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Abstract

Contextual sequential decision-making is funda-
mental to machine learning, with applications in
bandits, sequential hypothesis testing, and online
risk control. These tasks often rely on statistical
measures like expectation, variance, and quantiles.
In this paper, we propose a universal algorithmic
framework that learns the full underlying distribu-
tion, enabling a unified approach to all contextual
online decision-making problems. The challenge
lies in the uncountably infinite-dimensional re-
gression, where existing contextual bandit algo-
rithms all yield infinite regret. We innovatively
propose an efficient infinite-dimensional func-
tional regression oracle for contextual cumulative
distribution functions (CDFs) and model every da-
tum as a combination of context-dependent CDF
basis functions. Our analysis reveals that the de-
cay rate of the eigenvalue sequence of the design
integral operator governs the regression error rate,
and consequently, the utility regret rate. Specif-
ically, when the eigenvalue sequence exhibits a
polynomial decay of order 1

γ ≥ 1, the utility re-

gret is bounded by Õ
(
T

3γ+2
2(γ+2)

)
. The case that

γ = 0 can recover the existing optimal rate in con-
textual bandits literature with finite-dimensional
regression and so as exponential decay. We also
provide a numerical method to compute the eigen-
value sequence of integral operators, enabling the
practical implementation of our framework.
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1. Introduction
Contextual sequential online experimentation has been over-
whelmingly important for online platforms, healthcare com-
panies, and other businesses (Tewari & Murphy, 2017; Saha
et al., 2020; Beygelzimer et al., 2011; Avadhanula et al.,
2022). A decision maker (DM) might face a wide range
of tasks, and different tasks lead to various adaptive algo-
rithm designs. For example, for maximizing the total reward,
there are all kinds of contextual bandit algorithms (Chu et al.,
2011). For minimizing the total hypothesis testing error, we
have online hypothesis testing algorithms (Wei et al., 2007).
To rectify a pre-trained machine learning model, many on-
line calibration algorithms have been developed (Fasiolo
et al., 2021).

Some common structures appear to be obscured behind
these examples. At each round, the DM first receives some
context, such as past consumption records or symptoms in a
healthcare setting. Then, the DM chooses an action to apply
according to this context and his objective. For example,
in online hypothesis testing, the actions could be “reject”
and “accept”, while in contextual bandits, the action is to
choose and pull an arm. Commonly, there is an underlying
distribution Px,a associated with every context x and action
a. The DM makes decisions based on the estimation of
its various statistics. In the context of bandits, the primary
statistic of interest is the expectation, whereas in risk control,
attention is directed toward variance (Li et al., 2022; Füss
et al., 2024). Please refer to Ayala-Romero et al. (2024);
Bouneffouf (2016); Sun et al. (2016); Li et al. (2019); Han
et al. (2021); Kong (2024) for more examples.

The essential difficulty behind all these online decision-
making examples is the uncertainty of the outcomes under
different actions. In revenue management, the decision
maker is not sure about the mean reward, while in financial
portfolio management, he is mostly uncertain about both
mean and variance (Gupta et al., 2021). Moreover, in online
quantile calibration, the key concern turns to the unknown
quantile function (Bastani et al., 2022).

Note that no matter what kind of statistic we aim to know,
as long as we learn the distribution Px,a, the decision maker
knows exactly how to make the decision. Therefore, it raises
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a question:

Is it possible to consider a more general (robust and
adaptive) online decision-making setting based on

infinite-dimensional functional regression?

Specifically, we are looking for a general solution with
infinite-dimensional functional regression of cumulative dis-
tribution functions (CDFs).

Another motivation for considering infinite-dimensional
models is the practical success of high-dimensional mod-
els, such as AI products based on transformer architec-
tures. Traditional finite-dimensional analysis fails to explain
the strong performance of deep learning models. To fully
address this challenge, our paper directly focuses on the
infinite-dimensional regression problem.

Roadmap: We present our results in the following structure.
In Section 2.1, we introduce our general sequential decision-
making model with infinite-dimensional functional regres-
sion. Then in Section 2.2, we introduce the mathematical
concepts, tools, and assumptions in functional analysis and
operator theory that are essential for our infinite-dimensional
regression. In Section 3, we put forward an efficient algo-
rithm to carry out the functional regression and establish its
oracle inequality. We further present our sequential decision-
making procedure (Algorithm 2) in Section 4 and prove its
theoretical guarantee in theorem 4.1.

1.1. Related Works

Our work is intimately related to the lines of work on con-
textual bandits (Tewari & Murphy, 2017; Zhou et al., 2023;
Zhou, 2015; Bouneffouf et al., 2020; Agarwal et al., 2014;
Chu et al., 2011), operation learning (Mollenhauer et al.,
2022; Kovachki et al., 2024; Adcock et al., 2024; Foster
et al., 2018; Foster & Rakhlin, 2020) and functional re-
gression (Morris, 2015; Ramsay & Silverman, 2002; Zhang
et al., 2022; Azizzadenesheli et al.; Yeh et al., 2023; Hou
et al., 2023). Due to limited space, we discuss these and
more related works in Appendix A.

Notation: For any measure space (B,B, n), we use
L2(B,n) to denote the square-integrable function space
which is also a Hilbert space with inner product ⟨·, ·⟩ =∫
B
f(x)g(x)dn(x) and norm ||f ||L2(B,n) =

√
⟨f, f⟩. O(·)

and o(·) stand for Bachmann–Landau asymptotic notations
up to constants. Meanwhile, Õ stands for the asymptotic
notations up to logarithmic terms. For any n ∈ N, [n] de-
notes the set {1, · · · , n}, and Iy(t) denotes the indicator
function I {y ≤ t}. Unless otherwise stated, when we write
the eigenvalue sequence {λi}, it is arranged in a decreasing
order.

2. Model setup and Operator Eigendecay
2.1. Model Setup

There are two main bodies of our framework, Functional
Regression Model and Decision-Making Model. We first
focus on the functional regression model.

Infinite-dimensional Functional-Regression: Assume
a feature space X and a finite action space A =
{a1, · · · , aK}. For any context x ∈ X and action a, there
is an associated random variable Ya,x which takes values in
some bounded Borel set S ⊂ R with m(S) = 1, where m
is some measure on the real line ♮. We assume Ya,x has a
cumulative distribution function F ∗(x, a, s) satisfying the
following Assumption 2.1 and Assumption 2.2.

Assumption 2.1. We have access to a function family of
CDF basis Φ = {ϕ(x, a, w, s)}w∈Ω indexed by a com-
pact set Ω ⊂ Rd with d-dimensional Lebesgue measure
ν(Ω) = 1. That is, given any x ∈ X , a ∈ A, w ∈ Ω,
0 ≤ ϕ(x, a, w, s) ≤ 1 is a CDF of some S valued random
variable. For any x, a, there is an unknown non-negative
coefficient function θ∗ ∈ L2(Ω, ν) such that

F ∗(x, a, s) =

∫
Ω

θ∗(w)ϕ(x, a, w, s)dν(w)

= ⟨θ∗(·), ϕ(x, a, ·, s)⟩ .

We also set
∫
Ω
θ∗(w)dν(w) = 1 to ensure that F ∗(x, a, s)

is a cumulative distribution function. For boundedness, we
assume that ||θ∗||L2(Ω,ν) ≤M for some constant M .

The dimension of this functional regression problem is infi-
nite, as the number of the functions in candidate model class
Φ can be uncountably infinite, which makes solving this
problem extremely hard. Modeling the basis model class
Φ could be problem-driven; different tasks have different
families. Generally, we use spline functions, trigonometric
functions, truncated Gaussian mixtures, neural networks,
and the Bernoulli random variable mixture to model the
basis distribution family in different applications. Please
see Zhang et al. (2022) for numerical details.

Furthermore, we assume that the candidate model class Φ,
parametrized by the set Ω, has Lipschitz-continuity with
respect to w ∈ Ω. This assumption is common in learning
theory (see Xu & Zeevi (2020)). Our goal in our functional
regression model is to derive an accurate coefficient function
estimation θ̂D.

Assumption 2.2. ϕ(x, a, ·, s) is L0-Lipschitz continuous,
|ϕ(x, a, w, s)− ϕ(x, a, r, s)| ≤ L0||w − r||∞.

We now turn to our Decision-Making Model.

♮m(S) can be any finite number. Our m(S) = 1 assumption
here is just for notation convenience.
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Figure 1. Data D drives the functional regression and decision-
making for statistical task T .

Decision-making Model: To incorporate all the sequen-
tial decision-making examples in our framework, we assume
that the objective of the decision-maker is relevant to the cu-
mulative distribution function itself, rather than only some
concrete statistics such as mean, variance, quantile and so
on.

To be specific, we assume that there is a known utility func-
tional T defined on function space L2(S,m). At each round
t, the context xt is drawn i.i.d. from some unknown distri-
bution QX . Given any context x, if the DM applies action a,
then one data point will be sampled and observed according
to distribution function F ∗(x, a, s), and the utility of action
a under x is T (F ∗(x, a, s)). The goal of the decision maker
is to maximize the total utility in T rounds of interaction,
i.e., max{at}T

t=1

∑T
t=1 T (F ∗(xt, at, s)).

Analogous to the bandit setting, the policy π is a map-
ping from the feature space X to the action space prob-
ability simplex ∆(A). Given any x, we denote a∗(x)
as the action that maximizes the utility, i.e., a∗(x) =

argmaxa T (F ∗(x, a, s)). For any policy sequence {πt}Tt=1,
the performance measure is utility regret, which is the dif-
ference between the optimal policy π∗(x) = δa∗(x)(·)† and
{πs}Ts=1:

Reg({πt}Tt=1)

≜
T∑

t=1

T (F ∗(xt, a
∗(xt), ·)− T (F ∗(x, πt(x), ·)).

Assumption 2.3. The known functional T is L-Lipschitz
continuous with respect to the norm || · ||L2(S,m).

Assumption 2.3 is essential since it ensures that an accurate
estimation about the underlying distribution results in a
good approximation of the corresponding utility functional
value. Finally, we end this section with some practical
applications and their corresponding utility functionals T
and their Lipschitz constant L.
Example 2.4 (Contextual Bandits). Define the functional as
T : F →

∫
S
xdF (x), which is a known functional in terms

of F . Given any context x, F ∗(x, a, s) is the conditional

†δa is the Dirac function of a, i.e., δa(x) = 1 only if x=a,
otherwise, δa(x) = 0

reward distribution of arm a given context x. Consequently,
T (F ∗(x, a, s)) is the mean reward of arm a given x, and
we recover the contextual bandit problem.

We assume that the reward is bounded in interval S =
[a, b] and illustrate that contextual bandits satisfy our model
assumption in Section 2. Note that T (F ) =

∫
xdF (x), and

integrating by parts, we have that for any two CDFs F1, F2,

|T (F1)− T (F2)| =
∣∣∣∣∫

S

F1(s)− F2(s)ds

∣∣∣∣
≤(b− a)1/2||F1 − F2||L2(S),

The inequality is by integrating by parts and Cauchy-
Schwarz inequality. So contextual bandit satisfies Assump-
tion 2.3 with constant L = (b− a)1/2.
Example 2.5 (Sequential Hypothesis Testing (Naghshvar
& Javidi, 2013)). M hypotheses {H1, · · · , HM} are of in-
terest, among which only one holds true. ai is to choose
hypothesis Hi to believe. For any true class Hi and DM’s
judgment aj , there is a loss function l(Hi, aj). The distri-
bution associated with observation x and aj is the poste-
rior distribution of the loss l with PMF denoted by F ∗

x,aj

F ∗
x,aj

(l(Hi, aj)) = P(Hi|x, aj). P(Hi|x, aj) is the poste-
rior probability that Hj is true given observation x and aj .
T : F → −

∫
S
sdF (s) is the negative expectation func-

tional, where the integral stands for the Lebesgue integral.
From the deduction of Example 2.4, we know that sequential
hypothesis testing satisfies Assumption 2.3.
Example 2.6 (Mean-Variance (MV) bandits (Hu et al.,
2022)). In multi-armed bandits (MAB), denote Fi as the
distribution of arm i. The mean-variance functional T :
Fi 7→ ρ

∫
xdFi(x)− (1−ρ)(

∫
x2dFi(x)− (

∫
xdFi(x)

2)).
MV-MAB is about finding a policy that maximizes the total
mean-variance. Similar to Example 2.4, we illustrate that
this example satisfies Assumption 2.3.

|T (F1)− T (F2)|

≤ρ
∣∣∣∣∫

S

sdF1(s)−
∫
S

sdF2(s)

∣∣∣∣
+(1− ρ)(b− a)

∣∣∣∣∫
S

sdF1(s)−
∫
S

sdF2(s)

∣∣∣∣
≤ (ρ+ (1− ρ)(b− a)) (b− a)1/2||F1 − F2||L2(S).

Therefore, mean-variance bandits satisfy Assumption 2.3
with Lipschitz constant L = (ρ+ (1− ρ)(b− a)) (b −
a)1/2.
It is intuitive that a good estimation of the underlying dis-
tribution may result in a good utility estimation. However,
estimating the underlying CDF with an uncountable basis
and arbitrary feature space is highly non-trivial. In Sec-
tion 2.2, we would like to introduce some tools and as-
sumptions from the functional analysis and operator theory
community before we dive into our regression oracle. For
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background knowledge of operator theory and functional
analysis, please refer to some textbooks Conway (2000);
Kubrusly (2011); Simon (2015).

2.2. Operator Eigendecay

Recall that in Section 2.1, we invoke the infinite-
dimensional online decision-making problem, which makes
the finite-dimensional linear algebra analysis invalid. There-
fore, we turn to functional analysis and operator theory in
infinite-dimensional spaces to handle our learning problem
instead. One core object of the intersection regarding func-
tional analysis and learning theory is the operator, which is
intrinsically defined as mappings from infinite-dimensional
spaces to infinite-dimensional spaces. In functional analysis,
a very powerful tool to study the properties of many oper-
ators, especially Hilbert-Schmidt operators, is their eigen-
value and eigenfunction sequences. Specifically, in this pa-
per, we care about the decay rate of the eigenvalue sequence
(eigendecay), which is the essential factor that determines
our approximation accuracy (theorem 3.6) and utility regret
bound (theorem 4.1). In this subsection, we present all the
mathematical concepts, theorems, and assumptions regard-
ing the eigendecay rate of several important operators which
will be utilized in Section 3.

Definition 2.7. For any (w, r) ∈ Ω × Ω, define the
following linear integral operator, integral kernel, and
mapping:

Lx,a :θ(w) 7→
∫
Ω

∫
S

θ(r)ϕ(x, a, w, s)ϕ(x, a, r, s)dm(s)dν(r),

Kx,a :(w, r) 7→
∫
S

ϕ(x, a, w, s)ϕ(x, a, r, s)dm(s),

ψx,a :L2(Ω, ν)× S → R, (θ, s) 7→ ⟨θ(·), ϕ(x, a, ·, s)⟩ .

By Fubini’s theorem, we have

∀ w ∈ Ω, Lx,a(θ)(w) =

∫
Ω

θ(r)Kx,a(w, r)dν(r)

=

∫
S

ϕ(x, a, w, s)ψx,a(θ, t)dm(s).

Theorem 2.8. For any x ∈ X and a ∈ A, Lx,a is a compact,
linear, positive and self-adjoint Hilbert-Schmidt integral
operator with ||Lx,a|| ≤ 1.

By the Riesz-Schauder theorem and the spectral decom-
position theorem (Reed & Simon, 1978), if we denote
{λi(L)x,a}∞i=1 as its eigenvalue sequence in decreasing or-
der and {ei(Lx,a)} as the corresponding eigenfunctions,
then it holds that

Lx,a(θ) =

∞∑
i=1

λi(Lx,a) ⟨θ, ei(Lx,a)⟩ ei(Lx,a),

where λ1(Lx,a) ≥ λ2(Lx,a) ≥ · · · > 0 and λi(Lx,a) → 0.
The eigenvalues and eigenfunctions play a crucial role in
our algorithm and analysis. Hence, we further examine
them and state additional properties below. All proofs are
deferred to Appendix C.

By Gohberg et al. (2012); Ferreira & Menegatto (2013), we
call the Hilbert-Schmidt integral operator Lx,a traceable if∑∞

i=1 λi(Lx,a) <∞. For any traceable operator, we could
analyze the decay rate of its eigenvalue sequence, and the
eigenvalue decay rate of these integral operators has been
well studied in functional analysis (Ferreira & Menegatto,
2013; Volkov, 2024; Levine, 2023; Carrijo & Jordão, 2020).

Specifically, for our integral operator Lx,a, we observe the
following properties.
Property 2.9. For any x, a, the integral operator Lx,a satis-
fies

•
∑∞

i=1 λi(Lx,a) =
∫
Ω

∫
S
ϕ(x, a, w, s)2dm(s)dν(w) ≤ 1.

• For any i, ∃C > 0 such that λi(Lx,a) ≤ C
i .

• λi(Lx,a) = o( 1i ).

For many concrete integral operators, Property 2.9 could be
further strengthened and the decay rate of the eigenvalue se-
quence could be established. For example, one might show
polynomial eigendecay and even exponential eigendecay
(Carrijo & Jordão, 2020). Intuitively, a larger eigenvalue
implies that more ‘information’ is stored in the direction of
the corresponding eigenfunction. Therefore, faster decaying
of the eigenvalue sequence means that more ‘information’
is concentrated in several large eigenvalues and the corre-
sponding eigenfunctions. In this paper, we use a single
positive parameter γ in Assumption 2.10 to describe the
decay rate of the eigenvalue sequence and characterize this
phenomenon, which is called γ-dominating eigendecay.

Assumption 2.10 (γ-dominating eigendecay). Denoting all
the bounded linear operators on L2(Ω, ν) as B(L2(Ω, ν)),
we assume that the set {Lx,a : x ∈ X , a ∈ A} ⊂
B(L2(Ω, ν)) is convex and satisfies the existence of a se-
quence {τi}∞i=1 such that

• for some 0 < γ ≤ 1 and s0 <∞,
∑∞

k=1 τ
γ
k ≤ s0,

• for ∀x, a, λk(Lx,a) < τk ≤ O( 1k ), ∀k.

We name the sequence {τi}∞i=1 as “γ-dominating sequence”.
Intuitively, Assumption 2.10 states that the decay rate of
the eigenvalue sequence of any operator L in the integral
operator set {Lx,a : x ∈ X , a ∈ A} could be “dominated”
by some polynomially converging series. The rate parameter
γ is a key factor in our analysis. In Section 3, we will prove
that parameter γ influences the error rate of the functional
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regression oracle and therefore determines our utility regret
rate.

Finally we remark that our assumption in Assumption 2.10
essentially claims that the eigenvalue sequence {λk} decays
with a polynomial order in magnitude. It is quite common
to assume polynomial or even exponential eigendecay rate
of large matrix or neural network operators (Yeh et al.,
2023; Vakili & Olkhovskaya, 2024; Goel & Klivans, 2017;
Agarwal & Gonen, 2018).

3. Functional Regression and Oracle
Inequality

3.1. Functional Regression

In Section 3.1, we provide a method about how to esti-
mate our coefficient function θ∗(w), given a dataset D =
{(xj , aj , yj)}nj=1. Here, yj is sampled according to CDF
F ∗(xj , aj , s).

The intuition of functional regression oracle is to use the
operator’s spectral decomposition. In ordinary least squares
regression min ||Y −Xθ||2, the normal matrix XTX plays
a crucial role (Goldberger, 1991). Here, we require an
operator that behaves similarly.

Definition 3.1 (Design Integral Operator). For any given
dataset D = {(xj , aj , yj)}nj=1 whose |D| = n, we define
the design integral operator UD as ∀w ∈ Ω,

UD(θ)(w) ≜
n∑

j=1

Lxi,ai(θ)(w)

=

n∑
j=1

∫
Ω

θ(r)Kxj ,aj (w, r)dν(r).

Moreover, we denote the spectral decomposition of UD as∑∞
i=1 λi(UD)e

i
UD

.

Using Theorem 2.8, one could verify that UD is also a linear,
positive, self-adjoint and Hilbert-Schmidt integral operator.
Therefore, we have λi(UD) → 0, and UD is not invertible.

In finite-dimensional regression, people often handle non-
invertibility with regularization terms λ||θ||2, leading to an
error that scales with the problem dimension. However,
since our dimension is infinite, adding this regularization
term is infeasible. Zhang et al. (2022) considers a differ-
ent data-driven regularization, but the term will scale with
the cardinality |D| = n, thus it’s inapplicable to obtain
convergence results.

Rather than regularization, we consider a truncation of the
function series

∑∞
i=1 λi(UD)e

i
UD

according to the eigen-
value sequence {λi(UD)}. Specifically, we define the trun-
cated finite rank operator ÛD,ε.

Definition 3.2. For any small number ε > 0, the truncated
integral operator ÛD,ε is defined as

ÛD,ε : θ 7→
ND,ε∑
i=1

λi(UD)
〈
θ, eiUD

〉
eiUD

,

where ND,ε is the smallest number such that for ∀i ≥
ND,ε + 1, λi(UD) < nε.

ε is some hyper-parameter which will be determined later.
Since we arrange the eigenvalues in a decreasing order, we
have that for ∀i ≤ N, λi(UD) ≥ nε. Despite the fact that
ÛD,ε is not invertible, it is still possible to define its pseudo-
inverse as follows.
Definition 3.3. The pseudo-inverse of the operator ÛD,ε is
defined as

Û†
D,ε : θ 7→

ND,ε∑
i=1

1

λi(UD)

〈
θ, eiUD

〉
eiUD

.

We set ε = ε∗ ≜ n−
2

γ+2 to conduct functional regression.
With a bit of abuse of notation, we also use Nε to denote
ND,ε, and abbreviate ÛD,ε∗ , Û†

D,ε∗ as ÛD and Û†
D.

After obtaining ÛD and Û†
D, there are two remaining steps

of our functional regression. The first step is to compute the
following function:

θD = U†
D

∫
S

n∑
j=1

Iyj (t)ϕ(xj , aj , w, s)dm(s)

 .

The motivation for calculating it lies in its ability to solve the
following least squares optimization problem presented in
Theorem 3.4. Intuitively, for any data point (xi, ai), the un-
derlying targeted distribution function is F ∗(xi, ai, s) =∫
Ω
θ∗(w)ϕ(xi, ai, w, s)dν(w). Normally, to learn the

function θ∗(w), we need to observe the whole function
F ∗(xi, ai, s) =

∫
Ω
θ∗(w)ϕ(xi, ai, w, s)dν(w) and solve an

inverse problem to obtain θ∗. However, due to our bandit
feedback nature, we only have one sample yi from this
distribution. Thus, considering the L2 error between the
real empirical counterpart Iyi

(t) and any candidate distri-
bution function

∫
Ω
θ(w)ϕ(xi, ai, w, s)dν(w) for all n data

points, we obtain the following loss function l(θ,D) in The-
orem 3.4.
Theorem 3.4. We define the loss function l(θ,D) on dataset
D as

l(θ,D) ≜
n∑

j=1

∥Iyi
(s)−

∫
Ω

θ(w)ϕ(xi, ai, w, s)dν(w)∥2L2(S,m).

Then, θD solves the following optimization problem,

P ) : min
θ∈Span(e1,··· ,eNε∗ )

l(θ,D), (1)
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where Span(X) denotes the linear subspace spanned by the
vector group X .

After obtaining θD, in order to ensure that our estimated
coefficient function satisfies Assumption 2.1, we project it
onto the set C =

{
θ ≥ 0 :

∫
Ω
θdν = 1, ||θ||L2(Ω,ν) ≤M

}
in the following norm.

Definition 3.5. We define the following norm for any posi-
tive self-adjoint bounded linear operator U :

||θ||U ≜
√
⟨θ,U(θ)⟩.

Correspondingly, we define the projection PD onto set C
under the norm || · ||UD as

PD(x) ≜ argmin
y∈C

||y − x||2UD
.

The second step is to project θD onto set C by PD, i.e.,
θ̂D ≜ PD(θD).This process yields our estimated coefficient
function θ̂D. At the end of this section, we summarize the
functional regression oracle FuncReg in Algorithm 1.

Algorithm 1 Regression Oracle: FuncReg

Require: Basis function family {ϕ(x, a, w, t)}w∈Ω,
dataset D = {xi, ai, yi}ni=1, {τi}∞i=1, 0 < γ ≤ 1.
Define the integral operator

UD(θ)(w) =

n∑
j=1

Lxi,ai(θ)(w)

=

n∑
j=1

∫
Ω

Kxj ,aj (w, r)θ(r)dν(r).

Compute the spectral decomposition of UD
∗, say

UD(θ) =

∞∑
i=1

λi ⟨θ, ei⟩ ei.

Define ε∗ = n−
2

γ+2 and construct the truncated operator
ÛD and its pseudo-inverse Û†

D according to Definition 3.2
and Definition 3.3.
Solve the optimization problem 1 and obtain solution θD.
Compute the projection θ̂D = PD(θD).

Return: θ̂D.

3.2. Oracle Inequality

In this section, we give two versions of oracle inequalities.
The first one is for the fixed design that D is arbitrarily

∗We present a concrete numerical method to compute eigenval-
ues in Appendix F.

given, whereas the second one is for the random design
that {(xi, ai)}ni=1 are sampled from some unknown joint
distribution Q. ,

Theorem 3.6. Under Assumption 2.1 and Assumption 2.10,
given dataset D = {(xj , aj , yj)}nj=1 and setting ε∗ =

n−
2

γ+2 , then with probability at least 1− δ, the estimated
coefficient function θ̂D from Algorithm 1 satisfies

||θ̂D − θ∗||UD ≤ Eδ
D(n)

≜

√√√√2

(
2 log(

1

δ
) +

Nε∗∑
i=1

log(1 + λi(UD))

)
+ n

γ
γ+2M.

Theorem 3.6 provides a theoretical guarantee about our
regression error when the given D has cardinality |D| = n.
Nevertheless, Theorem 3.6 cannot be directly used, as there
exists an agnostic term

∑Nε∗
i=1 log(1 + λi(UD)) related to

the dataset D. The following important lemma gives us an
upper bound of Eδ

D(n) which is independent of D.

Lemma 3.7. For any dataset D = {(xi, ai, yi)}ni=1 whose
|D| = n, by choosing ε = ε∗ = n

−2
γ+2 , we have

Eδ
D(n) =

√√√√2

(
2 log(

1

δ
) +

Nε∗∑
i=1

log(1 + λi)

)
+ n

γ
γ+2M

≤Eδ(n) ≜ 2 log(1/δ)1/2 +
(
2
√
s0 log(1 + n) +M

)
n

γ
γ+2 .

With Lemma 3.7, we derive the following corollary which
is independent of D.

Corollary 3.8. Under Assumption 2.1 and Assumption 2.10,
given dataset D = {(xj , aj , yj)}nj=1 and setting ε∗ =

n−
2

γ+2 , then with probability at least 1 − δ, we have
||θ̂D − θ∗||UD ≤ Eδ(n).

When the data points are sampled i.i.d. according to some
distribution, we could further give an oracle inequality for
random design. Taking it into consideration, our oracle
inequality for random design helps to bound the L2 error
between the ground truth CDF and our estimated CDF.

We first state some mild assumptions in random design.

Assumption 3.9. We assume that for any x, a, w, r,
there exists a constant η > 0 such that Kx,a(w, r) =∫
S
ϕ(x, a, w, s)ϕ(x, a, r, s)dm(s) ≥ η > 0.

Assumption 3.9 plays a role in guaranteeing the integral
operator will not map a function far from 0 ∈ L2(Ω, ν) to
some near-zero point, which is a bit similar to the concept
of proper mapping in convex analysis (Magaril-Il’yaev &
Tikhomirov, 2003). With Assumption 2.1, we know that
Ω×Ω is also compact in R2d. Thus, we have N (t,Ω×Ω, ||·
||∞) ≤

(
A
t

)2d
for some number A, delayed to Lemma B.9.
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We finally transfer the estimation error of θ̂D to the L2 error
between cumulative distribution functions,

||θ̂D − θ∗||2UD

=
〈
θ̂D − θ∗,UD

(
θ̂D − θ∗

)〉
=

n∑
j=1

〈
θ̂D − θ∗,Lxj ,aj

(
θ̂D − θ∗

)〉
=

n∑
j=1

∫
X ,A

∫
S

(∫
Ω

(
θ̂D − θ∗

)
(w)ϕ(xj , aj , w, s)dν(w)

)

×
(∫

Ω

(
θ̂D − θ∗

)
(r)ϕ(xj , aj , r, s)dν(r)

)
dm(s)

=

n∑
j=1

[
||F̂D(xj , aj , s)− F ∗(xj , aj , s)||2L2(S,m)

]
.

Consequently, combining Theorem 3.6 with some concen-
tration analysis and Lemma 3.7, we have the following
theorem.
Theorem 3.10. Given some dataset D = {(xj , aj , yj)}nj=1

where (xj , yj)
i.i.d.∼ Q, we define F̂D(x, a, s) ≜∫

Ω
θ̂D(w)ϕ(x, a, w, s)dν(w) to be our estimated cumula-

tive distribution function under x, a. For any 0 ≤ δ ≤ 1/2,
we have that with probability at least 1− 2δ,

E(x,a)∼Q

[
||F̂D(x, a, s)− F ∗(x, a, s)||2L2(S,m)

]
≤C(d, L0, δ, A, η)Eδ(n)2

n
,

where

C(d, L0, δ, A, η)

=
(
1 + (48

√
d log(2L0A) + 2

√
log(1/δ))/η

)
is some constant that does not influence the L2 error rate
with respect to n.

4. Algorithm
We provide an algorithm in Section 4 that incorporates our
functional regression oracle to minimize the expected utility
regret.

It is computationally expensive to calculate eigenvalues and
corresponding eigenfunctions of an integral operator. Hence,
it is desirable to develop algorithms with a low-frequency
oracle call property. Inspired by Simchi-Levi & Xu (2021);
Qian et al. (2024), we design an Inverse Gap Weighting
policy in a batched version possessing the low-frequency
oracle call property.

Before delving into the specific algorithm, the following
statement indicates that a well-bounded estimation error
implies a well-bounded decision-making error.

Theorem 4.1. Given some dataset D = {(xj , aj , yj)}nj=1

where (xj , aj , yj)
i.i.d.∼ Q, we define F̂D(x, a, s) ≜∫

Ω
θ̂D(w)ϕ(x, a, w, s)dν(w) as our estimated cumulative

distribution function. For any 0 < δ < 1, we have that with
probability at least 1− δ,

E(x,a)∼Q

[(
T (F̂D(x, a, t))− T (F ∗(x, a, t))

)2]
≤
L2C(d, L0, δ/2, A, η)Eδ/2(n)2

n
,

where

C(d, L0, δ/2, A, η)

=
(
1 + (48

√
d log(2L0A) + 2

√
log(2/δ))/η

)
.

We use Estδ(n) to denote L2C(d, L0, δ, A, η)Eδ(n)2 there-
after. For any x, a, we could view T (F ∗(x, a, s)) as the
unknown expected “reward” related to action a given con-
text x. Therefore, we transform our abstract sequential
decision-making problem into a stochastic contextual bandit
problem. Although in our problem, at every round, we do
not directly observe a sample point from the “reward” dis-
tribution, we could still estimate it by functional regression
FuncReg, yielding the desired reduction from the sequential
decision-making problem to a contextual bandit.

We summarize our algorithm in Algorithm 2. For the al-
gorithm structure, we first divide the whole T rounds into
several epochs and geometrically increase the length of ev-
ery epoch so that the low-frequency oracle call property is
automatically satisfied in Algorithm 2. At the beginning
of every epoch m, we call our functional regression ora-
cle FuncReg based on the i.i.d. data gathered from the
last epoch to get an estimation θ̂m. We then design our
inverse gap weighting policy πm based on θ̂m and execute it
throughout this epoch. By such a structure, we could ensure
that the data generated throughout this epoch are i.i.d. so
that we can use Theorem 3.10 to bound the L2 estimation
error, and therefore the utility regret.

To be specific, we first impose epoch schedule τm = 2m,
which means that the (m+ 1)-th epoch is twice as long as
the m-th epoch. Therefore, the statistical guarantee we get
from epoch m + 1 is stronger than that of epoch m. As
m scales, our estimation becomes more and more accurate.
The Inverse Gap Weighting policy enables us to balance the
exploration and exploitation trade-off to maintain a low re-
gret just assuming access to an offline regression oracle with
i.i.d. input data. We now provide the theoretical guarantee
of our Algorithm 2 as follows.

Theorem 4.2. For stochastic context setting, assuming that
we can only call functional regression oracle ⌈log(T )⌉

7
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Algorithm 2 Stochastic Contextual Decision Making with
Infinite Functional Regression

Require: Functional T , feature space X , action
space A = {a1 · · · , aK} , basis function family
{ϕ(x, a, w, u)}w∈Ω, regression space L2(Ω, ν), range
space of random variables (S,m).
Initialize epoch schedule 0 = ξ0 < ξ1 < ξ2 < · · ·
for m = 1, 2, · · · do

Obtain θ̂m ∈ L2(Ω, ν) from oracle FuncReg with
dataset Dm−1 = {(xt, at, yt)}τm−1

t=τm−2+1,

θ̂m = FuncReg(Dm−1).

Define exploration parameter ςm =
1
2

√
K

Estδ/2m2 (τm−1−τm−2)
(for epoch 1, ς1 = 1).

for Round t = ξm−1 + 1 · · · , ξm do
Observe xt.
Compute the value of functional for every action

v̂m(a) = T (

∫
Ω

θ̂mϕ(xt, a, w, s)dν(w)) ∀a ∈ A.

Define IGWςm policy:

pt(a) =

{
1

K+ςm(v̂m(âm)−v̂m(a)) for all a ̸= âm

1−
∑

a ̸=ât
pt(a) for a = âm.

Sample at ∼ pt and observe one data point from
cumulative distribution function F ∗(xt, at, s).

end for
end for

times, then with probability at least 1 − δ, the expected
regret of Algorithm 2 after T rounds is at most

E[Reg(T )] ≤C̃(K,L,L0, A, d, η)
(
(s

1/2
0 +M) ∨ 1

)
∗

O
(
log(log T/δ)

(√
T + T

3γ+2
2(γ+2)

))
,

where C̃(A,K,L, L0, d, η) is some constant that is only
relevant to the parameters in the bracket.

As 0 < γ ≤ 1, the term
√
T is dominated by T

3γ+2
2(γ+2) and

our regret rate becomes

O
(
C̃
(
(s

1/2
0 +M) ∨ 1

)
T

3γ+2
2(γ+2) (log(log T/δ))

)
,

where C̃ = C̃(K,L,L0, A, d, η).

From Theorem 4.2, we observe that the regret rate is deter-
mined by the decay speed of the eigenvalue sequence and
we present a numerical method to compute these sequences
in Appendix F. Specifically, when γ ↘ 0, our regret rate

is closer and closer to the
√
T order, which matches the

traditional optimal regret rate. If the eigenvalue sequence
is decaying exponentially fast, then it is also decaying poly-
nomially fast for any positive γ > 0. Thus, by choosing
γ ↘ 0, we conclude that the regret rate has order Õ

(√
T
)

for any exponentially decaying eigenvalue sequence. More-
over, for finite-dimensional problems, we could imagine that
all the eigenvalues with an index larger than the dimension
number are zero. So, we can also set γ = 0 in Theorem 4.2
and recover the optimal regret rate Õ(T 1/2) up to some
logarithmic factors.

On the other hand, if we have no prior knowledge about
the order of the dominating sequence {τi}∞i=1 but just know
that it converges, we can simply set it to 1 and still achieve
sublinear regret Õ(T 5/6), as shown in Corollary 4.3.
Corollary 4.3. For the dominating sequence {τi}∞i=1, if we
only have information that it converges without any knowl-
edge of the order γ, we can set γ = 1 and get 3γ+2

2(γ+2) =
5
6 .

Therefore, we could obtain the following expected regret
bound:

E[Reg(T )] ≤C̃(A,K,L, L0, d, η)
(
(s

1/2
0 +M) ∨ 1

)
∗

O
(
T

5
6 log(log T/δ)

)
.

In summary, our algorithm is adaptive and robust. It not
only recovers the optimal regret rate in finite-dimensional
problems and infinite-dimensional problems with exponen-
tial eigendecay but can still manage to achieve a sublinear
regret with no prior information about the eigendecay rate
as well. These properties demonstrate the versatility of our
algorithm and its broad potential for application.

We finish this section with a remark that in the design of Al-
gorithm 2, we do not involve any information about the total
round number T . If we know T in advance, we could further
have a more efficient epoch schedule that reduces the offline
functional regression oracle call times from O(log T ) to
O(log log T ) (Simchi-Levi & Xu, 2021; Qian et al., 2024).

5. Conclusion and Discussion
In this paper, we establish a general framework for
stochastic contextual online decision-making with infinite-
dimensional functional regression, which incorporates any
application examples with Lipschitz continuous objective
functionals. We study the relationship between the util-
ity regret and the eigenvalue sequence decay of our de-
sired integral operator. Compared with finite-dimensional
linear bandits, this connection is new and crucial in func-
tional regression with infinite dimensions. Furthermore,
we design a computationally efficient algorithm to solve
our sequential decision-making problem based on a novel
infinite-dimensional functional regression oracle.
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Finally, we would like to discuss some interesting future
research directions and we leave these interesting questions
as potential next steps.

Extension to adversarial contextual decision-making:
The epoch of Algorithm 2 is designed for lower computation
cost, through the low-frequency algorithm call property, of
computing eigenvalues and eigenfunctions in our functional
regression oracle FuncReg. We observe that the guarantee
provided by our oracle in Theorem 3.6 inherently adapts to
any dataset where the contexts are arbitrarily drawn. This
raises a natural question: can we design an efficient online
functional regression oracle (Foster & Rakhlin, 2020), built
on Algorithm 1, to address adversarial contextual decision-
making problems?

Minimax lower bound: In our paper, the utility regret rate
is Õ(T

3γ+2
2(γ+2) ). An interesting open question is whether this

dependency on γ is optimal. It is worth future exploration
into the minimax lower bound of the utility regret with
respect to the eigenvalue decay rate γ.

Extension to nonlinear functional regression: In our
problem, the relationship between F ∗(x, a, s) and Φ =
{ϕ(x, a, w, s)}w∈Ω is linear because of the linearity of inte-
gration. One challenging problem is to extend our method-
ology to some potential nonlinearity between F ∗(x, a, s)
and our basis function family and design efficient decision-
making algorithms.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Related Works
Contextual Bandits Contextual bandits have been widely studied in both academia and industry, including applications
such as recommendation systems (Tewari & Murphy, 2017) and healthcare (Zhou et al., 2023). Please refer to Zhou (2015);
Bouneffouf et al. (2020) for comprehensive surveys. However, most theoretical results require assumptions about the
dimensionality, such as the context having a finite cardinality (Agarwal et al., 2014) or the existence of a low-dimensional
representation, as in linear contextual bandits (Chu et al., 2011). Our paper is the first to address the problem of contextual
decision-making based on infinite-dimensional functional regression. We establish universal regret bounds for various tasks
under eigenvalue decay assumptions and further derive general sublinear regrets without them.

Operator Learning. Operator learning (Mollenhauer et al., 2022; Kovachki et al., 2024; Adcock et al., 2024) studies
the case where the input and output are elements in Banach spaces such as some function spaces. However, in our paper,
although the objective is the distribution function, we are unable to directly observe the function itself. Instead, we can
only observe one single data point sampled from this distribution. In other words, we do not have full feedback but only
bandit feedback, which makes our problem much more difficult than general operator learning (Foster et al., 2018; Foster &
Rakhlin, 2020).

Functional Regression. Functional data analysis focuses on analyzing data where each observation is a function defined
over a continuous domain, typically sampled discretely from a population. Morris (2015); Ramsay & Silverman (2002)
provide comprehensive introductions to functional regression. One subdomain, Kernel learning, for example, learning
in reproducing kernel Hilbert space (RKHS) has been a hot topic in recent years (Yeh et al., 2023; Hou et al., 2023).
Nonetheless, the problem we focus on is quite different from theirs, as datasets in kernel learning contain input and output
points lying in some kernelized spaces, while we do not have access to data of required integral kernel Lx,a lying in an
infinite-dimensional space L2(Ω, ν) directly. Zhang et al. (2022); Azizzadenesheli et al. studies functional regression for
contextual CDFs in finite dimensions. For infinite dimensions, under some special conditions, Zhang et al. (2022) also
proposes a method based on some regularization term which scales with respect to the number of data points.

B. Useful Math Theorems
Theorem B.1 (Theorem 8.2 in Gohberg et al. (2012)). Let positive operator U(θ)(w) =

∫
Ω
K(w, r)θ(r)dν(r) be self-

adjoint. If the kernel K(w, r) is continuous and satisfies the Lipschitz condition,

|K(w, r1)−K(w, r2)| ≤ C||s2 − s1||,

then
∞∑
j=1

λj(U) <∞

i.e., U is a trace class operator.

Theorem B.2 (Theorem 8.1 in Gohberg et al. (2012)). If a positive Hilbert-Schmidt integral operator U is associated with
kernel K(·, ·). Then, if U is traceable, it holds that tr(U) =

∫
K(x, x)dx <∞.

Theorem B.3 (Theorem 2.7 in Ferreira & Menegatto (2013)). Assume ν is a Borel measure. Let K be a kernel in
C(Ω × Ω) ∩ L2(Ω × Ω, ν × ν) possessing an integrable diagonal. Finally, assume L possesses a L2(X , ν)-convergent
spectral representation in the form

L(f) =
∞∑
i=1

λi(L) ⟨f, ei⟩ ei, f ∈ L2(Ω, ν),

where {ei} is an orthonormal subset of L2(Ω, ν) and the sequence {λi(L)} is a subset of a circle sector from the origin of
C with central angle less than π. Then, the following statements hold:

(i) There exists ξ ∈ [0, 2π] and l > 0 such that

∞∑
i=1

|λi(L)| ≤ (1 + l2)1/2
∫
Ω

Re(eiξK(x, x))dν(x);

12
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(ii) If the eigenvalues of L are arranged such that |λi(L)| ≥ |λi+1(L)|, i = 1, 2, · · · , then

|λi(L)| ≤
(1 + l2)1/2

n

∫
Ω

Re(eiξK(x, x))dν(x);

(iii) as n→ ∞,
λn(L) = o(n−1).

(iv) The operator L is trace-class.

Definition B.4 (Functional Determinants). For any traceable Hilbert-Schmidt integral operator U , we define the following
number as the functional determinants of U ,

EU ≜
∞∑
i=1

log(1 + λi(U)).

Given dataset D, we will also use the terminology ED to denote EUD when it’s clear from context. This number depicts the
speed of growth of the eigenvalues of our integral operator. When the dimension is finite, one can show that the order is
ED ≃ log(|D|).
Theorem B.5 (Doob’s Maximal Martingale Inequality). Suppose {Xk}k≥0 is a sub-martingale with Xk ≥ 0 almost surely.
Then for all a > 0, we have,

P( max
1≤i≤k

Xi ≥ a) ≤ E[Xk]

a
.

Lemma B.6. For any a, b, c ∈ R, a > 0, we have∫
R
exp

{
−ax

2 + bx+ c

2

}
dx =

√
2π

a
exp

(
b2 − 4ac

8a

)
.

Proof of Lemma B.6. The proof is quite direct. By calculus, we have

−ax
2 + bx+ c

2
= −a

2

(
x2 +

b

a
x+

c

a

)
= −a

2

(
x+

b

2a

)2

+
b2 − 4ac

8a
.

Using the fact that
∫
R e

−x2

=
√
π, by change of variable u =

√
a
2

(
x+ b

2a

)
, just plug it in and we shall finish the proof.

Theorem B.7 (Courant-Fischer minimax theorem in Teschl (2014)). Let A be a compact, self-adjoint operator on a Hilbert
space H . Its eigenvalues are listed in decreasing order

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ · · · .

Let Sk ⊂ H denote a k-dimensional subspace. Then,

λk = max
Sk

min
α∈Sk,||α||=1

⟨x,Ax⟩ .

Theorem B.8 (Sion’s Minimax Theorem in Sion (1958)). Let X and Y be convex sets in linear topological spaces, and
assume X is compact. Let f : X × Y → R be such that i) f(x, ·) is concave and upper semicontinuous over Y for all
x ∈ X and ii)f(·, y) is convex and lower semicontinuous over X for all y ∈ Y . Then,

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y).

Lemma B.9 (Example 27.1 Shalev-Shwartz & Ben-David (2014)). Suppose that A is a compact set in Rm, and set

c = maxa∈A ||a||, then N (r,A, || · ||) ≤
(

2c
√
m

r

)m
13
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C. Proofs in Section 2
Proof of Theorem 2.8. Recall that

Lx,a(θ)(w) =

∫
Ω

Kx,a(w, r)θ(r)dν(r).

By definition, we have 0 ≤ Kx,a(w, r) = Kx,a(r, w) ≤ 1, and∫
Ω

∫
Ω

Kx,a(w, r)2dν(w)dν(r) ≤ 1.

Thus, Lx,a is a Hilbert-Schmidt integral operator and it is compact. By Cauchy-Schwarz inequality, we have

||Lx,a(θ)||2L2(Ω,ν) ≤
∫
Ω

∫
Ω

θ(r)2dν(r)

∫
Ω

Kx,a(w, r)2dν(r)dν(w) ≤ ||θ||L2(Ω,ν).

Also,

⟨θ,Lx,a(θ)⟩ =
∫
Ω

∫
Ω

θ(w)Kx,a(w, r)θ(r)dν(r)dν(w) ≥ 0.

Therefore, Lx,a is positive operator with ||Lx,a|| ≤ 1. By direct calculation, we have

⟨θ1,Lx,aθ2⟩ =
∫
Ω

θ1(w)

∫
Ω

Kx,a(w, r)θ2(r)dν(r)dν(w)

=

∫
Ω

θ2(r)

∫
Ω

Kx,a(w, r)θ1(w)dν(w)dν(r)

= ⟨Lx,a(θ1), θ2⟩ .

So we finish the proof.

D. Proofs in Section 3
Proof of Theorem 3.4. We prove this theorem for general ε > 0. We first show that

∑n
j=1

∫
S
Iyj

(s)ϕ(xj , aj , w, s)dm(s) ∈
L2(Ω, ν). We have

||
n∑

j=1

∫
S

Iyj
(s)ϕ(xj , aj , w, s)dm(s)||2L2(Ω,ν) ≤

n∑
j=1

||
∫
S

Iyj
(s)ϕ(xj , aj , w, s)dm(s)||2L2(Ω,ν)

≤ nν(Ω) <∞.

Now we define

θ0(w) ≜ U†
D,ε

∫
S

n∑
j=1

Iyj
(s)ϕ(xj , aj , w, s)dm(s)

 .

Because there are only finite terms in the summation by the definition of U†
D,ε, we have

||θ0||L2(Ω,ν) <∞.

Therefore, by the Cauchy-Schwarz inequality, we have

|
∫
Ω

θ0(w)ϕ(xj , aj , w, s)dν(w)|

≤
∫
Ω

|θ0(w)ϕ(xj , aj , w, s)|dν(w)

≤||θ0||L2(Ω,ν)||ϕ(xj , aj , ·, s)||L2(Ω,ν)

≤||θ0||L2(Ω,ν)

√
ν(Ω).

14
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Recall we have m(S) = 1 <∞ and |Iyj
(s)| ≤ 1 for any j ∈ [n] and s ∈ S, which implies that

L(θ0,D) <∞.

On the other hand, for any θ ∈ Span(e1 · · · , eNε), we have

L(θ0 + θ,D)− L(θ0,D) =

n∑
j=1

∫
S

(∫
Ω

θ(w)ϕ(xj , aj , w, s)

)2

dm(s)

+ 2

n∑
j=1

∫
S

(∫
Ω

θ(w)ϕ(x)j, aj , w, s)dν(w)

)(∫
Ω

θ0(w)ϕ(xj , aj , w, s)dν(w)− Iyj
(s)

)
dm(s)

We analyze this difference term by term. First, by algebra, it holds that

n∑
j=1

∫
S

(∫
Ω

θ(w)ϕ(xj , aj , w, s)dν(w)

)(∫
Ω

θ0(w)ϕ(xj , aj , w, s)dν(w)

)
dm(s)

=

∫
Ω

θ(w)

∫
Ω

θ0(r)

 n∑
j=1

∫
S

ϕ(xj , aj , w, s)ϕ(xj , aj , r, s)dm(s)

 dν(w)dν(r)

=

∫
Ω

θ(w)

n∑
j=1

Lxj ,aj (θ0)(w)dν(w)

= ⟨θ,UD(θ0)⟩ .

Recall θ, θ0 ∈ Span(e1 · · · , eNε
), so we have

⟨θ,UD(θ0)⟩ =
〈
θ, ÛD,ε(θ0)

〉
.

Second, by direct calculation, we also have

n∑
j=1

∫
S

(∫
Ω

θ(w)ϕ(xj , aj , w, s)dν(w)

)
Iyj

(s)dm(s)

=

∫
Ω

θ(w)

 n∑
j=1

∫
S

Iyj
(s)ϕ(xj , aj , w, s)dm(s)

 dν(w)

=

〈
θ,

n∑
j=1

∫
S

Iyj
(s)ϕ(xj , aj , ·, s)dm(s)

〉

Given the condition that θ ∈ Span(e1 · · · , eNε), we have〈
θ,

n∑
j=1

∫
S

Iyj
(s)ϕ(xj , aj , ·, s)dm(s)

〉
=

Nε∑
i=1

⟨θ, ei⟩

〈
n∑

j=1

∫
S

Iyj
(s)ϕ(xj , aj , ·, s)dm(s), ei

〉

Moreover, by the definition of θ0, we know that

〈
θ, ÛD,ε(θ0)

〉
=

Nε∑
i=1

⟨θ, ei⟩

〈
λi ·

1

λi

n∑
j=1

∫
S

Iyj
(s)ϕ(xj , aj , ·, s)dm(s), ei

〉

=

Nε∑
i=1

⟨θ, ei⟩

〈
n∑

j=1

∫
S

Iyj
(s)ϕ(xj , aj , ·, s)dm(s), ei

〉
.

15
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Thus,

L(θ0 + θ,D)− L(θ0,D) =

n∑
j=1

∫
S

(∫
Ω

θ(w)ϕ(xj , aj , w, s)

)2

dm(s) ≥ 0.

Therefore, θ0 = θD,ε and we finish the proof.

Lemma D.1. Projection PD is non-expansive, which implies that

||PD(x)− PD(z)||UD ≤ ||x− z||UD , ∀x, z ∈ L2(Ω, ν).

Proof of Lemma D.1. By the fact that C is convex, we define the quadratic function h(µ) = ||x−((1− µ)PD(x) + µy) ||2UD
for any x ∈ L2(Ω, ν), y ∈ C. We expand it to get,

h(µ) = || (x− PD(x))−µ(y−PD(x))||2UD
= ||x−PD(x)||2UD

−2µ ⟨x− PD(x),UD(y − PD(x))⟩+µ2||y−PD(x)||2UD
.

The vertex of h(µ) is

µ∗ =
⟨x− PD(x),UD(y − PD(x))⟩

||y − PD(x)||2UD

.

Because PD(x) = argminy∈C ||y − x||2UD
, we have µ∗ ≤ 0. Thus,

⟨x− PD(x),UD(y − PD(x))⟩ ≤ 0.

Again, we abbreviate λi as λi(UD) and ei as eiUD
. By the spectral representation of UD, this is equivalent to

∞∑
i=1

λi ⟨x− PD(x), ei⟩ ⟨y − PD(x), ei⟩ ≤ 0. (2)

This holds for all y ∈ C, so we set y = PD(z) in Equation (2) to get

∞∑
i=1

λi ⟨x− PD(x), ei⟩ ⟨PD(z)− PD(x), ei⟩ ≤ 0. (3)

On the other hand, we switch x, z in Equation (3) to get,

∞∑
i=1

λi ⟨PD(z)− z, ei⟩ ⟨PD(z)− PD(x), ei⟩ ≤ 0. (4)

Adding Equation (4) and Equation (3) to obtain

∞∑
i=1

λi ⟨PD(z)− PD(x), ei⟩ ⟨PD(z)− PD(x), ei⟩ ≤
∞∑
i=1

λi ⟨z − x, ei⟩ ⟨PD(z)− PD(x), ei⟩ .

By Cauchy-Schwartz inequality, we have,

∞∑
i=1

λi ⟨z − x, ei⟩ ⟨PD(z)− PD(x), ei⟩ ≤

( ∞∑
i=1

λi ⟨z − x, ei⟩2
)1/2( ∞∑

i=1

λi ⟨PD(z)− PD(x), ei⟩2
)1/2

.

Plugging this back, we get

(

∞∑
i=1

λi ⟨PD(z)− PD(x), ei⟩2)1/2 ≤

( ∞∑
i=1

λi ⟨z − x, ei⟩2
)1/2

,

which is exactly ||PD(x)− PD(z)||UD ≤ ||x− z||UD . So we finish the proof.
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Proof of Theorem 3.6. In this section, we also first prove for a general ε, and then we replace ε by ε∗ = n−
2

γ+2 to obtain
our result. For the ease of notation, we use λi to denote λi(UD) and ei to denote eiUD

. We first compute the difference

θD,ε − θ∗

=U†
D,ε

∫
S

n∑
j=1

Iyj
(s)ϕ(xj , aj , w, s)dm(s)

−
∞∑
i=1

⟨θ∗, ei⟩ ei

=U†
D,ε

∫
S

n∑
j=1

Iyj
(s)ϕ(xj , aj , w, s)dm(s)

− U†
D,ε (UD(θ

∗))−
∑

i≥Nε+1

⟨θ∗, ei⟩ ei

=U†
D,ε

∫
S

n∑
j=1

Iyj
(s)ϕ(xj , aj , w, s)dm(s)−

∫
S

∫
Ω

θ∗(r)ϕ(xj , aj , r, s)dν(r)ϕ(xj , aj , w, s)dm(s)

−
∑

i≥Nε+1

⟨θ∗, ei⟩ ei.

(5)

We define

Vj(w) ≜
∫
S

Iyj
(s)ϕ(xj , aj , w, s)dm(s)−

∫
S

∫
Ω

θ∗(r)ϕ(xj , aj , r, s)dν(r)ϕ(xj , aj , w, s)dm(s),

Wn ≜
n∑

j=1

Vj .

We apply norm || · ||UD on both sides of Equation (5) yielding

||θD,ε − θ∗||UD ≤||U†
D,ε(Wn)||UD + ||

∑
i≥Nε+1

⟨θ∗, ei⟩ ei||UD

=||Wn||Û†
D,ε

+ ||
∑

i≥Nε+1

⟨θ∗, ei⟩ ei||UD

≤||Wn||Û†
D,ε

+ nεM (6)

The equality is due to the definition of Û†
D,ε. Hence, our analysis only needs to focus on the first term ||Wn||Û†

D,ε
. We use

Fk to denote the σ-algebra generated by all the data from (x1, a1, y1) to (xk, ak, yk), and F∞ is σ(∪kFk) correspondingly.

By the definition of Vj , we take expectation with respect to Fj−1 and obtain

E[Vj(w)|Fj−1] =

∫
S

∫
Ω

θ∗(r)ϕ(xj , aj , r, s)dν(r)ϕ(xj , aj , w, s)dm(s)−θ∗(r)ϕ(xj , aj , r, s)dν(r)ϕ(xj , aj , w, s)dm(s) = 0.

Therefore, {Vj}j≥1 is a martingale difference sequence and consequently, Wk =
∑k

j=1 Vj is a martingale. For any
α ∈ L2(Ω, ν), we define Mk(α) ≜ exp

{
⟨α,Wk⟩ − 1

2 ||α||
2
UD

}
. Moreover, we define M0(α) = 1 for any α. We have the

following Lemma D.2 that {Mk(α)}k≥0 is a non-negative supermartingale.

Lemma D.2. {Mk(α)}k≥0 is a non-negative supermartingale.

Define ζ = {ζi}∞i=1 as an infinite sequence of i.i.d. standard Gaussian random variables. We use Fζ to denote the
σ(ζ1, ζ2, · · · ). Define

β ≜
Nε∑
i=1

ζiei,

Because there are only finite terms in the summation, it holds that

E[||β||2L2(Ω,ν)] <∞.

17
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Thus, we have ||β||L2(Ω,ν) <∞ a.s. and β ∈ L2(Ω, ν).

Denoting Mk as E[Mk(β)|F∞], we now verify that this is also a non-negative supermartingale.

E[Mk|Fk−1] = E[Mk(β)|Fk−1]

= E[E[Mk(β)|Fζ ,Fk−1]|Fk−1]

≤ E[E[Mk−1(β)|Fζ ,Fk−1]|Fk−1]

= E[E[Mk−1(β)|Fζ ,F∞]|Fk−1]

= E[E[Mk−1(β)|F∞]|Fk−1]

=Mk−1.

Furthermore, the integral of |Mn| could be upper bounded by,

E[|Mk|] = E[Mn] = E[Mk(β)] = E[E[Mk(β)|Fζ ]] ≤ E[M0(β)] = 1.

Therefore,
{
Mk

}
n≥k≥0

is a non-negative supermartingale with a uniform expectation upper bound.

On the other hand, we can directly calculate Mn. We use wi to denote ⟨Wn, ei⟩ for simplicity. Then, it holds that

Mn(β) = exp

{
⟨β,Wn⟩ −

1

2
||β||2UD

}
= exp

{
Nε∑
i=1

wiζi −
1

2

Nε∑
i=1

λiζ
2
i

}
,

and

Mn =

∫
RNε

exp

{
Nε∑
i=1

wiζi −
1

2

Nε∑
i=1

(
λiζ

2
i + ζ2i

)} 1√
2π
dζ1

1√
2π
dζ2 · · ·

1√
2π
dζNε

=

Nε∏
i=1

(∫
R
exp

{
wiζi −

λi + 1

2
ζ2i

}
1√
2π
dζi

)
.

Then, by Lemma B.6, we have

Mn =
1√∏Nε

i=1(1 + λi)
exp

{
Nε∑
i=1

w2
i

2(1 + λi)

}
≥ 1√∏Nε

i=1(1 + λi)
exp

{
1

2(1 + 1/(nε))
||Wn||2U†

D,ε

}
.

Applying Theorem B.5, we derive

P

 1√∏Nε

i=1(1 + λi)
exp

{
1

2(1 + 1/(nε))
||Wn||2U†

D,ε

}
≥ 1

δ

 ≤ δ,

which implies that with probability 1− δ,

||Wn||2U†
D,ε

< 2(1 + 1/(nε))

[
log(

1

δ
) +

1

2

Nε∑
i=1

log(1 + λi)

]
.

Combined with Equation (6), it indicates that with probability 1− δ,

||θD,ε − θ∗||UD ≤

√√√√2(1 + 1/(nε))

[
log(

1

δ
) +

1

2

Nε∑
i=1

log(1 + λi)

]
+ nεM.

Noting that projection mapping is non-expansive by Lemma D.1, we have

||PD(θD,ε)− PD(θ
∗)||UD = ||θ̂D,ε − θ∗||UD ≤ ||θD,ε − θ∗||UD .
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Finally, we conclude that

||θ̂D,ε − θ∗||UD ≤

√√√√(1 + 1/nε)

(
2 log(

1

δ
) +

Nε∑
i=1

log(1 + λi)

)
+ nεM.

We define

Eδ
D,ε(n) ≜

√√√√2

(
2 log(

1

δ
) +

Nε∑
i=1

log(1 + λi)

)
+ nεM.

Setting ε = ε∗ = n−
2

γ+2 and notice that 1
nε = n−

γ
γ+2 ≤ 1, So we finish the proof.

Proof of Lemma D.2. By definition, we know that Mk(α) is Fk-measurable. Consequently, it holds that

E [Mk(α)|Fk−1]Mk−1(α) =E
[
exp {α, Vk} −

1

2

∫
S

ψxk,ak
(α, t)2dm(s)|Fk−1

]
=Mk−1(α)

E [exp {α, Vk} |Fk−1]

exp
{

1
2

∫
S
ψxk,ak

(α, t)2dm(s)
}

Since −
∫
S
|ψxk,ak

(α, t)|dm(s) ≤ ⟨α, Vk⟩ ≤
∫
S
|ψxk,ak

(α, t)|dm(s), according to Hoeffding’s lemma (Hoeffding, 1994),
we have

E [exp {α, Vk} |Fk−1] ≤ exp

{
4

8

(∫
S

|ψxk,ak
(α, t)|dm(s)

)2
}

≤ exp

{
1

2

∫
S

ψxk,ak
(α, t)2dm(s)

}
.

Then we have

E [Mk(α)|Fk−1] ≤Mk−1(α)
exp

{
1
2

∫
S
ψxk,ak

(α, t)2dm(s)
}

exp
{

1
2

∫
S
ψxk,ak

(α, t)2dm(s)
} =Mk−1(α).

We finish the proof.

Proof of Lemma 3.7. For any k fixed, by Theorem B.7, we have,

λk(UD) = max
Sk,dim(Sk)=k

min
α∈Sk,||α||=1

⟨α, (Lx1,a1 + · · ·+ Lxn,an)(α)⟩

= max
Sk,dim(Sk)=k

min
α∈Sk,||α||=1

n∑
j=1

⟨α,Lxj ,aj (α)⟩

≤ max
Sk,dim(Sk)=k

min
α∈Sk,||α||=1

max
L∈{Lx,a:x∈X ,a∈A}

n ⟨α,L(α)⟩

Notice that for any Sk fixed, the set {α ∈ Sk, ||α|| = 1} is both compact and convex. By Assumption 2.10, we also know that
{Lx,a : x ∈ X , a ∈ A} is convex. We regard ⟨α,L(α)⟩ as a function of both α and L. Then, function f(α,L) ≜ ⟨α,L(α)⟩
is linear in L, and so f(α,L) is continuous and concave in L. On the other hand, f(α,L) is the square of some norm || · ||L
and thus it is convex and continuous in α. We apply Theorem B.8 to get

max
Sk,dim(Sk)=k

min
α∈Sk,||α||=1

max
L∈{Lx,a:x∈X ,a∈A}

⟨α,L(α)⟩

= max
Sk,dim(Sk)=k

max
L∈{Lx,a:x∈X ,a∈A}

min
α∈Sk,||α||=1

⟨α,L(α)⟩

= max
L∈{Lx,a:x∈X ,a∈A}

max
Sk,dim(Sk)=k

min
α∈Sk,||α||=1

⟨α,L(α)⟩ .

The last inequality holds because we can swap the order of two supremums. Using Theorem B.7 once again, we have

max
L∈{Lx,a:x∈X ,a∈A}

max
Sk,dim(Sk)=k

min
α∈Sk,||α||=1

⟨α,L(α)⟩ = max
L∈{Lx,a:x∈X ,a∈A}

λk(L).
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Combining these parts together, it holds that

λk(UD) ≤ n max
L∈{Lx,a:x∈X ,a∈A}

λk(L) ≤ nτi.

Thus, we have

Nε∑
i=1

log(1 + λi(UD)) =

Nε∑
i=1

log(1 +
λi
nε
nε) ≤

Nε∑
i=1

log(1 +
nτi
nε

nε)

Because for ∀1 ≤ i ≤ Nε, it holds that
nε ≤ λi ≤ nτi,

we have

Nε∑
i=1

log(1+
nτi
nε

nε) =

Nε∑
i=1

log(1+nτi) ≤
Nε∑
i=1

log(1+nτ1−γ
i εγ

τγi
εγ

) ≤
Nε∑
i=1

τγi
εγ

log(1+nτ1−γ
i εγ) ≤ log(1 + εγn)

εγ

Nε∑
i=1

τi,

which implies

Nε∑
i=1

log(1 + λi(UD)) ≤
log(1 + εγn)

εγ

Nε∑
i=1

τi. (7)

Plugging Equation (7) back to the definition of Eδ
D,ε(n), we have,

Eδ
D,ε(n) =

√√√√2

(
2 log(

1

δ
) +

Nε∑
i=1

log(1 + λi)

)
+ nεM

≤

√√√√2

(
2 log(

1

δ
) +

log(1 + εγn)

εγ

Nε∑
i=1

τi

)
+ nεM

≤

√
2

(
2 log(

1

δ
) +

log(1 + εγn)

εγ
s0

)
+ nεM.

Setting ε∗ = n−
2

γ+2 , we get

Eδ
D,ε∗(n) ≤

√
4 log(1/δ) + 2s0n

2γ
γ+2 log(1 + n) + n

γ
γ+2M.

The RHS has nothing to do with D but the information |D| = n. Therefore, we define Eδ(n) ≜ 2 log(1/δ)1/2 +(
2
√
s0 log(1 + n) +M

)
n

γ
γ+2 . By the fact that

√
a+ b ≤

√
a+

√
b, we obtain,

Eδ
D,ε∗(n) ≤ Eδ(n) = 2 log(1/δ)1/2 +

(
2
√
s0 log(1 + n) +M

)
n

γ
γ+2 .

Thus, we finish the proof.

Proof of Theorem 3.10. Denoting Kx,a(w, r) as gw,r(x, a), we get a function family indexed by Ω × Ω, G =
{gw,r(x, a) : (w, r) ∈ Ω× Ω}. We first consider all the rational points in Ω × Ω which forms a countable subset
{(wq, rq)}∞q=1 and induces a countable subset of GQ =

{
gwq,rq (x, a)

}∞
q=1

. By Theorem 3.4.5 in Giné & Nickl (2021), we
have, for any δ > 0,

P

sup
q

|gwq,rq (x, a)−
∫
X ,A

gwq,rq (x, a)dQ| ≥ 2E

sup
q

1

n

n∑
j=1

ϵjgwq,rq (xj , aj)

+

√
2 log(1/δ)

n

 ≤ δ.
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By the density of rational numbers in real numbers and g is 2L0-Lipschitz continuous in (w, r), we know that

P

sup
g∈G

∣∣∣gw,r(x, a)−
∫
X ,A

gw,r(x, a)dQ| ≥ 2E

sup
g∈G

1

n

n∑
j=1

ϵjgw,r(xj , aj)

+

√
2 log(1/δ)

n

 ≤ δ.

Now we try to bound the Rademacher complexity term E
[
supg∈G

1
n

∑n
j=1 ϵjgw,r(xj , aj)

]
. Recall that we have N (t,Ω2, ||·

||∞) ≤ (At )
2d, ||gw1,r1(x, a)− gw2,r2(x, a)||∞ ≤ 2L0||(w1, r1)− (w2, r2)||∞. Then,

N (t,G, || · ||∞) ≤ (
2L0A

t
)2d.

Then, by Dudley’s integral entropy bound and using ||g||∞ ≤ 1, we have

Eε sup
g∈G

1

n

n∑
j=1

ϵjg(xj , aj) ≤
12√
n

∫ 1

0

√
logN (y, || · ||∞,G)dy ≤ 24

√
d√
n

√
log(2L0A).

For the simplicity of notation, we use Q(Kx,a(w, r)) to denote
∫
X ,A

∫
S
ϕ(x, a, w, s)ϕ(x, a, r, s)dm(s)dQ and

Qn(Kx,a(w, r)) to denote its empirical counterpart. Combining all the parts above together, we have that with prob-
ability at least 1− δ,

sup
(w,r)

|Q(Kx,a(w, r))−Qn(Kx,a(w, r))| ≤
48
√
d log(2L0A)√

n
+

√
2 log(1/δ)√

n
.

By Assumption 3.9, we get with probability at least 1− δ,

sup
(w,r)

∣∣∣∣ Q(Kx,a(w, r))

Qn(Kx,a(w, r))
− 1

∣∣∣∣ ≤ 48
√
d log(2L0A)

η
√
n

+

√
2 log(1/δ)

η
√
n

.

Recalling that UD =
∑n

j=1

∫
Ω
Kxj ,aj (w, r)dm(s)dν(r), our bound in Corollary 3.8 yields with probability at least 1− δ,

the following bound holds that
||θ̂D − θ∗||UD ≤ Eδ(n).

We use U∗ to denote the integral operator induced by kernel n
∫
X ,A

∫
S
ϕ(x, a, w, t)ϕ(x, a, r, t)dm(s)dQx,a and UD is its

empirical counterpart. Therefore, for any θ, we have that

⟨θ,U∗(θ)⟩ =
∫
Ω

θ(w)

∫
Ω

n

∫
X ,A

∫
S

θ(r)ϕ(x, a, w, t)ϕ(x, a, r, t)dm(s)dQx,adν(r)dν(w)

= n

∫
Ω

∫
Ω

θ(w)θ(r)Q(K(w, r))dν(w)dν(r),

⟨θ,UD(θ)⟩ =
∫
Ω

θ(w)

∫
Ω

n∑
j=1

∫
S

θ(r)ϕ(xj , aj , w, s)ϕ(xj , aj , r, s)dm(s)dν(w)dν(r)

= n

∫
Ω

∫
Ω

θ(w)θ(r)Qn(K(w, r))dν(w)dν(r).

Combining these two equations and the concentration analysis above, we conclude that with probability at least 1− δ,

⟨θ,U∗(θ)⟩ = n

∫
Ω

∫
Ω

θ(w)θ(r)Q(K(w, r))dν(w)dν(r)

= n

∫
Ω

∫
Ω

θ(w)θ(r)

{
Q(K(w, r))

Qn(K(w, r))

}
Qn(K(w, r))dν(w)dν(r)

≤

(
1 +

48
√
d log(2L0A) + 2

√
log(1/δ)

η
√
n

)
n

∫
Ω

∫
Ω

θ(w)θ(r)Qn(K(w, r))dν(w)dν(r)

=

(
1 +

48
√
d log(2L0A) + 2

√
log(1/δ)

η
√
n

)
⟨θ,UD(θ)⟩ .
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Replacing the general θ by θ̂D − θ∗ an using Corollary 3.8, it holds that, with probability at least 1− 2δ,

||θ̂D − θ∗||U∗ ≤

(
1 +

48
√
d log(2L0A) + 2

√
log(1/δ)

η
√
n

)1/2

Eδ(n).

On the other hand, by directly calculating ||θ̂D − θ∗||2U∗ , we find that

||θ̂D − θ∗||2U∗ =
〈
θ̂D,ε − θ∗,U∗(θ̂D − θ∗)

〉
=n

∫
X ,A

∫
Ω

(
θ̂D − θ∗

)
(w)

∫
Ω

(
θ̂D − θ∗

)
(r)ϕ(x, a, w, t)ϕ(x, a, r, t)dm(s)dν(w)dν(r)dQx,a

=n

∫
X ,A

∫
S

(∫
Ω

(
θ̂D − θ∗

)
(w)ϕ(x, a, w, t)dν(w)

)(∫
Ω

(
θ̂D − θ∗

)
(r)ϕ(x, a, r, t)dν(r)

)
dm(s)dQx,a

=nEx,a

[
||F̂D(x, a, s)− F ∗(x, a, s)||2L2(S,m)

]
.

Assembling all these parts, we finally get the following inequality,

Ex,a

[
||F̂D(x, a, s)− F ∗(x, a, s)||2L2(S,m)

]
≤

(
1 + (48

√
d log(2L0A) + 2

√
log(1/δ))/η

)
Eδ(n)2

n
.

By Lemma 3.7, we know that

Eδ(n) ≜ 2 log(1/δ)1/2 +
(
2
√
s0 log(1 + n) +M

)
n

γ
γ+2 .

By denoting C(d, L0, δ, A, η) as
(
1 + (48

√
d log(2L0A) + 2

√
log(1/δ))/η

)
, we finish our proof.

E. Proofs in Section 4
Lemma E.1 ((Simchi-Levi & Xu, 2021)). Assume that we are given an offline regression oracle RegOff and i.i.d. data
D = {(xi, ai, ri)}ni=1 where E[ri|xi, ai] = f∗(xi, ai). With probability at least 1− δ, it returns f̂ : X ×A → R such that

Ex,a

[(
f̂(x, a)− f∗(x, a)

)2]
≤ Estδ(n)

n

for some number Estδ(n). Then, define epoch schedule ξm = 2m and exploration parameter ςm = 1
2

√
K/Estδ/m2(ξm−1).

For any t, let m(t) be the number of epochs that round t lies in. For any T large enough, with probability at least 1− δ, the
regret of Algorithm 2 after T rounds is at most

O

√
K

m(T )∑
m=2

√
Estδ/(2m2)(ξm−1 − ξm−2)

ξm−1 − ξm−2
(ξm − ξm−1)

 .

Proof of Theorem 4.2. From our regression oracle, we have that

Estδ(n)

n
=
L2C(d, L0, δ/2, A, η)Eδ/2(n)2

n
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By applying Lemma E.1 and plugging in the choices that ξm = 2m, we get

Reg(T )

≤O

√
K

m(T )∑
m=2

√
Estδ/(2m2)(ξm−1 − ξm−2)

ξm−1 − ξm−2
(ξm − ξm−1)

+O(1)

≤O

√
KL

m(T )∑
m=2

√
C(d, L0, δ/4m2, A, η)

Eδ/(4m2)(ξm−1 − ξm−2)√
ξm−1 − ξm−2

(ξm − ξm−1) + 1


≤O

√
KL

m(T )∑
m=2

√
C(d, L0, δ/4m2, A, η)

2 log(4m2/δ)1/2 +
(
2
√
s0 log(1 + 2m−2) +M

)
(2m−2)

γ
γ+2

2m/2−1
· 2m−1 + 1


(8)

By our epoch schedule, it holds that m(T ) ≤ ⌈log2(T )⌉. By Theorem 3.10, we know

C(d, L0, δ/4m
2, A, η) =

(
1 + (48

√
d log(2L0A) + 2

√
log(4m2/δ))/η

)
≤

192
√
d log(2L0A)

η

√
2 log(m/δ).

Thus,

C(d, L0, δ/4m
2, A, η) ≤ O

(√
d log(2L0A)

η

√
log(m/δ)

)
.

Therefore, for Equation (8), we further have

Reg(T ) ≤O

L√dK log(2L0A)

η

√
log(m/δ)

m(T )∑
m=2

(
(log(log T/δ))

1/2
+
(√

s0 log(1 + log T ) +M
)
2

γ(m−2)
(γ+2)

)
2m/2

 .

Denote the number L
√

dK log(2L0A)

η as C̃(K,L,L0, A, d, η). We have,

O

L√dK log(2L0A)

η

√
log(m/δ)

m(T )∑
m=2

(
(log(log T/δ))

1/2
+
(√

s0 log(1 + T ) +M
)
2

γ(m−2)
(γ+2)

)
2m/2


≤C̃(K,L,L0, A, d, η)O

log(log T/δ)

m(T )∑
m=2

2m/2 + (log log T/δ)1/2
m(T )∑
m=2

(√
s0 log(1 + log T ) +M

)
2

(3γ+2)m
2(γ+2)


≤C̃(K,L,L0, A, d, η)O

(
log(log T/δ)

√
T +

(
s
1/2
0 +M

)
(log log T/δ)T

3γ+2
2(γ+2)

)
≤C̃(K,L,L0, A, d, η)

(
(s

1/2
0 +M) ∨ 1

)
O
(
log(log T/δ)

(√
T + T

3γ+2
2(γ+2)

))
.

Proof of Theorem 4.1. By the L-Lipschitz continuity of T , we have

Ex,a

[(
T (F̂D(x, a, s))− T (F ∗(x, a, s))

)2]
≤ Ex,a

[
L2||F̂D(x, a, s)− F ∗(x, a, s)||2L2(S,m)

]

Then we apply Theorem 3.10 and replace 2δ by δ in the claim of Theorem 3.10. Thus, with probability 1− δ,

E(x,a)∼Q

[
||F̂D(x, a, s)− F ∗(x, a, s)||2L2(S,m)

]
≤
C(d, L0, δ/2, A, η)Eδ/2(n)2

n
.

Combining these two inequalities together, we shall get our result.
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F. Computation
Given the theorems and properties we have established, a natural and fundamental question arises: how can we numerically
compute the eigenvalues and eigenfunctions of an infinite-dimensional operator? In fact, within the applied functional
analysis community, there is a wide range of methods for numerically solving the eigenvalues and eigenfunctions of integral
operators in infinite-dimensional spaces (for example, see Chatelin (2011); Ray & Sahu (2013); Chatelin (1981); Kohn
(1972); Ahues et al. (2001); Panigrahi (2017) for reference), including the Galerkin method, the Rayleigh-Ritz method,
quadrature approximation methods and so on. In this section, we will briefly introduce one method based on degenerate
kernels for calculating the eigenvalues and eigenfunctions as an illustration. Please see Gnaneshwar (2007) for full details.

We assume that Ω = [0, 1] and an integral operatorC is defined asC[x](s) =
∫ 1

0
k(s, t)x(t)dt. The basic idea of Algorithm 3

is to construct a finite-dimensional integral kernel kNh
to approximate k holding the property that the differences between

their eigenvalues and eigenfunctions are small enough to be ignored. Therefore, to solve the eigenvalues and eigenfunctions
for the kernel k, we can instead solve them for kNh

, which is finite-dimensional and can be readily transformed into a matrix
eigenvalue problem.

We present the pseudo-code in Algorithm 3 and omit the theoretical approximation analysis here. Please refer to Gnaneshwar
(2007) for concrete theoretical guarantees.

Algorithm 3 Degenerate Kernel Method

Require: partition number n, kernel k(s, t), degree number r and corresponding Legendre polynomials Lr(t) =
dr

dtr (t
2 − 1)r.

Partition [0, 1] into n intervals, 0 = x0 < x1 < x2 < · · · < xn−1 < xn = 1, Ik = [xk−1, xk], h = max |Ik|. Set
fk(t) =

1−t
2 xk−1 +

1+k
2 xk,−1 ≤ t ≤ 1.

Define Pr as the space of polynomials of degree ≤ r − 1. Denote Nh = nr.
Define piecewise polynomial space associated with Pr

Sr
h =

{
u : [0, 1] → R : u

∣∣
Ik

∈ Pr, 1 ≤ k ≤ n
}
.

Find the Gauss point set (zeros set) of Lr(t) in [0, 1], Br = {y1 · · · , yr}.
Let A = ∪n

k=1fk(Br) = {ωi,k = fk(yi) : 1 ∈ [r], k ∈ [n]} and li(x) be the Lagrange polynomials of degree r − 1 with
respect to y1 · · · , yr such that li(yj) = δij .

Define ρjp(x) =

{
lj(f

−1
p (x)) x ∈ [xp−1, xp]

0 otherwise.
Notice ρjp ∈ Sr

h and ρjp(ωik) = δjiδkp, for i, j ∈ [r], k, p ∈ [n]. Set t(k−1)r+j = ωjk, z(k−1)r+j = ρjk, for k, p ∈ [n].
Let Sr

h ⊗ Sr
h be the tensor product space of Sr

h with dimension Nh = nr.
Define degenerate kernel

kNh
(s, t) =

Nh∑
i=1

Nh∑
j=1

k(ωi, ωj)zi(s)zj(t),

which induces a degenerate kernel operator

CNh
(x)(s) =

∫ 1

0

Nh∑
i=1

Nh∑
j=1

k(ωi, ωj)zi(s)zj(t)x(t)dt.

Solve the eigenvalue problem for the Nh-dimensional integral kernel kNh
.

We now provide a method to solve the eigenvalue problem for the finite-dimensional kernel kNh
for completeness.

Solve eigenvalue problem for finite-dimensional kNh
: Consider the following formula that

λ · g(s) =
∫ 1

0

Nh∑
i=1

Nh∑
j=1

k(ωi, ωj)zi(s)zj(t)g(t)dt. (9)
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Here, λ stands for the unknown eigenvalue and g is the corresponding eigenfunction. Define ci ≜
1
λ

∫ 1

0

∑Nh

j=1 k(ωi, ωj)zj(t)g(t)dt, i ∈ [Nh], and c = (c1, c2, · · · , cNh
) is an unknown vector in RNh which we will

solve for. Then, we can rewrite Equation (9) as

g(s) =

Nh∑
i=1

cizj(s). (10)

Plugging Equation (10) back to the definition of ci, it holds that

ci =
1

λ

∫ 1

0

Nh∑
j=1

k(ωi, ωj)zj(t)

Nh∑
k=1

ckzk(t)dt =
1

λ

Nh∑
j=1

Nh∑
k=1

ckk(ωi, ωj)

∫ 1

0

zj(t)zk(t)dt, i ∈ [Nh], (11)

which is equivalent to

λ · ci =
∫ 1

0

Nh∑
j=1

k(ωi, ωj)zj(t)

Nh∑
k=1

ckzk(t)dt =

Nh∑
j=1

Nh∑
k=1

ckk(ωi, ωj)

∫ 1

0

zj(t)zk(t)dt, i ∈ [Nh]. (12)

Note that within the implementation of Algorithm 3, both k(ωi, ωj) and zj(t), zk(t) are known to us. Besides, the right
hand side of Equation (12) is linear with respect to c.

Define bik =
∑Nh

j=1 k(ωi, ωj)
∫ 1

0
zj(t)zk(t)dt. Then, Equation (12) is equivalent to

λ ·


c1
c2
...

cNh

 =


b11 b12 · · · b1Nh

b21 b22 · · · b2Nh

...
...

...
...

bNh1 bNh2 · · · bNhNh

 ·


c1
c2
...

cNh

 .

Equation (12) finally turns out to be a matrix eigenvalue problem with unknown eigenvector c = (c1, c2 · · · , cNh
)T and

eigenvalue λ. We could solve this matrix eigenvalue problem to acquire (c1, c2 · · · , cNh
) and eigenvalue λ. Eventually, we

derive the eigenfunction associated with λ for kernel kNh
using Equation (10), i.e., g(s) =

∑Nh

i=1 cizi(s).

G. Auxiliary Results
Definition G.1 (Gohberg et al. (2012)). LetA be a compact operator in Hilbert spaceH and let λ1(A∗A) ≥ λ2(A

∗A) ≥ · · ·
be the sequence of non-zero eigenvalues of A∗A. A∗ is the adjoint operator of A. Then the j th singular value of A sj(A) is
defined as

sj(A) ≜ (λj(A
∗A))1/2.

Property G.2. For any self-adjoint positive Hilbert-Schmidt integral operator U , it holds that

λj(U) = sj(U) for ∀ j.

Proof. We denote the integral kernel of U as K. Because U is self-adjoint positive Hilbert-Schmidt integral operator, then
for ∀ θ,

U(θ) =
∞∑
i=1

λi(U) ⟨θ, ei⟩ ei.

Therefore,

U(U(θ)) =
∞∑
i=1

λ2i ⟨θ, ei⟩ ei.

Because U∗ = U , we finish the proof.
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Theorem G.3 (Corollary 3.6 in Gohberg et al. (2012)). If A and B are compact operators on the Hilbert space H , then for
any n,

n∑
j=1

sj(A+B) ≤
n∑

j=1

sj(A) +

n∑
j=1

sj(B).

Theorem G.4 (Corollary 4.2 in Gohberg et al. (2012)). Let A and B be compact operators on a Hilbert space H , then for
any p > 0 and any k,

k∑
j=1

spj (AB) ≤
k∑

j=1

spj (A)s
p
j (B),

and
k∑

j=1

sj(AB) ≤
k∑

j=1

sj(A)sj(B).

Now we introduce the functional determinant of a trace class operator. We notice here that the formal definition of functional
determinant requires exterior product and tensorization of the Hilbert space H . Nonetheless, by Lidskii’s Theorem (Simon,
2005), we are able to achieve an equivalent characterization of it, so we directly use this characterization as a definition for
simplicity.

Definition G.5 (Theorem 3.4.7 in Kostenko). For any trace class operator A, the functional determinant det(I + zA) is
defined as

det(I + zA) ≜
∏
i

(1 + zλi(A)), ∀z ∈ C.

Theorem G.6 (Theorem 3.10 in Simon (2005)). Suppose the integral operator A is defined as Af(x) =
∫
Ω
K(x, y)f(y)dy,

where Ω is compact and K(x, y) is continuous on Ω× Ω. Then, it holds that

tr(A) =

∫
Ω

K(x, x)dx.

In the meanwhile,

det(I +A) =

∞∑
i=0

αm

m!
,

where
αm =

∫
Ω

∫
Ω

· · ·
∫
Ω

det[(K(xi, xj))1≤i,j≤m]dx1dx2 · · · dxm, ∀m ≥ 1.

We conventionally set α0 = 1.

Now we are ready to analyze the integral operator Lx,a and UD in our paper.

Lemma G.7. For any x, a, det(1 + Lx,a) ≤ e.

Proof of Lemma G.7. We apply Theorem G.6 to the operator Lx,a. The associated integral kernel is Kx,a(w, r) =∫
S
ϕ(x, a, w, t)ϕ(x, a, r, t)dm(t). Therefore, by Theorem G.6, we have

(K(wi, wj))
m
i,j=1

=


∫
ϕ(x, a, w1, t)

2dt
∫
ϕ(x, a, w1, t)ϕ(x, a, w2, t)dt · · ·

∫
ϕ(x, a, w1, t)ϕ(x, a, wm, t)dt∫

ϕ(x, a, w2, t)ϕ(x, a, w1, t)dt
∫
ϕ(x, a, w2, t)

2dt · · ·
∫
ϕ(x, a, w2, t)ϕ(x, a, wm, t)dt

...
...

...
...∫

ϕ(x, a, wm, t)ϕ(x, a, w1, t)dt
∫
ϕ(x, a, wm, t)ϕ(x, a, w2, t)dt · · ·

∫
ϕ(x, a, wm, t)

2dt


This is a symmetric matrix and

m∑
i=1

λi((K(wi, wj))
m
i,j=1) =

m∑
i=1

∫
S

ϕ(x, a, wi, t)
2dm(t) ≤ m,
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due to 0 ≤ ϕ ≤ 1 and m(S) = 1. Therefore, by the AM-GM inequality,(
m∏
i=1

λi((K(wi, wj))
m
i,j=1)

)1/m

≤
∑m

i=1 λi((K(wi, wj))
m
i,j=1)

m
≤ 1.

We find that

det[(K(wi, wj))
m
i,j=1] =

m∏
i=1

λi((K(wi, wj))
m
i,j=1) ≤ 1.

Recalling ν(Ω) = 1, we have that for ∀m ≥ 1, αm ≤
∫
Ω

∫
Ω
· · ·
∫
Ω
1dν(w1) · · · dν(m) ≤ 1. Thus,

det(1 + Lx,a) =

∞∑
i=0

αm

m!
≤

∞∑
i=0

1

m!
≤ e.
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