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Abstract
Two central paradigms have emerged in the rein-
forcement learning (RL) community: online RL
and offline RL. In the online RL setting, the agent
has no prior knowledge of the environment, and
must interact with it in order to find an ϵ-optimal
policy. In the offline RL setting, the learner in-
stead has access to a fixed dataset to learn from,
but is unable to otherwise interact with the envi-
ronment, and must obtain the best policy it can
from this offline data. Practical scenarios often
motivate an intermediate setting: if we have some
set of offline data and may also interact with the
environment, how can we best use the offline data
to minimize the number of online interactions
necessary to learn an ϵ-optimal policy? In this
work, we consider this setting, which we call the
FineTuneRL setting, for MDPs with linear struc-
ture. We characterize the necessary number of
online samples needed in this setting given access
to some offline dataset, and develop an algorithm,
FTPEDEL, which is provably optimal, up to H
factors. We show through an explicit example that
combining offline data with online interactions
can lead to a provable improvement over either
purely offline or purely online RL. Finally, our
results illustrate the distinction between verifiable
learning, the typical setting considered in online
RL, and unverifiable learning, the setting often
considered in offline RL, and show that there is a
formal separation between these regimes.

1. Introduction
Many important learning problems in adaptive environ-
ments can be mapped into the reinforcement learning (RL)
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paradigm. Recent years have seen an impressive set of
results deploying RL algorithms in a variety of domains
such as healthcare (Yu et al., 2021), robotics (Kober et al.,
2013), and games (Silver et al., 2016). Typically, in such
RL settings, the goal of the learner is to find a policy that
maximizes the expected reward that can be obtained in a
given environment. Motivated by the practical successes of
RL, developing efficient approaches to policy optimization
has been a question of much interest in the machine learn-
ing community in recent years. Broadly speaking, policy
optimization algorithms can be divided into two camps: on-
line RL, where the learner has no prior knowledge of the
environment and must simply interact with it to learn a good
policy, and offline RL, where the agent has access to a set
of offline data from interactions with the environment, but
is otherwise unable to interact with it.
Online methods (Brafman & Tennenholtz, 2002; Azar et al.,
2017; Auer et al., 2008) rely on the continuous deployment
of policies to collect data. These policies are computed at
every step by the algorithm and make use of the information
that has been collected so far. Unfortunately, online methods
can be very data inefficient. In the absence of a sufficiently
exploratory baseline policy, they may require an extremely
large number of samples to gather sufficient data to learn
a near-optimal policy. Offline RL methods (Levine et al.,
2020) mitigate some of these shortcomings. For example, if
the offline data was originally collected by running a hand-
crafted expert policy in the environment, or by running a
known safe exploration strategy in a production system, it
could be sufficient to learn a near-optimal policy without
requiring any additional interactions with the environment.
Unfortunately, offline methods are very sensitive to the cov-
erage of the logged data. Namely, the quality of the candi-
date policy generated by an offline algorithm will strongly
depend on how well the available data covers the true opti-
mal policy’s support (Zhan et al., 2022). Moreover, since
no further interactions with the environment are allowed,
offline RL algorithms may not have any way of knowing
whether or not their candidate policy is near-optimal—they
cannot verify the optimality of the policy.
In this work, we aim to bridge the gap between online and
offline reinforcement learning and consider an intermediate
setting, which we call FineTuneRL, where the algorithm
has access to an offline dataset but can also augment this for
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further fine-tuning via online interactions with the environ-
ment. Here, the goal is to minimize the number of online
interactions—we assume the offline data is available “for
free”. We believe that this is often a more realistic form of
training than the rigid set of assumptions imposed by pure
online or offline scenarios, and has been the subject of much
recent attention in the applied RL literature (Ball et al., 2023;
Nakamoto et al., 2023; Zheng et al., 2023). This reflects the
fact that in practical problems, we may indeed have access
to large amounts of cheaply available offline data, which
we wish to use to minimize the number of—much more
difficult to acquire—online interactions. In FineTuneRL,
then, the offline data can be used to bootstrap the online
exploration procedure, reducing the online complexity, and
the online interaction rounds can be used to optimally refine
the candidate policy that would have resulted from only
using the offline data.
The FineTuneRL paradigm setting takes some inspira-
tion from the emerging need to devise optimal ways to
fine-tune large models. Just as in the case in large lan-
guage models (Brown et al., 2020) or in image generation
tasks (Ramesh et al., 2021), accessibility to large amounts
of offline data may allow for the creation of pre-trained mod-
els that must be adapted online to solve specific tasks. We
hope that by introducing this RL paradigm and by laying the
groundwork for analyzing the complexity of FineTuneRL,
more work can be dedicated to this important yet relatively
unexplored feedback model in RL.

1.1. Summary of Contributions
In addition to introducing the FineTuneRL setting, we make
the following contributions:

1. We introduce a new notion of concentrability coefficient
in the setting of linear MDPs, which we call the Offline-
to-Online Concentrability Coefficient (Definition 4.1),
defined as, for each step h:

Ch
o2o(Doff , ϵ, T ) := inf

πexp

max
π∈Πlsm

∥ϕπ,h∥2(TΛh
πexp

+Λh
off )

−1

(V ⋆
0 − V π

0 )2 ∨ ϵ2
.

Here ϕπ,h denotes the “average feature vector” of policy
π at step h, Λh

off are the offline covariates at step h for
offline dataset Doff , Λh

πexp
denotes the expected covari-

ates induced by policy πexp at step h, and T denotes the
number of episodes of online exploration. This quanti-
fies the total coverage of our combined offline and online
data, if we run for T online episodes, playing the explo-
ration policy πexp that optimally explores the regions of
feature-space left unexplored by the offline data.

2. We show there exists an algorithm, FTPEDEL, which, up
to lower-order terms, only collects, for each step h,

min
Ton

Ton s.t. Ch
o2o(Doff , ϵ, Ton) ≤

1

β

online episodes—the minimal number of online episodes
which ensures the offline-to-online concentrability co-
efficient is sufficiently small—and returns a policy that
is ϵ-optimal. Furthermore, we show that this complex-
ity is necessary—no algorithm can collect fewer online
samples and return a policy guaranteed to be ϵ-optimal.

3. Finally, we study the question of verifiability in RL. We
note that many existing approaches in offline RL, espe-
cially those relying on pessimism, give guarantees that
are unverifiable—an algorithm may return a near-optimal
policy but it has no way of verifying it is near-optimal.
We show that coverage conditions necessary for unverifi-
able RL are insufficient for verifiable RL, and propose
stronger coverage conditions to ensure verifiability.

While our work focuses on understanding the statistical
complexity of online RL with access to offline data, it moti-
vates a simple, intuitive, and broadly applicable algorithmic
principle: direct online exploration to cover (relevant) re-
gions of the feature space not covered by the offline data.
Our algorithm, FTPEDEL, instantiates this principle in the
setting of linear MDPs, and we hope inspires further work in
leveraging offline data in online RL in more general settings.

2. Related Work
Three lines of existing work are particularly relevant to our
work: Online RL, Offline RL, and works that lie at the
intersection of these regimes.

Online RL. Much work has been dedicated to designing
sample efficient algorithms for online RL. A significant por-
tion of this work has focused on designing algorithms for
tabular MDPs with finitely many states and actions (Braf-
man & Tennenholtz, 2002; Azar et al., 2017; Auer et al.,
2008; Jin et al., 2018; Dann et al., 2017; Kearns & Singh,
2002; Agrawal & Jia, 2017; Simchowitz & Jamieson, 2019;
Pacchiano et al., 2021; Wagenmaker et al., 2022c). Mov-
ing beyond the tabular setting (Yang & Wang, 2020; Jin
et al., 2020) propose sample efficient no-regret algorithms
for MDPs with linear features, work that has been subse-
quently built on by a large number of additional works on
RL with function approximation (Zanette et al., 2020a;b;
Ayoub et al., 2020; Weisz et al., 2021; Zhou et al., 2020;
2021; Du et al., 2021; Jin et al., 2021a; Foster et al., 2021;
Wagenmaker et al., 2022b).
Not all MDP instances are equally difficult. The majority
of existing work in RL has focused on obtaining algorithms
that are worst-case optimal, scaling with the complexity of
the hardest instance in a given problem class. Such guaran-
tees, however, fail to take into account that some instances
may be significantly “easier” than others. While several
classical works consider instance-dependent bounds (Auer
et al., 2008; Tewari & Bartlett, 2007)—bounds scaling with
the difficulty of learning on a given problem instance—the
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last several years have witnessed significant progress in ob-
taining such guarantees, both in the tabular setting (Ok et al.,
2018; Zanette & Brunskill, 2019; Simchowitz & Jamieson,
2019; Yang et al., 2021; Dann et al., 2021; Xu et al., 2021;
Wagenmaker et al., 2022c) as well as the function approxi-
mation setting (He et al., 2020; Wagenmaker et al., 2022a;
Wagenmaker & Jamieson, 2022; Wagenmaker & Foster,
2023). Our work builds on this line of work, in particular
(Wagenmaker & Jamieson, 2022), and we aim to obtain an
instance-dependent guarantee in the FineTuneRL setting.

Offline RL. Early theoretical works in offline RL focus
on the setting where the offline data is assumed to have
global coverage. This is the case for algorithms such as
FQI (Munos & Szepesvári, 2008; Chen & Jiang, 2019) or
DAgger for Agnostic MBRL (Ross & Bagnell, 2012). While
these approaches are shown to find near-optimal policies,
with the aid of either a least squares or a model-fitting oracle,
they require that the logged data covers all states and actions.
Towards relaxing such strong coverage conditions, more re-
cent works have developed algorithms for offline RL where
the offline data has only partial coverage. This is addressed
by either imposing constraints at the policy level, preventing
the policy from visit states and actions where the offline
data coverage is poor (Fujimoto et al., 2019; Liu et al., 2020;
Kumar et al., 2019; Wu et al., 2019), or by relying on the
principle of “pessimism” and acting conservatively when
learning from offline data (Kumar et al., 2020; Yu et al.,
2020; Kidambi et al., 2020; Jin et al., 2021b; Yin et al.,
2021; Rashidinejad et al., 2021). In algorithms relying on
pessimism, the error of the resulting candidate policy scales
with a quantity characterizing the coverage of the offline
dataset under the visitation distribution of the optimal policy.
Recent works have also extended the study of offline RL
to more general function approximation settings (Jiang &
Huang, 2020; Uehara & Sun, 2021; Xie et al., 2021a; Chen
& Jiang, 2022; Zhan et al., 2022; Yin et al., 2022), as well
as in the presence of corrupted data (Zhang et al., 2022b),
or offline imitation learning (Chang et al., 2021).

Bridging Online and Offline RL. While there exist em-
pirical works considering the setting of online RL where
the learner also has some form of access to logged data (Ra-
jeswaran et al., 2017; Nair et al., 2018; Hester et al., 2018;
Ball et al., 2023; Nakamoto et al., 2023; Zheng et al., 2023),
to our knowledge, only several works offer formal guaran-
tees in this setting (Ross & Bagnell, 2012; Xie et al., 2021b;
Song et al., 2022; Tennenholtz et al., 2021). (Tennenholtz
et al., 2021) consider a linear bandit setting where they have
access to offline data, but where the offline data features
are only partially observed, a different setting than what
we consider. Both (Ross & Bagnell, 2012) and (Xie et al.,
2021b) consider the setting where the learner has access to
a logging policy µ rather than a fixed set of logged data, and

at the start of every episode can choose whether to play µ,
or to play any other online policy. In many respects, this
setting is much more akin to online RL than offline RL. All
data available to the learner is collected in an online fashion,
either by rolling out µ or another policy, and the sample
complexity bounds are then obtained in terms of the total
number of rollouts—both of µ or alternate online policies
played—and are shown to scale with the coverage of µ. (Xie
et al., 2021b) prove that in a minimax sense, in this setting
there does not exist an approach which can have a strictly
better sample complexity than either using purely online RL
algorithms (ignoring µ), or collecting data only by playing
µ. In contrast to this setting, in this work we assume the
learner is simply given access to some offline dataset which
could be generated arbitrarily, rather than being given ac-
cess to a logging policy, and is then able to interact with
the environment in an online fashion by playing any policy
it desires, ultimately using the combination of the offline
data and online interactions to learn a near-optimal policy.
Our goal is to minimize the number of online interactions—
the offline data is “free”, and does not count towards the
total number of samples collected. In contrast to (Xie et al.,
2021b), we show that there is a provable gain in combin-
ing offline data with online interactions in this setting, over
either purely offline or purely online RL (Proposition 1).
Concurrent to this work, (Song et al., 2022) propose a setting
similar to ours, which they call “Hybrid RL”. They propose
the Hybrid Q-learning algorithm (Hy-Q), a simple adapta-
tion of fitted Q-iteration for low bilinear rank MDPs (Du
et al., 2021). Letting dbi denote the MDP’s bilinear rank,
up to logarithmic factors, Hy-Q can be used to find an ϵ-
optimal policy in a total number of samples (online + offline)
of order O

(
max{(C⋆)2, 1} · poly(H, dbi)/ϵ2

)
, where C⋆

serves as a measure of how well the offline data covers the
optimal policy. In the setting where C⋆ is large—the offline
data does not cover a near-optimal policy—the guarantee ob-
tained by Hy-Q could be much worse than that obtained in
the purely online setting (Du et al., 2021). One might hope
to obtain a guarantee never worse than the purely online
guarantee and, even in the setting of poor offline data cov-
erage, that some useful information may still be extracted
from the offline data—precisely the guarantee we obtain.
Finally, we mention the recent work (Xie et al., 2022).
While this work is purely online and does not assume access
to offline data, it shows that online guarantees can be ob-
tained in terms of the concentrability coefficient parameter
introduced in the offline RL literature, providing a bridge
between the analysis techniques of offline and online RL.

3. Preliminaries
Notation. We let ∥v∥2Λ = v⊤Λv. a ∨ b denotes
max{a, b}. Sd−1 denotes the unit sphere in d dimensions.
△ denotes the simplex. logs(·) denotes some function
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which depends at most logarithmically on its arguments:
logs(x1, . . . , xn) =

∑n
i=1 ci log(e+ xi) for xi ≥ 0 and ab-

solute constants ci ≥ 0. We let PM[·] and EM[·] denote the
measure and expectation induced by MDPM, and Pπ[·] and
Eπ[·] the measure and expectation induced playing policy π
on our MDP. C and c denote universal constants.

Markov Decision Processes. In this work we study
episodic Markov Decision Processes (MDPs). In the
episodic setting, an MDP is denoted by a tuple M =
(S,A, H, {Ph}Hh=1, {νh}Hh=1) for S the set of states, A the
set of actions, H the horizon, {Ph}Hh=1 the probability tran-
sition kernels, and {νh}Hh=1 the reward distributions, which
we assume are supported on [0, 1]. Each episode begins
at some fixed state s1. The agent then takes some action
a1 ∈ A, transitions to s2 ∼ P1(·|s1, a1), and receives re-
ward r1(s1, a1) ∼ ν1(s1, a1). This repeats for H steps at
which point the episode terminates and the process restarts.
We assume {Ph}Hh=1 and {νh}Hh=1 are initially unknown.
We denote a policy by π : S × [H]→△A, and the Q-value
function for policy π as

Qπ
h(s, a) = Eπ

[∑H
h′=h rh′(sh′ , ah′) | sh = s, ah = a

]
.

We define the value function as V π
h (s) =

Ea∼πh(·|s)[Q
π
h(s, a)]. We denote the value of a pol-

icy by V π
0 := V π

1 (s1), the total expected reward policy π
will acquire, and V ⋆

0 := supπ V
π
0 . We let π⋆ denote an

optimal policy—any policy with V π
0 = V ⋆

0 .

3.1. Linear MDPs
In order to allow for efficient learning in MDPs with large
state spaces—where |S| is extremely large or even infinite—
further assumptions must be made on the structure of the
MDP. One such formulation is the linear MDP setting,
which we consider in this work.

Definition 3.1 (Linear MDPs (Jin et al., 2020)). We say that
an MDP is a d-dimensional linear MDP, if there exists some
(known) feature map ϕ(s, a) : S ×A → Rd, H (unknown)
signed vector-valued measures µh ∈ Rd over S, and H
(unknown) reward vectors θh ∈ Rd, such that:

Ph(·|s, a) = ⟨ϕ(s, a),µh(·)⟩, E[νh(s, a)] = ⟨ϕ(s, a),θh⟩.

We will assume ∥ϕ(s, a)∥2 ≤ 1 for all s, a; and for all h,
∥|µh|(S)∥2 = ∥

∫
s∈S |dµh(s)|∥2 ≤

√
d and ∥θh∥2 ≤

√
d.

Note that our definition of linear MDPs allows the reward
to be random. While linear MDPs encompass settings such
as tabular MDPs—where ϕ(s, a) are then simply taken to
be the standard basis vectors—they also encompass more
complex settings where generalization across states is pos-
sible. Indeed, several recent works have demonstrated that
complex real-world environments can be modeled as linear
MDPs to allow for sample efficient learning (Ren et al.,
2022; Zhang et al., 2022a).

We introduce several additional pieces of a notation in
the linear MDP setting. For policy π, let ϕπ,h :=
Eπ[ϕ(sh, ah)] denote the expected feature vector at step
h, which generalizes the state-action visitation frequen-
cies often found in the tabular RL literature. Denote the
expected covariates at step h generated by playing pol-
icy π as Λπ,h := Eπ[ϕ(sh, ah)ϕ(sh, ah)

⊤]. Let λ⋆min =
minh supπ λmin(Λπ,h), the largest achievable minimum
eigenvalue. We assume the following.
Assumption 1 (Full Rank Covariates). λ⋆min > 0.

Note that Assumption 1 is similar to other explorability as-
sumptions found in the RL literature (Zanette et al., 2020c;
Hao et al., 2021; Agarwal et al., 2021; Wagenmaker &
Jamieson, 2022; Yin et al., 2022). For the remainder of
this work, we assume Assumption 1 holds for the MDP
under consideration.
We will be interested in optimizing over covariance matrices
in this work, and to this end, define

Ωh := {Eπ∼ω[Λπ,h] : ω ∈ Ωπ} (3.1)

for Ωπ the set of all valid distributions over Markovian poli-
cies (both deterministic and stochastic). Ωh then denotes
the set of all covariance matrices realizable by distributions
over policies at step h.

Policy Cover. The learning approach we propose is policy-
based, in that it learns over a set of policies Π, with the goal
of finding the best policy in the class. In particular, we
consider the class of linear softmax policies.
Definition 3.2 (Linear Softmax Policy). A policy π is a
linear softmax policy with parameters η and {wh}Hh=1 if

πh(a|s) =
eη⟨ϕ(s,a),wh⟩∑

a′∈A e
η⟨ϕ(s,a′),wh⟩

, ∀s, a, h.

It can be shown that there exists some choice of η and set
of parameter vectorsW such that the set of linear softmax
policies corresponding to η and W contains an ϵ-optimal
policy on any linear MDP. Henceforth we refer to this set of
policies as Πlsm.

3.2. Offline Reinforcement Learning and FineTuneRL
In this work we are interested in the setting where we
have access to some set of offline data. Let zτ :=
(sτh(τ), a

τ
h(τ), r

τ
h(τ), s

τ
h(τ)+1) and denote such a dataset by

Doff = {zτ}Toff
τ=1, where here h(τ) denotes the step of the

τ th sample. We make the following assumption on this data.
Assumption 2 (Offline Data). Let Doff be an offline dataset
andM our underlying MDP. Then for each t ≤ Toff :

PDoff
[(rth(t), s

t
h(t)+1) ∈ A×B | {z

τ}t−1
τ=1, s

t
h(t), a

t
h(t)]

= PM[(rh(t)(sh, ah), sh(t)+1) ∈ A×B | sth(t), a
t
h(t)]

for all A ⊆ [0, 1] and B ⊆ S.
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Assumption 2 is similar to existing assumptions on of-
fline data found in the offline RL literature, for instance
the compliance condition of (Jin et al., 2021b). Assump-
tion 2 implies that the distribution of the reward and next
state in Doff matches the distribution induces by our MDP
M. However, it allows for correlations between steps τ
(e.g. the data could be collected by an adaptive policy)
and, additionally, does not even require that the dataset
contain full trajectories. For some dataset Doff , we define
Dh

off := ∪Toff

τ=1,h(τ)=h{s
τ
h(τ), a

τ
h(τ), r

τ
h(τ), s

τ
h(τ)+1)} and,

for ϕτ := ϕ(sτh(τ), a
τ
h(τ)),

Λh
off =

∑Toff

τ=1 I{h(τ) = h} · ϕτϕ
⊤
τ

the covariates collected at step h. Finally, we recall the
definition of the concentrability coefficient, Cπ, from the
offline RL literature (Zanette et al., 2021):

Cπ(Doff) :=
∑H

h=1 ∥ϕπ,h∥(Λh
off )

−1 . (3.2)

We let C⋆(Doff) := Cπ⋆

(Doff). Existing work has shown
that having C⋆(Doff) bounded is a necessary and sufficient
condition to obtain a near-optimal using offline data (Zanette
et al., 2021; Jin et al., 2021b).

Bridging Offline and Online RL. Given the previous
definitions, we are now ready to formally define our learning
setting, FineTuneRL.

Problem Definition (FineTuneRL). For any linear MDP
M satisfying Assumption 1, given access to some dataset
Doff which satisfies Assumption 2 on MDPM as well as
the ability to interact online withM, return some policy π̂
such that PM[V π̂

0 ≥ V ⋆
0 − ϵ] ≥ 1− δ, using as few online

interactions as possible.

4. Main Results
In the setting of FineTuneRL, we are interested in gen-
eralizing the notion of concentrability to account not just
for the offline data available, but how this data can be aug-
mented by online exploration to improve coverage. To this
end, we introduce the following notion of offline-to-online
concentrability:

Definition 4.1 (Offline-to-Online Concentrability Coeffi-
cient). Given step h, offline dataset Doff , desired tolerance
of learning ϵ > 0, and number of online samples T , we
define the offline-to-online concentrability coefficient as:

Ch
o2o(Doff , ϵ, T ) := inf

Λ∈Ωh

max
π∈Πlsm

∥ϕπ,h∥2(TΛ+Λh
off )

−1

(V ⋆
0 − V π

0 )2 ∨ ϵ2
.

Intuitively, we can think of Ch
o2o(Doff , ϵ, T ) as generalizing

offline concentrability to the setting where we can augment
the offline data by collecting T samples of online data as

well, thereby improving the coverage of the data. In partic-
ular, we note that the coverage term, ∥ϕπ,h∥2(TΛ+Λh

off )
−1 ,

bears a direct resemblance to the offline concentrability coef-
ficient, (3.2), but instead of scaling only with the offline data
Λh

off , it also scales with T samples of online data—denoted
by TΛ, the covariates we can collect in T online interac-
tions with the environment. Note that the online-to-offline
concentrability scales with the best-case online covariates
realizable on our MDP—the best possible online data we
could collect to cover our policy space given our offline data
and T episodes of online exploration.
We weight this coverage term by the optimality of the policy
under consideration, scaling it by the minimum of inverse
squared gap for policy π, V ⋆

0 − V π
0 , and ϵ−2. This quan-

tifies the fact that for very suboptimal policies, we should
not need to collect a significant amount of data, as they can
easily be shown to be suboptimal. Note that Ch

o2o corre-
sponds to a somewhat stronger notion of coverage than what
has recently been considered in the offline RL literature—
rather than simply covering the optimal policy, the offline-
to-online concentrability scales with the coverage of every
policy, weighted by each policy’s optimality. As we discuss
in more detail in Section 5, this stronger notion of coverage
is necessary if we care about verifiable learning.
Existing work in the offline RL literature shows that effi-
cient learning is possible if the concentrability coefficient
is bounded. We will take a similar approach in this work,
and aim to collect enough online data so that the offline-
to-online concentrability coefficient is sufficiently small.
To this end, we introduce the following notion of minimal
online exploration for coverage, quantifying the minimal
number of online samples, T , that must be collected in order
to ensure the offline-to-online concentrability is less than
some desired threshold.
Definition 4.2 (Minimal Online Samples for Coverage).
For some desired tolerance β, we define the minimal online
samples for coverage as:

Th
o2o(Doff , ϵ;β) := min

T
T s.t. Ch

o2o(Doff , ϵ, T ) ≤
1

β
.

Note that if our goal is to bound the offline-to-online concen-
trability coefficient at step h, Th

o2o(Doff , ϵ;β) is essentially
the minimum number of online interactions that would be
required to do so. Intuitively, this corresponds to the mini-
mum number of online interactions needed to cover relevant
regions of the feature space not sufficiently covered by the
offline data. The following lower bound shows that this
quantity is fundamental.
Theorem 1. Fix Toff ≥ 0 and ϵ > 0. Then there exists
some class of MDPs M and some offline data Doff with
|Doff | = Toff , λmin(Λ

h
off) ≥ Ω(Toff/d),∀h ∈ [H], such

that any algorithm must collect at least∑H
h=1T

h
o2o(Doff , ϵ; c · dH)
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online episodes on some instance M ∈ M in order to
identify an ϵ-optimal policy with constant probability onM,
for universal constant c.

Theorem 1 illustrates that there exists a setting where collect-
ing at least Th

o2o online samples is necessary if our goal is to
learn an ϵ-optimal policy—given tolerance ϵ > 0 and offline
dataset size Toff ≥ 0, we can construct a class of instances
and offline dataset of size Toff such that any algorithm must
collect at least

∑H
h=1 T

h
o2o(Doff , ϵ; c · dH) online episodes

on some instance in the class in order to learn an ϵ-optimal
policy. The construction used and proof of Theorem 1 are
given in Appendix F.2.

4.1. Efficient Learning in FineTuneRL
The following result shows that Th

o2o is also a sufficient mea-
sure of the number of samples needed to ensure learning.

Theorem 2. Fix ϵ > 0, and assume we have access to some
offline dataset Doff satisfying Assumption 2. Then there
exists an algorithm, FTPEDEL, which with probability at
least 1− δ returns an ϵ-optimal policy and collects at most

ι0 ·
H∑

h=1

Th
o2o(Doff , ϵ;β) +

Clot

ϵ8/5

online episodes, for lower-order constant Clot :=
poly

(
d,H, log 1

δ ,
1

λ⋆
min
, log 1

ϵ , log Toff
)
, ι0 = O(log 1

ϵ ),
and

β := dH6 · logs
(
d,H, Toff ,

1

λ⋆min

,
1

ϵ
, log

1

δ

)
+ cH4 · log 1

δ
.

Theorem 2 shows that, up to H factors and lower-order
terms, Th

o2o is a sufficient measure for the number of online
samples that must be collected, and that our algorithm, FT-
PEDEL, achieves this complexity. Furthermore, Theorem 1
shows that the leading-order term in Theorem 2 is unim-
provable in a minimax sense (up to H factors). In addition,
in Appendix F.1 we present an instance-dependent lower
bound for the ϵ = 0 case—rather than scaling with the worst-
case complexity over a class of instances, it scales with the
complexity necessary on a particular instance—which holds
for any offline dataset and shows that the log 1/δ depen-
dence of Theorem 2 is also necessary. We emphasize that,
while the sample complexity of FTPEDEL corresponds to
realizing a stronger coverage condition than simply ensur-
ing C⋆(Doff) is bounded, our lower bounds show that this
stronger condition is necessary if our goal is verifiable learn-
ing. The proof of Theorem 2 is given in Appendix B, and
a description of our algorithm FTPEDEL is given in Sec-
tion 4.3.
We next provide the following guarantee which shows that,
even in the case when Doff = ∅ or when Doff has poor cov-
erage, FTPEDEL does essentially no worse than the PEDEL
algorithm of (Wagenmaker & Jamieson, 2022) which, up

to H factors and lower-order terms, is the tightest known
complexity bound for online PAC RL in linear MDPs.

Corollary 1. Regardless of Doff , with probability at least
1− δ, FTPEDEL collects at most

ι0β ·
H∑

h=1

inf
Λ∈Ωh

max
π∈Πlsm

∥ϕπ,h∥2Λ−1

(V ⋆
0 − V π

0 )2 ∨ ϵ2
+
Clot

ϵ8/5
(4.1)

online episodes. Furthermore, (4.1) is always bounded by

Õ
(
dH5(dH2 + log 1/δ)

ϵ2
+
Clot

ϵ8/5

)
. (4.2)

The main complexity measure given in Corollary 1 matches
almost exactly the complexity measure of PEDEL given in
(Wagenmaker & Jamieson, 2022), up to log factors and
lower-order terms, implying that FTPEDEL loses virtually
nothing from incorporating offline data, as compared to
a purely online approach. Furthermore, (4.2) shows that
FTPEDEL hits the worst-case optimal online rate, up to H
factors and lower-order terms (Wagenmaker et al., 2022b).

Remark 4.1 (Comparison to (Song et al., 2022)). Instanti-
ating the bound given in (Song et al., 2022) in our setting,
we see that, in order to find an ϵ-optimal policy, they re-
quire collecting at least Õ(max{(C⋆)2,1}·d3H5 log 1/δ

ϵ2 ) online
episodes. In comparison, our worst-case bound, Corollary 1,
improves on this complexity by a factor of d (though is a fac-
tor of H2 worse) implying that, even when we have access
to no offline data, FTPEDEL obtains a better online sample
complexity than the algorithm of (Song et al., 2022), up to
a factor of H2, even if the algorithm of (Song et al., 2022)
has access to an arbitrarily large amount of offline data. We
remark as well that the dependence on C⋆ can only hurt
the sample complexity given in (Song et al., 2022)—since
their complexity scales as max{(C⋆)2, 1}, their approach
is unable to benefit from small C⋆, while if C⋆ is large (the
offline data coverage is poor), their complexity could be
significantly worse than, for example, our worst-case com-
plexity of Corollary 1. In contrast, our complexity will only
improve as the coverage of the offline data improves.

Remark 4.2 (Scaling of Th
o2o and ϵ Dependence). Note that

Th
o2o(Doff , ϵ;β) will typically scale linearly in β and, except

in cases when the offline data coverage is extremely rich, as
O( 1

ϵ2 ). In general, then, the Clot

ϵ8/5
term will be lower-order,

scaling with a smaller power of ϵ. Intuitively, this term
corresponds to the cost of learning to explore—learning
the set of actions that must be taken to obtain the optimal
online covariates which reduce uncertainty. We leave further
reducing the ϵ dependence in this term for future work.

4.2. Leveraging Offline Data Yields a Provable
Improvement

We next show that there exist settings where complementing
the offline data with online exploration yields a provable
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improvement over either (a) relying purely on the offline
data without online exploration or (b) ignoring the offline
data and using only data collected online.

Proposition 1. Fix ϵ ≤ 1/20. Then there exist two MDPs
M1 andM2, and some dataset Doff that satisfies Assump-
tion 2 on bothM1 andM2, such that:

• Any algorithm which returns some policy π̂ without
further online exploration must have:

max
i∈{1,2}

EDoff∼Mi [V ⋆
0 (Mi)− V π̂

0 (Mi)] ≥ Ω(
√
ϵ).

• To identify an ϵ-optimal policy on eitherM1 orM2

with constant probability, any algorithm which does
not use Doff must collect at least Ω( 1

ϵ2 ) online samples.

• FTPEDEL will return an ϵ-optimal policy with con-
stant probability after collecting at most O( 1

ϵ8/5
) on-

line episodes.

As Proposition 1 shows, we can construct a dataset which
does not contain enough information itself to allow us
to identify an ϵ-optimal policy, but coupled with a small
amount of online exploration, reduces the cost of pure on-
line RL needed to identify an ϵ-optimal policy by a factor
of 1/ϵ2/5. This illustrates that, for example, using offline
data we can beat the standard Ω(1/ϵ2) online lower bounds
found throughout the RL literature. Furthermore, it shows
that FTPEDEL is able to properly leverage this offline data
to reduce the number of online samples it must collect.

Proof Sketch of Proposition 1. We briefly sketch the proof
of Proposition 1—see Appendix D for a full proof. Propo-
sition 1 is proved by constructing a family of MDPs with
three states and three actions: s0 is a fixed starting state,
from which the learner transitions to either s1 or s2, and the
episode terminates. To identify the optimal action in s1, at
least Ω(1/ϵ2) samples are needed from each action; how-
ever, the offline dataset contains enough information from
s1 that the optimal action in this state can be identified from
only the offline data. In contrast, in state s2, the optimal
action can be identified by playing each action Ω(1) times,
yet the offline data only contains observations from one of
the three actions in s2. Thus, using only the offline data, the
learner is unable to find the optimal action in s2, and will
therefore be unable to find a policy that ϵ-optimal. How-
ever, by using the offline data, it does not need to collect
any additional samples from s1 (avoiding the Ω(1/ϵ2) sam-
ples it would otherwise need to collect from s1), and must
only collect a constant number of samples from s2 to iden-
tify an ϵ-optimal policy, reducing the sample complexity of
Theorem 2 to only the cost of learning-to-explore.

4.3. Algorithm Description
Our algorithm, FTPEDEL, is based on the PEDEL algorithm
of (Wagenmaker & Jamieson, 2022). We provide a brief
description of FTPEDEL in what follows and a full definition
in Appendix B. We refer the reader to (Wagenmaker &
Jamieson, 2022) for an in-depth discussion of PEDEL.

Algorithm 1 Fine-Tuning Policy Learning via Experiment
Design in Linear MDPs (FTPEDEL, informal)

1: input: tolerance ϵ, confidence δ, offline data Doff

2: Π0 ← Πlsm, ϵℓ ← 2−ℓ

3: for ℓ = 1, 2, . . . ,O(log 1
ϵ ) do

4: for h = 1, 2, . . . ,H do
5: Solve online experiment design (Algorithm 4) to

collect online covariates Λh,ℓ satisfying (4.3)
6: for π ∈ Πℓ do
7: ϕ̂ℓ

π,h+1 ← estimate of feature visitation for π

8: θ̂ℓ
h ← estimate of reward vector

9: V̂ π
0 ←

∑H
h=1⟨ϕ̂ℓ

π,h, θ̂
ℓ
h⟩

10: Πℓ+1 ← Πℓ\{π ∈ Πℓ : V̂ π
0 < supπ′∈Πℓ

V̂ π′

0 −2ϵℓ}
11: if |Πℓ+1| = 1 then return π ∈ Πℓ+1

12: return any π ∈ Πℓ+1

FTPEDEL is a policy elimination-based algorithm. It begins
with some initial set of policies Π0, and then gradually
refines this set—at epoch ℓ, maintaining a set of policies Πℓ

which are guaranteed to be at most O(ϵℓ)-suboptimal. The
key property of FTPEDEL is its ability to carefully explore,
directing online exploration only to regions that are both
relevant to learn about the set of active policies, and that
have not yet been sufficiently covered by the offline data.
In particular, at step h of epoch ℓ, it aims to collect online
covariates Λh,ℓ that satisfy

max
π∈Πℓ

∥ϕ̂ℓ
π,h∥2(Λh,ℓ+Λh

off )
−1 ≤ H2ϵ2ℓ/β. (4.3)

We show that if our collected covariates satisfy (4.3), our
estimate of the value of each π ∈ Πℓ, V̂ π

0 , will be within
a factor of O(ϵℓ) of its true value, allowing us to safely
eliminate policies more than O(ϵℓ)-suboptimal. Note that
to satisfy (4.3) we only need to collect data in directions
for which the offline data is not sufficiently rich, and that
are relevant to the active policies at epoch ℓ, Πℓ. To effi-
ciently achieve this we rely on an online experiment design
procedure (Algorithm 4) originally developed in (Wagen-
maker & Jamieson, 2022), which is able to collect covariates
satisfying (4.3) at a near-optimal rate.
We remark that FTPEDEL is in many respects similar to
the PEDEL algorithm of (Wagenmaker & Jamieson, 2022)—
both rely on policy elimination strategies and on the same
experiment design routine to collect data. The key difference
is that FTPEDEL initializes its data buffer with the available
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offline data, which allows it to then focus exploration on
regions not covered by the offline data. We emphasize the
simplicity of this modification—efficiently incorporating
offline data does not require entirely new algorithmic ap-
proaches; offline data can be naturally used to warm-start
online RL algorithms and speed up learning.

5. The Cost of Verifiability
As noted, the coverage condition implied byCh

o2o is stronger
than that required by many recent offline RL results. This
stronger coverage arises due to the difference between ver-
ifiable learning and unverifiable learning. Informally, an
algorithm is verifiable if, upon termination, it can guarantee
that with probability at least 1 − δ the returned policy is
ϵ-optimal. We contrast this with algorithms that are unverifi-
able—though they may return a near-optimal policy, they
cannot guarantee it is near optimal.
In online RL, existing work typically considers the verifi-
able setting. In contrast, though it is rarely explicitly stated,
the offline RL literature has more recently focused on un-
verifiable complexity results—an algorithm may output an
ϵ-optimal policy, but often cannot verify this is the case, un-
less the data coverage is sufficiently rich. Towards making
this distinction formal, we introduce the following defini-
tions of verifiable and unverifiable reinforcement learning,
inspired by work in verifiable vs unverifiable learning in the
bandit setting (Katz-Samuels & Jamieson, 2020).

Definition 5.1 (Verifiable RL). We say an algorithm is
(ϵ, δ)-PAC verifiable over some class of MDPs M if, for any
MDPM∈M, it terminates after τver episodes and returns
some policy π̂ such that PM[V π̂

0 ≥ V ⋆
0 − ϵ] ≥ 1 − δ. We

let EM[τver] denote the expected (ϵ, δ)-verifiable sample
complexity onM.

Note that the above definition of verifiable learning coin-
cides with the standard definition of the PAC RL problem
given in online RL. We contrast this with the following
definition of unverifiable learning.

Definition 5.2 (Unverifiable RL). Consider an algorithm
which at each step k outputs some π̂k. Then we say that
this algorithm has expected unverifiable sample complexity
EM[τuver] on instanceM if τuver is the minimum stopping
time such that PM[∀k ≥ τuver : V π̂k

0 ≥ V ⋆
0 − ϵ] ≥ 1− δ.

Note that implicit in both definitions is that the algorithm
learns. It is possible that, according to these definitions,
an algorithm is neither verifiable or unverifiable with finite
sample complexity if, for example, it always outputs policies
that are more that ϵ-suboptimal no matter how many samples
it collects. As a simple example illustrating verifiability, we
consider a multi-armed bandit instance.

Example 5.1 (Data Coverage in Multi-Armed Bandits). Fix
ϵ > 0 and consider an A-armed multi-armed bandit where
arm 1 is optimal, and has a mean of µ1 = 1, and every other

arm is suboptimal and has a mean µ2 = 1− 3ϵ. Let Doff be
a dataset containing poly(1/ϵ, log 1/δ) samples from arm
1, but 0 samples from arms 2 to A.
In this example we have C⋆(Doff) ≤ 1

poly( 1
ϵ ,log

1
δ )

, so by
standard offline RL guarantees, Doff is sufficient to obtain a
policy π̂ that is ϵ-optimal. However, as the following result
shows, while Doff is sufficient in an unverifiable fashion, it
is not able to identify the best arm in a verifiable fashion:

Proposition 2. In the instance of Example 5.1, any (ϵ, δ)-
PAC verifiable algorithm must collect at least Ω( 1

ϵ2 · log
1
δ )

additional samples from every arm 2 to A.

Proposition 2 shows that in order to provide a guarantee that
π̂ is ϵ-optimal, we need to collect a potentially large number
of additional samples. This is very intuitive—if we have
no samples from arms 2 to A in Doff , we have no way of
knowing whether or not they are better or worse than arm 1.
To guarantee that they are in fact worse than arm 1, we need
to sample them sufficiently many times to show that they
are suboptimal. Note then that in this example, the number
of samples needed for verifiable learning is at least a factor
of A larger than that needed for unverifiable learning.

Example 5.1 illustrates that simply covering the opti-
mal policy—the condition typically given for pessimistic
learning—is not sufficient for verifiable learning, and mo-
tivates the coverage condition of Ch

o2o. Next, we provide a
sufficient condition for offline data coverage to guarantee
that verifiable learning is possible.

Theorem 3. Assume that our offline data Doff satisfies, for
each h ∈ [H]:

max
π∈Πlsm

∥ϕπ,h∥2(Λh
off )

−1

(V ⋆
0 − V π

0 )2 ∨ ϵ2
≤ 1

β
, ∀h ∈ [H] (5.1)

and minh∈[H] λmin(Λ
h
off) ≥ d2

H2 · β, for

β := dH6 · logs
(
d,H, Toff ,

1
ϵ , log

1
δ

)
+ c log 1

δ .

Then there exists an (ϵ, δ)-PAC verifiable algorithm that
returns an ϵ-optimal policy with probability at least 1− δ
using only Doff .

We prove Theorem 3 and state the (ϵ, δ)-PAC verifiable al-
gorithm that realizes it in Appendix E. Theorem 3 applies in
the purely offline setting, giving a condition when verifiable
learning is possible. The condition given in Theorem 3,
(5.1), essentially requires that every policy is covered by the
offline data. However, it does not require that every policy
is covered uniformly well—policies that are very subopti-
mal need significantly less coverage than near-optimal poli-
cies. While this is stronger than only requiring C⋆(Doff) is
bounded, it is a much weaker condition than the uniform con-
centrability condition—that maxπ C

π(Doff) is bounded—
required by many works (Antos et al., 2008; Chen & Jiang,
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2019; Xie & Jiang, 2021). Our lower bound, Theorem 1,
shows that, in a minimax sense, (5.1), is not in general
improvable for verifiable learning from purely offline data.
We emphasize here that, in situations where the conditions
of Theorem 3 are not met, unverifiable learning may be more
appropriate. Theorem 3 simply gives a sufficient coverage
condition in settings where the goal is verifiable learning.

5.1. Verifying the Performance of a Policy
We turn now to a related question on the cost of verification—
given some policy π̂, and some data Doff which may or may
not have been used to obtain π̂, what is the cost of verifying
whether or not π̂ is ϵ-optimal? This setting can model, for
example, scenarios in which some prior information about
the system may be available, allowing us to obtain a guess at
a near-optimal policy, but where we wish to verify that this
is indeed the case before deploying the policy in the wild.
To facilitate learning in this setting, we make the following
assumption on the policy we wish to verify, π̂.

Assumption 3. Assume that π̂ ∈ Π for some Π which
can be efficiently covered in the sense that, for any γ > 0,
there exists some set Πγ

cov ⊆ Π with cardinality bounded by
Ncov(Π, γ) such that for any π ∈ Π, there exists π̃ ∈ Πcov

satisfying: ∥ϕπ,h(s)− ϕπ̃,h(s)∥2 ≤ γ, for all s, h.

As we show in Appendix E.2, this assumption is met by
standard policy classes, for example the class of linear-
softmax policies. We obtain the following result.

Corollary 2. Fix ϵ > 0, and assume we have access to
some offline dataset Doff satisfying Assumption 2, and some
policy π̂ satisfying Assumption 3. Then there exists some
algorithm which with probability at least 1− δ will verify
whether or not π̂ is ϵ-optimal and collect at most

ι0 ·
∑H

h=1T
h
ver(Doff , ϵver;β, π̂) +

Clot

ϵ
8/5
ver

online episodes, for ϵver = ϵ ∨ (V ⋆
0 − V π̂

0 ),
Th
ver(Doff , ϵver;β, π̂) the value of the optimization:

min
T
T s.t. inf

Λ∈Ωh

max
π∈Πlsm∪{π̂}

∥ϕπ,h∥2(TΛ+Λh
off )

−1

(V ⋆
0 − V π

0 )2 ∨ ϵ2ver
≤ 1

β
,

β := dH6logs(d,H, Toff ,
1

λ⋆
min
, 1ϵ , log

1
δ ) + cH4 log Ncov(Π,γ)

δ ,

and γ = poly(d,H, Toff ,
1

λ⋆
min
, 1ϵ , log

1
δ ).

Corollary 2 shows that it is possible to verify the quality of
a policy with complexity similar to that given in Theorem 2,
yet scaling with ϵver rather than ϵ. This difference in ϵ
dependence arises because, if π̂ is very suboptimal, we only
need to learn the performance of π̂ up to a tolerance that is
in the order of its policy gap. Note that ϵver does not need
to be known by the algorithm in advance—our procedure is
able to adapt to the value of ϵver.

6. Conclusion
This work takes a first step towards understanding the statis-
tical complexity of online RL when the learner is given ac-
cess to a set of logged data. We introduce the FineTuneRL
setting and develop matching upper and lower bounds on
the number of online episodes needed to obtain an ϵ-optimal
policy given access to an offline dataset, and an algorithm,
FTPEDEL, able to achieve it. We believe our work opens
several interesting directions for future work.

Improving FTPEDEL. FTPEDEL inherits several weak-
ness from the original PEDEL algorithm on which it is based:
it requires enumerating a policy class, which in general will
be exponentially large in d and H , rendering it computation-
ally infeasible for all but the smallest problems, and requires
that our MDP has full rank covariates, Assumption 1. Devel-
oping a computationally efficient algorithm that achieves the
same complexity as given in Theorem 2 but free of λ⋆min is
an exciting future direction. In addition, Theorem 2 exhibits
a lower-order O( 1

ϵ8/5
) term, arising from the complexity

required to learn to explore. While a more careful analysis
can refine this term somewhat, in general it is not clear how
to remove this term completely. We believe removing this
completely may require new algorithmic techniques, which
we leave for future work.

Verifiability in RL. Our results point to an important dis-
tinction between verifiable and unverifiable RL, and show
that verifiable RL can be significantly more difficult than un-
verifiable RL. We are not the first to observe this separation:
(Katz-Samuels & Jamieson, 2020) show that in the multi-
armed bandit setting the cost of unverifiable learning is
smaller than verifiable learning, and very recently (Tirinzoni
et al., 2022) show a similar result in online RL. We believe a
more thorough exploration of verifiability in RL is an inter-
esting direction for future work with many open questions.

Towards a General Theory of Offline-to-Online RL.
While our work answers the question of how to leverage
offline data in online RL, it applies only in PAC setting
and requires the underlying MDP structure to be linear. Re-
cently, both the offline and online RL literature has devoted
significant attention to RL with more general function ap-
proximation. Developing algorithms that address the offline-
to-online setting with general function approximation while
preserving our optimality guarantees is of much interest. In
addition, understanding how to best leverage offline data in
different RL settings—for example, regret minimization—is
an exciting direction for future work.
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A. Technical Results
Proposition 3 (Theorem 1 of (Abbasi-Yadkori et al., 2011)). Let (Ft)

∞
t=0 be a filtration and (ηt)

∞
t=1 be a real-valued

stochastic process such that ηt is Ft measurable and ηt|Ft−1 is mean 0 and σ2-subgaussian. Let {ϕt}∞t=1 be anRd-valued
stochastic process such that ϕt is Ft−1-measurable. Let Λ0 ≻ 0 and define

Λt = Λ0 +

t∑
s=1

ϕsϕ
⊤
s .

Then with probability at least 1− δ, for all t ≥ 0 simultaneously,

∥∥∥∥ t∑
s=1

ϕsηs

∥∥∥∥
Λ−1

t

≤ σ
√

log
detΛt

detΛ0
+ 2 log

1

δ
.

Lemma A.1. Assume that B,D ≥ 1. Then if

x ≥ 3C log(3Bmax{C,D}) +D,

we have that x ≥ C log(Bx) +D.

Proof. Take x = 3C log(3Bmax{C,D}) +D. Then,

C log(Bx) +D = C log(3BC log(3Bmax{C,D}) +BD) +D

≤ C log(9B2Cmax{C,D}+BD) +D

≤ C log(18Bmax{BC2, BCD,D}) +D

≤ C log(18B2 max{C2, D2}) +D

(a)

≤ C log(33B3 max{C3, D3}) +D

≤ 3C log(3Bmax{C,D}) +D

= x.

Note that (a) holds even if C < 1, since we have assumed D ≥ 1, so in this case max{C,D} = D.
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B. Proof of Upper Bound

Algorithm 2 Fine-Tuning Policy Learning via Experiment Design in Linear MDPs (FTPEDEL)
1: input: tolerance ϵ, confidence δ, policy set Π (default: Πlsm)
2: for i = 1, 2, 3, . . . do
3: π ← FTPEDEL-SE (ϵ, δ/2i2,Π, 2i)
4: if π ̸= ∅ then
5: return π
6:
7: function: FTPEDEL-SE
8: input: tolerance ϵ, confidence δ, policy set Π, upper bound on number of online samples T̄on
9: Π1 ← Π, ϕ̂1

π,1 ← Ea∼π1(·|s1)[ϕ(s1, a)],∀π ∈ Π, Ton ← 0, λ← 1/d

10: for ℓ = 1, 2, . . . , ⌈log 4
ϵ ⌉ do

11: ϵℓ ← 2−ℓ, βℓ ← H4

(
2

√
d log λ+(Toff+T̄on)/d

λ + 2 log 2H2|Π|ℓ2
δ +

√
dλ

)2

12: for h = 1, 2, . . . ,H do
13: Run procedure outlined in Theorem 4 with parameters

ϵexp ←
ϵ2ℓ
βℓ
, δ ← δ

2Hℓ2
, λ← log

4H2|Π|ℓ2

δ
, Φ← Φℓ,h := {ϕ̂ℓ

π,h : π ∈ Πℓ},

to collect data Dh,ℓ ← {(sh,τ , ah,τ , rh,τ , sh+1,τ )}
Kh,ℓ

τ=1 such that:

max
π∈Πℓ

∥ϕ̂ℓ
π,h∥2(Λh,ℓ+Λh

off )
−1 ≤ ϵ2ℓ/βℓ and λmin(Λh,ℓ +Λh

off) ≥ log
4H2|Π|ℓ2

δ

for Λh,ℓ ←
∑Kh,ℓ

τ=1 ϕh,τϕ
⊤
h,τ + 1/d · I and ϕh,τ = ϕ(sh,τ , ah,τ )

terminate procedure early if Ton+ total number online episodes collected > T̄on
14: Ton ← Ton+ total number online episodes collected on Line 13
15: if Ton ≥ T̄on then
16: return ∅
17: for π ∈ Πℓ do // Estimate feature-visitations for active policies

18: ϕ̂ℓ
π,h+1 ←

(∑
(sh,ah,rh,sh+1)∈Dh

off∪Dh,ℓ
ϕπ,h+1(sh+1)ϕ(sh, ah)

⊤(Λh,ℓ +Λh
off)

−1
)
ϕ̂ℓ

π,h

19: θ̂ℓ
h ← (Λh,ℓ +Λh

off)
−1
∑

(sh,ah,rh,sh+1)∈Dh
off∪Dh,ℓ

ϕ(sh, ah)rh

// Remove provably suboptimal policies from active policy set
20: Update Πℓ:

Πℓ+1 ← Πℓ\
{
π ∈ Πℓ : V̂ π

0 < sup
π′∈Πℓ

V̂ π′

0 − 2ϵℓ

}
for V̂ π

0 :=
∑H

h=1⟨ϕ̂
ℓ
π,h, θ̂

ℓ
h⟩

21: if |Πℓ+1| = 1 then return π ∈ Πℓ+1

22: return any π ∈ Πℓ+1

The proof of Theorem 2 follows closely the proof of Theorem 1 in (Wagenmaker & Jamieson, 2022). As such, we omit
details where appropriate and refer the interested reader to the cited results in (Wagenmaker & Jamieson, 2022).

B.1. Estimation of Feature Visitations
Lemma B.1. Assume that we have some dataset D = {(sh−1,τ , ah−1,τ , rh−1,τ , sh,τ )}Kτ=1 satisfying Assumption 2. Denote
ϕh−1,τ = ϕ(sh−1,τ , ah−1,τ ) and Λh−1 =

∑K
τ=1 ϕh−1,τϕ

⊤
h−1,τ + λI . Fix π and let

T̂π,h =

(
K∑

τ=1

ϕπ,h(sh,τ )ϕ
⊤
h−1,τ

)
Λ−1

h−1.
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Fix u ∈ Rd and v ∈ Rd satisfying |v⊤ϕπ,h(s)| ≤ 1 for all s. Then with probability at least 1− δ, we can bound

|v⊤(Tπ,h − T̂π,h)u| ≤

(
2

√
log

detΛh−1

λd
+ 2 log

1

δ
+
√
λ∥T ⊤

π,hv∥2

)
· ∥u∥Λ−1

h−1
.

Proof. Define the σ-algebra

Fh,τ = σ({(sh,j , ah,j)}τ+1
j=1 ∪ {(rh,j , sh+1,j)}τj=1).

Then (sh,τ , ah,τ ) is Fh,τ−1-measurable, and (rh,τ , ah,τ ) is Fh,τ -measurable. Since D satisfies Assumption 2, we have that

E[ϕπ,h(sh) | sh−1 = sh−1,τ , ah−1 = ah−1,τ ] = E[ϕπ,h(sh) | {sh−1,j , ah−1,j}τj=1 ∪ {rh−1,j , sh,j}τ−1
j=1 ]

= E[ϕπ,h(sh) | Fh−1,τ−1]

It follows that, by Definition 3.1,

Tπ,h =

∫
ϕπ,h(s)dµh−1(s)

⊤

=

∫
ϕπ,h(s)dµh−1(s)

⊤

(
K∑

τ=1

ϕh−1,τϕ
⊤
h−1,τ

)
Λ−1

h−1 + λ

∫
ϕπ,h(s)dµh−1(s)

⊤Λ−1
h−1

=

K∑
τ=1

(∫
ϕπ,h(s)dµh−1(s)

⊤ϕh−1,τ

)
ϕ⊤

h−1,τΛ
−1
h−1 + λ

∫
ϕπ,h(s)dµh−1(s)

⊤Λ−1
h−1

=

K∑
τ=1

E[ϕπ,h(sh,τ )|sh−1 = sh−1,τ , ah−1 = ah−1,τ ]ϕ
⊤
h−1,τΛ

−1
h−1 + λ

∫
ϕπ,h(s)dµh−1(s)

⊤Λ−1
h−1

=

K∑
τ=1

E[ϕπ,h(sh,τ )|Fh−1,τ−1]ϕ
⊤
h−1,τΛ

−1
h−1 + λ

∫
ϕπ,h(s)dµh−1(s)

⊤Λ−1
h−1

=

K∑
τ=1

E[ϕπ,h(sh,τ )|Fh−1,τ−1]ϕ
⊤
h−1,τΛ

−1
h−1 + λTπ,hΛ−1

h−1

so

|v⊤(Tπ,h − T̂π,h)u| ≤
∣∣∣ K∑
τ=1

v⊤ (E[ϕπ,h(sh,τ )|Fh−1,τ−1]− ϕπ,h(sh,τ ))ϕ
⊤
h−1,τΛ

−1
h−1u

∣∣∣︸ ︷︷ ︸
(a)

+
∣∣∣λv⊤Tπ,hΛ−1

h−1u
∣∣∣︸ ︷︷ ︸

(b)

.

We can bound

(a) ≤ ∥u∥Λ−1
h−1

∥∥∥∥∥
K∑

τ=1

v⊤ (E[ϕπ,h(sh,τ )|Fh−1,τ−1]− ϕπ,h(sh,τ ))ϕ
⊤
h−1,τΛ

−1/2
h−1

∥∥∥∥∥
2

.

By assumption |v⊤ϕπ,h(sh,τ )| ≤ 1, so v⊤ (E[ϕπ,h(sh,τ )|Fh−1,τ−1]− ϕπ,h(sh,τ )) is, conditioned on Fh−1,τ−1, mean 0
and 2-subgaussian. Proposition 3 then gives that, with probability at least 1− δ,∥∥∥∥∥

K∑
τ=1

v⊤ (E[ϕπ,h(sh,τ )|Fh−1,τ−1]− ϕπ,h(sh,τ ))ϕ
⊤
h−1,τΛ

−1/2
h−1

∥∥∥∥∥
2

≤ 2

√
log

detΛh−1

λd
+ 2 log

1

δ
.

We can also bound

(b) ≤
√
λ∥u∥Λ−1

h−1
∥T ⊤

π,hv∥2.

Combining these gives the result.
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Lemma B.2. Assume that we have some dataset D = {(sh,τ , ah,τ , rh,τ , sh+1,τ )}Kτ=1 satisfying Assumption 2. Denote
ϕh,τ = ϕ(sh,τ , ah,τ ) and Λh =

∑K
τ=1 ϕh,τϕ

⊤
h,τ + λI . Let

θ̂h = argmin
θ

K∑
τ=1

(rh,τ − ⟨ϕh,τ ,θ⟩)2 + λ∥θ∥22

and fix u ∈ Rd. Then with probability at least 1− δ:

|⟨u, θ̂h − θh⟩| ≤

(
2

√
log

detΛh

λd
+ 2 log

1

δ
+
√
dλ

)
· ∥u∥Λ−1

h
.

Proof. We construct a filtration as in Lemma B.1. By construction we have

θ̂h = Λ−1
h

K∑
τ=1

ϕh,τrh,τ .

Furthermore, by Definition 3.1:

θh = Λ−1
h Λhθh = Λ−1

h

K∑
τ=1

ϕh,τE[rh,τ |Fh,τ−1] + λΛ−1
h θh.

Thus,

|⟨u, θ̂h − θh⟩| ≤

∣∣∣∣∣
K∑

τ=1

u⊤Λ−1
h ϕh,τ (rh,τ − E[rh,τ |Fh,τ−1])

∣∣∣∣∣︸ ︷︷ ︸
(a)

+
∣∣λu⊤Λ−1

h θh
∣∣︸ ︷︷ ︸

(b)

.

We can bound

(a) ≤ ∥u∥Λ−1
h

∥∥∥∥∥
K∑

τ=1

Λ
−1/2
h ϕh,τ (rh,τ − E[rh,τ |Fh,τ−1])

∥∥∥∥∥
2

.

Since rewards are bounded in [0,1] almost surely, we have that rh,τ − E[rh,τ |Fh,τ−1] is conditionally mean 0 and 2-
subgaussian. Therefore, applying Theorem 1 of (Abbasi-Yadkori et al., 2011), with probability at least 1− δ,∥∥∥∥∥

K∑
τ=1

Λ
−1/2
h ϕh,τ (rh,τ − E[rh,τ |Fh−1,τ ])

∥∥∥∥∥
2

≤ 2

√
log

detΛh

λd
+ 2 log

1

δ

By Definition 3.1, we can also bound

(b) ≤
√
λ∥u∥Λ−1

h
∥θh∥2 ≤

√
dλ∥u∥Λ−1

h
.

Combining these proves the result.

Lemma B.3. Let Eℓ,hest denote the event on which, for all π ∈ Πℓ:

|⟨θh+1, ϕ̂
ℓ
π,h+1 − ϕπ,h+1⟩| ≤

h∑
i=1

(
2

√
log

detΛi,ℓ

λd
+ 2 log

2H2|Π|ℓ2
δ

+
√
dλ

)
· ∥ϕ̂ℓ

π,i∥Λ−1
i,ℓ
,

∥ϕ̂ℓ
π,h+1 − ϕπ,h+1∥2 ≤ d

h∑
i=1

(
2

√
log

detΛi,ℓ

λd
+ 2 log

2H2d|Π|ℓ2
δ

+
√
dλ

)
· ∥ϕ̂ℓ

π,i∥Λ−1
i,ℓ
,

|⟨ϕ̂ℓ
π,h, θ̂h − θh⟩| ≤

(
2

√
log

detΛh,ℓ

λd
+ 2 log

2H2|Π|ℓ2
δ

+
√
dλ

)
· ∥ϕ̂ℓ

π,h∥Λ−1
h,ℓ
.

Then P[(Eℓ,hest )
c] ≤ δ

2Hℓ2 .

17



Leveraging Offline Data in Online Reinforcement Learning

Proof. This follows analogously to Lemma B.5 of (Wagenmaker & Jamieson, 2022) and using Lemma B.1 and Lemma B.2
in place of Lemma B.1 and B.4 of (Wagenmaker & Jamieson, 2022).
We apply Lemma B.1 and Lemma B.2 at step h and round ℓ with the dataset

D← Dh−1
off ∪Dh−1,ℓ.

By assumption, the offline data in D satisfies Assumption 2. In addition, it is easy to see that given our collection procedure,
the online data also satisfies Assumption 2. Thus, D satisfies Assumption 2.

B.2. Policy Elimination via FTPEDEL-SE
Lemma B.4. Let Eℓ,hexp denote the event on which:

• The exploration procedure on Appendix B terminates after running for at most

max

{
min
T

C · T s.t. inf
Λ∈Ω

max
ϕ∈Φℓ,h

ϕ⊤(T (Λ+ λ̄I) +Λoff)
−1ϕ ≤ ϵ2ℓ

6βℓ
,

poly(d,H, 1
λ⋆
min
, log 1/δ, log |Π|)

ϵ
8/5
ℓ

}
episodes

• The covariates returned by Appendix B for any (h, ℓ), Λh,ℓ, satisfy

max
ϕ∈Φℓ,h

∥ϕ∥2(Λh,ℓ+Λoff )−1 ≤
ϵ2ℓ
βℓ
, λmin(Λh,ℓ) ≥ log

4H2|Πℓ|ℓ2

δ
.

Then P[(Eℓ,hexp)
c ∩ Eℓ,h−1

est ∩ (∩h−1
i=1 Eℓ,iexp)] ≤ δ

2Hℓ2 .

Proof. This follows from Theorem 4 and a union bound.

Lemma B.5. Define Eexp = ∩ℓ ∩h Eℓ,hexp and Eest = ∩ℓ ∩h Eℓ,hest . Then P[Eest ∩ Eexp] ≥ 1− 2δ and on Eest ∩ Eexp, for all
h, ℓ, and π ∈ Πℓ,

|⟨θh+1, ϕ̂
ℓ
π,h+1 − ϕπ,h+1⟩| ≤ ϵℓ/2H,

∥ϕ̂ℓ
π,h+1 − ϕπ,h+1∥2 ≤ dϵℓ/2H,

|⟨ϕ̂ℓ
π,h, θ̂h − θh⟩| ≤ ϵℓ/2H.

Proof. This follows analogously to the proof of Lemma B.8 of (Wagenmaker & Jamieson, 2022).

Lemma B.6. On the event Eest ∩ Eexp, for all ℓ > ℓ0, every policy π ∈ Πℓ satisfies V ⋆
0 (Π)− V π

0 ≤ 4ϵℓ and π̃⋆ ∈ Πℓ, for
π̃⋆ = argmaxπ∈Π V

π
0 .

Proof. This follows analogously to the proof of Lemma B.9 of (Wagenmaker & Jamieson, 2022).

Lemma B.7. With probability at least 1− 2δ, FTPEDEL-SE run with parameters (ϵ, δ, T̄on) will terminate after collecting
at most

min

{
C ·

H∑
h=1

ι0∑
ℓ=1

Th,ℓ(T̄on) + poly

(
d,H, log

1

δ
,

1

λ⋆min

, log |Π|, log 1

ϵ

)
· βι0(T̄on)

ϵ8/5 ∨∆min(Π)8/5
, T̄on

}

episodes for ι0 := min{⌈log 4
ϵ ⌉, log

4
∆min(Π)} and

Th,ℓ(T̄on) = min
N

N s.t. inf
Λ∈Ω

max
π∈Π(4ϵℓ)

∥ϕπ,h∥2(NΛ+Λh
off )

−1 ≤
ϵ2ℓ

48βℓ(T̄on)

where here Π(4ϵℓ) = {π ∈ Π : V π
0 ≥ maxπ∈Π V

π
0 − 4ϵℓ}.
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Proof. Note that FTPEDEL-SE will terminate and output ∅ if the total number of online episodes it has collected reaches
T̄on, so it follows that T̄on is always an upper bound on the number of online episodes that will be collected. Henceforth we
assume that we are in a situation where T̄on is greater than the number of online episodes collected.
By Lemma B.5 the event Eest ∩ Eexp occurs with probability at least 1− 2δ. Henceforth we assume we are on this event.
By Lemma B.4, the complexity of exploration at round ℓ, step h, is bounded by

max

{
min
T

C · T s.t. inf
Λ∈Ω

max
ϕ∈Φℓ,h

ϕ⊤(T (Λ+ λ̄I) +Λoff)
−1ϕ ≤ ϵ2ℓ

6βℓ(T̄on)
,

poly(d,H, 1
λ⋆
min
, log 1/δ, log |Π|) · βℓ(T̄on)3/4

ϵ
8/5
ℓ

}
.

On Eest ∩ Eexp, by Lemma B.5, for each π ∈ Πℓ, we have ∥ϕ̂ℓ
π,h − ϕπ,h∥2 ≤ dϵℓ/2H . As Φℓ,h = {ϕ̂ℓ

π,h : π ∈ Πℓ}, it
follows that we can upper bound

inf
Λ∈Ω

max
ϕ∈Φℓ,h

ϕ⊤(T (Λ+ λ̄I) +Λoff)
−1ϕ

≤ inf
Λ∈Ω

max
π∈Πℓ

2ϕ⊤
π,h(T (Λ+ λ̄I) +Λoff)

−1ϕπ,h + 2(ϕ̂ℓ
π,h − ϕπ,h)

⊤(T (Λ+ λ̄I) +Λoff)
−1(ϕ̂ℓ

π,h − ϕπ,h)

≤ inf
Λ∈Ω

max
π∈Πℓ

2ϕ⊤
π,h(T (Λ+ λ̄I) +Λoff)

−1ϕπ,h +
d2ϵ2ℓ

2H2λmin(Λ)

≤ inf
Λ∈Ω

max
π∈Πℓ

4ϕ⊤
π,h(T (Λ+ λ̄I) +Λoff)

−1ϕπ,h + inf
Λ∈Ω

d2ϵ2ℓ
TH2λmin(Λ)

≤ inf
Λ∈Ω

max
π∈Πℓ

4ϕ⊤
π,h(T (Λ+ λ̄I) +Λoff)

−1ϕπ,h +
d2ϵ2ℓ

TH2λ⋆min

≤ max

{
inf
Λ∈Ω

max
π∈Πℓ

8ϕ⊤
π,h(T (Λ+ λ̄I) +Λoff)

−1ϕπ,h,
2d2ϵ2ℓ

TH2λ⋆min

}
.

It follows that

min
T

C · T s.t. inf
Λ∈Ω

max
ϕ∈Φℓ,h

ϕ⊤(T (Λ+ λ̄I) +Λoff)
−1ϕ ≤ ϵ2ℓ

6βℓ(T̄on)

≤ min
T

C · T s.t. max

{
inf
Λ∈Ω

max
π∈Πℓ

8ϕ⊤
π,h(T (Λ+ λ̄I) +Λoff)

−1ϕπ,h,
2d2ϵ2ℓ

TH2λ⋆min

}
≤ ϵ2ℓ

6βℓ(T̄on)

≤
[
min
T

C · T s.t. inf
Λ∈Ω

max
π∈Πℓ

ϕ⊤
π,h(TΛ+Λoff)

−1ϕπ,h ≤
ϵ2ℓ

48βℓ(T̄on)

]
+

12βℓ(T̄on)d
2

H2λ⋆min

≤
[
min
T

C · T s.t. inf
Λ∈Ω

max
π∈Π(4ϵℓ)

ϕ⊤
π,h(NΛ+Λoff)

−1ϕπ,h ≤
ϵ2ℓ

48βℓ(T̄on)

]
︸ ︷︷ ︸

=:Th,ℓ(T̄on)

+
12βℓ(T̄on)d

2

H2λ⋆min

where the last inequality follows since, by Lemma B.6, for ℓ > ℓ0, every policy π ∈ Πℓ will be 4ϵℓ optimal, so we therefore
have

Πℓ ⊆ {π ∈ Π : V π
0 ≥ V π̃⋆

0 − 4ϵℓ} =: Π(4ϵℓ).

By Lemma B.6, if 4ϵℓ < ∆min(Π), we must have that Πℓ = {π̃⋆}, and will therefore terminate on Appendix B since
|Πℓ| = 1. Thus, we can bound the number of number of epochs by

ι0 := min{⌈log 4

ϵ
⌉, log 4

∆min(Π)
}.

It follows that the total complexity is bounded as

Tse(T̄on) :=

H∑
h=1

ι0∑
ℓ=1

Th,ℓ(T̄on) + poly

(
d,H, log

1

δ
,

1

λ⋆min

, log |Π|, log 1

ϵ

)
· βι0(T̄on)

ϵ8/5 ∨∆min(Π)8/5
. (B.1)
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B.3. Completing the Proof: FTPEDEL

Lemma B.8. FTPEDEL will terminate after running for at most

C ·
H∑

h=1

ι0∑
ℓ=1

Th,ℓ(T̃on) + poly

(
d,H, log

1

δ
,

1

λ⋆min

, log |Π|, log 1

ϵ
, log Toff

)
· 1

ϵ8/5 ∨∆min(Π)8/5

episodes, for

T̃on := poly

(
d,H, log

1

δ
,

1

λ⋆min

, log |Π|, 1
ϵ
, log(Toff)

)
.

Furthermore, it will output a policy π̂ such that

V π̂
0 ≥ max

π∈Π
V π
0 − ϵ.

Proof. By Lemma B.10 of (Wagenmaker & Jamieson, 2022), we can bound

Th,ℓ(T̄on) ≤
48Cdβℓ(T̄on)

ϵ2ℓ
.

From Lemma B.7, it follows that the total complexity of running FTPEDEL-SE with parameters (ϵ, δ/2i2, T̄ i
on), for

T̄ i
on = 2i, is bounded as

H∑
h=1

ι0∑
ℓ=1

(
48Cdβℓ(T̄

i
on)

ϵ2ℓ
+ poly

(
d,H, log

i

δ
,

1

λ⋆min

, log |Π|, log 1

ϵ

)
· βι0(T̄

i
on)

ϵ8/5 ∨∆min(Π)8/5

)
≤ poly

(
d,H, log

i

δ
,

1

λ⋆min

, log |Π|, 1
ϵ

)
·
√
log(Toff + T̄ i

on)

≤ poly

(
d,H, log

T̄ i
on

δ
,

1

λ⋆min

, log |Π|, 1
ϵ

)
·
(
log(Toff) + log(T̄ i

on)
)
.

To ensure that T̄ i
on is sufficiently large, we then need only that

poly

(
d,H, log

T̄ i
on

δ
,

1

λ⋆min

, log |Π|, 1
ϵ

)
·
(
log(Toff) + log(T̄ i

on)
)
≤ T̄ i

on.

To achieve this it suffices that

T̄ i
on ≥ poly

(
d,H, log

1

δ
,

1

λ⋆min

, log |Π|, 1
ϵ
, log(Toff)

)
=: T̃on.

Note that FTPEDEL-SE will terminate and output ∅ if the total number of online episodes it has collected reaches T̄on, so
it follows that T̄on is an upper bound on the number of online episodes that will be collected. Thus, the total number of
episodes is bounded as

min
i

i∑
j=1

2j s.t. Tse(2
i) ≤ 2i

for Tse as defined in (B.1). Note that a feasible solution to this is i = log2(T̃on), so

min
i

i∑
j=1

2j s.t. Tse(2
i) ≤ 2i = min

i≤log2(T̃on)

i∑
j=1

2j s.t. Tse(2
i) ≤ 2i

≤ min
i≤log2(T̃on)

i∑
j=1

2j s.t. Tse(T̃on) ≤ 2i
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≤ 2Tse(T̃on)

where the first inequality uses that Tse(2i) is increasing in i. The result follows.
Correctness follows by Lemma B.6, since upon termination, Πℓ will only contain policies π satisfying V π

0 ≥ maxπ∈Π V
π
0 −ϵ

(and will contain at least 1 policy since π̃⋆ ∈ Πℓ for all ℓ). Furthermore, by Lemma B.6, if 4ϵℓ < ∆min(Π), we must have
that Πℓ = {π̃⋆}, and will therefore terminate on Appendix B since |Πℓ| = 1.

Proof of Theorem 2. By the definition of Π(4ϵℓ), for each π ∈ Π(4ϵℓ) we have

ϵ2ℓ =
1

16

(
(V ⋆

0 (Π)− V π
0 )2 ∨ (4ϵℓ)

2
)
.

We can therefore bound

Th,ℓ(T̃on) ≤ min
T

T s.t. inf
Λ∈Ω

max
π∈Π(4ϵℓ)

∥ϕπ,h∥2(TΛ+Λh
off )

−1

(V ⋆
0 (Π)− V π

0 )2 ∨ ϵ2ℓ
≤ c

βℓ(T̃on)

≤ min
T

T s.t. inf
Λ∈Ω

max
π∈Π

∥ϕπ,h∥2(TΛ+Λh
off )

−1

(V ⋆
0 (Π)− V π

0 )2 ∨ ϵ2 ∨∆min(Π)2
≤ c

βℓ(T̃on)
. (B.2)

We next set Π to be the set of linear softmax policies defined in Lemma A.14 of (Wagenmaker & Jamieson, 2022), and note
that this set is guaranteed to contain a policy which is ϵ-optimal as compared to the best possible policy. Furthermore, we
can bound log |Π| ≤ O(dH2 · log 1

ϵ ). Using this and that ℓ ≤ ι0, we can then bound

(B.2) ≤ min
T

T s.t. inf
Λ∈Ω

max
π∈Π

∥ϕπ,h∥2(TΛ+Λh
off )

−1

(V ⋆
0 − V π

0 )2 ∨ ϵ2
≤ c

β

for

β := dH6 · logs(d,H, Toff ,
1

λ⋆min

,
1

ϵ
, log

1

δ
) +H4 · log 1

δ

We can therefore bound the complexity given in Lemma B.8 as

Cι0 ·
H∑

h=1

Th
o2o(Doff , ϵ;β) + poly

(
d,H, log

1

δ
,

1

λ⋆min

, log |Π|, log 1

ϵ
, log Toff

)
· 1

ϵ8/5 ∨∆min(Π)8/5
.

C. Online Experiment Design
The results in this section largely follow those presented in Appendices C and D of (Wagenmaker & Jamieson, 2022), with
several minor modifications. As such, we omit calculations that would be identical to those in (Wagenmaker & Jamieson,
2022) and refer the reader to (Wagenmaker & Jamieson, 2022) for more in-depth proofs.

Algorithm 3 Online Frank-Wolfe via Regret Minimization (FWREGRET)
1: input: function to optimize f , number of iterates T , episodes per iterate K
2: Play any policy for K episodes, denote collected covariates as Γ0, collected data as D0

3: Λ1 ← K−1Γ0

4: for t = 1, 2, . . . , T do
5: Set γt ← 1

t+1

6: Run FORCE (Wagenmaker et al., 2022a) on reward rth(s, a) = tr(ΞΛt
· ϕ(s, a)ϕ(s, a)⊤)/M for K episodes, denote

collected covariates as Γt, collected data as Dt

7: Λt+1 ← (1− γt)Λt + γtK
−1Γt

8: return ΛT+1, ∪Tt=0Dt
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Lemma C.1. Consider running Algorithm 3 with a function f satisfying Definition 5.1 of (Wagenmaker & Jamieson, 2022).
Then, we have that, with probability at least 1− δ,

f(ΛT+1)− inf
Λ∈Ω

f(Λ) ≤ βR2(log T + 3)

2(T + 1)
+

√
8M2 log(4T/δ)

K
+

√
c1M2d4H4 log3(2HKT/δ)

K

+
c2Md4H3 log7/2(2HKT/δ)

K

for R = supπ,π′ ∥Λπ −Λπ′∥.

Proof. This follows analogously to the proof of Lemma C.3 of (Wagenmaker & Jamieson, 2022), but without requiring that
K be large enough to upper bound the O(1/

√
K) and O(1/K) terms by βR2(log T+3)

2(T+1) , and instantiating REGMIN with the
FORCE algorithm of (Wagenmaker et al., 2022a).

Algorithm 4 Collect Optimal Covariates (OPTCOV)
1: input: functions to optimize (fi)i, constraint tolerance ϵ, confidence δ
2: for i = 1, 2, 3, . . . do
3: Ti ← 2i, Ki ← 2i

4: Λ̂i,Di ← FWREGRET(fi, Ti − 1,Ki)
5: if fi(Λ̂i) ≤ KiTiϵ then
6: return Λ̂, KiTi, Di

Lemma C.2. Let

fi(Λ) =
1

ηi
log

∑
ϕ∈Φ

e
ηi∥ϕ∥2

Ai(Λ)−1

 , Ai(Λ) = Λ+
1

TiKi
Λ0,i +

1

TiKi
Λoff

for some Λ0,i satisfying Λ0,i ⪰ Λ0 for all i, and ηi = 22i/5. Let (βi,Mi) denote the smoothness and magnitude constants
for fi. Let (β,M) be some values such that βi ≤ ηiβ,Mi ≤M for all i.
Then, if we run Algorithm 4 on (fi)i with constraint tolerance ϵ and confidence δ, we have that with probability at least
1− δ, it will run for at most

max

{
min
N

16N s.t. inf
Λ∈Ω

max
ϕ∈Φ

ϕ⊤(NΛ+Λ0 +Λoff)
−1ϕ ≤ ϵ

6
,

poly(β,R, d,H,M, log 1/δ, log |Φ|)
ϵ4/5

}
.

episodes, and will return data {ϕτ}Nτ=1 with covariance Σ̂N =
∑N

τ=1 ϕτϕ
⊤
τ such that

f̂i(N
−1Σ̂N ) ≤ Nϵ,

where î is the iteration on which OPTCOV terminates.

Proof. Our goal is to simply find a setting of i that is sufficiently large to guarantee the condition fi(Λ̂i) ≤ KiTiϵ is met.
By Lemma C.1, we have with probability at least 1− δ/(2i2):

fi(Λ̂i) ≤ inf
Λ∈Ω

fi(Λ) +
βiR

2(log Ti + 3)

2Ti
+

√
4M2 log(8i2Ti/δ)

Ki

+

√
c1M2d4H4 log3(8i2HKiTi/δ)

Ki
+
c2Md4H3 log7/2(4i2HKiTi/δ)

Ki
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≤ 3max

{
inf
Λ∈Ω

fi(Λ),
βiR

2(log Ti + 3)

2Ti
,√

4M2 log(8i2Ti/δ)

Ki
+

√
c1M2d4H4 log3(8i2HKiTi/δ)

Ki
+
c2Md4H3 log7/2(4i2HKiTi/δ)

Ki

}
.

So a sufficient condition for fi(Λ̂i) ≤ KiTiϵ is that

KiTi ≥
3

ϵ
max

{
inf
Λ∈Ω

fi(Λ),
βiR

2(log Ti + 3)

2Ti
,√

4M2 log(8i2Ti/δ)

Ki
+

√
c1M2d4H4 log3(8i2HKiTi/δ)

Ki
+
c2Md4H3 log7/2(4i2HKiTi/δ)

Ki

}
.

(C.1)

Recall that

fi(Λ) =
1

ηi
log

∑
ϕ∈Φ

e
ηi∥ϕ∥2

Ai(Λ)−1

 , Ai(Λ) = Λ+
1

TiKi
Λ0,i +

1

TiKi
Λoff .

By Lemma D.1 of (Wagenmaker & Jamieson, 2022), we can bound

max
ϕ∈Φ
∥ϕ∥2Ai(Λ)−1 ≤ fi(Λ) ≤ max

ϕ∈Φ
∥ϕ∥2Ai(Λ)−1 +

log |Φ|
ηi

.

Thus,

inf
Λ∈Ω

fi(Λ) ≤ inf
Λ∈Ω

max
ϕ∈Φ
∥ϕ∥2Ai(Λ)−1 +

log |Φ|
ηi

= inf
Λ∈Ω

max
ϕ∈Φ

TiKiϕ
⊤(TiKiΛ+Λ0,i +Λoff)

−1ϕ+
log |Φ|
ηi

By our choice of ηi = 22i/5, and Ki = 2i, Ti = 2i, we can ensure that

KiTi ≥
6

ϵ

log |Φ|
ηi

as long as i ≥ 2
5 log2[

6 log |Φ|
ϵ ]. To ensure that

TiKi ≥
6

ϵ
inf
Λ∈Ω

max
ϕ∈Φ

TiKiϕ
⊤(TiKiΛ+Λ0,i +Λoff)

−1ϕ

it suffices to take

i ≥ argmin
i

i s.t. inf
Λ∈Ω

max
ϕ∈Φ

ϕ⊤(23iΛ+Λ0,i +Λoff)
−1ϕ ≤ ϵ

6
.

Since we assume that we can lower bound Λ0,i ⪰ Λ0 for each i, so this can be further simplified to

i ≥ argmin
i

i s.t. inf
Λ∈Ω

max
ϕ∈Φ

ϕ⊤(23iΛ+Λ0 +Λoff)
−1ϕ ≤ ϵ

6
. (C.2)

We next want to show that

TiKi ≥
3

ϵ
· βiR

2(log Ti + 3)

2Ti
.
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Bounding βi ≤ ηiβ, a sufficient condition for this is that

i ≥ 2

5

(
log2(12βR

2i) + log2
1

ϵ

)
.

By Lemma A.1, it suffices to take

i ≥ 6

5
log2(9βR

2 log2
1

ϵ
) +

2

5
log2

1

ϵ
(C.3)

to meet this condition (this assumes that 12βR2 ≥ 1 and 1
4 log2

1
ϵ ≥ 1—if either of these is not the case we can just replace

them with 1 without changing the validity of the final result).
Finally, we want to ensure that

TiKi ≥
3

ϵ

√4M2 log(8i2Ti/δ)

Ki
+

√
c1M2d4H4 log3(8i2HKiTi/δ)

Ki
+
c2Md4H3 log7/2(4i2HKiTi/δ)

Ki

 .

To guarantee this, it suffices that

25i/2 ≥ c

ϵ

√
M2d4H4i3 log3(iH/δ), 23i ≥ c

ϵ
·Md4H3i7/2 log7/2(iH/δ)

or, equivalently,

i ≥ 4

5
log2(cMdHi log(H/δ)) +

2

5
log2

1

ϵ
, i ≥ 4

3
log2(cMdH log(H/δ)) +

1

3
log2

1

ϵ
.

By Lemma A.1, it then suffices to take

i ≥ 12

5
log(cMdH log(H/δ) log2 1/ϵ) +

2

5
log2

1

ϵ
,

i ≥ 4 log2(cMdH log(H/δ) log2 1/ϵ) +
1

3
log2

1

ϵ

(C.4)

Thus, a sufficient condition to guarantee (C.1) is that i is large enough to satisfy (C.2), (C.3), and (C.4) and i ≥
2
5 log2[

6 log |Φ|
ϵ ].

If î is the final round, the total complexity scales as

î∑
i=1

TiKi =

î∑
i=1

23i ≤ 2 · 23̂i.

Using the sufficient condition on i given above, we can bound the total complexity as

max

{
min
N

16N s.t. inf
Λ∈Ω

max
ϕ∈Φ

ϕ⊤(NΛ+Λ0 +Λoff)
−1ϕ ≤ ϵ

6
,

poly(β,R, d,H,M, log 1/δ, log |Φ|)
ϵ4/5

}
.

Theorem 4. Consider running OPTCOV with some ϵexp > 0 and functions fi as defined in Lemma C.2, for Λi,0 the matrix
returned by running CONDITIONEDCOV (Wagenmaker & Jamieson, 2022) with N ← TiKi, δ ← δ/(2i2), and some λ ≥ 0.
Then with probability 1− 2δ, this procedure will collect at most

max

{
min
N

C ·N s.t. inf
Λ∈Ω

max
ϕ∈Φ

ϕ⊤(N(Λ+ λ̄I) +Λoff)
−1ϕ ≤ ϵexp

6
,
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poly(d,H, 1
λ⋆
min
, log 1/δ, λ, log |Φ|)

ϵ
4/5
exp

}
episodes, where

λ̄ = min

{
(λ⋆min)

2

d
,

λ⋆min

d3H3 log7/2 1/δ

}
· poly log

(
1

λ⋆min

, d,H, λ, log
1

δ

)−1

,

and will produce covariates Σ̂ such that

max
ϕ∈Φ
∥ϕ∥2

(Σ̂+Λi,0+Λoff )−1 ≤ ϵexp

and

λmin(Σ̂+Λi,0 +Λoff) ≥ max{d log 1/δ, λ}.

Proof. This proof follows closely the proof of Theorem 9 of (Wagenmaker & Jamieson, 2022).
Note that the total failure probability of our calls to CONDITIONEDCOV is at most

∞∑
i=1

δ

2i2
=
π2

12
δ ≤ δ.

For the remainder of the proof, we will then assume that we are on the success event of CONDITIONEDCOV, as defined in
Lemma D.8 of (Wagenmaker & Jamieson, 2022).
By Lemma D.5 of (Wagenmaker & Jamieson, 2022), it suffices to bound the smoothness constants of fi(Λ) by

Li = ∥Λ−1
i,0 ∥

2
op, βi = 2∥Λ−1

i,0 ∥
3
op(1 + ηi∥Λ−1

i,0 ∥op), Mi = ∥Λ−1
i,0 ∥

2
op.

By Lemma D.8 of (Wagenmaker & Jamieson, 2022), on the success event of CONDITIONEDCOV we have that

λmin(Λi,0) ≥ min

{
(λ⋆min)

2

d
,

λ⋆min

d3H3 log7/2 1/δ

}
· poly log

(
1

λ⋆min

, d,H, λ, i, log
1

δ

)−1

=: λ̄.

Thus, we can bound, for all i:

Li =Mi ≤ max

{
d2

(λ⋆min)
4
,
d6H6 log7 1/δ

(λ⋆min)
2

}
· poly log

(
1

λ⋆min

, d,H, λ, i, log
1

δ

)
,

βi ≤ ηi · poly
(
d,H, log 1/δ,

1

λ⋆min

, λ, i, log |Φ|
)
.

Assume that the termination condition of OPTCOV is met for î satisfying

î ≤ log

(
poly

(
1

ϵexp
, d,H, log 1/δ,

1

λ⋆min

, λ, log |Φ|
))

. (C.5)

We assume this holds and justify it at the conclusion of the proof. For notational convenience, define

ι := poly

(
log

1

ϵexp
, d,H, log 1/δ,

1

λ⋆min

, λ, log |Φ|
)
.

Given this upper bound on î, set

L =M := max

{
d2

(λ⋆min)
4
,
d6H6 log7 1/δ

(λ⋆min)
2

}
· poly log ι, β := ι.

With this choice of L,M, β, we have Li ≤ L,Mi ≤M,βi ≤ ηiβ for all i ≤ î.
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Since on the success event of CONDITIONEDCOV we have have Λi,0 ⪰ λ̄ · I , we can apply Lemma C.2 with Λ0 = λ̄ · I
and get that, with probability at least 1− δ, OPTCOV terminates after at most

max

{
min
N

16N s.t. inf
Λ∈Ω

max
ϕ∈Φ

ϕ⊤(NΛ+ λ̄ · I +Λoff)
−1ϕ ≤ ϵexp

6
,

poly(d,H, λ, 1/λ⋆min, log 1/ϵexp, log 1/δ, log |Φ|)
ϵ
4/5
exp

}
.

episodes, and returns data {ϕτ}Nτ=1 with covariance Σ̂ =
∑N

τ=1 ϕτϕ
⊤
τ such that

f̂i(N
−1Σ̂) ≤ Nϵexp,

where î is the iteration on which OPTCOV terminates, and choosing Λ0 = λ̄ · I
By Lemma D.1 of (Wagenmaker & Jamieson, 2022) we have

N ·max
ϕ∈Φ
∥ϕ∥2

(Σ̂+Λî,0+Λoff )−1 ≤ f̂i(N
−1Σ̂).

The final upper bound on the number of episodes collected and the lower bound on the minimum eigenvalue of the covariates
follows from Lemma D.8 of (Wagenmaker & Jamieson, 2022).
It remains to justify our bound on î, (C.5). Note that by definition of OPTCOV, if we run for a total of N̄ episodes, we can
bound î ≤ 1

4 log2(N̄). However, we see that the bound on î given in (C.5) upper bounds 1
4 log2(N̄) for N̄ the upper bound

on the number of samples collected by OPTCOV stated above. Thus, our bound on î is valid.

D. Leveraging Offline Data Yields a Provable Improvement
Proof of Proposition 1. LetMi, i ∈ {1, 2}, denote the MDP with three states—an initial state s0 and two other states
s1, s2, and three actions—and:

r0(s0, a1) = 1, r0(s0, a2) = r0(s0, a3) = 0

P0(s1|s0, a1) = 1− p, P0(s2|s0, a1) = p,

P0(s1|s0, a2) = 1, P0(s2|s0, a2) = 0

P0(s1|s0, a3) = 0, P0(s2|s0, a3) = 1

and

r1(s1, a1) = 1/2 + ∆, r1(s1, a2) = r1(s1, a3) = 1/2

r1(s2, ai) = 1/2, r1(s2, aj) = 0, j ̸= i.

After taking an action at h = 1, the MDP terminates. We set p =
√
ϵ and ∆ = 6ϵ. As this is a tabular MDP, we can simply

take the feature vectors to be the standard basis vectors and will have d = 9. In addition, as every state and action are easily
reachable, we have λ⋆min = Ω(1).
Let Doff be a dataset formed by playing the logging policy πlog for poly(1/ϵ) episodes, for πlog specified as:

πlog
0 (a1|s0) = πlog

0 (a2|s0) = πlog
0 (a3|s0) = 1/3,

πlog
1 (a1|s1) = πlog

1 (a2|s1) = πlog
1 (a3|s1) = 1/3,

πlog
1 (a1|s2) = πlog

1 (a2|s2) = 0, πlog
1 (a3|s2) = 1.

Note that with this logging policy Doff will contain poly(1/ϵ) samples from every state-action pair except for (s2, a1) and
(s2, a2), for which it contains 0 samples. Note also that PM1,πlog [E ] = PM2,πlog [E ] for any event E—the measures induced
by playing πlog onM1 andM2 are identical.
The first two conclusions are then an immediate consequence of this construction, Lemma D.1, and Lemma D.2.
Note that on bothM1 andM2, the suboptimality of any policy π is at least 1− π0(a1|s0). Furthermore, we can bound

[ϕπ,1](s2,a) ≤ pπ0(a1|s0) + 1− π0(a1|s0) ≤
√
ϵ+ 1− π0(a1|s0) ≤ 2max{

√
ϵ, 1− π0(a1|s0)}.
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Thus, using our setting of Doff , we have, for any π,

∥ϕπ,1∥2(NΛ+Λ1
off )

−1

(V ⋆
0 − V π

0 )2 ∨ ϵ2
≤ 4max{ϵ, (1− π0(a1|s0))2}

miniNs2,ai

· 1

(1− π0(a1|s0))2 ∨ ϵ2
+O(1)

≤ 4

miniNs2,ai

·max{1, 1
ϵ
}+O(1).

To ensure that this is O(1), we therefore only need to make Ns2,ai = Ω(1/ϵ) for each i. Therefore, the additional online
samples required to find an ϵ-optimal policy is O(1/ϵ). The final conclusion then follows from Theorem 2.

Lemma D.1. Fix ϵ ≤ 1/4 and assume that ∆ > 16ϵ
3 . ForM1 andM2 constructed as in the proof of Proposition 1, any

purely online algorithm must take at least Ω( 1
∆2 · log 1

2.4δ ) episodes to identify an ϵ-optimal policy with probability at least
1− δ.

Proof. Assume our algorithm has returned some policy π̂. Let î = argmaxa π̂1(s1, a). We show that if π̂ is ϵ-optimal, then
it must be the case that î = a1.
Note that for ϵ ≤ 1/4, for π̂ to be ϵ-optimal we must have that π̂0(a1|s0) ≥ 3/4 since, even if π̂ plays optimally in s1 and
s2, if π̂0(a1|s0) < 3/4 it will be at least 1/4-suboptimal.
Now assume that π̂ is suboptimal in state s1 by ξ. Then it follows that the total contribution to the suboptimality from state
s1 is at least 3

4 (1− p)ξ. Thus, if we assume the policy is ϵ-optimal, it follows that ξ ≤ 4ϵ
3(1−p) ≤

8ϵ
3 where the last inequality

holds assuming that p ≤ 1/2. Note that

ξ = ∆(1− π̂1(a1|s1))

so it follows that

∆(1− π̂1(a1|s1)) ≤
8ϵ

3
⇐⇒ π̂1(a1|s1) ≥ 1− 8ϵ

3∆
.

It follows that for ∆ > 16ϵ
3 , we have π̂1(a1|s1) > 1/2, which implies that î = a1. In other words, if π̂ is ϵ-optimal with

probability at least 1− δ, î = a1 with probability at least 1− δ.
By standard lower bounds on bandits (see e.g. (Kaufmann et al., 2016)), the complexity of identifying the best action in
state s1 with probability at least 1− δ scales as Ω( 1

∆2 · log 1
2.4δ ). As the above procedure is able to identify the best arm in

s1 with probability at least 1− δ, it follows that we must have collected at least Ω( 1
∆2 · log 1

2.4δ ) samples from s1, which
serves as a lower on the total complexity.

Lemma D.2. ForM1,M2, and Doff constructed as in the proof of Proposition 1, any algorithm which returns some policy
π̂ without further exploration must have:

max
i∈{1,2}

EDoff∼Mi [V ⋆
0 (Mi)− V π̂

0 (Mi)] ≥ 3
√
ϵ

16
.

Proof. Note that for ϵ ≤ 1/4, for π̂ to be ϵ-optimal we must have that π̂0(a1|s0) ≥ 3/4 since, even if π̂ plays optimally in
s1 and s2, if π̂0(a1|s0) < 3/4 it will be at least 1/4-suboptimal. With p =

√
ϵ, this implies that we will transition to s2 with

probability at least 3
4p =

3
4

√
ϵ. Note that onMi the suboptimality of policy π̂ in state s2 is given by

1

2
(1− π̂1(ai|s2))

so the total suboptimality that s2 contributes is at least

3

8

√
ϵ(1− π̂1(ai|s2)).

It follows that we can lower bound

max
i∈{1,2}

EDoff∼Mi [V ⋆
0 (Mi)− V π̂

0 (Mi)] ≥ 3
√
ϵ

16

(
EDoff∼M1 [1− π̂1(a1|s2)] + EDoff∼M2 [1− π̂1(a2|s2)]

)
.
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Define the function ψ(Doff) = I{a ̸= a1} for a ∼ π̂1(· | s2). Then

EDoff∼M1 [1− π̂1(a1|s2)] = EDoff∼M1 [ψ(Doff) = 1]

and

EDoff∼M2 [1− π̂1(a2|s2)] ≥ EDoff∼M2 [ψ(Doff) = 0],

so the total suboptimality is lower bounded by

3
√
ϵ

16

(
EDoff∼M1 [ψ(Doff) = 1] + EDoff∼M2 [ψ(Doff) = 0]

)
≥ 3
√
ϵ

16

(
1− TV(PDoff∼M1 ,PDoff∼M2)

)
.

However, by the construction of Doff , the distribution of Doff is identical under M1 and M2, so
TV(PDoff∼M1 ,PDoff∼M2) = 0, which proves the result.

E. The Cost of Verifiability
Proof of Proposition 2. Assume that some procedure returns a possibly random policy π̂. Let î = argmaxi π̂(i). Then if π̂
is ϵ-optimal, it follows that î = 1, since the suboptimality of a policy is given by (1 − π̂(1)) · 3ϵ, so if π̂ is ϵ-optimal, it
follows that π̂(1) ≥ 2ϵ/3.
We can then apply standard lower bounds for multi-armed bandits (see e.g. (Kaufmann et al., 2016)) to get that any
(ϵ, δ)-PAC algorithm must collect at least Ω( 1

9ϵ2 log
1

2.4δ ) samples from each arm 2−A.

E.1. Proof of Theorem 3

Algorithm 5 Verifiable Offline RL
1: input: tolerance ϵ, confidence δ, policy set Π
2: Π1 ← Π, ϕ̂1

π,1 ← Ea∼π1(·|s1)[ϕ(s1, a)],∀π ∈ Π, λ← 1/d
3: for h = 1, 2, . . . ,H do
4: for π ∈ Π1 do
5: ϕ̂π,h+1 ←

(∑
(sh,ah,rh,sh+1)∈Dh

off
ϕπ,h+1(sh+1)ϕ(sh, ah)

⊤(Λh
off)

−1
)
ϕ̂π,h

6: θ̂h ← (Λh
off)

−1
∑

(sh,ah,rh,sh+1)∈Dh
off

ϕ(sh, ah)rh

7: for ℓ = 1, 2, . . . , ⌈log 4
ϵ ⌉ do

8: ϵℓ ← 2−ℓ, βℓ ← H4

(
2
√
d log λ+Toff/d

λ + 2 log 2H2|Π|ℓ2
δ +

√
dλ

)2

9: for h = 1, 2, . . . ,H do
10: if maxπ∈Πℓ

∥ϕ̂π,h∥2(Λh
off )

−1 > ϵ2ℓ/βℓ or λmin(Λ
h
off) < log 4H2|Π|ℓ2

δ then
11: return ∅
12: Set

Πℓ+1 ← Πℓ\
{
π ∈ Πℓ : V̂ π

0 < sup
π′∈Πℓ

V̂ π′

0 − 2ϵℓ

}
for V̂ π

0 :=
∑H

h=1⟨ϕ̂π,h, θ̂h⟩

13: if |Πℓ+1| = 1 then return π ∈ Πℓ+1

14: return any π ∈ Πℓ+1

Proof of Theorem 3. We prove Theorem 3 for the algorithm outlined in Algorithm 5.
Note that the condition

max
π∈Πℓ

∥ϕ̂ℓ
π,h∥2(Λh

off )
−1 ≤ ϵ2ℓ/βℓ and λmin(Λ

h
off) ≥ log

4H2|Π|ℓ2

δ

is precisely the condition required on Appendix B of epoch ℓ and step h of FTPEDEL. Thus, if Algorithm 5 returns some
policy π̂ ̸= ∅, it is ϵ-optimal with probability at least 1− δ by an argument identical to the proof of Theorem 2. We omit
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details for the sake of brevity. As we do not need to run any additional exploration, theO(1/ϵ3/2) term present in Theorem 2
is no longer incurred here.
It remains to show that the coverage condition given in Theorem 3, (5.1), suffices to ensure that the if statement on
Appendix E.1 is never true. That λmin(Λ

h
off) ≥ log 4H2|Π|ℓ2

δ for all h is immediate by assumption. We next prove that
maxπ∈Πℓ

∥ϕ̂ℓ
π,h∥2(Λh

off )
−1 ≤ ϵ2ℓ/βℓ inductively. The base case is immediate by assumption. Now assume that, for all h′ < h,

max
π∈Πℓ

∥ϕ̂ℓ
π,h′∥2

(Λh′
off )

−1 ≤ ϵ2ℓ/βℓ.

Then by Lemma B.3, we have that on the event Eℓ,hest ,

∥ϕ̂ℓ
π,h − ϕπ,h∥2 ≤ d

h∑
i=1

(
2

√
log

detΛi,ℓ

λd
+ 2 log

2H2d|Π|ℓ2
δ

+
√
dλ

)
· ϵ

2
ℓ

βℓ
≤ dϵℓ

2H

where the last inequality follows by our choice of βℓ.
Now note that

max
π∈Πℓ

∥ϕ̂ℓ
π,h∥2(Λh

off )
−1 ≤ max

π∈Πℓ

2∥ϕπ,h∥2(Λh
off )

−1 + 2∥ϕ̂ℓ
π,h − ϕπ,h∥2(Λh

off )
−1

≤ max
π∈Πℓ

2∥ϕπ,h∥2(Λh
off )

−1 +
2∥ϕ̂ℓ

π,h − ϕπ,h∥22
λmin(Λh

off)

≤ max
π∈Πℓ

2∥ϕπ,h∥2(Λh
off )

−1 +
d2ϵ2ℓ

2H2λmin(Λh
off)

≤ max
π∈Π(4ϵℓ)

2∥ϕπ,h∥2(Λh
off )

−1 +
d2ϵ2ℓ

2H2λmin(Λh
off)

where the last inequality follows by Lemma B.6, which gives that Πℓ ⊆ Π(4ϵℓ). It follows that as long as

max
π∈Π(4ϵℓ)

2∥ϕπ,h∥2(Λh
off )

−1 ≤
ϵ2ℓ
2βℓ

and
d2ϵ2ℓ

2H2λmin(Λh
off)
≤ ϵ2ℓ

2βℓ

the inductive hypothesis holds. The latter condition follows by assumption. The former also holds since

max
π∈Π(4ϵℓ)

2∥ϕπ,h∥2(Λh
off )

−1 ≤
ϵ2ℓ
2βℓ

⇐⇒ max
π∈Π(4ϵℓ)

∥ϕπ,h∥2(Λh
off )

−1

ϵ2ℓ
≤ 1

4βℓ

⇐⇒ max
π∈Π(4ϵℓ)

∥ϕπ,h∥2(Λh
off )

−1

ϵ2ℓ ∨ (V ⋆
0 − V π

0 )2/16
≤ 1

4βℓ

but this is implied by our coverage assumption, (5.1). By a union bound, it follows that (5.1) is sufficient to guarantee that
for each h and ℓ, with high probability,

max
π∈Πℓ

∥ϕ̂ℓ
π,h∥2(Λh

off )
−1 ≤ ϵ2ℓ/βℓ and λmin(Λ

h
off) ≥ log

4H2|Π|ℓ2

δ
.

E.2. Policy Verification
Lemma E.1. Assume that we have some dataset D = {(sh−1,τ , ah−1,τ , rh−1,τ , sh,τ )}Kτ=1 satisfying Assumption 2. Denote
ϕh−1,τ = ϕ(sh−1,τ , ah−1,τ ) and Λh−1 =

∑K
τ=1 ϕh−1,τϕ

⊤
h−1,τ + λI .

Assume that Π satisfies Assumption 3, and let Πγ
cov denote the corresponding cover of Π. For each π, let

T̂π,h =

(
K∑

τ=1

ϕπ,h(sh,τ )ϕ
⊤
h−1,τ

)
Λ−1

h−1.
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Consider some π̂ ∈ Π, where π̂ might be correlated with D. Fix u ∈ Rd and v ∈ Rd satisfying |v⊤ϕπ,h(s)| ≤ 1 for all s.
Then with probability at least 1− δ, we can bound, for all π ∈ Πγ

cov ∪ {π̂}:

|v⊤(Tπ,h − T̂π,h)u| ≤

(
2

√
log

detΛh−1

λd
+ 2 log

Ncov(Π, γ)

δ
+
√
λ∥T ⊤

π,hv∥2

)
· ∥u∥Λ−1

h−1
+

2K · γ√
λ

.

Proof. Construct a filtration as in Lemma B.1. Let E denote the event that, for each π ∈ Πγ
cov,∥∥∥∥∥

K∑
τ=1

v⊤ (E[ϕπ,h(sh,τ )|Fh−1,τ−1]− ϕπ,h(sh,τ ))ϕ
⊤
h−1,τΛ

−1/2
h−1

∥∥∥∥∥
2

≤ 2

√
log

detΛh−1

λd
+ 2 log

Ncov(Π, γ)

δ
.

Then using the same argument as in the proof of Lemma B.1, we have P[E ] ≥ 1− δ, and on E , we can immediately bound

|v⊤(Tπ,h − T̂π,h)u| ≤

(
2

√
log

detΛh−1

λd
+ 2 log

Ncov(Π, γ)

δ
+
√
λ∥T ⊤

π,hv∥2

)
· ∥u∥Λ−1

h−1
, ∀π ∈ Πγ

cov.

It remains to bound the error in the estimate T̂π̂,h. Following the proof of Lemma B.1, we have that

|v⊤(Tπ̂,h − T̂π̂,h)u| ≤ ∥u∥Λ−1
h−1
·

∥∥∥∥∥
K∑

τ=1

v⊤ (E[ϕπ̂,h(sh,τ )|Fh−1,τ−1]− ϕπ̂,h(sh,τ ))ϕ
⊤
h−1,τΛ

−1/2
h−1

∥∥∥∥∥
2︸ ︷︷ ︸

(a)

+
∣∣∣λv⊤Tπ̂,hΛ−1

h−1u
∣∣∣.

Let π̃ ∈ Πγ
cov denote the policy satisfying

∥ϕπ̂,h(s)− ϕπ̃,h(s)∥2 ≤ γ, ∀s, h.

Note that such a π̃ is guaranteed to exist under Assumption 3. We can bound

(a) =

∥∥∥∥ K∑
τ=1

v⊤ (E[ϕπ̃,h(sh,τ )|Fh−1,τ−1]− ϕπ̃,h(sh,τ ))ϕ
⊤
h−1,τΛ

−1/2
h−1

+

K∑
τ=1

v⊤ (E[ϕπ̂,h(sh,τ )− ϕπ̃,h(sh,τ )|Fh−1,τ−1]− ϕπ̂,h(sh,τ ) + ϕπ̃,h(sh,τ ))ϕ
⊤
h−1,τΛ

−1/2
h−1

∥∥∥∥
2

≤
∥∥∥∥ K∑

τ=1

v⊤ (E[ϕπ̃,h(sh,τ )|Fh−1,τ−1]− ϕπ̃,h(sh,τ ))ϕ
⊤
h−1,τΛ

−1/2
h−1

∥∥∥∥
2

+ ∥Λ−1/2
h−1 ∥op

K∑
τ=1

(
E[∥ϕπ̂,h(sh,τ )− ϕπ̃,h(sh,τ )∥2|Fh−1,τ−1] + ∥ϕπ̂,h(sh,τ )− ϕπ̃,h(sh,τ )∥2

)
≤
∥∥∥∥ K∑

τ=1

v⊤ (E[ϕπ̃,h(sh,τ )|Fh−1,τ−1]− ϕπ̃,h(sh,τ ))ϕ
⊤
h−1,τΛ

−1/2
h−1

∥∥∥∥
2

+
2γK√
λ
.

The result then follows since, on E , this is bounded, since π̃ ∈ Πγ
cov.

Proof of Corollary 2. Corollary 2 can be proved almost identically to Theorem 2, but using Lemma E.1 to bound the error
in the estimate of ϕ̂π̂,h in place of Lemma B.1. In addition, for the ith call to FTPEDEL-SE, we set γ =

√
λ

2(Toff+T̄ i
on)
· ϵ, as

Toff + T̄ i
on will upper bound the total number of samples in the ith call, resulting in the approximation error in Lemma E.1

to be ϵ.
As the goal is simply to determine whether or not π̂ is ϵ-optimal, we terminate early if it is determined to be suboptimal,
which yields the modified scaling in the policy gap.
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E.2.1. COMMON POLICY CLASSES SATISFY ASSUMPTION 3
We remark briefly on Assumption 3 and which policy classes satisfy it. A common policy class we might consider is one
parameterized by some vectors w := (wh)

H
h=1, and given by

πw
h (s) = argmax

a∈A
⟨ϕ(s, a),wh⟩.

Note that the optimal policy takes this form (Jin et al., 2020). Policies of this form are in fact non-smooth, and therefore do
not obviously satisfy Assumption 3. However, as shown in Section A.3 of (Wagenmaker & Jamieson, 2022), they can be
approximated arbitrarily well with linear softmax policies. As linear softmax policies are smooth, it is straightforward to
show that they satisfy Assumption 3 with Ncov(Π, γ) = Õ(dH2 · log 1

γ ).
Another common policy class found in the literature (see e.g. (Jin et al., 2020) or (Jin et al., 2021b)) takes the form

πw,Λ
h (s) = argmax

a∈A
⟨ϕ(s, a),wh⟩+ β∥ϕ(s, a)∥Λ−1

h
,

for some Λh ⪰ 0. This policy is again non-smooth, but can similarly be approximated arbitrarily well using a softmax
policy class (where now the softmax is taken over {⟨ϕ(s, a),wh⟩+ β∥ϕ(s, a)∥Λ−1

h
}a∈A). As this policy class has O(d2)

parameters, we now have that Ncov(Π, γ) scales with d2.
More generally, any policy class that is “smooth” in ϕ(s, a), or can be approximated by a policy class that is smooth in
ϕ(s, a), and that has a finite number of parameters will satisfy Assumption 3.

F. Lower Bounds
F.1. Instance-Dependent Lower Bound
Theorem 5. Let M denote the set of linear MDPs with reward vectors in Rd. Fix some h ∈ [H] and consider some
algorithm that is (0, δ)-PAC on M and has knowledge of the dynamics of each MDP, and let τ denote the number of online
samples collected by this algorithm. Then there exists some MDPM∈M with O(1) states and actions such that, for any
set of offline data Doff satisfying Assumption 2 onM, we must have EM[τ ] ≥ Ω(Ndet

h (Doff , 0; log
1
δ )), for

Ndet
h (Doff) := min

N
N s.t. inf

Λ∈Ωh

max
π∈Πdet,π ̸=π⋆

∥ϕπ,h∥2(NΛ+Λh
off )

−1

(V ⋆
0 − V π

0 )2
≤ 1

log 1/δ
,

where Πdet is the set of all deterministic policies.
Remark F.1 (Πdet vs Πlsm Dependence). Note that Theorem 5 depends on Πdet and not Πlsm, the policy class our upper
bound Theorem 2 scales with. Our upper bounds were in fact proved for a generic policy class Π, and provide a guarantee
on finding a policy π̂ that is ϵ-optimal with respect to the best policy in Π. In the case of linear MDPs, to construct a policy
class that is guaranteed to have a policy ϵ-optimal with respect to the best possible policy on the MDP, we rely on the linear
softmax policy construction. However, it is well known that in tabular MDPs, there always exists a deterministic optimal
policy. Thus, in tabular settings, it suffices to choose Π ← Πdet to guarantee we have a globally ϵ-optimal policy in our
class. Given this, in the setting of Theorem 5 with a finite number of states and actions, we can simply run FTPEDEL with
Π← Πdet and will obtain the same guarantee as in Theorem 2 but with Πlsm replaced by Πdet, matching the guarantee of
Theorem 5.

F.1.1. LINEAR BANDITS WITH RANDOM ARMS

Towards proving a lower bound for linear MDPs, we first consider the setting of linear bandits with random arms. In this
setting, assume we have some set of arms A. When arm a ∈ A is played, a vector z ∈ Z ⊆ Rd is sampled from some
distribution ξa, which we assume is known to the learner. The learner then observes z as well as y = z⊤θ⋆ + η for some
noise η, and unknown θ⋆ ∈ Rd.
Note that this can simply be thought of as a multi-armed bandit where arm a has expected reward EηEz∼ξa [z

⊤θ⋆ + η].
Define Λa := Ez∼ξa [zz

⊤]. For some set X ⊆ Rd, our goal is to identify x⋆(θ⋆) ∈ X such that

x⋆(θ⋆)⊤θ⋆ ≥ max
x∈X

x⊤θ⋆.

In the offline-to-online setting, we assume the learner has access to some set of data {(as, zs, ys)}Toff
s=1.

Finally, we say that an algorithm is δ-PAC if it returns x⋆(θ⋆) with probability at least 1− δ.
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Proposition 4. Assume we are in the linear bandit with random arms settings defined above, for noise distribution
η ∼ N (0, 1). Then any δ-PAC strategy with online stopping time τ must have

Eθ⋆ [τ ] ≥ min
t

∑
a∈A

ta s.t. max
x̸=x⋆(θ⋆)

∥x− x⋆(θ⋆)∥2A(t)−1

((x⋆(θ⋆)− x)⊤θ⋆)2
≤ 1

log 1
2.4δ

for A(t) =
∑

a∈A taΛa +
∑Toff

s=1 zsz
⊤
s .

Proof. We follow the proof of Theorem 1 of (Fiez et al., 2019), with some small modifications. Let Θ⋆
alt = {θ ∈ Rd :

x⋆(θ) ̸= x⋆(θ⋆)} denote the set of alternate instances. Let νθ,z = N (θ⊤z, 1), νθ,a the reward distribution of action a, and
let tona the total number of (online) pulls of arm a.
Given some alternate θ, the KL divergence between θ and θ⋆ is given by

Toff∑
s=1

KL(νθ⋆,zs
, νθ,zs

) +
∑
a∈A

Eθ⋆ [tona ]KL(νθ⋆,a, νθ,a).

Then Lemma 1 of (Kaufmann et al., 2016) and the fact that the algorithm is δ-PAC give that, for any θ ∈ Θ⋆
alt,

Toff∑
s=1

KL(νθ⋆,zs , νθ,zs) +
∑
a∈A

Eθ⋆ [tona ]KL(νθ⋆,a, νθ,a) ≥ log
1

2.4δ
.

Note that, by the convexity of the KL divergence, we have

KL(νθ⋆,a, νθ,a) ≤
∑
z∈Z

ξa(z)KL(νθ⋆,z, νθ,z)

=
∑
z∈Z

ξa(z)(z
⊤(θ⋆ − θ))2

= (θ⋆ − θ)⊤

(∑
z∈Z

ξa(z)zz
⊤

)
(θ⋆ − θ)

= (θ⋆ − θ)⊤Λa(θ
⋆ − θ).

Since τ =
∑

aA t
on
a , we have Eθ⋆ [τ ] ≥

∑
a∈A ta for t the solution to

min
t

∑
z∈Z

tz s.t. min
θ∈Θ⋆

alt

Toff∑
s=1

KL(νθ⋆,zs , νθ,zs) +
∑
a∈A

ta(θ
⋆ − θ)⊤Λa(θ

⋆ − θ) ≥ log
1

2.4δ
. (F.1)

Fix ϵ > 0 and t and, for x ∈ X , x ̸= x⋆(θ⋆), let

θx(ϵ, t) = θ⋆ − (u⊤
xθ

⋆ + ϵ)A(t)−1ux

u⊤
xA(t)−1ux

for ux = x⋆(θ⋆)− x. Note that u⊤
xθx(ϵ, t) = −ϵ < 0 so θx(ϵ, t) ∈ Θ⋆

alt. Furthermore, we have

KL(νθ⋆,z, νθx(ϵ,t),z) = u⊤
xA(t)−1 (u

⊤
xθ

⋆ + ϵ)2zz⊤

(u⊤
xA(t)−1ux)2

A(t)−1ux

and

(θ⋆ − θ)⊤Λa(θ
⋆ − θ) = u⊤

xA(t)−1 (u⊤
xθ

⋆ + ϵ)2Λa

(u⊤
xA(t)−1ux)2

A(t)−1ux.

It follows that

(F.1) ≥ min
t

∑
z∈Z

tz s.t. min
θ∈Θ⋆

alt

(u⊤
xθ

⋆ + ϵ)2

(u⊤
xA(t)−1ux)2

· u⊤
xA(t)−1

( Toff∑
s=1

zsz
⊤
s +

∑
a∈A

taΛa

)
A(t)−1ux ≥ log

1

2.4δ

= min
t

∑
z∈Z

tz s.t. min
θ∈Θ⋆

alt

(u⊤
xθ

⋆ + ϵ)2

u⊤
xA(t)−1ux

≥ log
1

2.4δ
.

Taking ϵ→ 0 and rearranging proves the result.
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F.1.2. LINEAR MDPS

To obtain a lower bound for linear MDPs, we show a reduction from linear MDPs to linear bandits with random arms. In the
following we will denote Πexp the set of all possible exploration policies (this could include any possible policy, though in
practice it suffices to just take a policy cover). We will also let Πdet denote the set of all deterministic policies.
Consider the following linear bandit with random arms construction:

• Choose some set of transition kernels {Ph}Hh=1 on an MDP with |S| =: S <∞ states and |A| =: A <∞ actions.

• Choose some set of feature vectors ϕ(s, a) defined on S ×A.

• Let the set of actions in the linear bandit be Πexp, the set of all possible policies on the MDP constructed above.

• For some h, let ξπ denote the distribution of ϕ(sh, ah) under policy π ∈ Πexp.

• Set θ⋆ as desired, and X = {ϕπ,h : π ∈ Πdet}.

We furthermore assume that there is a unique optimal policy in Πdet. This is a well-specified linear bandit with random
arms, so the lower bound from Proposition 4 applies to finding the best decision on X . To make this reduction precise, we
need the following result.

Lemma F.1. For any (possibly random) policy π̃ and fixed h, there exists some p ∈ △Πdet
such that

∑
π∈Πdet

pπϕπ,h = ϕπ̃,h.

Proof. First, note that for any policy π, we can write

wπ
h+1 = πh+1Phw

π
h

for wπ
h ∈ RSA the visitation probabilities, Ph ∈ RS×SA the transition matrix at step h, and πh+1 ∈ RSA×S the policy’s

probabilities, where [πh+1](sa),s = πh+1(a|s) and 0 otherwise.

Fix some policy π. Let us assume that wπ
h =

∑
π̃∈Πdet

phπ̃w
π̃
h for some ph ∈ △Πdet

. Note that there exists some p̃ ∈ △Πdet

such that πh+1 =
∑

π′∈Πdet
p̃π′π′

h+1. Then we have

wπ
h+1 = πh+1Phwh =

∑
π′∈Πdet

p̃π′π′
h · Ph

∑
π̃∈Πdet

phπ̃w
π̃
h =

∑
π′,π̃∈Πdet

p̃π′phπ̃π
′
hPhw

π̃
h .

Note that π′
h+1Phw

π̃
h = wπ′′

h+1 for some π′′ ∈ Πdet (namely the concatenation of π̃ up to step h with π′ at step h− 1). It
follows that the above can be written as ∑

π′,π̃∈Πdet

p̃π′phπ̃w
π′′(π̃,π′)
h+1

where π′′(π̃, π′) denotes the concatenation of π̃ and π′ given above. However, this itself can be written in terms of some p′

as
∑

π′′∈Πdet
p′π′′wπ′′

h+1, which proves the inductive hypothesis.
The result then follows since ϕπ,h is completely specified by the visitation probabilities of policy π.

Assume we have defined a linear bandit with random actions as above and that we have access to some linear MDP algorithm
that will return an ϵ-optimal policy with probability at least 1 − δ. (possibly one that uses knowledge of the dynamics).
Consider running our linear bandit on the linear MDP with transitions {Ph}Hh=1 and rewards θ1 = . . . = θh−1 = θh+1 =
. . . = θH = 0 and θh = θ⋆, for reward distribution rh(s, a) ∼ N (ϕ(s, a)⊤θ⋆, 1)1. Note that this linear MDP can be
completely simulated by running our linear bandit with random actions. Assume that our linear MDP algorithm returns
some policy π̂ that is ϵ-optimal. Consider the following procedure:

1. Find weights p ∈ Πdet such that ϕπ̂,h =
∑

π∈Πdet
pπϕπ,h (note that this is possible by Lemma F.1 and since we assume

the dynamics are known).

2. Set π̃ = argmaxπ∈Πdet
pπ .

1Note that allowing rewards to be normally distributed violates the linear MDP definition as rewards could now fall outside [0, 1]. This
is done only for simplicity—at the expense of a more complicated calculation, all results in this section can be shown to hold for slightly
different constants if the noise is instead Bernoulli (see e.g. Lemma E.1 of (Wagenmaker & Jamieson, 2022) for an example).
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We have the following result.

Lemma F.2. Assume that ϵ < ∆min/2 for ∆min = ϕ⊤
π⋆,hθ

⋆ −maxπ∈Πdet,π ̸=π⋆ ϕ⊤
π,hθ

⋆ and π⋆ = argmaxπ∈Π ϕ⊤
π,hθ

⋆.
Then π̃ = π⋆ as long as π̂ is ϵ-optimal.

Proof. Let V ⋆ = ϕ⊤
π⋆,hθ

⋆ denote the value of the optimal policy. Note that∑
π∈Πdet

pπϕ
⊤
π,hθ

⋆ = ϕ⊤
π̂,hθ

⋆ ≥ V ⋆ − ϵ.

However, we also have that for any π ̸= π⋆, ϕ⊤
π,hθ

⋆ ≤ V ⋆ −∆min, so it follows that∑
π∈Πdet

pπϕ
⊤
π,hθ

⋆ ≤ pπ⋆V ⋆ + (1− pπ⋆)(V ⋆ −∆min) = V ⋆ − (1− pπ⋆)∆min.

Putting these together we have

V ⋆ − (1− pπ⋆)∆min ≥ V ⋆ − ϵ =⇒ pπ⋆ ≥ 1− ϵ

∆min
.

Thus, it follows that if ϵ < ∆min/2, then pπ⋆ > 1/2, which implies that π̃ = π⋆.

Lemma F.3. Consider the linear MDP setting outlined above, and assume there is a unique optimal policy in Πdet. For
ϵ < ∆min/2, any (ϵ, δ)-PAC algorithm given access to some dataset Doff must have

E[τ ] ≥ min
t

∑
π∈Πexp

tπ s.t. max
π ̸=π⋆,π∈Πdet

∥ϕπ,h − ϕπ⋆,h∥2A(t)−1

((ϕπ⋆,h − ϕπ,h)⊤θh)2
≤ 1

log 1/2.4δ

where π⋆ = argmaxπ∈Π V
π
0 and A(t) =

∑
π∈Πexp

tπΛπ,h +
∑Toff

n=1 ϕ(s
n
h, a

n
h)ϕ(s

n
h, a

n
h)

⊤.

Proof. By Lemma F.2, we can simulate a linear MDP with a linear bandit with random arms, and use any (ϵ, δ)-PAC
algorithm to identify the optimal arm in the linear bandit with probability at least 1− δ, as long as ϵ < ∆min/2. It follows
that the lower bound from Proposition 4 applies with action set A = Πexp, and X the set {ϕπ,h}π∈Πdet

.

F.1.3. REMOVING DIFFERENCES

The upper bound we obtain scales as ∥ϕπ,h∥2A(t)−1 instead of ∥ϕπ,h − ϕπ⋆,h∥2A(t)−1 . The following result shows that we
can construct linear MDPs where this difference is not too significant.

Lemma F.4. Let

t⋆ = argmin
t

∑
π∈Πexp

tπ s.t. max
π ̸=π⋆,π∈Πdet

∥ϕπ,h − ϕπ⋆,h∥2A(t)−1

((ϕπ⋆,h − ϕπ,h)⊤θh)2
≤ 1

log 1/2.4δ
.

Assume that every state in level h is reached with probability at least p by every policy. Then there exists settings of the
feature vectors such that

(1 +
1

p2
)∥t⋆∥1 ≥ min

t

∑
π∈Πexp

tπ s.t. max
π ̸=π⋆,π∈Πdet

∥ϕπ,h∥2A(t)−1

((ϕπ⋆,h − ϕπ,h)⊤θh)2
≤ 1

log 1/2.4δ
.

Proof. Consider, for example, the case where for each s, ϕ(s, π⋆
h(s)) = e1, and for every a ̸= π⋆

h(s), ϕ(s, a)
⊤e1 = 0. In

this case, A(t) will have the form ae1e
⊤
1 +B(t), for some a and B(t) whose first column and row are entirely 0. It follows

that ϕπ⋆,h = e1. Note that |[ϕπ,h]1| ≤ 1 for any other π as well.
Assume that every reachable state at level h is reached with probability at least p for every roll-in policy. Then we have that
|[ϕπ⋆,h]1 − [ϕπ,h]1| ≥ p for every π ∈ Πdet. We have

∥ϕπ,h − ϕπ⋆,h∥2A(t⋆)−1 =
([ϕπ,h]1 − [ϕπ⋆,h])

2

a
+ ∥ϕ̃π,h∥2B(t⋆)−1 , ∥ϕπ,h∥2A(t⋆)−1 =

([ϕπ,h]1)
2

a
+ ∥ϕ̃π,h∥2B(t⋆)−1 .

34



Leveraging Offline Data in Online Reinforcement Learning

Consider playing t⋆ + t for some t such that every sample goes to e1. In other words, A(t⋆ + t) = A(t⋆) + te1e
⊤
1 . Then if

we take t ≥ a
p2 − a, we have

∥ϕπ,h∥2A(t⋆+t)−1 =
([ϕπ,h]1)

2

a+ t
+ ∥ϕ̃π,h∥2B(t⋆)−1

≤ 1

a+ t
+ ∥ϕ̃π,h∥2B(t⋆)−1

≤ p

a
+ ∥ϕ̃π,h∥2B(t⋆)−1

≤ ([ϕπ,h]1 − [ϕπ⋆,h])
2

a
+ ∥ϕ̃π,h∥2B(t⋆)−1 .

It follows that t⋆ + t is a feasible solution. Since ∥t⋆∥1 ≥ a, the result follows.

Proof of Theorem 5. This follows directly from Lemma F.3 and Lemma F.4. To make the construction explicit, we take
θ⋆ = e1, and construct the feature vectors as in Lemma F.4. The transition kernel can then be any transition kernel such
that, regardless of the policy we play, we end up in each state s ∈ S at step h with probability Ω(1).

F.2. Minimax Lower Bound (Theorem 1)
Consider the following multi-dimensional linear bandit setting. Let θh ∈ Θ := {−µ, µ}d for some µ to be chosen, and
θ = [θ1, . . . ,θH ]. At step t, we can query points ϕht ∈ Sd−1 for each h ∈ [H], and observe

yht ∼ Bernoulli(⟨ϕht,θh⟩+ 1/2).

Our goal will then be to find some (ϕ̂h)
H
h=1, ϕ̂h ∈ Sd−1, which is ϵ-optimal in the sense that

H∑
h=1

⟨ϕ̂h,θh⟩ ≥ sup
ϕ1,...,ϕH∈Sd−1

H∑
h=1

⟨ϕh,θh⟩ − ϵ =
H∑

h=1

∥θh∥2 − ϵ.

We start with the follow regression lower bound.

Lemma F.5. Assume that µ ∈ (0, 1
20

√
d
] and consider the multi-dimensional linear bandit setting outlined above. Let θ̂ be

some estimator of θ, and π some query strategy. Then, if we query for T steps, we have

inf
θ̂,π

sup
θ∈ΘH

Eθ[∥θ − θ̂∥22] ≥
dHµ2

2

(
1−

√
20Tµ2

d

)
.

Proof. The proof of this result follows closely the proof of Theorem 5 of (Wagenmaker et al., 2022b), which is itself based
on the proof of Theorem 3 of (Shamir, 2013).
We have

sup
θ∈ΘH

Eθ[∥θ − θ̂∥22] = sup
θ1,...,θH∈Θ

H∑
h=1

Eθ

[
d∑

i=1

(θhi − θ̂hi)
2

]

≥ Eθ1,...,θH∼unif(Θ)

H∑
h=1

Eθ

[
d∑

i=1

(θhi − θ̂hi)
2

]

≥
H∑

h=1

Eθ1,...,θH∼unif(Θ)Eθ

[
µ2

d∑
i=1

I{θhiθ̂hi < 0}

]
.

Lemma F.1 (Lemma 4 of (Shamir, 2013)). Let θh be a random vector, none of whose coordinates is supported on 0,
and let (rt1, . . . , r

t
H)Tt=1 be a sequence of observations obtained by a query strategy where ϕt

h is a deterministic function
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of Fh,t := {(rs1, . . . , rsH)t−1
s=1, (ϕ

s
1, . . . ,ϕ

s
H)t−1

s=1, (r
t
1, . . . , r

t
h−1), (ϕ

t
1, . . . ,ϕ

t
h−1)}. Let θ̂h be some estimator that is a

deterministic function of (rt1, . . . , r
t
H)Tt=1 and (ϕt

1, . . . ,ϕ
t
H)Tt=1. Then we have

Eθ1,...,θH∼unif(Θ)Eθ

[
d∑

i=1

I{θhiθ̂hi < 0}

]
≥ d

2

1−

√√√√1

d

d∑
i=1

T∑
t=1

Uh
t,i


where

Uh
t,i = sup

θhj ,j ̸=i;θh′ ,h′ ̸=h
KL
(
P(rth|θi > 0, {θhj}j ̸=i, {θh′}h′ ̸=h,Fh,t)||P(rth|θi < 0, {θhj}j ̸=i, {θh′}h′ ̸=h,Fh,t)

)
.

Since our rewards are Bernoulli, we have

Uh
t,i = sup

θhj ,j ̸=i
KL
(
Bernoulli(1/2 +

∑
j ̸=i

θhjϕ
t
hj + µϕt

hi)||Bernoulli(1/2 +
∑
j ̸=i

θhjϕ
t
hj − µϕt

hi)
)
.

Note that:

Lemma F.2 (Lemma 2.7 of (Tsybakov, 2009)).

KL(Bernoulli(p)||Bernoulli(q)) ≤ (p− q)2

q(1− q)
.

Applying this, we have

Uh
t,i ≤

(2µϕt
hi)

2

(1/2 +
∑

j ̸=i θhjϕ
t
hj − µϕt

hi)(1− 1/2−
∑

j ̸=i θhjϕ
t
hj + µϕt

hi)
≤ 20µ2(ϕt

hi)
2

where we make use of the fact that µ ≤ 1
20

√
d

and ϕt
h ∈ Sd−1, which implies that 1/2 +

∑
j ̸=i θhjϕ

t
hj − µϕt

hi ≥ 9/20

and 1− 1/2−
∑

j ̸=i θhjϕ
t
hj + µϕt

hi ≥ 9/20.
We can then lower bound

H∑
h=1

Eθ1,...,θH∼unif(Θ)Eθ

[
µ2

d∑
i=1

I{θhiθ̂hi < 0}

]
≥

H∑
h=1

dµ2

2

1−

√√√√1

d

d∑
i=1

T∑
t=1

Uh
t,i


≥

H∑
h=1

dµ2

2

1−

√√√√1

d

d∑
i=1

T∑
t=1

20µ2(ϕt
hi)

2


=
dHµ2

2

(
1−

√
20Tµ2

d

)

where we have used that ϕht ∈ Sd−1. This proves the result.

Lemma F.6. Assume that (ϕ̂h)
H
h=1 is ϵ-optimal. Then,

H∑
h=1

∥
√
dµ2 · ϕ̂h − θh∥22 ≤ 2

√
dµ2 · ϵ

Proof. Denote ϕ̂ = [ϕ̂1, . . . , ϕ̂H ], so that
∑H

h=1⟨ϕ̂h,θh⟩ = ⟨ϕ̂,θ⟩. If ϕ̂ is ϵ-optimal, then this implies that

⟨ϕ̂,θ⟩ ≥
H∑

h=1

∥θh∥2 − ϵ =
√
H∥θ∥2 − ϵ (F.2)
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where the last inequality follows since, by construction of θh, we have ∥θh∥2 =
√
dµ2 and ∥θ∥2 =

√
dHµ2. Now note

that

∥ 1√
H
∥θ∥2ϕ̂− θ∥22 =

1

H
∥θ∥22∥ϕ̂∥22 + ∥θ∥22 −

2√
H
∥θ∥2 · ⟨ϕ̂,θ⟩

(a)
= 2∥θ∥22 −

2√
H
∥θ∥2 · ⟨ϕ̂,θ⟩

(b)

≤ 2√
H
∥θ∥2 · ϵ

(c)
= 2

√
dµ2 · ϵ

where (a) uses that ∥ϕ̂∥22 =
∑H

h=1 ∥ϕ̂h∥22 = H , (b) follows from (F.2), and (c) uses ∥θ∥2 =
√
dHµ2.

Lemma F.7. Fix ϵ > 0, d > 1, and T ≥ d2. Consider running some (possibly adaptive) algorithm which stops at some
(possibly random) stopping time τ and outputs (ϕ̂h)

H
h=1. Let E denote the event

E := {τ ≤ T and (ϕ̂h)
H
h=1 is ϵ-optimal}.

Then unless T ≥ c · d
2H2

ϵ2 , there exists some instance θ ∈ ΘH such that Pθ[E ] ≥ 1/10.

Proof. Set µ =
√
d/700T and let θ̂h =

√
dµ2 · ϕ̂h. Note that ∥θ̂∥2 ≤ d

√
H/700T . Then

Eθ[∥θ̂ − θ∥22] = Eθ[∥θ̂ − θ∥22 · I{E}+ ∥θ̂ − θ∥22 · I{Ec}]

≤ 2

√
d2

700T
· ϵ+ 4d2H

700T
· Pθ[Ec]

where the inequality follows from Lemma F.6 since on E , ϕ̂ is ϵ-optimal. However, by Lemma F.5, we know that there
exists some θ such that

Eθ[∥θ − θ̂∥22] ≥
dHµ2

2

(
1−

√
20Tµ2

d

)
≥ 0.00059 · d

2H

T
.

However, this is a contradiction unless

2

√
d2

700T
· ϵ+ 4d2H

700T
· Pθ[Ec] ≥ 0.00059 · d

2H

T
⇐⇒ Pθ[Ec] ≥ 0.10325−

√
700T

2dH
· ϵ.

It follows that it

0.10325−
√
700T

2dH
· ϵ ≥ 0.1 ⇐⇒ (

2 · 0.00325√
700

)2 · d
2H2

ϵ2
≥ T

we have that Pθ[Ec] ≥ 0.1.

F.2.1. MAPPING TO LINEAR MDPS

Consider a single-state, H-step, d+ 1-dimensional linear MDP specified by:

ϕ(s,a) = [a/2, 1/2], a ∈ Sd−1 ∪ {0}

θ̃h = [θh, 1], θh ∈ Θ := {−µ, µ}d

µh(s) = [0, 2].

We take the reward distribution to be rh(s, a) ∼ Bernoulli(⟨ϕ(s, a),θh⟩). It is straightforward to see that this satisfies the
definition of a linear MDP, as given in Definition 3.1.
Assume we have access to the regression setting defined above. Then we can simulate this linear MDP with the regression
setting by simply, at episode k step h, choosing some action a, and using the regression setting to observe a reward
r ∼ Bernoulli(⟨a,θh⟩+ 1/2), and then transitioning to state s and step h+ 1. The following lemma shows that a policy
which is near-optimal on the linear MDP induces a near-optimal ϕ̂ in the regression setting.
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Lemma F.8. Assume that π̂ is ϵ-optimal in the linear MDP defined above, with rewards (θ̃h)
H
h=1. Then (ϕ̂π̂,h)

H
h=1 is

ϵ-optimal in the multi-dimensional linear bandit setting with rewards (θh)Hh=1.

Proof. Note that the value of any policy π is given by

H∑
h=1

⟨ϕπ,h, θ̃h⟩ = H/2 +
1

2

H∑
h=1

⟨aπ,h,θh⟩

where aπ,h denotes the first d coordinates of ϕπ,h. It follows that it π̂ is ϵ-optimal, it must be the case that

1

2

H∑
h=1

⟨aπ̂,h,θh⟩ ≥ sup
a1,...,aH∈Sd−1

1

2

H∑
h=1

⟨ah,θh⟩ − ϵ.

However, this is precisely the definition of a 2ϵ-optimal policy in the multi-dimensional linear bandit setting with rewards
(θh)

H
h=1.

Lemma F.9. Fix ϵ > 0, d > 1, and K ≥ d2. Consider running some (possibly adaptive) algorithm which stops at some
(possibly random) stopping time τ in a (d+ 1)-dimensional linear MDP, and outputs some policy π̂. Let E denote the event

E := {τ ≤ K and π̂ is ϵ-optimal}.

Then unless K ≥ c · d
2H2

ϵ2 , there exists some MDPM such that PM[E ] ≥ 1/10.

Proof. As noted, we can simulate the linear MDP defined above using only access to a multi-dimensional linear bandit
setting. Since Lemma F.8 implies that finding an ϵ-optimal policy in our linear MDP is equivalent to find a 2ϵ-optimal set of
vectors in our multi-dimensional linear bandit, the lower bound for multi-dimensional linear bandits, Lemma F.7, must hold
here, which immediately gives the result.

Proof of Theorem 1. Let Doff be the dataset obtained from running Toff times on the linear MDP defined above, and at each
step h playing each [ei/2, 1/2] Toff/2d times, and ed+1/2 Toff/2d times. Note that in this case we have

Λh
off =

Toff
8d

[
I 1
1⊤ 2d

]
.

Note that

Nh(Doff) ≤ min
N≥0

N s.t. inf
Λ∈Ωh

sup
π
∥ϕπ,h∥2(NΛ+Λh

off )
−1 ≤

c′ · ϵ2

dH

≤ min
N≥0

N s.t. inf
Λ∈Ωh

sup
π
∥ϕπ,h∥22∥(NΛ+Λh

off)
−1∥op ≤

c′ · ϵ2

dH

≤ min
N≥0

N s.t. inf
Λ∈Ωh

∥(NΛ+Λh
off)

−1∥op ≤
c′ · ϵ2

dH
. (F.3)

Now take

Λ =
1

8d

[
I 1
1⊤ 2d

]
,

(note that this is a valid setting of Λ, and can be constructed analogously to Doff ), and with this choice we can bound

(F.3) ≤ min
N≥0

N s.t.
8d

N + Toff

∥∥∥∥∥
[
I 1
1⊤ 2d

]−1
∥∥∥∥∥
op

≤ c′ · ϵ2

dH
. (F.4)

Using the formula for the inverse of a block matrix, we have[
I 1
1⊤ 2d

]−1

=

[
I + 1

d11
⊤ − 1

d1
− 1

d1
⊤ 1

d

]
.
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Take v ∈ Sd−1, and write v = [ṽ, b]. Then,

v⊤
[
I + 1

d11
⊤ − 1

d1
− 1

d1
⊤ 1

d

]
v = ṽ⊤ṽ +

1

d
(1⊤ṽ)2 − 2b

d
1⊤ṽ +

b2

d
≤ 5.

Using this, we can bound

(F.4) ≤ min
N≥0

N s.t.
40d

N + Toff
≤ c′ · ϵ2

dH
= max{40d

2H

c′ϵ2
− Toff , 0}.

It follows that

H∑
h=1

Nh(Doff) ≤ Hmax{40d
2H

c′ϵ2
− Toff , 0} = max{40d

2H2

c′ϵ2
−HToff , 0} ≤ max{40d

2H2

c′ϵ2
− Toff , 0}.

By Lemma F.9, we know that we need to collect at least cd2H2

ϵ2 episodes on some MDP in our class or we will fail to
return an ϵ-optimal policy with constant probability. Note that this lower bound is agnostic to how these episodes were
collected—they could be either offline (which we can think of as equivalent to just running a non-adaptive query policy)
or online. Thus, if we have already collected Toff offline episodes, we must collect at least max{ cd

2H2

ϵ2 − Toff , 0} online
episodes. From what we have just shown, though,

H∑
h=1

Nh(Doff) ≤ max{40d
2H2

c′ϵ2
− Toff , 0},

so the result follows by Lemma F.9 and proper setting of c′.
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