
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

LEARNING ITERATIVE ALGORITHMS TO SOLVE PDES

Lise Le Boudec 1 * Emmanuel De Bézenac 2 * Louis Serrano 1

Yuan Yin 1

1 Sorbonne Université, CNRS, ISIR, F-75005 Paris, France
2 Seminar for Applied Mathematics, ETH, Zurich, Switzerland
3 Criteo AI Lab, Paris, France

Patrick Gallinari 1, 3

ABSTRACT

In this work, we propose a new method to solve partial differential equations
(PDEs). Taking inspiration from traditional numerical methods, we view approx-
imating solutions to PDEs as an iterative algorithm, and propose to learn the it-
erations from data. With respect to directly predicting the solution with a neural
network, our approach has access to the PDE, having the potential to enhance
the model’s ability to generalize across a variety of scenarios, such as differing
PDE parameters, initial or boundary conditions. We instantiate this framework
and empirically validate its effectiveness across several PDE-solving benchmarks,
evaluating efficiency and generalization capabilities, and demonstrating its poten-
tial for broader applicability.

1 INTRODUCTION

Partial Differential Equations (PDEs) are ubiquitous as mathematical models of interesting phe-
nomena in science and engineering (Evans, 2010). Traditional approaches to solving PDEs involve
numerical methods such as finite difference and finite element analysis (Quarteroni & Valli, 1994).
These methods iteratively refine an initial solution towards greater accuracy, employing iterative
solvers like Jacobi, Gauss-Seidel, and Krylov subspace methods. Given the complexity and ill-
conditioned nature of many PDEs, these iterative processes can demand extensive computational
resources. Preconditioning techniques are often essential to mitigate this, though they require pre-
cise customization to the specific PDE problem, making the development of effective solvers a
significant research endeavor in itself. Yet, the computational demands, time and expertise required
to develop these algorithms sometimes make them impractical, leading to an interest in machine
learning (ML) based alternatives (Karniadakis et al., 2021).

To date, ML-based approaches to solving PDEs have predominantly fallen into two categories: su-
pervised and unsupervised. The supervised methodology consists in first solving the PDE using
numerical methods to generate input and target data, and then regressing to the solution using neural
networks. Many models, such as Neural Operators, lie within this class (Li et al., 2020; Raonić
et al., 2023; Bartolucci et al., 2023) and focus on learning the solution operator directly through a
single neural network pass. This method is very efficient, at the downside of relying on quite large
quantities of data for training in order to ensure adequate generalization. Additionally, the neural
network does not have access to the PDE is in itself never used, only indirectly through the data.

The unsupervised approach, involves considering a neural network as solution of the PDE, whose
parameters are found by minimizing the PDE residual with some form of gradient descent. Methods
such as Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019), or DeepRitz (E & Yu,
2018) fall under this category. This method is attractive as it does not rely on any form of data,
relying on information from the PDE residual instead. This means that is holds the promise to
generalize to any PDE, initial, and boundary conditions. However, this model exhibits difficulties
during training (Krishnapriyan et al., 2021; Ryck et al., 2023), often requiring many optimization
steps and sophisticated training schemes (Krishnapriyan et al., 2021).

1

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

In this work, we introduce a novel class of neural network-based PDE solvers, designed to synergize
the strengths of both supervised and unsupervised methodologies. Our approach consists in learning
an iterative algorithm that solves the PDE. The hope is that by learning the algorithm rather that
directly predicting the solution as in the supervised methods, we obtain improved generalization,
and a smaller number of iterations w.r.t. unsupervised approaches.

2 ITERATIVE NEURAL PDE SOLVERS

2.1 PROBLEM STATEMENT

Let us consider the following family of boundary value problems parametrized by γ with domain Ω,
potentially representing both space and time, with N a potentially nonlinear differential operator, B
the boundary operator, g the initial/boundary conditions and source term f :

N (u; γ) = f in Ω, (1)
B(u) = g on ∂Ω. (2)

Note that different PDEs can be represented in this form, amounting to changing the parameters γ.
The goal here is to develop a generic algorithm that is able to solve the above problem, yielding an
approximate solution u given the PDE and different sets of inputs (γ, f, g).

We assume access to a dataset of M samples: for each set of inputs (γi, fi, gi)
M
i=1 the associated

target solution (ui)
M
i=1 given on a m point grid (xj)

m
j=1. These observations will be used during

training, in order to learn the solver. During inference, only the inputs related to a new PDE instance
are given.

2.2 GENERAL METHODOLOGY

Traditionally, numerical solvers consider an ansatz uθ parametrized by some finite dimensional θ,
found by iteratively 1 updating parameters θ based on the minimization of some criterion LPDE (e.g.
the PDE residual) , which assesses how well uθ meets the conditions specified in equations 1 and 2.

We take inspiration from traditional methods and propose a data-driven, iteration based algorithm
that leverages LPDE in order to make informed updates. As opposed to traditional methods, the
iterative solver A is not specifically tailored or handcrafted to the given problem, but learned from
the data. The updates take the following form, starting from an initial θ0:

θk+1 = A(θk; LPDE, γ, f, g) (3)

The primary goal is to iteratively refine the ansatz, uK := uθK , to closely approximate the true
solution after a series of K iterations, ideally small for efficiency. The algorithm is trained from
input target data from different sets of PDE parameters γ, sources f , initial and boundary conditions
g as outlined in section 2.1. The underlying hypothesis is that even though the solutions may be
different for different inputs and parameters, the underlying solution methodology remains relatively
consistent. This consistency is expected to enhance the algorithm’s ability to generalize across novel
scenarios effectively.

Comparison w.r.t. to supervised and unsupervised approaches. This framework is somewhat
different from both classes of methods discussed in the introduction: With respect to supervised
approaches, instead of directly learning to predict the solution, we learn the iterative algorithm that
solves the PDE. As it has access to the PDE, the hope is that it is able to assess whether the ansatz is
close to the solution and refine its predictions in the following steps, as opposed to one step. Instead
of learning to predict the solution, it learns to solve the PDE. Our intuition is that the proposed
algorithm may require less data w.r.t. these methods as it has access to the PDE. With respect to
unsupervised approaches where A would correspond to the optimization algorithm e.g. SGD or
Adam. Our updates are learned using a neural network, thus requiring much less iterations.

1Other standard methods include time marching schemes, such as Euler Forward, can be seen as iterative
methods.

2

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

2.3 A POSSIBLE INSTANTIATION

Below, we present an instantiation of the framework selected for the experiments described in section
section 3.

Choice of Ansatz uθ. A very common choice (Shen et al., 2011) is to consider a family of
basis functions Ψ(x) = {ψi(x)}Ni=1 and consider the ansatz to be given by its linear span
uθ(x) =

∑N
i=0 θiψi(x). In the following we consider this linear reconstruction, although our for-

mulation is generic in the sense that it can also accommodate nonlinear variants2.

Choice of criteria LPDE. Similar to PINNs(Raissi et al., 2019), we consider LPDE to be given by
the strong formulation of the residual LRes, plus a boundary discrepancy term LBC

3.

LPDE = LRes+λLBC, LRes =
∑
xj∈Ω

|N (uθ; γ)(xj)−f(xj)|2, LBC =
∑

xj∈∂Ω

|B(uθ)(xj)−g(xj)|2

Choice of update algorithm A. A simple instantiation of the iterative solver can be obtained,
inspired by gradient based approaches. Given the parameters θk of the ansatz at iteration k, the
steepest direction of loss LPDE is computed, using autograd. The gradient is then transformed with
a neural network Fϱ with parameters ϱ, depending on the values of the PDE parameters as well as
the other inputs.

θk+1 = θk − ηFϱ(∇LPDE(θ
k), γ, f, g) (4)

This process bears some similarities with the concept of preconditioning in traditional numerical
analysis (Benzi, 2002). If the neural network were to function as an identity, this method would
simplify to a form of Stochastic Gradient Descent (SGD) akin to that used within Physics-Informed
Neural Networks (PINNs). Considering the often ill-conditioned nature of PDE training processes,
a direct application without adaptation would lead to prohibitive iteration counts for convergence
(Ryck et al., 2023), as demonstrated in section 3. By modulating the gradient with Fϱ trained on
input-solution pairs, the aim is to reduce the number of required steps for a given accuracy. The
network Fϱ is trained to minimize the l1 distance between the final ansatz uK of eq. (4) and the
associated solution. Technical details are presented in appendix B.

3 EXPERIMENTAL EVALUATION

To evaluate our approach, we perform a series of experiments on various PDEs including the
Helmholtz and Poisson equations in 1D, along with advection equations, and extend our assess-
ment to the 2D Darcy flow problem, as detailed in appendix C. Following the framework outlined
in section 2.1, we train our model using pairs of inputs and corresponding solutions. The effective-
ness of our method is then tested across diverse scenarios by altering PDE parameters, boundary
conditions, initial states, and forcing terms.

For Helmholtz, our experiments involve varying wave numbers, chosen uniformly within a specified
range, and altering boundary conditions. For Poisson, the inputs correspond to the forcing function
and the values at the boundary. The advection problem is taken from the PDE benchmark (Takamoto
et al., 2023), where different advection speeds and initial conditions are considered. For the Darcy
problem from (Li et al., 2020), diffusion coefficients are varied. For comprehensive details on these
benchmarks, please refer to section appendix C. We compare our approach in 2 settings. First, we
assess its generalization capabilities by comparing it to classical DL methods with trainings and
then, we show the convergence speed at test-time optimization w.r.t. solvers.

3.1 EVALUATING GENERALIZATION PERFORMANCE

We first compare our method against both supervised and unsupervised approaches. NN: a super-
vised neural network trained to regress directly to the solution, PINNs: a PINNs where the input

2Although in our preliminary results we have found this may further complicate training.
3Note that more generic formulations of the loss may also be considered in a straightforward manner.

3

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

data is fed to the network, by taking inspiration from (Zhang et al., 2023). Subsequently, we present
two baselines with hybrid training approaches, using both the data and the PDE: Physics-Informed
DeepONet (PIDON) (Goswami et al., 2022) and Physics-Informed Neural Operator (PINO) (Li
et al., 2023). Hybrid training considers using both data through a supervised setting and PDE by
adding a physical loss. PINO closely aligns with our approach as it incorporates a hybrid training
phase and unsupervised test-time optimization based on LPDE. However, the second stage is simply
optimization, not like ours which has to learn to optimize. See appendix A for a more detailed lit-
erature review and appendix B for training details. We provide a comparison of the benefits of the
training methods for the aforementioned models in table 1 and qualitative comparison in appendix D.

1d 1d + time 2d

Baseline Helmholtz Poisson Advection Darcy-Flow
Unsupervised PINNs 4.26e-1 2.33 2.26e-1 2.31e-1
Supervised NN 9.04e-2 1.09e-1 1.27e-1 7.54e-3

PIDON 4.67e-1 8.84e-2 2.26e-1 4.46e-2
Hybrid PINO 4.78e-1 5.83e-3 1.83e-4 2.80e-2

Ours 1.10e-2 1.76e-3 8.40e-3 6.21e-3

Table 1: Results - metrics in MSE on the test set.

In Table 1, we can observe that all other methods using the PDE (PINNs, PIDON, PINO) seem to
face challenges in learning effectively from the physical loss alone (apart for the advection prob-
lem, where Fourier layers seem to be particularly adapted (Takamoto et al., 2023)). This may be
attributed to the inherent difficulties associated with the conditioning of the physical loss, denoted
as LPDE, which poses significant challenges for models relying primarily on physical constraints. In
contrast, our approach appears to adeptly navigate these challenges, effectively learning to bypass
the limitations imposed by the physical loss. Moreover, when compared to the purely supervised
baseline, our model exhibits superior generalization performance.

3.2 EVALUATING COMPUTATIONAL EFFICIENCY

0 100 101 102 103 104 105

Optimization steps

10 3

10 2

10 1

100

M
SE

Test-time optimization evolution of MSE

GD
ADAM

PINN
PINO

Ours
Objective

(a) Error vs number of iterations (log-scale). Rela-
tive to other iteration-based approaches, our method
demonstrates significantly faster performance (Pois-
son).

0.0 0.2 0.4 0.6 0.8 1.0
x

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

So
lu

tio
n

Evolution of the reconstruction of the solution with optimization steps.

Ground truth
Initialization
Step 1
Step 2
Step 3
Step 4
Step 5: Output

(b) Qualitative behavior of our approach at each itera-
tion. We can observe the method gradually converges
towards the target solution (Helmholtz).

We compare our learned optimizer against other unsupervised approaches for test-time optimization,
considering access solely to the PDE and its parameters for solving. We evaluate various iterative
algorithms, including gradient-based optimizers (SGD and Adam (Kingma & Ba, 2015)) and DL
solvers: Physics-Informed Neural Network (PINN) and Physics-Informed Neural Operator (PINO).
Specifically, we compare test-time optimization speed in a fully unsupervised setting, where only
LPDE, γ, f , and g are accessible. For the PINO baseline, we utilize the pre-trained model from
section 3.1 and fine-tune it on LPDE as specified in (Li et al., 2023).

4

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Figure 1a and fig. 1b show qualitative results for the test-time optimization steps on the physical
loss LPDE. While, baselines have difficulties in the optimization due to the ill-conditioning of the
physical loss and show a slow convergence, NGD goes directly to a high quality solution in 5 steps
(fig. 1a and appendix D). PINO (blue) has a better initialization than other models, thanks to its
pre-training phase, but still has slow convergence speed because it performs an unsupervised fine-
tuning. Indeed, on fig. 1a, PINO and PINN required 793 and 6307 fine-tuning steps respectively to
reach our solver’s accuracy, while ADAM and GD did not make it within the 100, 000 steps.

4 CONCLUSION

In this work, we proposed a PDE solver based on an iterative process, highlighting its potential
for generalization performance and efficiency. While the initial findings are promising, they are also
preliminary. Moving forward, we aim to explore more sophisticated architectures for the solver, such
as convolutional neural networks or attention-based neural networks, and to extend our analysis to
include datasets in two or three dimensions.

ACKNOWLEDGMENTS

We acknowledge the financial support provided by DL4CLIM (ANR-19-CHIA-0018-01), DEEP-
NUM (ANR-21-CE23-0017-02), PHLUSIM (ANR-23-CE23-0025-02), and PEPR Sharp (ANR-
23-PEIA-0008”, “ANR”, “FRANCE 2030”).

REFERENCES

Francesca Bartolucci, Emmanuel de Bézenac, Bogdan Raonić, Roberto Molinaro, Siddhartha
Mishra, and Rima Alaifari. Are neural operators really neural operators? frame theory meets
operator learning, 2023.

Andrés Beltrán-Pulido, Ilias Bilionis, and Dionysios Aliprantis. Physics-informed neural networks
for solving parametric magnetostatic problems. IEEE Transactions on Energy Conversion, 37(4):
2678–2689, 2022.

Michele Benzi. Preconditioning Techniques for Large Linear Systems: A Survey. Jour-
nal of Computational Physics, 182(2):418–477, 2002. ISSN 0021-9991. doi: https://
doi.org/10.1006/jcph.2002.7176. URL https://www.sciencedirect.com/science/
article/pii/S0021999102971767.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark, 2021.

Weinan E and Bing Yu. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for
Solving Variational Problems. Communications in Mathematics and Statistics, 6(1):1–12, March
2018. ISSN 2194-671X. doi: 10.1007/s40304-018-0127-z.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.

Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed deep
neural operator networks, 2022.

Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs), 2016.

Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning
neural pde solvers with convergence guarantees, 2019.

Xiang Huang, Zhanhong Ye, Hongsheng Liu, Beiji Shi, Zidong Wang, Kang Yang, Yang Li, Bingya
Weng, Min Wang, Haotian Chu, Fan Yu, Bei Hua, Lei Chen, and Bin Dong. Meta-auto-decoder
for solving parametric partial differential equations, 2022.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics informed machine learning. Nature Reviews Physics, pp. 1–19, may 2021. doi: 10.1038/
s42254-021-00314-5. URL www.nature.com/natrevphys.

5

https://www.sciencedirect.com/science/article/pii/S0021999102971767
https://www.sciencedirect.com/science/article/pii/S0021999102971767
www.nature.com/natrevphys

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces,
2023.

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, and Michael W. Mahoney.
Characterizing possible failure modes in physics-informed neural networks, 2021.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations, 2020.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations, 2023.

G.R. Liu. Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition. CRC
Press, 2009. ISBN 9781420082104. URL https://books.google.fr/books?id=
JWqE-LzjvfEC.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/
s42256-021-00302-5. URL http://dx.doi.org/10.1038/s42256-021-00302-5.

Vishal Monga, Yuelong Li, and Yonina C. Eldar. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing, 2020.

Les Piegl and Wayne Tiller. The NURBS Book. Springer-Verlag, New York, NY, USA, second
edition, 1996.

Tian Qin, Alex Beatson, Deniz Oktay, Nick McGreivy, and Ryan P. Adams. Meta-pde: Learning to
solve pdes quickly without a mesh, 2022.

A. Quarteroni and A. Valli. Numerical approximation of Partial differential equations, volume 23.
Springer, 1994.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Bogdan Raonić, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima Alai-
fari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for robust
and accurate learning of pdes, 2023.

Tim De Ryck, Florent Bonnet, Siddhartha Mishra, and Emmanuel de Bézenac. An operator precon-
ditioning perspective on training in physics-informed machine learning, 2023.

L. S. H. Numerical Analysis of Partial Differential Equations. Pure and Applied Mathematics:
A Wiley Series of Texts, Monographs and Tracts. Wiley, 2012. ISBN 9781118111116. URL
https://books.google.fr/books?id=chinLsuVsYsC.

Jie Shen, Tao Tang, and Li-Lian Wang. Spectral Methods: Algorithms, Analysis and Applications.
Springer Publishing Company, Incorporated, 1st edition, 2011. ISBN 354071040X.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning,
2023.

6

https://books.google.fr/books?id=JWqE-LzjvfEC
https://books.google.fr/books?id=JWqE-LzjvfEC
http://dx.doi.org/10.1038/s42256-021-00302-5
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://books.google.fr/books?id=chinLsuVsYsC

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Kiwon Um, Robert Brand, Yun, Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop: Learning
from differentiable physics to interact with iterative pde-solvers, 2021.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric
partial differential equations with physics-informed deeponets, 2021.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022. ISSN 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2021.110768. URL https://www.sciencedirect.
com/science/article/pii/S002199912100663X.

Yuan Yin, Vincent Le Guen, Jérémie Dona, Emmanuel de Bézenac, Ibrahim Ayed, Nicolas Thome,
and Patrick Gallinari. Augmenting physical models with deep networks for complex dynamics
forecasting*. Journal of Statistical Mechanics: Theory and Experiment, 2021(12):124012, De-
cember 2021. ISSN 1742-5468. doi: 10.1088/1742-5468/ac3ae5. URL http://dx.doi.
org/10.1088/1742-5468/ac3ae5.

Runlin Zhang, Nuo Xu, Kai Zhang, Lei Wang, and Gui Lu. A parametric physics-informed
deep learning method for probabilistic design of thermal protection systems. Energies, 16
(9), 2023. ISSN 1996-1073. doi: 10.3390/en16093820. URL https://www.mdpi.com/
1996-1073/16/9/3820.

7

https://www.sciencedirect.com/science/article/pii/S002199912100663X
https://www.sciencedirect.com/science/article/pii/S002199912100663X
http://dx.doi.org/10.1088/1742-5468/ac3ae5
http://dx.doi.org/10.1088/1742-5468/ac3ae5
https://www.mdpi.com/1996-1073/16/9/3820
https://www.mdpi.com/1996-1073/16/9/3820

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

APPENDIX

A RELATED WORK

Solvers and Deep Learning: Many tools for solving numerically PDE have been developed for
years. The standard methods for PDE include Finite Differences Method (FDM), Finite Volume
Method (FVM), Finite Element Method (FEM), spectral methods, multigrid methods and many oth-
ers (S. H, 2012; Liu, 2009). While these methods are widely used, they often suffer from a high
computational cost for complex problems or high-precision simulations. To address these chal-
lenges, integrating deep learning (DL) into solvers has emerged as a promising approach. Current
solutions include incorporating correction terms to reduce numerical errors (Um et al., 2021; Hsieh
et al., 2019), or leveraging meta-learning to discover optimal initializations (Qin et al., 2022). Algo-
rtihm unrolling is also used to cascade iterations and improve performances of iterative algorithms
(Monga et al., 2020). This approach is different from ours since we keep the iterative part of the
solver and aim at improving each iteration. Lastly, learned optimizers are models used to accelerate
optimization scheme. If this literature is close to our model, it has not yet been directly applied to
PDE solving from physical data (parameters, boundary conditions...) (Chen et al., 2021).

Unsupervised training: Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) have been
a pioneering work in the development of DL method for physics. In these models, the solution is
a neural network that is optimized using the residual loss of the PDE being solved. However, this
method suffers from several drawbacks. First, as formulated in (Raissi et al., 2019), a PINNs can
solve one instance of an equation at a time. Any small change in the parameters of the PDE involves
a full re training of the network. Efforts such as (Beltrán-Pulido et al., 2022; Zhang et al., 2023) have
attempted to address this limitation by introducing parametric versions of PINNs capable of handling
parametric equations, while (Huang et al., 2022) explores meta-learning approaches. Moreover,
PINNs have shown convergence difficulties: (Krishnapriyan et al., 2021) show that PINNs’ losses
have complex loss-landscapes, complicating training despite adequate neural network expressive-
ness. Approaches like those detailed in (Wang et al., 2022) adopt a Neural Tangent Kernel (NTK)
perspective to identify reasons for failure and suggest using adaptive weights during training to en-
hance performance. Additionally, studies such as (Ryck et al., 2023) demonstrate that PINNs suffer
from ill-conditioned losses, resulting in slow convergence of gradient descent algorithms.

Supervised trainings: In contrast to the unsupervised training of Physics-informed Neural Net-
works, purely data-driven models have demonstrated remarkable capabilities for PDE simulation
and forecasting. In most of the existing literature, the entire solver is replaced by a DL architecture,
and focused on directly computing the solution from a given input data. A widely studied setting is
operator learning which learns mappings between function spaces (Li et al., 2020; Kovachki et al.,
2023; Lu et al., 2021).

Hybrid models: Hybrid models are models that use both the available physical knowledge and
data. Some example include the Aphinity model (Yin et al., 2021) (where the author have partial
knowledge on the physics and learned the remaining dynamics from data), Physics-informed Deep
Operator Networks (PIDON) (Wang et al., 2021; Goswami et al., 2022), Physics-informed Neural
Operator (PINO) (Li et al., 2023) (DeepONet architecture (Lu et al., 2021) or Neural Operator
models (Kovachki et al., 2023; Li et al., 2020) respectively with a combination of data and physical
losses).

B IMPLEMENTATION DETAILS

We add here more details about the implementation and experiments presented in section 3.

B.1 B-SPLINE BASIS

We chose to use a B-Spline basis to construct the solution. We manually build the spline and compute
its derivatives thanks to the formulation and algorithms proposed in (Piegl & Tiller, 1996). We used
Splines of degree d = 3 and constructed the Splines with 2 different ways:

8

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

• Take N + d+1 equispaced nodes of multiplicity 1 from d
N to 1+ d

N . This gives a smooth
local basis with no discontinuities (see Figure 2a) represented by a shifted spline along the
x-axis.

• Use N + 1 − d nodes of multiplicity 1 and 2 nodes of multiplicity d (typically on the
boundary nodes: 0 and 1). This means that nodes 0 and 1 are not differentiable (see Figure
2b).

(a) (b)

Figure 2: B-spline basis with N = 10 terms with shifted spline (Left) and higher multiplicity nodes
(Right). Dashed lines represents nodes position with color the darker, the higher the multiplicity.

B.2 TRAINING DETAILS

In our experiments, neural networks are trained using the Adam optimizer (Kingma & Ba, 2015).
For network optimization, we employ a smooth l1-loss with a variable threshold for our solver while
for other baselines, we use MSE loss and/or physical losses. All models are trained for at least 400
epochs on datasets composed of some sampling of γ and/or f and/or g.

Dataset
1d 2d

Type Model Helmholtz Poisson Advection Darcy-Flow
Model-driven pPINNs 0h10 0h05 0h20 1h45

Data-driven Dd 0h40 0h05 0h20 0h15

PIDON 0h10 0h05 1h45 5h15
Hybrid Training PINO 0h05 0h15 1h30 1h45

N GD (us) 0h40 0h20 19h20 21h15

Table 2: Training time for each baseline and dataset.

B.3 BASELINES DETAILS

If not stated otherwise, all neural networks are 2 layers MLP with 256 neurons (ours included) and
GeLU activation function (Hendrycks & Gimpel, 2016), but we had to make some hyper parameter
research on some baselines.

For the parametric PINN model, data-driven training and Physics-informed DeepONet, we empir-
ically searched hyper parameter to allow network to handle the high frequencies involved in the
dataset. We used 5 layers and 200 neurons on the (Helmholtz) dataset for the parametric PINNs
baselines, but kept the same network size as ours for other models, since bigger network sizes did
not improves the results. On (Darcy) and (Advections), Physics-Informed DeepONet are trained

9

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Dataset
1d 2d

Type Model Helmholtz Poisson Advection Darcy-Flow

Optimizer GD 101 (0.36) 67 (2.2) 978 (1.11) 2034 (0.33)
ADAM 92 (0.35) 57 (0.04) 562 (1.17) 1572 (0.35)

Pre-trained PINO 270 (0.35) 21 (1.4e-3) 024 (4.36e-4) 282 (1.23e-2)

Physics-Informed PINNs 149 (0.25) 32 (1.3e-3) 177 (0.68) 2688 (0.27)
N GD (us) 0.04 (1.61e-3) 0.03 (1.4e-3) 0.27 (1.96e-2) 0.25 (8.16e-3)

Table 3: Test-time optimization duration (in seconds) for each baseline and dataset for solving a
new equation instance (i.e. with new parameters). We let 10, 000 steps for baseline and convergence
criteria is fixed to the error reached by our model within its 5 steps. We add the final error after the
10, 000 steps (in brackets).

with 5 layers, 256 units in both branch net and trunk net because the dimension of these dataset are
higher.

For the PINO baseline, we based the network architectures on those proposed by the author and kept
a layer width of 64. For 1d-datasets, we used 2 FNO layers with 10 modes, except for (Helmholtz)
for which we used 32 modes to let high frequencies being reconstructed. For the Darcy and Ad-
vection datasets, we used 4 FNO layers with 20 modes on each dimension (x, y) for (Darcy) and
20 and 12 modes for x and t respectively for (Advection). This leads to bigger networks than our
(×10 more parameters for Advections and Darcy). See table 4, for a comparison of the number of
parameters involved in each baseline.

Dataset
1d 2d

Type Model Helmholtz Poisson Advection Darcy-Flow
Model-driven pPINNs 1, 316, 353 151, 050 1, 116, 673 1, 116, 673

Data-driven Dd 140,832 148, 993 1, 547, 664 1, 547664

PIDON 664, 597 285, 717 1, 648, 149 1, 648, 149
Hybrid Training PINO 279, 233 99,009 13, 140, 737 13, 140, 737

N GD (us) 149, 024 137, 482 993,680 993,680

Table 4: Number of parameters for each baselines and dataset. Bold shows the smallest model for a
given dataset. We underline the second smallest model.

Table 4 shows that the baselines considered in section 3 involved network of similar sizes than ours
or bigger. Since the architecture (number of layers and width) are comparable (except for PINO),
the difference of weight’s number is explained by the input and output sizes. As an example, our
solver inputs ∇LPHY and some parameters γ, f, g, and outputs a descent direction for the parameters
θ, while PINNs also inputs the coordinate x and outputs the solution on that query points u(x) and
NN predicts the coefficient θ in the basis.

C DATASET DETAILS

C.1 HELMHOLTZ

We generate a dataset following the 1d static Helmholtz equation eq. (5). For x ∈ [0, 1[,
∂2u(x)
∂x2 + ω2u(x) = 0

u(0) = u0
∂u(0)
∂x = v0

(5)

10

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

The solution can be computed with : u(x) = α cos(ωx + β), with β = arctan(−v0
ωu0

), α = u0

cos(β)

are directly computed from the PDE data. We generate 1, 000 trajectories with u0, v0 ∼ N (0, 1)
and ω ∼ U(0.5, 50) and compute the solution on [0, 1] with a spatial resolution of 64.

C.2 POISSON

We generate a dataset following the 1d static Poisson equation eq. (6) with forcing term. For x ∈
[0, 1[,

−∂2u(x)
∂x2 = f(x)

u(0) = u0
∂u(0)
∂x = v0

(6)

We chose f to be a non-linear forcing terms: f(x) = π
K

∑K
i=1 aii

2r sin(πx), with ai ∼
U(−100, 100), we used K = 16, r = −0.5, and solve the equation using a backward finite dif-
ference scheme. We generate 1, 000 trajectories with u0, v0 ∼ N (0, 1) and compute the solution on
[0, 1] with a spatial resolution of 64.

C.3 ADVECTION

The dataset is taken from (Takamoto et al., 2023).

∂u(t, x)

∂t
+ β

∂u(t, x)

∂x
= 0, x ∈ (0, 1), t ∈ (0, 2] (7)

u(0, x) = u0(x), x ∈ (0, 1) (8)

Where β is a constant advection speed, and the initial condition is u0(x) =∑
ki=k1...kN

Ai sin(kix + ϕi), with ki = 2πni

Lx
and ni are randomly selected in [1, 8]. The

author used N = 2 for this PDE. Moreover, Ai and ϕi are randomly selected in [0, 1] and (0, 2π)
respectively. Finally, Lx is the size of the domain (Takamoto et al., 2023).

The PDEBench’s Advection dataset is composed of several configurations of the parameter β
({0.1, 0.2, 0.4, 0.7, 1, 2, 4, 7}), each of them is composed of 10, 000 trajectories with varying
initial conditions. From these datasets, we sampled a total of 1, 000 trajectories for β ∈
{0.2, 0.4, 0.7, 1, 2, 4} (which gives about 130 trajectories for each β). This gives a dataset with
different initial conditions and parameters. Moreover, we sub sampled the trajectories by 4, leading
to a grid of resolution 25 for the t-coordinate and 256 for the x-coordinate.

C.4 DARCY FLOW

The 2dDarcy Flow dataset is taken from (Li et al., 2020) and commonly used in the operator learning
literature (Li et al., 2023; Goswami et al., 2022).

−∇.(a(x)∇u(x)) = f(x) x ∈ (0, 1)2 (9)

u(x) = 0 x ∈ ∂(0, 1)2 (10)

For this dataset, the forcing term f is kept constant f = 1, and a(x) is a piece-wise constant diffusion
coefficient taken from (Li et al., 2020). We kept 1, 000 trajectories (on the 5, 000 available) with a
spatial resolution is 64× 64.

C.5 SUMMARY OF PROBLEM SETTINGS CONSIDERED

A summary of the datasets and parameters changing between 2 trajectories are presented in table 5.

D SOLUTION VISUALIZATIONS

We present here some visualizations from baselines on the different datasets.

11

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Dataset Changing PDE data Range / Generation

Helmholtz
ω [0.5, 50]
u0 N (0, 1)
v0 N (0, 1)

Poisson
Ai [−100, 100]
u0 N (0, 1)
v0 N (0, 1)

Darcy a(x)
ψ#N (0, (−∆+ 9I)−2)

with ψ = 12 ∗ 1R+ + 3 ∗ 1R+

Advection

β {0.2, 0.4, 0.7, 1, 2, 4}
Ai [0, 1]
ϕi [0, 2π]
ki {2kπ}8k=1

Table 5: Parameters changed between each trajectory in the considered datasets.

D.1 HELMHOLTZ

On fig. 3, we present a comparison of baselines on 2 samples. Figure 4 shows the solution through
our iterative solver.

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

So
lu

tio
n

Solution for Helmholtz
Ground truth
Unsupervised
Supervised
PIDON
PINO
Ours

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

So
lu

tio
n

Solution for Helmholtz

Ground truth
Unsupervised
Supervised
PIDON
PINO
Ours

(b)

Figure 3: Solutions provided by our solver and baselines on the Helmholtz dataset.

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

So
lu

tio
n

Evolution of the reconstruction of the solution with optimization steps.

Ground truth
Initialization
Step 1
Step 2
Step 3
Step 4
Step 5: Output

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

So
lu

tio
n

Evolution of the reconstruction of the solution with optimization steps.

Ground truth
Initialization
Step 1
Step 2
Step 3
Step 4
Step 5: Output

(b)

Figure 4: Solution provided by our solver during optimization steps.

D.2 POISSON

On fig. 6, we present a comparison of baselines on 2 samples. Figure 7 shows the solution through
our iterative solver.

12

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

0 100 101 102 103 104

Optimization steps

10 3

10 2

10 1

100

101

M
SE

Test-time optimization evolution of MSE

GD
ADAM

PINN
PINO

Ours
Objective

Figure 5: Error vs number of iterations (log-scale). Test-time comparison to other iteration-based
approaches on Helmholtz.

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

So
lu

tio
n

Solution for Poisson
Ground truth
Unsupervised
Supervised
PIDON
PINO
Ours

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

2

1

0

So
lu

tio
n

Solution for Poisson

Ground truth
Unsupervised
Supervised
PIDON
PINO
Ours

(b)

Figure 6: Solutions provided by our solver and baselines on the Poisson dataset.

13

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

0.0 0.2 0.4 0.6 0.8 1.0
x

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

So
lu

tio
n

Evolution of the reconstruction of the solution with optimization steps.
Ground truth
Initialization
Step 1
Step 2
Step 3
Step 4
Step 5: Output

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

2.0

1.5

1.0

0.5

0.0

So
lu

tio
n

Evolution of the reconstruction of the solution with optimization steps.

Ground truth
Initialization
Step 1
Step 2
Step 3
Step 4
Step 5: Output

(b)

Figure 7: Solution provided by our solver during optimization steps.

0 100 101 102 103 104

Optimization steps

10 3

10 2

10 1

100

M
SE

Test-time optimization evolution of MSE

GD
ADAM

PINN
PINO

Ours
Objective

Figure 8: Error vs number of iterations (log-scale). Test-time comparison to other iteration-based
approaches on Poisson.

14

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

D.3 DARCY

On fig. 9, we present a comparison of baselines on 2 samples. Figure 10 shows the solution through
our iterative solver.

y

x

Ground truth

y

Unsupervised

y

Supervised

y

PIDON

y

PINO

y

Ours

Solution for Darcy flow

(a)

y

x

Ground truth

y

Unsupervised

y

Supervised

y

PIDON

y

PINO

y

Ours

Solution for Darcy flow

(b)

Figure 9: Solutions provided by our solver and baselines on the Darcy dataset.

y

x

Ground truth

y

Initialization

y

Step 1

y

Step 2

y

Step 3

y

Step 4

y

Step 5: Output

Evolution of the reconstruction of the solution with optimization steps.

(a)

y

x

Ground truth

y

Initialization

y

Step 1

y

Step 2

y

Step 3

y

Step 4

y

Step 5: Output

Evolution of the reconstruction of the solution with optimization steps.

(b)

Figure 10: Solutions provided by our solver during optimization steps.

D.4 ADVECTION

On fig. 12, we present a comparison of baselines on 2 samples. Figure 13 shows the solution through
our iterative solver.

15

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

0 100 101 102 103 104

Optimization steps

10 3

10 2

10 1

100

101

M
SE

Test-time optimization evolution of MSE

GD
ADAM

PINN
PINO

Ours
Objective

Figure 11: Error vs number of iterations (log-scale). Test-time comparison to other iteration-based
approaches on Advection.

16

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

t

x

Ground truth

t

Unsupervised

t

Supervised

t

PIDON

t

PINO

t

Ours

Solution for Advection

(a)

t

x

Ground truth

t

Unsupervised

t

Supervised

t

PIDON

t

PINO

t

Ours

Solution for Advection

(b)

Figure 12: Solutions provided by our solver and baselines on the Advection dataset.

t

x

Ground truth

t

Initialization

t

Step 1

t

Step 2

t

Step 3

t

Step 4

t

Step 5: Output

Evolution of the reconstruction of the solution with optimization steps.

(a)

t

x

Ground truth

t

Initialization

t

Step 1

t

Step 2

t

Step 3

t

Step 4

t

Step 5: Output

Evolution of the reconstruction of the solution with optimization steps.

(b)

Figure 13: Solutions provided by our solver during optimization steps.

17

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Figure 14: Error vs number of iterations (log-scale). Test-time comparison to other iteration-based
approaches on Advection.

18

	Introduction
	Iterative Neural PDE Solvers
	Problem statement
	General Methodology
	A Possible Instantiation

	Experimental Evaluation
	Evaluating Generalization Performance
	Evaluating Computational Efficiency

	Conclusion
	Related work
	Implementation details
	B-Spline basis
	Training details
	Baselines details

	Dataset details
	Helmholtz
	Poisson
	Advection
	Darcy Flow
	Summary of problem settings considered

	Solution visualizations
	Helmholtz
	Poisson
	Darcy
	Advection

