and apply it to classification
problems. However, they utilize the flow with coupling layers that cannot be directly applied to
one-dimensional data. We use CNFs that can be easily used for any type of data, and are characterized
by better quality for low-dimensional examples compared to coupling-based flows. Moreover, their
approach relies on EM training, which makes it impractical for longer sequences of data. We propose
two variants of training models: a) FQ model which relies on co-occurrences of discretized data and
can successfully be applied on very long sequences, and b) FML model which applies gradient-based
optimization not only to the parameters of the flow (as in [29] and [23]), but also to the transition
matrix on hidden states (which - because the underlying chain is stationary – is uniquely determined
by the matrix representing joint states probabilities and parametrization given in Eqs. (8) and (9)) –
consequently, in each iteration, only one forward step is needed, while Ghosh et al. model requires
two forward passes (one to fit frozen weights (no gradient) and one gradient-based to update weights).

For one-dimensional examples we show the advantages of the proposed FQ empirically (compared
to FML model). Finally, the authors of [29] apply their model only on sequence classification as
black box. At the same time, we investigate the proprieties of specific examples in order to discover
the capabilities of distribution adjustment and discover the hidden states of data unobserved during
training.

5 Experimental results
FML FQ

Figure 2: Distributions learned by FML and FQ for
T = 104 observations for Example 1 (top row) and Ex-
ample 2a (bottom row). Original distributions shaded.

Evaluation. Here we consider our
FlowHMM models FML and FQ with
training procedures described in Sections 3.1
and 3.2 respectively.

We compare our results with classic HMM
models utilizing Gaussian mixtures obser-
vation densities with K = 1, 10, 20 com-
ponents; we denote them by G(K) and for
simplicity we write G ≡ G(1). We used
hmmlearn library1 for the computations of
all G(K) models and provide the source code
for FlowHMM models2. We evaluate the
quality of the proposed methods computing
Normalized log-likelihood (normLL) of un-
seen observations, Total variation distance
(dtv) between learned and true emission
probabilities, and accuracy of predicted hid-
den states (accuracy).

1https://github.com/hmmlearn
2https://github.com/tooploox/flowhmm

7

https://github.com/hmmlearn
https://github.com/tooploox/flowhmm

T Example 1 Example 2a Example 2b
G G(10) G(20) FML FQ G G(10) G(20) FML FQ G G(10) G(20) FML FQ

no
rm

LL 103 -2.21 -2.21 -2.21 -2.46 -3.06 0.17 0.17 0.17 0.33 0.11 0.09 0.17 0.17 0.32 0.09
104 -2.19 -2.19 -2.19 -2.28 -2.18 0.18 0.17 0.17 0.33 0.34 0.09 0.18 0.18 0.32 0.30
105 -2.19 -2.19 -2.19 -2.28 -2.16 0.18 0.17 0.17 0.34 0.33 0.09 0.18 0.18 0.32 0.18

dtv

103 0.09 0.09 0.09 0.13 0.39 0.28 0.31 0.31 0.38 0.43 – – – –
104 0.07 0.07 0.07 0.11 0.05 0.29 0.32 0.32 0.30 0.15 – – – – –
105 0.07 0.07 0.07 0.11 0.04 0.29 0.32 0.32 0.28 0.15 – – – – –

Table 1: normLL and dtv metrics for synthetics Examples 1, 2a-b. Best results bolded.

FQ FML G G(10)

Figure 3: Results for Example 2b (three original distributions shaded) for T = 104 observations.

We define all the metrics and motivate their choice in A.2, the experimental settings are described in
details in A.3.

1D Synthetic sequences. We consider HMMs with L = 3 hidden states and experiment with
transition matrices A1 (used in [7, Eq. (11)]) or A2, where

A1 =

(
0.0 0.9 0.1
0.0 0.0 1.0
1.0 0.0 0.0

)
, A2 =

(
0.4 0.2 0.4
0.25 0.5 0.25
0.4 0.2 0.4

)
. (17)

We consider 2 examples. Example 1 - transition matrix A1 and emission probabilities: two Gaussian
and one Uniform. Example 2a - transition matrix A2, emission probabilities: one Gaussian, one
Uniform, and Beta distribution. In addition, we consider Example 2b, where we aim at adjusting the
models assuming only two hidden states. The examples are described in details in Appendix A.4.

For each example we sample train and test observations of the same length T ∈ {103, 104, 105}. We
train FML and FQ models using 500 (Example 1) and 1000 (Examples 2a and 2b) epochs. For FQ

we used a grid of size M = 30. For each case (i.e., fixed example and T) we perform 10 simulations
and report means of normLLs and total variation distances in Table 1. For observations of length
T ≥ 104 flow models clearly outperform Gaussian ones in all the examples. Note that in these
examples we had a grid of size M = 30, thus we estimated the matrix Q with 900 entries (number of
observation pairs). It is intuitively clear that T = 103 observations is not enough then for FQ. In this
case FML outperforms FQ in terms of normLLs; models are comparable for larger T . For T ≥ 104

the FQ model "recovers" original distributions much more accurately, the small values of dtv from
Table 1 are confirmed in Fig. 2, where distributions learned by our flow models trained with T = 104

observations are depicted (from single simulations). In A.4 in Fig. 5, the trained distributions for
Examples 1, 2a-b trained with T = 103 observations are depicted. In A.7 we investigate the impact
of length T on quality of the model.

We encourage the reader to confront Fig. 2 for FQ and T = 104 for Example 1 with [7, Fig. 4].
In Fig. 3 we depict the distributions learned models with only L = 2 hidden states for T = 104

observations (recall observations were sampled from a model with 3 different distributions). Since
flow models are capable of fitting multimodal distributions, they outperform Gaussian ones. Moreover,
the co-occurrence matrix-based model FQ outperforms the maximumum-likelihood-based model
FML. Recall that, by construction, our models FML and FQ assume that the underlying Markov
chain is stationary. We want to point out that in our examples we used at most L = 3 states. In such a
case, even if the assumption of stationarity does not hold, it does not have a large impact on results.
This is because for such chains the rate of convergence to stationarity is exponential (in number of
steps). To be more specific, e.g., for the chain with t.m. A2 given in (17), after 10 steps the total
variation between the stationary distribution (which is π(1) = 5/14, π(2) = 4/14, π(3) = 5/14)
and the distribution of X10 is at most (for any initial distribution) 4.22 · 10−6.

8

S&P 500
L G G(10) G(20) FML FQ

2 -10.476 -10.157 -10.686 -6.850 -5.479
3 -10.800 -10.194 -10.806 -6.837 -4.966
4 -12.462 -9.7641 -11.130 -6.908 -5.043

Dow Jones
2 -12.317 -14.154 -13.138 -8.730 -7.120
3 -12.645 -13.747 -15.007 -8.897 -7.426
4 -13.956 -13.313 -14.669 -8.902 -7.514

Air pressure
2 -0.704 0.169 0.598 -0.984 0.823
3 -0.743 0.646 0.603 0.540 0.861
4 -0.758 0.710 0.692 0.661 0.783

Table 2: normLL for Examples 3 and 4.

Real datasets. Example 3. S&P 500 and Dow Jones
are popular measures of market performance. We retrieved
data [30] for a period of 9/1977-8/2017 that consist of 2082
points. We trained models on T = 1000 observations (and
computed normLLs for the remaining data).
Example 4. We used mean air pressure from [31] dataset
collected between 02/15/18 and 02/28/19. There were
54 531 observations, the models were trained on the first
T = 40 000 ones and tested them on the remaining obser-
vations. In both, Example 3 and Example 4, we applied
a standard difference transform (to remove a trend), i.e.,
we considered time series y′k = yk − yk−1. We trained the models with L ∈ {2, 3, 4} hidden states,
models FML and FQ were trained for 500 epochs, for the latter we used a uniform grid of size
M = 30. During training FML model we randomly sampled subsequences of length 103 for each
epoch. The values of normLL are reported in Table 2. As can be seen, in all cases FQ yields the
best results and for Example 3 model FML is second best. Note also that although a number of
observations for Example 3 is not large (we used only T = 1000 observations, while for M = 30 we
have 900 observation pairs) FQ outperforms FML. Fig. 6 in A.4 shows that the learned observation
densities for L ∈ {2, 3, 4} are non-Gaussian. We want to remark one thing: in financial data one
usually works with log-returns log(yk/yk−1), which tend to be "more Gaussian". This is also the case
with the examples we considered: FML,FQ and Gaussian models returned very similar normLLs
(which is no surprise in case of Gaussian data, other models easily fitted to them). We chose and
reported the differences yk − yk−1 to compare the models in case of non-Gaussian data.

2D synthetic sequences. We consider HMM models with L = 3 states. We consider 2 examples:
Example 5 with emission probabilities: two "Moons" and one Uniform and Example 6 with emission
probabilities: one bivariate Gaussian, one Uniform and one related to geometric Brownian motion.
Details provided in A.5. In both examples we consider the transition matrix A1 (variant (a)) and A2

(variant (b)), defined in (17).

T Example 5a Example 5b
G G(10) G(20) Ghosh FML FQ G G(10) G(20) Ghosh FML FQ

no
rm

LL 103 -1.6572 -0.6521 -0.6637 -0.7643 -0.6003 -2.7090 -1.6560 -1.4459 -1.4486 -0.7430 -1.3309 -2.6789
104 -1.6083 -0.6176 -0.6081 -0.7052 -0.4822 -0.6711 -1.6574 -1.4392 -1.4356 -0.7036 -1.2286 -1.4185
105 -1.6117 -0.6001 -0.5988 -0.6740 -0.4898 -3.4500 -1.6510 -1.4160 -1.4178 -0.6728 -1.2538 -3.0717

ac
cu

ra
cy 103 0.6010 1.0000 1.0000 – 1.0000 0.5600 0.5450 0.6560 0.6480 – 0.7390 0.5360

104 0.6325 0.9995 0.9998 – 0.9998 0.9956 0.5680 0.6677 0.6723 – 0.7088 0.7414
105 0.6274 1.0000 1.0000 – 0.9998 0.6097 0.5726 0.6775 0.6727 – 0.7448 0.5615

Example 6a Example 6b

no
rm

LL 103 0.8652 0.9443 0.9472 0.1600 1.0531 -2.1823 0.2270 0.3128 0.2915 0.1487 0.3636 -2.1891
104 0.8755 1.0009 1.0014 0.1673 1.0807 0.9189 0.2378 0.3161 0.3173 0.1665 0.3551 0.2120
105 0.8843 0.9978 0.9992 0.1713 1.0688 -1.8349 0.2186 0.3076 0.3103 0.1730 0.3496 -0.3917

ac
cu

ra
cy 103 0.9960 0.9960 0.9960 – 0.9940 0.6700 0.8270 0.6580 0.6590 – 0.8550 0.6490

104 0.9971 0.9987 0.9987 – 0.9989 0.9934 0.8173 0.6533 0.6558 – 0.5419 0.8428
105 0.9964 0.9994 0.9994 – 0.9987 0.9219 0.8077 0.6503 0.6443 – 0.8796 0.7376

Table 3: normLL and accuracy for Examples 5 and 6. Best results bolded.

G FQ FML

Figure 4: Trained distributions for Example 5a for T = 104: original observations denoted as red dots
•, grid Γ presented as gray crosses +; samples from trained distributions fβl

, l = 1, 2, 3 depicted as
black •, green • and blue • dots (colors correspond to state l).

9

We compare Gaussian baseline models, our FML and FQ models, as well as a model from Ghosh at
al. [23] – we used authors’ official implementaion3. For the latter we computed only normLLs.

In Table 3 values of normLL (for all models) and accuracy (for all models except Ghosh at al. [23])
are reported, whereas in Fig. 4 the trained distributions for Example 5a for T = 104 are depicted. Sim-
ilar plots for Example 6a are presented in A.5 in Fig. 7. We used non-uniform grids of size M = 302

(cartesian product of two one-dimensional grids of size 30 on each coordinate – for other strategies for
choosing a grid see A.1. One can observe that for all examples except Example 5b model FML gives
the best normLLs, Ghosh et al. outperforms our models only in Example 5b. For 2D examples we can
spot a drop of quality – in terms of normLL – for FQ model. We performed additional simulations for
this model for T = 103 observations and grids of sizes 352 and 402, the results are provided in Table 4.

Ex. M = 352 M = 402

5a -2.548 -2.499
5b -2.520 -2.470
6a -2.042 -1.997
6b -2.042 -1.990

Table 4: Values of
normLL for FQ model
for Examples 5a-b, 6a-
b for T = 103 observa-
tions.

As we can see they are still worse than FML model (which is no surprise:
we have 304, 354 and 404 pairs and only 103), but we see a tendency:
increasing a grid size increases normLL in all cases. One can observe that
in all the considered cases and variants, modelFML gives the best normLL
values. When it comes to the other metric, i.e., the accuracy, all the
classic Gaussian mixture models, as well as FML, yield almost the same
accuracy if transition matrix A1 was used (variant (a)). However, for the
transition matrix A2 (variant (b)), the models FML and FQ outperform
the classic models with significant margin (note that A2 yields a "more
complex" model compared to A1).

L G G(10) G(20) FML

2 -1097.49 -1096.81 -1096.65 -571.08
3 -1097.45 -1096.73 -1096.51 -571.97
4 -1097.39 -1096.65 -1096.09 -572.61

Table 5: Values of normLL for 6-
dimensional data.

High dimensional (6D) real dataset. Example 7: from
[31] dataset (used in Example 4) we chose 6 features re-
lated to humidity (mean, stdev) and air pressure (min,
max, mean, stdev). Similarly as in Example 4 we con-
sidered differences of the observations. Again, the length
of training set was set to 40k, the remaining ∼ 14k obser-
vations constituted a test set. We used FML model – in
each epoch we randomly sampled a subsequence of length 103. In all cases (L = 2, 3, 4) the model
significantly outperfoms Gaussian models, as can be seen in Table 5.

6 Conclusions and limitations

In this work, we proposed a continuous hidden Markov model that leverages deep flow-based network
architectures to model complex, non-Gaussian distributions. Although our approach outperforms
several baselines and competing approaches, it relies on the co-occurrence matrix that can be
only computed with the assumption that the Markov chain on a set of hidden states is stationary -
a limitation not present in the EM-based approaches. Addressing this constraint, e.g., by re-computing
temporally stationary co-occurrence matrix during training, is part of our future work. So is in-depth
validating our model on multivariate time series or distributions, where our flexible approach can
potentially offer more benefits over the existing works. While we do not identify any straightforward
negative societal implications of our work, we acknowledge that its application to large data corpora
can lead to significant energy consumption, despite our main contributions being focused on increased
efficiency.

Acknowledgements

This work was supported by Foundation for Polish Science (grant no POIR.04.04.00-00-14DE/18-00)
carried out within the Team-Net program co-financed by the European Union under the Euro-
pean Regional Development Fund, as well as the National Centre of Science (Poland) Grant No.
2020/39/B/ST6/01511. The work conducted by Maciej Zieba was supported by the National Centre
of Science (Poland) Grant No. 2021/43/B/ST6/02853. For the purpose of Open Access, the author
has applied a CC-BY public copyright licence to any Author Accepted Manuscript (AAM) version
arising from this submission.

3https://github.com/anubhabghosh/genhmm

10

https://github.com/anubhabghosh/genhmm

References
[1] Rogemar S Mamon and Robert James Elliott. Hidden Markov models in finance, volume 4.

Springer, 2007.

[2] Mark Gales and Steve Young. The application of hidden Markov models in speech recognition.
Now Publishers Inc, 2008.

[3] Mathukumalli Vidyasagar. Hidden Markov Processes: Theory and Applications to Biology.
Princeton University Press, 2014.

[4] Pierre Ailliot, Craig Thompson, and Peter Thomson. Space–time modelling of precipitation
by using a hidden markov model and censored gaussian distributions. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 58(3):405–426, 2009.

[5] Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains. The annals of
mathematical statistics, 41(1):164–171, 1970.

[6] Kejun Huang, Xiao Fu, and Nicholas Sidiropoulos. Learning hidden markov models from
pairwise co-occurrences with application to topic modeling. In International Conference on
Machine Learning, pages 2068–2077. PMLR, 2018.

[7] Balaji Lakshminarayanan and Raviv Raich. Non-negative matrix factorization for parameter
estimation in hidden markov models. In 2010 IEEE International Workshop on Machine
Learning for Signal Processing, pages 89–94, 2010.

[8] Daniel Hsu, Sham M Kakade, and Tong Zhang. A spectral algorithm for learning hidden markov
models. Journal of Computer and System Sciences, 78(5):1460–1480, 2012.

[9] Joachim Sicking, Maximilian Pintz, Maram Akila, and Tim Wirtz. DenseHMM: Learning
hidden markov models by learning dense representations. CoRR, abs/2012.09783, 2020.

[10] Robert Mattila, Cristian R Rojas, Vikram Krishnamurthy, and Bo Wahlberg. Identification of
hidden markov models using spectral learning with likelihood maximization. In 2017 IEEE
56th annual conference on decision and control (CDC), pages 5859–5864. IEEE, 2017.

[11] Aryeh Kontorovich, Boaz Nadler, and Roi Weiss. On learning parametric-output hmms. In
Proceedings of the 30th International Conference on International Conference on Machine
Learning - Volume 28, ICML’13, page III–702–III–710. JMLR.org, 2013.

[12] Oscar Darwin and Stefan Kiefer. Equivalence of hidden markov models with continuous
observations. arXiv preprint arXiv:2009.12978, 2020.

[13] Jörn Dannemann. Semiparametric hidden markov models. Journal of computational and
graphical statistics, 21(3):677–692, 2012.

[14] Hongyang Yu. A novel semiparametric hidden markov model for process failure mode identifi-
cation. IEEE Transactions on Automation Science and Engineering, 15(2):506–518, 2018.

[15] Lu Xia, Chia-Chih Chen, and J. K. Aggarwal. View invariant human action recognition using
histograms of 3d joints. In 2012 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, pages 20–27, 2012.

[16] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In ICML.
PMLR, 2015.

[17] Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and David Duvenaud.
Ffjord: Free-form continuous dynamics for scalable reversible generative models. arXiv, 2018.

[18] Marcin Sendera, Jacek Tabor, Aleksandra Nowak, Andrzej Bedychaj, Massimiliano Patacchiola,
Tomasz Trzcinski, Przemysław Spurek, and Maciej Zieba. Non-gaussian gaussian processes for
few-shot regression. In Advances in Neural Information Processing Systems, 2021.

11

[19] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
Pointflow: 3d point cloud generation with continuous normalizing flows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4541–4550, 2019.

[20] Rameen Abdal, Peihao Zhu, Niloy J Mitra, and Peter Wonka. Styleflow: Attribute-conditioned
exploration of stylegan-generated images using conditional continuous normalizing flows. ACM
Transactions on Graphics (ToG), 40(3):1–21, 2021.

[21] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

[22] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

[23] Anubhab Ghosh, Antoine Honoré, Dong Liu, Gustav Eje Henter, and Saikat Chatterjee. Normal-
izing flow based hidden markov models for classification of speech phones with explainability.
arXiv preprint arXiv:2107.00730, 2021.

[24] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. Advances in neural information processing systems, 30, 2017.

[25] Robert Mattila, Cristian Rojas, Eric Moulines, Vikram Krishnamurthy, and Bo Wahlberg. Fast
and consistent learning of hidden Markov models by incorporating non-consecutive correlations.
In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
6785–6796. PMLR, 13–18 Jul 2020.

[26] Jörn Dannemann, Hajo Holzmann, and Anna Leister. Semiparametric hidden markov mod-
els: identifiability and estimation. Wiley Interdisciplinary Reviews: Computational Statistics,
6(6):418–425, 2014.

[27] Yu-Ying Liu, Shuang Li, Fuxin Li, Le Song, and James M Rehg. Efficient learning of continuous-
time hidden markov models for disease progression. Advances in neural information processing
systems, 28:3599, 2015.

[28] Emmanuel de Bézenac, Syama Sundar Rangapuram, Konstantinos Benidis, Michael Bohlke-
Schneider, Richard Kurle, Lorenzo Stella, Hilaf Hasson, Patrick Gallinari, and Tim
Januschowski. Normalizing kalman filters for multivariate time series analysis. In NeurIPS,
2020.

[29] Anubhab Ghosh, Antoine Honoré, Dong Liu, Gustav Eje Henter, and Saikat Chatterjee. Robust
classification using hidden markov models and mixtures of normalizing flows. In 2020 IEEE
30th International Workshop on Machine Learning for Signal Processing (MLSP), pages 1–6,
2020.

[30] data.world. DowJones and S&P500 datasets, accessed 2022. https://data.world/
chasewillden/stock-market-from-a-high-level/workspace/.

[31] AmeriGEOSS. Wind-measurementds in Papua New Guinea, 2019. data retrieved from https:
//data.amerigeoss.org/dataset/857a9652-1a8f-4098-9f51-433a81583387/
resource/a8db6cec-8faf-4c8e-aee2-4fb45d1e6f14.

12

https://data.world/chasewillden/stock-market-from-a-high-level/workspace/
https://data.world/chasewillden/stock-market-from-a-high-level/workspace/
https://data.amerigeoss.org/dataset/857a9652-1a8f-4098-9f51-433a81583387/resource/a8db6cec-8faf-4c8e-aee2-4fb45d1e6f14
https://data.amerigeoss.org/dataset/857a9652-1a8f-4098-9f51-433a81583387/resource/a8db6cec-8faf-4c8e-aee2-4fb45d1e6f14
https://data.amerigeoss.org/dataset/857a9652-1a8f-4098-9f51-433a81583387/resource/a8db6cec-8faf-4c8e-aee2-4fb45d1e6f14

	Introduction
	Background
	Hidden Markov models
	Normalizing Flows

	FlowHMM
	Training FlowHMM FML model
	Training FlowHMM FQ model
	Inference with FlowHMM

	Related work
	Experimental results
	Conclusions and limitations

