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Abstract

Multi-step reasoning is widely adopted in the001
community to explore the better performance002
of language models (LMs). We report on the003
systematic strategy that LMs use in this pro-004
cess. Our controlled experiments reveal that005
LMs rely more heavily on heuristics, such as006
lexical overlap, in the earlier stages of reason-007
ing when more steps are required to reach an008
answer. Conversely, as LMs progress closer009
to the final answer, their reliance on heuristics010
decreases. This suggests that LMs track only011
a limited number of future steps and dynami-012
cally combine heuristic strategies with logical013
ones in tasks involving multi-step reasoning.1014

1 Introduction015

When facing complex tasks, humans tend to seek016

shallow, heuristic solutions first; and, once these017

attempts are revealed to fail or elicit another rea-018

sonable solution, they switch to being more ra-019

tional (Erickson and Mattson, 1981; Frederick,020

2005). This systematic behavior helps us to pre-021

dict how humans will tackle new problems. Given022

such a view, when it comes to predicting the be-023

havior of language models (LMs) (Madaan and024

Yazdanbakhsh, 2022; Ye et al., 2023), the follow-025

ing question naturally arises—Do LMs also use a026

similar systematic strategy to solve complex tasks,027

or is their strategy totally different from humans,028

or do they have no such strategies? This study ex-029

plores an answer to this question. Investigating030

LMs’ strategic behavior in problem-solving is ex-031

pected to provide a new perspective on LMs’ rea-032

soning mechanism. It may also address general033

concerns that current neural models tend to overly034

rely on superficial, heuristic cues and may end up035

with irrational conclusions (Du et al., 2022; Lai036

et al., 2021; Jia and Liang, 2017; Ye et al., 2023;037

Chen et al., 2024).038

1The code/data will be made public upon acceptance.

Figure 1: Illustration of the systematic strategy we dis-
covered in language models (LMs). When the goal is
distant from the current state in a multi-step reasoning
process, the models tend to rely on heuristics, such as
superficial overlap, which can lead them in the wrong
direction. In contrast, when the goal is within a limited
distance, the models are more likely to take rational ac-
tions to reach the goal.

Specifically, in the course of step-by-step rea- 039

soning, they tend to rely on shallow, short-sighted 040

heuristic preferences in choosing rules in the early 041

phase and dynamically switch to be more ratio- 042

nal and goal-oriented to make the right choice to 043

reach the goal. This highlights a severe limitation 044

of present LMs, including GPT-4 (OpenAI, 2023), 045

in searching for a solution to multi-hop reasoning 046

tasks, particularly when tasks require many-step 047

long solutions. 048

2 Task 049

As a controlled testbed to analyze LM’s reason- 050

ing ability, we adopt an arithmetic reasoning task 051

(Figure 2 left). We will use both natural and arti- 052

ficially controlled datasets in the experiments, but 053

let us use the latter, more formal examples to ex- 054

plain the task overview. 055

Arithmetic reasoning task: The problem con- 056

sists of a set of premises P = {p1, · · · , pk} and 057

a question q. Each premise describes either type 058

of fact: (i) Person A has n items (A=n), or (ii) Per- 059

son B has n more/less items than A has (B=A+n 060

or B=A-n). The question asks the exact num- 061
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Figure 2: Overview of the task setting. Given premises and a question, a model answers the question step-by-step
(left part). Through each reasoning step t of selecting/paraphrasing relevant premise pk ∈ P , the available facts z
are enriched, and if that step is necessary to reach the answer, the distance to the answer d decreases (right part).

ber of certain items a particular person ultimately062

has (how many apples does B have?). Here, one063

should consider multiple premises to derive the fi-064

nal answer, e.g., A=3;B=2+A;B=2+3=5. Notably,065

some premises are irrelevant to the answer; thus,066

models have to track which premise is necessary067

to reach the final answer.068

Reasoning step: Let f be a model that is in-069

structed to solve the task step-by-step. In each070

reasoning step t, the model f selects a partic-071

ular premise pi ∈ P and paraphrases it into a072

new fact zt by eagerly resolving reference expres-073

sions based on the already stated facts z<t =074

[z1, · · · , zt−1]:075

f(P, q, z<t) = (pi, zt) . (1)076

For example, in Figure 2, when p2 “Walter has 2077

more apples than Peggy.” is selected at a particular078

reasoning step, the respective zt should be “Wal-079

ter has 2+5=7 apples.” if z<t already contains080

the number of apples Peggy has, i.e., p1.2 Start-081

ing with an empty set of stated facts z = {}, the082

model recursively performs a reasoning step and083

can stop when outputting a special symbol EOS or084

providing an answer to the question q. Here, we085

denote the whole history of selected premises as086

h = [pi, · · · , pj ] ∈ P ∗, where P ∗ is Kleene clo-087

sure of P . Its t-th element ht is the premise em-088

ployed to derive the t-th reasoning step. Hence-089

forth, we call h reasoning steps and focus on the090

ability to search the right h.091

2If the reference can not be resolved with z<t, the model
just repeats the selected premise pi as zt.

Solutions: Each problem has a set of solutions 092

H◦ ⊂ P ∗. Specifically, the final reasoning step 093

h−1 of the solution h ∈ H◦ should provide a con- 094

crete number asked by the question q. Figure 2 095

illustrates such a set of solutions H◦ as the steps 096

leading to the final states of the state transition 097

graph (right part of Figure 2). 098

Minimal solution: Within the set of solutions, 099

there is only one minimal solution h∗ ∈ H◦ ⊂ 100

P ∗. To define h∗, let us first introduce a distance 101

to the answer. In each reasoning step t, one can 102

determine the minimum number of remaining rea- 103

soning steps to reach the answer d ∈ N, given 104

h≤t ∈ P ∗ and the initially provided premises P . 105

Intuitively, d can be derived from a state transi- 106

tion graph and the minimum number of transitions 107

to the closest final states, as shown in Figure 2 108

(right part). Here, we denote the mapping func- 109

tion from h≤t to d as g : P ∗ → N. For example, 110

g([p2, p1, p2]) = 1 in Figure 2. Minimal solution 111

h∗ satisfies ∀t g(h∗
≤t) < g(h∗

≤t−1); that is, h∗ 112

does not contain any irrelevant step to approach 113

the answer. For example, the MS reasoning steps 114

in Figure 2 are [p1, p2, p4] = h∗. 115

Targeted ability of LMs: We evaluate LMs’ 116

ability to derive the minimal solution h∗ as in- 117

structed by 4-shot examples 10. Notably, we do 118

not care about the ability to correctly introduce a 119

new fact zt (Eq. 1), e.g., the accuracy of arithmetic 120

operation (e.g., 5+2=7), but separately focus on 121

their search strategy to select the relevant premise 122

to perform the next reasoning step. 123
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3 Heuristics124

Given existing studies on LMs’ use of heuristics125

(§5), we focus on the following types of heuristics:126

Lexical overlap between premise and ques-127

tion (Overlap): Whether models tend to select128

premises with the same person name (PN) as the129

one in question is targeted. For example, given a130

question “how many apples Judy has,” premises131

such as “Judy’s mother got 3 apples” can be a dis-132

tractor when it is unnecessary to reach the answer.133

Position of premise (Position): Whether mod-134

els tend to select the premise in the initial position135

of context is targeted.136

Grammatical feature of premise (Neg.):137

Given that a specific grammatical feature, e.g.,138

whether the sentence has a negation word, is139

often a superficial cue (Du et al., 2021; Niven and140

Kao, 2019), we specifically analyze the bias that141

models avoid selecting premise with negation.142

We append distractor premises that are irrelevant143

to answering the question but presumably pre-144

ferred by the model w.r.t. some heuristics to the145

input P . We analyze whether LMs select such dis-146

tractors to understand their search strategy (§4).147

4 Experiments148

We use four representative variants of LLMs: text-149

bison-001 version of Google’sPaLM2 (Anil et al.,150

2023), Llama2-13B (Touvron et al., 2023), gpt-151

3.5-turbo-0125 and gpt-4-0613 snapshots of Ope-152

nAI’s GPT-3.5-turbo (OpenAI, 2022) and GPT-153

4 (OpenAI, 2023).154

4.1 Preliminary experiments155

First, we confirm that LLMs exploit specific156

heuristics during step-by-step reasoning in natural157

and artificially-controlled datasets.158

Settings: We use two datasets: GSM8K (Cobbe159

et al., 2021) (App. A) and artificially-controlled160

data with 4-step arithmetic reasoning (App. B).161

Each instance in either dataset has at least one162

premise p̃ ̸∈ h∗ that is irrelevant to inducing163

the answer (i.e., distractor). We randomly select164

one such irrelevant premise (Base),3 modify it to165

match a particular heuristics (e.g., move it to the166

3Strictly speaking, we randomly selected the premise that
does not match any of the three heuristics.

GSM8K Artificial data

Models Base Over. ↑ Pos. ↑ Neg. ↓ Base Over. ↑ Pos. ↑ Neg. ↓

PaLM2 18.4% 57.9% 19.7% 17.1% 10.3% 42.3% 12.0% 4.3%
Llama2 43.2% 69.7% 50.0% 14.5% 32.6% 67.7% 33.0% 41.7%
GPT-3.5 35.5% 67.1% 36.8% 22.4% 21.0% 15.0% 49.0% 0.0%
GPT-4 21.1% 35.5% 22.4% 21.1% 0.0% 0.01% 0.0% 0.0%

Table 1: The percentage of the problems where the
model selected a distractor p̃ in step-by-step reasoning.
Over. and Pos. denote the Overlap and Position biases.

Context: Peggy has 5 apples. Walter has 2 more ap-
ples than Peggy. Judy’s mother has 3 less apples than
Peggy. Judy has 4 more apples than Walter has.
Question: How many apples does Judy have?

Table 2: Example of a distractor examined in §4.2.
Suppose that h∗

1 is “Peggy has 5 apples.” One of the
two candidates with “Peggy” is the correct next step h∗

2

(green), and the other is a distractor (orange).

first position), and observe whether such a modi- 167

fication makes it more attractive for LLMs to se- 168

lect during step-by-step reasoning. We report the 169

percentage of the problems, where the model se- 170

lected the distractor at least once during reasoning. 171

We separately run the experiments for each type of 172

heuristic rather than adding all types of distractors 173

to the input at once. 174

Results: Table 1 shows the results. The Base re- 175

sults (baseline) indicate how many times the ran- 176

domly sampled distractor p̃ is selected during rea- 177

soning. The scores for the distractors with heuris- 178

tic features (Over., Pos., Neg. in Table 1) are 179

generally higher (lower for Neg.) than the Base 180

scores across models and datasets. This indicates 181

that LMs, on average, tend to rely on our targeted 182

heuristics (§3). Note that, interestingly, different 183

models yield somewhat different preference to- 184

wards distractor types; for example, Llama2 and 185

GPT-3.5 are more biased premise position than 186

PaLM2 and GPT-4. 187

4.2 Main experiments 188

Then, we further investigate the strategies of LMs 189

to employ heuristics. We hypothesized that the 190

more distant the reasoning step is from the an- 191

swer (higher d), the more heavily models rely 192

on heuristics. This is motivated by the larger gap 193

between questions and available knowledge, lead- 194

ing to difficulty. Thus, models have to rely on 195

more primitive and heuristic factors. 196
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Figure 3: How frequently a particular distractor is se-
lected (y-axis: r) in each reasoning step (x-axis: d).

Distractor and evaluation: To identify in197

which steps heuristics are more likely to be ex-198

ploited, ideally, one should design a distractor199

equally attractive to all the reasoning steps in h∗200

and analyze when it is selected during the reason-201

ing to facilitate a fair step-wise comparison; how-202

ever, such a distractor is inherently difficult to im-203

plement. Instead, we add multiple distractors P̃204

to the artificial data; each of them p̃t ∈ P̃ corre-205

spond to each reasoning step h∗t in the sense that206

both share the same person name that appeared in207

the previous step h∗t−1 (Table 2).4 Similar to §4.1,208

we further modify each distractor p̃t ∈ P̃ to match209

each heuristic (Overlap with question or Position210

in §3).5 In evaluation, for each t, partial correct211

reasoning steps h∗
<t are teacher-forced to a model,212

and we analyze whether the model selects the right213

next step h∗t or its respective distractor p̃t. We cal-214

culate the frequency #(·) of models’ selecting p̃t215

and h∗t ; then, their ratio r = #p̃t
#h∗

t
is reported. The216

chance rate (i.e., random premise selection) is 0.5.217

Our hypothesis is that the more current step t is218

distant from the goal (i.e., the larger d = g(h∗
t )),219

the more frequently the distractor is selected (i.e.,220

the higher r).221

Data: We used 5-step artificial reasoning data222

and excluded the first (d = 5 → 4) and the last223

(d = 1 → 0) steps from evaluation regarding their224

special properties. GSM8K was excluded due to225

the infeasibility of controlled distractors.226

Results: The results are shown in Figure 3. The227

x-axis is the remaining steps d to the goal, and the228

y-axis is the ratio r. The more distant the current229

4To rule out the shortcut cue regarding the reference fre-
quencies of each person name, we further added distractor
premises to make the frequencies uniform.

5We excluded the Neg. (avoidance) bias because if a
model avoids negation in the latter step, we could not dis-
tinguish whether it was due to heuristic or rational search.

step is from the answer (larger d), the more fre- 230

quently the distractor is selected (larger r) which 231

is typically above the chance rate. PaLM2 and 232

GPT-4 exhibited particularly clear tendencies of 233

the negative slopes between d and r. These sug- 234

gest the systematic behavior that LMs tend to rely 235

more on heuristics in the earlier reasoning steps. 236

5 Related work 237

Multi-step symbolic reasoning: Given the his- 238

torical goal of neuro-symbolic integration (Hamil- 239

ton et al., 2022) and the increasing relevance of 240

neural LMs (Fang et al., 2024), whether neural 241

models can emulate particular symbolic opera- 242

tions (e.g., search over the graph) has been a key 243

question (Yao et al., 2023). In contrast to delineat- 244

ing what symbolic tasks are (im)possible for LMs 245

by varying task complexities (Clark et al., 2020), 246

we investigate the inherent, systematic biases in 247

solving a certain reasoning task. 248

Heuristics in LM: Neural models have typi- 249

cally been distracted by superficial biases (Du 250

et al., 2022). For example, they tend to use su- 251

perficial features such as overlaps (Lai et al., 2021; 252

Sen and Saffari, 2020), positional (Ko et al., 2020), 253

and specific syntactic category features (Du et al., 254

2021; Niven and Kao, 2019) even with chain-of- 255

thought prompting (Madaan and Yazdanbakhsh, 256

2022); these motivated our experimental settings. 257

Search algorithm: Finding the shortest path be- 258

tween the start and the goal on a graph is a stan- 259

dard problem in computer science (Russell and 260

Norvig, 2016). Our investigation of LMs on 261

the arithmetic tasks can be seen as characteriz- 262

ing LMs’ biases as a search algorithm. The use 263

of heuristics in graph search is, more or less, re- 264

lated to the A* search algorithm (Hart et al., 1968), 265

although heuristics in A* search is a more nar- 266

row concept regarding the distance to the goal than 267

those employed by LMs, e.g., position bias. 268

6 Conclusion 269

We have found a systematic strategy for the use 270

of heuristics in LMs’ multi-step reasoning—a dy- 271

namic transition from a heuristic to a rational rea- 272

soning strategy during the course of LMs’ step-by- 273

step reasoning. These results are hopefully help- 274

ful for researchers to understand their underlying 275

mechanism as well as for LM users to consider the 276

inherent biases systems have. 277
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Limitations278

This study focused only on four specific language279

models and two arithmetic tasks. Increasing the280

coverage of models and tasks are obviously possi-281

ble future direction, although we ensured that our282

finding generalizes at least several models and task283

settings. Nevertheless, in particular, Section 4.2284

used only artificial datasets for fair comparison.285

Constructing a controlled, but natural dataset to286

evaluate the reasoning strategies of LMs should be287

encouraged. Furthermore, our findings are based288

solely on the model’s output texts. Elucidating the289

underlying mechanisms and the source of these290

behaviors (e.g., training data) should be investi-291

gated in the future work.292

Ethics statement293

This paper does not involve ethical concerns in the294

sense that we (i) did not conduct human experi-295

ments, (ii) just created artificial data without any296

potentially harmful contents, and (iii) did not ad-297

dress tasks related to ethically sensitive topics (i.e.,298

arithmetic reasoning).299
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Context: Jamesname decides to run 3num sprints
3num times a week. Hepronoun runs 60num meters
each sprint.

Question: How many total meters does hepronoun run
a week?

Person’s Names： James
Numbers： 3,60

Table 3: Extraction of names, personal pronouns, and
numbers on GSM8K.

A Experimental setting with GSM8K454

(§4.1)455

A.1 Dataset construction process456

As described in 4.1, we modify the existing multi-457

hop numerical reasoning dataset, GSM8K (dis-458

tributed under the MIT license), to construct the459

evaluation dataset. The dataset construction pro-460

cess is divided into two steps: 1. Extracting sam-461

ples that can be used as evaluation data for this462

study, and 2. Inserting distractors according to the463

heuristic we want to evaluate for each extracted464

problem statement.465

A.1.1 Sample extraction466

We extract samples from the GSM8K evaluation467

dataset for this study following the process below:468

1. We manually create a list of 50 person names469

(PNs) from a subset of the GSM8K evalua-470

tion dataset.471

2. Using regular expressions, we identify PNs472

from this list, as well as pronouns and numer-473

ical expressions present in each sample.474

3. We extracted samples that included exactly475

one from our list in both the context and the476

question, and where either the PN or a pro-477

noun appears in the question (e.g., Table 3).478

4. We replaced all pronouns within the extracted479

samples with the corresponding person’ s480

name.481

A.1.2 Distractor insertion482

Subsequently, we added distractors to the ex-483

tracted samples according to each heuristic,484

thereby constructing a total of 76 samples for the485

evaluation dataset. Below, we will describe the486

process of creating the evaluation dataset for each487

heuristic.488

Base As a baseline, we insert a template-based 489

random distractor (i.e., p̃) into each sample. The 490

distractor was created using the following steps: 491

1. We randomly selected one sentence from the 492

sample that included both a PN or pronoun 493

and a numerical expression. 494

2. We replaced the PN or pronoun in the se- 495

lected sentence with a placeholder, [name]. 496

3. We replaced the numerical expression in the 497

selected sentence with a placeholder, [num]. 498

4. We replaced [name] with a randomly se- 499

lected name from the list of PNs created 500

in A.1.1, excluding the name already present 501

in the sample. 502

5. We replaced [num] with another value.6 503

6. We inserted the created distractor into a ran- 504

dom position in the context other than the be- 505

ginning of the sample. 506

For example, When the sentence “James decides 507

to run 3 sprints 3 times a week.” is selected from 508

the sample in Table 3, a template “[name] de- 509

cides to run [num] sprints [num] times a week.” 510

is crafted. Names and numbers are randomly se- 511

lected from the candidates and placed into these 512

placeholders, and the resulting distractor is then 513

inserted into the context. 514

Overlap To evaluate whether the model is influ- 515

enced by the Overlap heuristic, we insert distrac- 516

tors p̃ into each sample following the steps below: 517

1. We substituted the placeholder [name] 518

within the Base distractor template with 519

the person’ s name found in the sample, 520

appended by relational phrases such as “’s 521

mother”, “’s father”, “’s son”, or “’s neigh- 522

borhood” (e.g., in the sample from Table 3, 523

this would become “James’s mother”). 524

2. We replaced the number in the sentence with 525

another numerical value. 526

3. We placed the constructed distractor into con- 527

text at the exact location where the Base dis- 528

tractor was positioned in the sample. 529

6The replacement number was calculated by multiplying
each number appearing in the sentence by either 0.5, 0.8, 1.2,
1.5, or 2 and then rounding down to the nearest whole num-
ber.
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Position To evaluate whether the model is in-530

duced by the heuristic of Position, we insert dis-531

tractors p̃ into each sample. Each distractor is532

identical to the Base distractor except for its inser-533

tion point. Specifically, we relocated the insertion534

point of the distractor to a random position that is535

closer to the beginning of the context than the po-536

sition used for the Base distractor.537

Neg. To evaluate the model’s response to the538

Neg. heuristic, we insert distractors p̃ into each539

sample created based on the following template:540

[name] doesn’t have [num] [object].541

In this template:542

• [name] is substituted with a random PN in-543

cluded in the sample.544

• [object] is replaced with one of the following545

items: “apples,” “bananas,” “grapes,” “pen-546

cils,” or “books.”547

• [num] is replaced with a different numerical548

value, using the same algorithm used for cre-549

ating the Base distractor.550

A.2 Evaluation551

To determine whether the LMs selected the dis-552

tractor during reasoning, we check if the numbers553

contained in the distractor p̃ are present in the facts554

z. We calculate the percentage of samples where555

the distractor is selected.556

B Experimental setting with artificial557

data (§4.1)558

B.1 Dataset construction process559

Base We construct the artificial data by follow-560

ing the method outlined below, based on the tem-561

plate presented in Table 4.562

• Randomly assign one of the following563

names to the placeholders [nameA] to564

[nameE]: “Alice,” “Bob,” “Carol,” “Dave,”565

“Eve,” “Frank,” “Grace,” “Heidi,” “Ivan,”566

“Judy,” “Kevin,” “Larry,” “Mallory,”567

“Nancy,” “Olivia,” “Peggy,” “Quentin,”568

“Rob,” “Sybil,” “Trent,” “Ursula,” “Victor,”569

“Walter,” “Xavier,” “Yvonne,” or “Zoe.”570

• Assign a randomly selected value from571

[nameA] to [nameD] to the placeholder572

[nameX].573

Context：[nameA] has [num] [object].
[nameB] has [num] [relation] [object] than [nameA].
[nameC] has [num] [relation] [object] than [nameB].
[nameD] has [num] [relation] [object] than [nameC].

Question：How many [object] does [nameD] have?

distractor：[nameE] has [num] [relation] [object] than
[nameX].

Table 4: Template of artificial data in §4.1.

• Assign a random number from 0 to 100 to the 574

placeholder [num]. 575

• Assign one of the objects “apples,” “ba- 576

nanas,” “grapes,” “pencils,” or “books” to the 577

placeholder [object]. 578

• Assign either “more” or “less” to the place- 579

holder [relation]. 580

• Randomly shuffle the order of the sentences. 581

Overlap We constructed a dataset to evaluate 582

whether the model is induced by the Overlap 583

heuristic by making certain modifications to the 584

Base distractor for each sample. Specifically, we 585

modified the value of [nameD] by appending rela- 586

tional phrases such as “ ’s mother”, “ ’s father”, “ 587

’s son”, or “ ’s neighborhood” to the existing value 588

of [nameD]. We then assigned this modified value 589

to [nameE]. 590

Position To evaluate if the model is induced by 591

the Position heuristic, we modify the Base distrac- 592

tor. Specifically, we altered the insertion point of 593

the Base distractor to a randomly chosen position 594

that is closer to the beginning of the context than 595

the original position used in the Base distractor. 596

Neg. To evaluate whether the model is induced 597

by the Neg. heuristic, we construct a dataset 598

by making modifications to the Base distractor. 599

Specifically, we convert the Base distractor into a 600

negative expression (e.g., [nameE] doesn’t have 601

[num] [relation] [object] than [nameX]). 602

B.2 Evaluation 603

To determine whether the LMs selected the dis- 604

tractor during reasoning, we check if the subject 605

of the distractor (i.e., [nameE]) is included in the 606

facts z. We calculate the percentage of samples 607

where the distractor is selected. 608
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Cntext：[nameA] has [num] [object].
[nameB] has [num] [relation] [object] than [nameA].
[nameC] has [num] [relation] [object] than [nameB].
[nameD] has [num] [relation] [object] than [nameC].
[nameE] has [num] [relation] [object] than [nameD].

Question：How many [object] does [nameE] have?

heurictic distractor：
[nameF] has [num] [relation] [object] than [nameA].
[nameG] has [num] [relation] [object] than [nameB].
[nameH] has [num] [relation] [object] than [nameC].

distractor:
[nameI] has [num] [relation] [object] than [nameD].
[nameJ] has [num] [relation] [object] than [nameF].
[nameK] has [num] [relation] [object] than [nameF].
[nameL] has [num] [relation] [object] than [nameG].
[nameM] has [num] [relation] [object] than [nameG].
[nameN] has [num] [relation] [object] than [nameJ].
[nameO] has [num] [relation] [object] than [nameJ].
[nameP] has [num] [relation] [object] than [nameK].
[nameQ] has [num] [relation] [object] than [nameK].

Table 5: Template of artificial data in §4.2.

C Artificial data in §4.2609

We prepare a template similar to a Table 5 and as-610

sign values to the template according to the fol-611

lowing steps:612

• We create template as shown in table4.613

• Within the template, placeholders [nameA]614

to [nameQ] is filled randomly with names615

such as “Alice”, “Bob”, “Carol”, “Dave”,616

“Eve”, “Frank”, “Grace”, “Heidi”, “Ivan”,617

“Judy”, “Kevin”, “Larry”, “Mallory”,618

“Nancy”, “Olivia”, “Peggy”, “Quentin”,619

“Rob”, “Sybil”, “Trent”, “Ursula”, "Victor”,620

“Walter”, “Xavier”, “Yvonne”, “Zoe”.621

• The placeholder [num] is filled with a ran-622

dom number from 0 to 100.623

• The placeholder [object] is filled randomly624

with items such as “apples”, “bananas”,625

“grapes”, “pencils”, “books”.626

• The placeholder [relation] is assigned either627

“more” or “less”.628

• Sentences within the context are shuffled ran-629

domly.630

• A distractor is inserted at a random position.631

Then, using the following procedures, We cre-632

ate each expanded dataset. The heuristic distrac-633

tors designed in this study are strongly influenced634

Base Over. Pos. Neg.

PaLM2 64.5% 59.2% 60.5% 71.1%
Llama2 30.3% 34.2% 30.3% 27.6%
GPT-3.5 81.6% 64.5% 81.6% 82.9%
GPT-4 85.5% 84.2% 82.9% 92.1%

Table 6: The accuracy while solving GSM8K.

by each targeted heuristic. Each dataset consists 635

of 300 problems. 636

• For the Overlap dataset, the values “’s 637

mother”, “’s father”, “’s son”, and “’s neigh- 638

borhood” are appended to [nameE] and as- 639

signed respectively to [nameF], [nameG], 640

and [nameH]. Each of [nameF], [nameG], 641

and [nameH] hold different values. 642

• For the Position dataset, the sentences with 643

[nameF], [nameG], and [nameH] as the sub- 644

jects have distractors inserted closer to the 645

beginning of the context than the sentences 646

with [nameB], [nameC], and [nameD] as the 647

subjects. For other datasets, heuristic distrac- 648

tors are inserted at random positions. 649

• For the Neg. dataset, the form of the heuristic 650

distractor is changed to a negative form. 651

In §4.2, the method to identify which premises are 652

used for reasoning was similar to that in App. B, 653

relying on regular expressions. 654

D Mearuing accuracy in §4.1 655

In the experimental section, we not only measure 656

the frequency with which p̃ is used in reason- 657

ing but also evaluate the accuracy. Table 6 be- 658

low shows the accuracy rates of each model on 659

GSM8K. Additionally, Table 7 below shows the 660

accuracy rates of each model on artificial data. 661

From the Table 6, 7, it is shown that GPT-4 662

had the highest accuracy rates across the datasets, 663

while Llama2 had the lowest. It is expected that 664

these outcomes are due to differences in the num- 665

ber of parameters in the model and the training 666

data. 667

E Generation settings 668

When using GPT-3.5, GPT-4, the settings are ad- 669

justed to temperature=0.0, frequency_penalty=0, 670

and presence_penalty=0. Similarly, for PaLM2 671

and Llama2, the temperature is set to 0, with no 672

sampling. 673
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Base Over. Pos. Neg.

PaLM2 60.0% 58.7% 77.0% 80.7%
Llama2 21.3% 14.3% 22.3% 20.0%
GPT-3.5 84.6% 87.3% 87.6% 82.9%
GPT-4 98.7% 94.0% 98.0% 99.7%

Table 7: The accuracy while solving artificial reasoning
tasks.

Over.↑ Pos.↑ Neg.↓

PaLM2 41.0% 14.0% 5.7%
Llama2 82.0% 93.3% 28.0%
GPT-3.5 11.7% 35.0% 0.0%
GPT-4 0.0% 0.0% 0.0%

Table 8: The frequency at which the model selected
a distractor (i,e., p̃) while solving artificial reasoning
tasks after changing few-shot examples.

We use NVIDIA RTX A6000 (48GB) GPUs for674

inference with Llama2.675

F Few-shot examples676

The few-shot examples for models regarding677

datasets GSM8K and artificial data are shown in678

the respective Tables 9, 10.679

G Effect of few-shot examples680

We investigate whether the model’s heuristic is681

triggered by the few-shot examples. Specifically,682

we replace the few-shot examples in the following683

ways to study the relationship between the model’s684

heuristic and its inputs:685

1. We change the few-shot examples to in-686

duce Overlap (as shown in Table 11) and exam-687

ine whether this increases the reasoning frequency688

with the use of distractors in the Overlap dataset689

compared to what is shown in Table 1.690

2. We change the few-shot examples to induce Po-691

sition (as shown in Table 12) and check if there’s692

an increase in reasoning frequency with the use of693

distractors in the Position dataset compared to Ta-694

ble 1.695

3. We change the few-shot examples to induce696

Neg. (as shown in Table 13), and investigate if697

there’s a decrease in reasoning frequency with the698

use of distractors in the Neg. dataset compared to699

Table 1.700

We measure the frequency of selecting p̃ in the701

settings of §4.1. The results are presented in Ta-702

ble 8. As shown in Tables 1, 8, although the few-703

shot examples fed into the models such as GPT-704

3.5, GPT-4, and PaLM2 was changed, there was705

no significant change in reasoning frequency as 706

described. This suggests that the model’s heuris- 707

tic does not merely mimic the examples provided 708

as input. On the other hand, the Llama2 model 709

was more prone to being misled by changes in in- 710

put, and smaller models demonstrated a reduced 711

capacity to reach the correct answers directory. 712
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Answer the context question according to the following example.

Context: Leo’s assignment was divided into three parts. Weng earns $12 an hour for babysitting. It took Leo twice
as long to finish the second part. Yesterday, she just did 50 minutes of babysitting.
Question: How much did Weng earn?
Answer:
Weng earns 12/60 = 0.2 per minute.
Working 50 minutes, she earned 0.2 x 50 = 10.
The final answer is 10.

Context: Betty is saving money for a new wallet which costs $100. Betty has only half of the money she needs.
Alice is saving money for a new wallet which costs $2000. Bettys parents decided to give her $15 for that purpose,
and her grandparents twice as much as her parents. Question: How much more money does Betty need to buy the
wallet?
Question: How much more money does Betty need to buy the wallet?
Answer:
In the beginning, Betty has only 100 / 2 = 50.
Betty’s grandparents gave her 15 * 2 = 30.
This means, Betty needs 100 - 50 - 30 - 15 = 5 more.
The final answer is 5.

Context: Julie is reading a 120-page book. Yesterday, Julie was able to read 12 pages and today, she read twice as
many pages as yesterday. Julie’ s mother makes $18.00 an hour.
Question: How many pages are left to be read?
Answer:
Julie read 12 x 2 = «12*2=24»24 pages today
So she was able to read a total of 12 + 24 = 36 pages since yesterday.
There are 120 - 36 = 84 pages left to be read.
Since she wants to read half of the remaining pages tomorrow, then she should read 84/2 = 42 pages.
The final answer is 42.

Context: James writes a 2-page letter to 4 different friends, lived in America, twice a week. James writes a 3-page
letter to 2 different friends, lived in Japan, twice a week.
Question: How many pages does James write each friend lived in Japan at one time?
Answer:
He writes each friend 3*2=6 pages a week.
So he writes 6*2=12 pages every week.
That means he writes 12*52=624 pages a year.
The final answer is 624.

Table 9: Examples of input given when solving GSM8K.
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Answer the context question according to the following example.

Context: Walter has -22 apples. Ursula has 3 more apples than Walter. Victor has 3 more apples than Ursula.
Quentin has 2 more apples than Ursula. Nancy has 3 more apples than Walter. Zoe has 3 more apples than Nancy.
Heidi has 3 more apples than Nancy. Carol’s mother has 4 apples. Xavier has 3 more apples than Carol’s mother.
Peggy has 4 more apples than Xavier. Dave has 13 more apples than Xavier. Bob has 1 more apples than Carol’s
mother. Alice has 3 more apples than Bob. Sybil has 56 more apples than Bob.
Question: How many apples does Dave have?
Answer:
Carol’s mother has 4 apples, and Xavier has 3 more apples than Carol’s mother. So, Xavier has 4+3=7 apples.
Xavier has 7 apples, and Dave has 13 more apples than Xavier. So, Dave has 7+13=20 apples. The final answer is
20.

Context: Alice has 92 more bananas than Mallory. Victor has 10 less bananas than Walter. Xavier has 59 more
bananas than Sybil. Yvonne has 79 more bananas than Sybil. Judy has 23 more bananas than Alice. Dave has 60
more bananas than Victor. Quentin has 35 less bananas than Peggy. Heidi has 95 more bananas than Victor. Ursula
doesn’t have 32 more bananas than Peggy. Larry has 17 less bananas than Alice. Zoe has 58 less bananas than
Yvonne. Ivan has 43 less bananas than Yvonne. Walter has 43 less bananas than Mallory. Nancy has 34 bananas.
Grace has 41 more bananas than Xavier. Mallory has 55 less bananas than Nancy. Sybil has 3 less bananas than
Nancy. Peggy has 50 more bananas than Walter. Trent has 33 less bananas than Xavier.
Question: How many bananas does Quentin have?
Answer:
Nancy has 34 bananas, and Mallory has 55 less bananas than Nancy. So, Mallory has 34-55=-21 bananas.
Mallory has -21 bananas, and Walter has 43 less bananas than Mallory. So, Walter has -21-43=-64 bananas.
Walter has -64 bananas, and Peggy has 50 more bananas than Walter. So, Peggy has -64+50=-14 bananas.
Peggy has -14 bananas, and Quentin has 35 less bananas than Peggy. So, Quentin has -14-35=-49 bananas.
The final answer is -49.

Context: Zoe has 10 more apples than Yvonne’s son. Eve has 2 apples. Yvonne’s son has 3 more apples than Eve.
Quentin has 3 more apples than Yvonne. Yvonne has 3 less apples than Zoe. Alice has 3 more apples than Grace.
Trent has 34 more apples than Zoe. Ivan has 3 apples. Ursula has 3 more apples than Zoe. Grace has 3 apples.
Xavier doesn’t have 3 more apples than Ivan.
Question: How many apples does Yvonne have?
Answer:
Eve has 2 apples, and Yvonne’s son has 3 more apples than Eve. So, Yvonne’s son has 2+3=5 apples.
Yvonne’s son has 5 apples, and Zoe has 10 more apples than Yvonne’s son. So, Zoe has 5+10=15 apples.
Zoe has 15 apples, and Yvonne has 3 less apples than Zoe. So, Yvonne has 15-3=12 apples.
The final answer is 12.

Context: Kevin’s friend has 33 less grapes than Rob. Ivan has 43 more grapes than Victor. Victor has 33 less
grapes than Kevin’s friend. Ursula has 75 less grapes than Zoe. Alice has 11 more grapes than Eve. Dave has 11
more grapes than Eve. Olivia has 29 more grapes than Kevin’s friend. Mallory has 97 more grapes than Olivia.
Judy has 78 more grapes than Olivia. Rob has 55 grapes. Frank has 70 less grapes than Heidi. Eve has 84 less
grapes than Sybil. Xavier has 36 more grapes than Heidi. Sybil has 55 less grapes than Trent. Kevin has 43 less
grapes than Zoe. Heidi has 61 less grapes than Trent. Zoe has 88 more grapes than Sybil. Trent has 40 more grapes
than Rob. Walter has 38 more grapes than Victor.
Question: How many grapes does Kevin have?
Answer:
Rob has 55 grapes, and Trent has 40 more grapes than Rob. So, Trent has 55+40=95 grapes.
Trent has 95 grapes, and Sybil has 55 less grapes than Trent. So, Sybil has 95-55=40 grapes.
Sybil has 40 grapes, and Zoe has 88 more grapes than Sybil. So, Zoe has 40+88=128 grapes.
Zoe has 128 grapes, and Kevin has 43 less grapes than Zoe. So, Kevin has 128-43=85 grapes.
The final answer is 128.

Table 10: Examples of input given when solving an artificial dataset.
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Answer the context question according to the following example.

Context: Context: Walter has -22 apples. Ursula has 3 more apples than Walter. Victor has 3 more apples than
Ursula. Quentin has 2 more apples than Ursula. Nancy has 3 more apples than Walter. Zoe has 3 more apples than
Nancy. Heidi has 3 more apples than Nancy. Dave’s mother has 4 apples. Dave’s father has 3 more apples than
Dave’s mother. Peggy has 4 more apples than Dave’s father. Dave has 13 more apples than Dave’s father. Bob has
1 more apples than Carol’s mother. Alice has 3 more apples than Bob. Sybil has 56 more apples than Bob.
Question: How many apples does Dave have?
Answer:
Dave’s mother has 4 apples, and Dave’s father has 3 more apples than Dave’s mother. So, Dave’s father has 4+3=7
apples.
Dave’s father has 7 apples, and Dave has 13 more apples than Dave’s father. So, Dave has 7+13=20 apples.
The final answer is 10.

Context: Alice has 92 more bananas than Quentin’s mother. Victor has 10 less bananas than Walter. Xavier has
59 more bananas than Sybil. Yvonne has 79 more bananas than Sybil. Judy has 23 more bananas than Alice. Dave
has 60 more bananas than Victor. Quentin has 35 less bananas than Quentin’s father. Heidi has 95 more bananas
than Victor. Ursula doesn’t have 32 more bananas than Quentin’s father. Larry has 17 less bananas than Alice.
Zoe has 58 less bananas than Yvonne. Ivan has 43 less bananas than Yvonne. Walter has 43 less bananas than
Quentin’s mother. Nancy has 34 bananas. Grace has 41 more bananas than Xavier. Quentin’s mother has 55 less
bananas than Nancy. Sybil has 3 less bananas than Nancy. Quentin’s father has 50 more bananas than Walter. Trent
has 33 less bananas than Xavier.
Question: How many bananas does Quentin have?
Answer:
Nancy has 34 bananas, and Quentin’s mother has 55 less bananas than Nancy. So, Quentin’s mother has 34-55=-21
bananas.
Quentin’s mother has -21 bananas, and Walter has 43 less bananas than Quentin’s mother. So, Walter has -21-43=-
64 bananas.
Walter has -64 bananas, and Quentin’s father has 50 more bananas than Walter. So, Quentin’s father has -64+50=-
14 bananas.
Quentin’s father has -14 bananas, and Quentin has 35 less bananas than Quentin’s father. So, Quentin has -14-35=-
49 bananas.
The final answer is -49.

Context: Yvonne’s father has 10 more apples than Yvonne’s son. Eve has 2 apples. Yvonne’s son has 3 more
apples than Eve. Quentin has 3 more apples than Yvonne. Yvonne has 3 less apples than Yvonne’s father. Alice
has 3 more apples than Grace. Trent has 34 more apples than Yvonne’s father. Ivan has 3 apples. Ursula has 3
more apples than Yvonne’s father. Grace has 3 apples. Xavier has 3 more apples than Ivan.
Question: How many apples does Yvonne have?
Answer:
Eve has 2 apples, and Yvonne’s son has 3 more apples than Eve. So, Yvonne’s son has 2+3=5 apples.
Yvonne’s son has 5 apples, and Yvonne’s father has 10 more apples than Yvonne’s son. So, Yvonne’s father has
5+10=15 apples.
Yvonne’s father has 15 apples, and Yvonne has 3 less apples than Yvonne’s father. So, Yvonne has 15-3=12
apples.
The final answer is 12.

Context: Kevin’s friend has 33 less grapes than Rob. Ivan has 43 more grapes than Victor. Victor has 33 less
grapes than Kevin’s friend. Ursula has 75 less grapes than Zoe. Alice has 11 more grapes than Eve. Dave has 11
more grapes than Eve. Olivia has 29 more grapes than Kevin’s friend. Mallory has 97 more grapes than Olivia.
Judy has 78 more grapes than Olivia. Rob has 55 grapes. Frank has 70 less grapes than Heidi. Eve has 84 less
grapes than Kevin’s neighborhood. Xavier has 36 more grapes than Heidi. Kevin’s neighborhood has 55 less
grapes than Kevin’s friend. Kevin has 43 less grapes than Kevin’s mother. Heidi has 61 less grapes than Kevin’s
friend. Kevin’s mother has 88 more grapes than Kevin’s neighborhood. Kevin’s friend has 40 more grapes than
Rob. Walter has 38 more grapes than Victor.
Question: How many grapes does Kevin have?
Answer:
Rob has 55 grapes, and Kevin’s friend has 40 more grapes than Rob. So, Kevin’s friend has 55+40=95 grapes.
Kevin’s friend has 95 grapes, and Kevin’s neighborhood has 55 less grapes than Kevin’s friend. So, Kevin’s
neighborhood has 95-55=40 grapes.
Kevin’s neighborhood has 40 grapes, and Kevin’s mother has 88 more grapes than Kevin’s neighborhood. So,
Kevin’s mother has 40+88=128 grapes.
Kevin’s mother has 128 grapes, and Kevin has 43 less grapes than Kevin’s mother. So, Kevin has 128-43=85
grapes.
The final answer is 128.

Table 11: Examples of input given when solving the Overlap dataset.
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Answer the context question according to the following example.

Context: Carol’s mother has 4 apples. Xavier has 3 more apples than Carol’s mother. Dave has 13 more apples
than Xavier. Walter has -22 apples. Ursula has 3 more apples than Walter. Victor has 3 more apples than Ursula.
Quentin has 2 more apples than Ursula. Nancy has 3 more apples than Walter. Zoe has 3 more apples than Nancy.
Heidi has 3 more apples than Nancy. Peggy has 4 more apples than Xavier. Bob has 1 more apples than Carol’s
mother. Alice has 3 more apples than Bob. Sybil has 56 more apples than Bob.
Question: How many apples does Dave have?
Answer:
Carol’s mother has 4 apples, and Xavier has 3 more apples than Carol’s mother. So, Xavier has 4+3=7 apples.
Xavier has 7 apples, and Dave has 13 more apples than Xavier. So, Dave has 7+13=20 apples. The final answer is
20.

Context: Nancy has 34 bananas. Mallory has 55 less bananas than Nancy. Walter has 43 less bananas than
Mallory. Peggy has 50 more bananas than Walter. Quentin has 35 less bananas than Peggy. Alice has 92 more
bananas than Mallory. Victor has 10 less bananas than Walter. Xavier has 59 more bananas than Sybil. Yvonne has
79 more bananas than Sybil. Judy has 23 more bananas than Alice. Dave has 60 more bananas than Victor. Heidi
has 95 more bananas than Victor. Ursula doesn’t have 32 more bananas than Peggy. Larry has 17 less bananas than
Alice. Zoe has 58 less bananas than Yvonne. Ivan has 43 less bananas than Yvonne. Grace has 41 more bananas
than Xavier. Sybil has 3 less bananas than Nancy. Trent has 33 less bananas than Xavier.
Question: How many bananas does Quentin have?
Answer:
Nancy has 34 bananas, and Mallory has 55 less bananas than Nancy. So, Mallory has 34-55=-21 bananas.
Mallory has -21 bananas, and Walter has 43 less bananas than Mallory. So, Walter has -21-43=-64 bananas.
Walter has -64 bananas, and Peggy has 50 more bananas than Walter. So, Peggy has -64+50=-14 bananas.
Peggy has -14 bananas, and Quentin has 35 less bananas than Peggy. So, Quentin has -14-35=-49 bananas.
The final answer is -49.

Context: Eve has 2 apples. Yvonne’s son has 3 more apples than Eve. Zoe has 10 more apples than Yvonne’s son.
Yvonne has 3 less apples than Zoe. Alice has 3 more apples than Grace. Quentin has 3 more apples than Yvonne.
Trent has 34 more apples than Zoe. Ivan has 3 apples. Ursula has 3 more apples than Zoe. Grace has 3 apples.
Xavier has 3 more apples than Ivan.
Question: How many apples does Yvonne have?
Answer:
Eve has 2 apples, and Yvonne’s son has 3 more apples than Eve. So, Yvonne’s son has 2+3=5 apples.
Yvonne’s son has 5 apples, and Zoe has 10 more apples than Yvonne’s son. So, Zoe has 5+10=15 apples.
Zoe has 15 apples, and Yvonne has 3 less apples than Zoe. So, Yvonne has 15-3=12 apples.
The final answer is 12.

Context: Rob has 55 grapes. Trent has 40 more grapes than Rob. Sybil has 55 less grapes than Trent. Zoe has
88 more grapes than Sybil. Kevin has 43 less grapes than Zoe. Kevin’s friend has 33 less grapes than Rob. Ivan
has 43 more grapes than Victor. Victor has 33 less grapes than Kevin’s friend. Ursula has 75 less grapes than Zoe.
Alice has 11 more grapes than Eve. Dave has 11 more grapes than Eve. Olivia has 29 more grapes than Kevin’s
friend. Mallory has 97 more grapes than Olivia. Judy has 78 more grapes than Olivia. Frank has 70 less grapes
than Heidi. Eve has 84 less grapes than Sybil. Xavier has 36 more grapes than Heidi. Heidi has 61 less grapes than
Trent. Walter has 38 more grapes than Victor.
Question: How many grapes does Kevin have?
Answer:
Rob has 55 grapes, and Trent has 40 more grapes than Rob. So, Trent has 55+40=95 grapes.
Trent has 95 grapes, and Sybil has 55 less grapes than Trent. So, Sybil has 95-55=40 grapes.
Sybil has 40 grapes, and Zoe has 88 more grapes than Sybil. So, Zoe has 40+88=128 grapes.
Zoe has 128 grapes, and Kevin has 43 less grapes than Zoe. So, Kevin has 128-43=85 grapes.
The final answer is 128.

Table 12: Examples of input given when solving the Position dataset.
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Answer the context question according to the following example.

Context: Walter doesn’t have -22 apples. Ursula has 3 more apples than Walter. Victor has 3 more apples than
Ursula. Quentin has 2 more apples than Ursula. Nancy doesn’t have 3 more apples than Walter. Zoe has 3 more
apples than Nancy. Heidi doesn’t have 3 more apples than Nancy. Carol’s mother has 4 apples. Xavier has 3 more
apples than Carol’s mother. Peggy has 4 more apples than Xavier. Dave has 13 more apples than Xavier. Bob
doesn’t have 1 more apples than Carol’s mother. Alice has 3 more apples than Bob. Sybil has 56 more apples than
Bob.
Question: How many apples does Dave have?
Answer:
Carol’s mother has 4 apples, and Xavier has 3 more apples than Carol’s mother. So, Xavier has 4+3=7 apples.
Xavier has 7 apples, and Dave has 13 more apples than Xavier. So, Dave has 7+13=20 apples. The final answer is
20.

Context: Alice has 92 more bananas than Mallory. Victor has 10 less bananas than Walter. Xavier has 59 more
bananas than Sybil. Yvonne doesn’t have 79 more bananas than Sybil. Judy doesn’t have 23 more bananas than
Alice. Dave has 60 more bananas than Victor. Quentin has 35 less bananas than Peggy. Heidi has 95 more bananas
than Victor. Ursula doesn’t have 32 more bananas than Peggy. Larry doesn’t have 17 less bananas than Alice. Zoe
has 58 less bananas than Yvonne. Ivan has 43 less bananas than Yvonne. Walter has 43 less bananas than Mallory.
Nancy has 34 bananas. Grace doesn’t have 41 more bananas than Xavier. Mallory has 55 less bananas than Nancy.
Sybil doesn’t have 3 less bananas than Nancy. Peggy has 50 more bananas than Walter. Trent doesn’t have 33 less
bananas than Xavier.
Question: How many bananas does Quentin have?
Answer:
Nancy has 34 bananas, and Mallory has 55 less bananas than Nancy. So, Mallory has 34-55=-21 bananas.
Mallory has -21 bananas, and Walter has 43 less bananas than Mallory. So, Walter has -21-43=-64 bananas.
Walter has -64 bananas, and Peggy has 50 more bananas than Walter. So, Peggy has -64+50=-14 bananas.
Peggy has -14 bananas, and Quentin has 35 less bananas than Peggy. So, Quentin has -14-35=-49 bananas.
The final answer is -49.

Context: Zoe has 10 more apples than Yvonne’s son. Eve has 2 apples. Yvonne’s son has 3 more apples than Eve.
Quentin has 3 more apples than Yvonne. Yvonne has 3 less apples than Zoe. Alice has 3 more apples than Grace.
Trent has 34 more apples than Zoe. Ivan has 3 apples. Ursula has 3 more apples than Zoe. Grace has 3 apples.
Xavier doesn’t have 3 more apples than Ivan.
Question: How many apples does Yvonne have?
Answer:
Eve has 2 apples, and Yvonne’s son has 3 more apples than Eve. So, Yvonne’s son has 2+3=5 apples.
Yvonne’s son has 5 apples, and Zoe has 10 more apples than Yvonne’s son. So, Zoe has 5+10=15 apples.
Zoe has 15 apples, and Yvonne has 3 less apples than Zoe. So, Yvonne has 15-3=12 apples.
The final answer is 12.

Context: Kevin’s friend has 33 less grapes than Rob. Ivan doesn’t have 43 more grapes than Victor. Victor doesn’t
have 33 less grapes than Kevin’s friend. Ursula has 75 less grapes than Zoe. Alice has 11 more grapes than Eve.
Dave has 11 more grapes than Eve. Olivia doesn’t have 29 more grapes than Kevin’s friend. Mallory has 97 more
grapes than Olivia. Judy doesn’t have 78 more grapes than Olivia. Rob has 55 grapes. Frank has 70 less grapes
than Heidi. Eve has 84 less grapes than Sybil. Xavier doesn’t 36 more grapes than Heidi. Sybil has 55 less grapes
than Trent. Kevin has 43 less grapes than Zoe. Heidi has 61 less grapes than Trent. Zoe has 88 more grapes than
Sybil. Trent has 40 more grapes than Rob. Walter has 38 more grapes than Victor.
Question: How many grapes does Kevin have?
Answer:
Rob has 55 grapes, and Trent has 40 more grapes than Rob. So, Trent has 55+40=95 grapes.
Trent has 95 grapes, and Sybil has 55 less grapes than Trent. So, Sybil has 95-55=40 grapes.
Sybil has 40 grapes, and Zoe has 88 more grapes than Sybil. So, Zoe has 40+88=128 grapes.
Zoe has 128 grapes, and Kevin has 43 less grapes than Zoe. So, Kevin has 128-43=85 grapes.
The final answer is 128.

Table 13: Examples of input given when solving the Neg dataset.
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