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ABSTRACT

Distributionally robust reinforcement learning (DRRL) focuses on designing poli-
cies that achieve good performance under model uncertainties. In particular, we
are interested in maximizing the worst-case long-term discounted reward, where
the data for RL comes from a nominal model while the deployed environment
can deviate from the nominal model within a prescribed uncertainty set. Ex-
isting convergence guarantees for robust temporal-difference (TD) learning for
policy evaluation are limited to tabular MDPs or are dependent on restrictive
discount-factor assumptions when function approximation is used. We present the
first robust TD learning with linear function approximation, where robustness is
measured with respect to the total-variation distance uncertainty set. Additionally,
our algorithm is both model-free and does not require generative access to the MDP.
Our algorithm combines a two-time-scale stochastic-approximation update with an
outer-loop target-network update. We establish an Õ(1/ϵ2) sample complexity to
obtain an ϵ-accurate value estimate. Our results close a key gap between the empir-
ical success of robust RL algorithms and the non-asymptotic guarantees enjoyed by
their non-robust counterparts. The key ideas in the paper also extend in a relatively
straightforward fashion to robust Q-learning with function approximation.

1 INTRODUCTION

Reinforcement learning (RL) aims to learn policies that maximize long-term reward. Standard RL
methods learn the optimal strategy from trajectories generated by a simulator or the real environment,
implicitly assuming that training and deployment environments share the same dynamics. Many
applications face two issues: simulation–reality gaps and distribution shift between training and de-
ployment. These call for policies that are robust to perturbations in the environment. Distributionally
robust RL (DRRL) tackles this by assuming the true environment lies in an uncertainty set around a
nominal model. It then learns a policy that maximizes the worst-case cumulative reward over that
set, using data from trajectories corresponding to the nominal model. In this work, we focus on
model-free DRRL with linear function approximation for the value function to deal with large state
spaces.

In contrast to our model-free approach, model-based DRRL often proceeds by fitting an empirical
transition model, defining an uncertainty set from it, and then optimizing for a robust policy (Shi &
Chi, 2024; Wang & Zou, 2021; Xu et al., 2023; Panaganti & Kalathil, 2022; Yang et al., 2022; Zhou
et al., 2021). In some model-based papers, access to a generative-model is assumed, which is not
realistic in many cases (Wang & Zou, 2021; Xu et al., 2023). Whether one assumes generative access
or not, the number of parameters that need to be estimated in a model-based approach grows with the
cardinality of the state and action spaces, unless one makes additional structural assumptions on the
model.

Another line of work focuses on model-free learning of robust policies, that is, learning without
constructing an empirical transition matrix. In the tabular setting, Liang et al. (2023) analyzes
Cressie–Read f -divergence–based uncertainty sets and establishes asymptotic convergence guarantees
for robust temporal-difference (TD) learning. A complementary tabular result, Li et al. (2022), studies
the R-contamination uncertainty set and exploits a distinctive property: the robust Bellman operator
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in this model admits an unbiased stochastic estimator. The techniques developed there extend to any
uncertainty set that likewise permits an unbiased estimator of the robust Bellman operator, enabling
unbiased policy evaluation and, consequently, policy improvement in a model-free manner. However,
these papers do not consider function approximation, which is essential to deal with large state spaces.

When function approximation is introduced to represent the robust value function, the literature
typically proceeds along two directions with different limitations. One line of research constructs the
uncertainty set expressly so that the robust Bellman operator admits an unbiased estimator (Zhou
et al., 2023), allowing standard stochastic approximation arguments to go through or restrict to
R-contamination uncertainty set (Wang & Zou, 2021). For R-contamination uncertainty set, Wang &
Zou (2021) investigates the TD-C algorithm under function approximation and provides finite-time
bounds for convergence to a stationary point of the associated objective, offering non-asymptotic
guarantees in a setting where the objective is nonconvex and only stationarity is generally attainable.
The other direction assumes extremely small discount factors to induce a contraction mapping for the
robust Bellman operator, which restores fixed-point uniqueness and enables convergence proofs Zhou
et al. (2023); Badrinath & Kalathil (2021); Tamar et al. (2014). Both approaches trade generality
for tractability: the first restricts attention to uncertainty sets with unbiased estimators and focuses
only on local optimality, while the second relies on unrealistically small discounting to guarantee
contraction.

Another line of work (Tang et al., 2024; Ma et al., 2022) for model-free DRRL considers linear
Markov decision process (MDP) for DRRL where the transition matrix of the underlying MDP has a
lower-dimensional structure. This reduces the complexity associated with large state spaces. In this
paper, we do not make such a modeling assumption.

In summary, most existing results on model-free robust RL are limited in at least one crucial way: they
prove only local or asymptotic convergence; focus on narrow uncertainty models (e.g., Liang et al.
(2023) observe on FrozenLake that R-contamination–based methods can mirror non-robust baselines
and even underperform due to over-conservatism); restricted to tabular settings; assume generative
access; or require extremely small discount factors. In particular, there are no finite-time guarantees
for robust TD with function approximation from a single trajectory under broad, practically motivated
uncertainty classes—such as those induced by total variation or Wasserstein-ℓ distances. At the same
time, practice-oriented deep-RL pipelines often use ad-hoc “robust TD” heuristics, leaving a sizable
gap between theory and deployment. This work closes a portion of that gap by establishing finite-time
guarantees for robust TD learning with function approximation under commonly used uncertainty sets,
without relying on generative sampling, vanishing discount factors, or purely asymptotic arguments.

Contributions. Our main contributions are summarized below.

1. Finite-time guarantees for Robust TD Learning For total variation and Wasserstein-ℓ
uncertainty sets, we establish that the distributionally robust policy evaluation considered
in the paper with linear function approximation admits non-asymptotic guarantees from a
single trajectory. The robust TD method achieves an ϵ-accurate value estimate with sample
complexity Õ(1/ϵ2).

2. Overcoming projection mismatch via target networks. While the robust Bellman operator
is a contraction in ℓ∞ (Iyengar, 2005), function approximation induces a projected fixed-
point equation that breaks direct contraction arguments. Prior approaches either remain
tabular or require unrealistically small discount factors. We resolve this by incorporating a
target-network mechanism—conceptually related to Munos & Szepesvári (2008) and, in
the non-robust setting, Chen et al. (2023)—and prove stable, finite-time convergence of the
resulting projected robust TD updates without restrictive discount-factor assumptions.

3. Function approximation in the dual space. Standard DRRL solvers compute the worst-
case distribution at each step of an RL algorithm by using a dual formulation Iyengar (2005).
However, this requires estimating a dual variable for each (state, action) pair, which is
infeasible for large state spaces. To overcome this problem, we provide the first analysis of
function approximation in the dual space.

4. Robust Q-Learning. The main technical contributions of the paper are in the proof of con-
vergence and sample complexity bounds for robust TD learning with function approximation.
It is straightforward to use these ideas to obtain finite-time bounds for robust Q-learning
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with function approximation, which, to the best of our knowledge, has not been studied in
the literature. We refer the reader to the short argument in the Appendix (Section E).

Since our paper focuses on discounted-reward robust RL, we have not made an exhaustive comparison
of our work with work on average-reward robust RL; see, for example, Xu et al. (2025); Roch et al.
(2025); Chen et al. (2025). However, to the best of our knowledge, it is worth noting that there are no
performance guarantees even in the average-reward literature when function approximation is used.

2 MODEL AND PRELIMINARIES

Model We consider finite-state, finite-action, infinite-horizon discounted MDPs M :=
(S,A, P,R, γ), where S is the (finite) state space and A is the (finite) action space. For any fi-
nite set X , we denote by ∆X :=

{
µ ∈ R|X |

+ :
∑

x∈X µ(x) = 1
}

the probability simplex over X ; in
particular, ∆S and ∆A are the simplices over states and actions, respectively.

Throughout, we use lowercase letters s ∈ S , a ∈ A to denote deterministic (non-random) states and
actions, and uppercase letters S, S′, A to denote random states and actions taking values in S and A.
Given a state-action pair (s, a), the transition kernel P (· | s, a) ∈ ∆S specifies the distribution of
the next-state random variable S′ ∼ P (· | s, a). The reward function is R : S × A → [−1, 1], and
γ ∈ (0, 1) is the discount factor. A (stochastic) policy π maps states to distributions over actions, that
is, π(· | s) ∈ ∆A for each s ∈ S, and we write π(a | s) for the probability of choosing action a in
state s.

Let {(St, At)}t≥0 denote the state-action process for a policy π. Then for policy π and transition
model P , the (policy-dependent) state-action value is defined as

Qπ
P (s, a) := E

[ ∞∑
t=0

γtR(St, At)

∣∣∣∣∣ S0=s,A0=a, At∼π(· | St), St+1∼P (· | St, At)

]
.

Robust MDPs (RMDPs) and uncertainty sets. Distributionally robust RL (DRRL) models tran-
sition uncertainty via an uncertainty set around a nominal kernel P0. We adopt the standard (s, a)-
rectangular model (Iyengar, 2005; Nilim & El Ghaoui, 2005):

Pa
s =

{
q ∈ ∆S : D

(
q, P0(· | s, a)

)
≤ δ

}
, P =

⊗
(s,a)∈S×A

Pa
s , (1)

where D(·, ·) is a probability distance or divergence (e.g., total variation or Wasserstein-ℓ), and δ > 0
is the radius. An RMDP is then the tuple (superscript ‘rob’ stands for “robust” throughout the rest of
the paper)

Mrob = (S,A,P, R, γ).

Robust value functions (fixed policy). Given a fixed policy π, the robust state-action value function
is the worst-case value over P :

Qrob,π(s, a) := min
P∈P

Qπ
P (s, a), V rob,π(s) :=

∑
a

π(a | s)Qrob,π(s, a). (2)

It satisfies the robust Bellman equation:

Qrob,π(s, a) = R(s, a) + γ min
q∈Pa

s

∑
s′

q(s′ | s, a)
∑
a′

π(a′ | s′)Qrob,π(s′, a′)︸ ︷︷ ︸
=: V rob,π(s′)

. (3)

Equivalently, defining the robust Bellman operator (T rob,πQ)(s, a) := R(s, a) + γ σPa
s
(V Q,π(s′))

with
σPa

s
(V ) := min

q∈Pa
s

∑
s′

q(s′)V (s′), V Q,π(s′) :=
∑
a′

π(a′ | s′)Q(s′, a′), (4)

the fixed point relation is Qrob,π = T rob,πQrob,π . We can write from the definitions,

0 ≤ V rob,π(s) ≤ 1

1− γ
,∀s ∈ S; 0 ≤ Qrob,π(s, a) ≤ 1

1− γ
,∀(s, a) ∈ S ×A.
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For a fixed π, evaluating Qrob,π reduces to solving Equation (3), which at each (s, a) requires solving
the inner problem Equation (4).

2.1 ROBUST TEMPORAL-DIFFERENCE LEARNING: CHALLENGES

Function approximation. Fix a policy π. We approximate the robust state-action value function
by a linear function class with the learnable parameter vector θ ∈ Rnθ

Qrob,π
θ (s, a) ≈ ϕ(s, a)⊤θ, ∥ϕ(s, a)∥2 ≤ 1,∀(s, a) ∈ S ×A

with feature matrix Φ ∈ R|S||A|×nθ . Let dπ(s, a) be the stationary state-action distribution of (St, At)
under π, and define Dπ := diag

(
{dπ(s, a)}(s,a)∈S×A

)
. Assume the weighted feature covariance is

well-conditioned:
Φ⊤DπΦ ⪰ µInθ

for some µ > 0.

Let W := {Φθ : θ ∈ Rnθ} and denote by Π : R|S||A|→W the Dπ-orthogonal projection,

Πf = Φ(Φ⊤DπΦ)−1Φ⊤Dπf.

For any scalar x ∈ R, we define the clipping operator

Clip(x) := min
{
max

{
x, − 1

1−γ

}
, 1

1−γ

}
.

When applied to a vector v ∈ Rnθ , Clip(v) denotes component-wise application of this operation.

We define the function approximation error for approximating the robust Q-function as:

ϵapprox := sup
Q=Clip(Φθ),θ∈Rnθ

∥∥Clip (ΠT rob,π(Q)
)
− T rob,π(Q)

∥∥
∞ . (5)

Key challenges in robust policy evaluation and our approach. Model-free robust policy eval-
uation on a single trajectory typically hinges on a data-driven unbiased estimate σ̂Pa

s
(V ) of the

inner-optimization objective defined in Equation (4). Except for special uncertainty sets (e.g., R-
contamination), there is no direct plug-in unbiased single-sample estimator of this inner minimum,
which creates a bias in standard TD updates. To overcome this challenge, we use a two-time-scale
stochastic-approximation scheme in the inner loop of the algorithm: a fast time-scale solves for the
inner-optimization problem defined in Equation (4) in its equivalent dual form, while the slow loop
performs TD learning updates on θ using the estimate of the inner-optimization objective of the fast
time-scale. Our two-time-scale algorithm is motivated by the algorithm in Liang et al. (2023), but the
key difference here is the use of function approximation which necessitates a different analysis.

While T rob,π is a γ-contraction in ℓ∞-norm (Iyengar, 2005), function approximation introduces the
projected operator ΠT rob,π , which is not known to be a contraction in any norm for typical γ ∈ (0, 1).
Prior work by Zhou et al. (2023) circumvents this by imposing restrictive assumptions on γ which we
do not adopt. We address the non-contraction of ΠT rob,π via a target-network mechanism prevalent
in deep RL, analyzed by Munos & Szepesvári (2008) and later used in the non-robust setting by Chen
et al. (2023), for Q-learning to overcome the contraction issue with the projected robust Bellman
operator. At outer iteration t, we freeze a target parameter θ̂t and solve

Φθ = Π T rob,π(Φθ̂t)

in the inner loop, then update the target in the outer loop. This decoupling stabilizes the projected
robust updates and enables our finite-time analysis under linear function approximation.

Standard DRRL literature solves the inner-optimization problem in Equation (4) in a corresponding
dual space. However, solving it for each state-action pair is impractical for problems with large state
and action spaces. We consider linear function approximation in the dual space of the optimization
problem in Equation 4 and provide the first finite-sample analysis under this function approximation
setup.
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3 ROBUST TD LEARNING WITH LINEAR FUNCTION APPROXIMATION

3.1 UNCERTAINTY SETS

Before presenting the robust policy evaluation algorithm, we discuss the uncertainty sets considered
in the paper: Total Variation (TV) uncertainty set and Wasserstein-ℓ uncertainty set.

Total variation uncertainty set: The total variation uncertainty set is defined as: for each (s, a),
Pa
s
TV = {q ∈ ∆S : 1

2∥q − P0(·|s, a)∥1 ≤ δ}.

Simplifying (see: Appendix B) on the dual formulation originally given by Iyengar (2005) for the
Total Variation uncertainty set, we get the following equivalent dual optimization:

σPa
s
(V ) ≡ max

λa
s∈[ −1

1−γ , 1
1−γ ]

{ES∼P0(·|s,a)[min (V (S), λas)]− δλas}.

Wasserstein-ℓ uncertainty set: The uncertainty set is defined as: for each (s, a): Pa
s
Wℓ = {q ∈

∆S : Wℓ(P0(·|s, a), q) ≤ δ}, where δ > 0 is the uncertainty radius and Wℓ(P0(·|s, a), q) is the
Wasserstein-ℓ distance defined in detail in Appendix B.2.

The detailed analysis on TV and Wasserstein-ℓ uncertainty sets and the corresponding dual optimiza-
tion problem are given in the Appendix B.

3.2 ALGORITHM AND MAIN RESULTS

In this subsection, we present our robust policy evaluation algorithm and the main results of the paper.

3.2.1 ROBUST POLICY EVALUATION ALGORITHM

Our robust TD learning algorithm is presented in Algorithm 1. In the rest of this section, we
describe the algorithm and explain the notation used in the algorithm. In the outer loop (indexed by
t = 0, · · · , T − 1), we freeze a target parameter θ̂t; at the end of the inner loop we set θ̂t+1 to the
inner loop’s final iterate. In the inner loop (indexed by k = 0, · · · ,K − 1) we approximately solve
for θ satisfying:

Φθ = Π T rob,π(Φθ̂t),

using a two-time-scale stochastic approximation: a fast loop for the dual variables corresponding to
the inner-optimization problem 4, and a slow loop for the TD parameters. For a fixed outer loop t,
the inner loop iterates are θt,k for k ∈ [0,K − 1].

At each inner loop iteration k, in a fast time-scale, we approximately solve the equivalent dual
optimization problem in (4) using a super-gradient ascent step. Instead of maintaining a separate dual
variable λas for each (s, a) (which would be tabular), we parameterize the dual variables λas with the
learnable parameter vector ν ∈ Rnλ as

λas ≈ ψ(s, a)⊤ν, ∥ψ(s, a)∥2 ≤ 1,∀(s, a) ∈ S ×A,

with feature matrix Ψ ∈ R|S||A|×nλ .

Denote the robust value function estimate V rob
θ̂t

evaluated at the target parameter θ̂t as

V rob
θ̂t

(s) =
∑
a

π(a|s)Clip
(
ϕ(s, a)⊤θ̂t

)
,∀s ∈ S. (6)

The quantity V rob
θ̂t

can be computed exactly for any fixed target parameter θ̂t. In the case of

the TV distance uncertainty set, it suffices to compute V rob
θ̂t

(s) only for the state visited in each
inner-loop iteration, rather than for all states. We update νt,k with step-size βk using a projected
super-gradient ascent on the dual objective with a super-gradient evaluated at the fresh data sample
(St,k, At,k, St,k+1). Let Bν > 0 be a fixed finite radius, and define

Mν :=
{
ν ∈ Rnλ : ∥ν∥2 ≤ Bν

}
.

5
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The projection operator ProjMν
projects the dual parameter vector onto Mν , ensuring that the

iterates remain bounded. Since Mν is an ℓ2 ball, this projection can be computed by simple norm
scaling.

In the algorithm, ν̄t,k denotes the half-tail iterate-average of the dual parameter vector, i.e.,

ν̄t,k =
1

⌈k/2⌉

k−1∑
l=⌊k/2⌋

νt,l (7)

which can be calculated easily by keeping track of the following two quantities:
∑k−1

l=0 νt,l and∑k−1
l=⌊k/2⌋ νt,l. While many elements of our algorithm have been used in implementations of robust

TD learning, to the best of our knowledge, such an averaging of the dual variables has not been used
previously. The averaging turns out to be crucial in obtaining finite-time bounds, since it allows us to
control the variance of the dual objective.

In the slow time-scale of the inner loop, θt,k is updated using asynchronous stochastic approximation
with a step-size denoted by αk with a robust TD-target TDt,k+1. The two-time-scale scheme ensures
that, at the slow scale, the dual variables appear near their sample-path equilibrium, yielding an
(asymptotically) unbiased robust TD target.

Algorithm 1 Robust TD learning with Function Approximation

1: Input: Integers T,K. Initial ν0 ∈ Rnλ , θ0 := zero vector, fast time-scale step-sizes βk =
β0√
k+1

, for some 0 < β0 <∞, slow time-scale step-sizes αk = c
(k+1) for some 0 < c < ∞;

θ̂0 = θ0, θ0,0 = θ0, candidate policy π, Reward function R : (S × A) 7→ [−1, 1], initial state
S0,0.

2: for t = 0, 1, . . . , T − 1 do
3: for k = 0, 1, . . . ,K − 1 do
4: Take action At,k according to policy π and sample St,k+1 (St,k+1 ∼ P0(·|St,k, At,k))
5: fast time-scale (βk)

6: Compute Ĝ(ψ(St,k, At,k)
⊤νt,k;V

rob
θ̂t

, St,k+1) from Equation (17) for TV uncertainty set
and Equation (20) for Wasserstein-ℓ uncertainty set

7: νt,k+1 = ProjMν
(νt,k + βk[Ĝ(ψ(St,k, At,k)

⊤νt,k;V
rob
θ̂t

, St,k+1)ψ(St,k, At,k)])

8: Slow scale (αk)
9: Compute ν̄t,k from Equation (7)

10: Compute F̂ (ψ(St,k, At,k)
⊤ν̄t,k;V

rob
θ̂t

, St,k+1) from Equation (18) for TV uncertainty set
and Equation (21) for Wasserstein-ℓ uncertainty set

11: TDt,k+1 = R(St,k, At,k) + γF̂ (ψ(St,k, At,k)
⊤ν̄t,k;V

rob
θ̂t

, St,k+1)− ϕ(St,k, At,k)
⊤θt,k

12: θt,k+1 = θt,k + αkTDt,k+1ϕ(St,k, At,k)
13: end for
14: θ̂t+1 = θt,K , St+1,0 = St,K , θt+1,0 = θt,K , νt+1,0 = νt,K .
15: end for
16: Output: θ̂T

3.2.2 MAIN RESULT

We define the function approximation error for approximating the dual variables next. For compact-
ness of notation, denote for a value function V , for each (s, a), F ∗,V

s,a := supλa
s
F (λas ;V, P0(·|s, a))

and FV (ν)s,a := F (ψ(s, a)⊤ν;V, P0(·|s, a)). Define

ϵdualapprox := sup
V :V (s)=

∑
a π(a|s)Clip(ϕ(s,a)⊤θ);θ∈Rnθ

inf
ν∈Mν

∥F ∗,V − FV (ν)∥∞. (8)

We make the following assumption on the policy π.
Assumption 1. The policy π induces an irreducible and aperiodic Markov chain on S ×A under
the nominal transition kernel P0.

6
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For τ ≤ k, define

ηt,τk (·) := P
(
(St,k, At,k) ∈ ·

∣∣St,0, At,0, . . . , St,k−τ , At,k−τ

)
.

Under Assumption 1, the Markov chain is geometrically mixing: there exist constants Cmix < ∞
and ρ ∈ (0, 1) such that ∥∥ηt,τk − dπ

∥∥
TV

≤ Cmix ρ
τ , ∀ t, k, τ.

Here Cmix and ρ depend only on the nominal model (P0, π).

Let Q̂t := Clip
(
Φθ̂t

)
be the estimate of Qrob,π by Algorithm 1 at outer iteration t.

In Theorem 1, we present our main result, which establishes the convergence of Q̂T to the robust
value function Qrob,π , up to terms arising from function-approximation error.
Theorem 1 (Finite-time bound: rates and dependencies (informal)). Define

kmix

:=min

{
m ∈ N : ∀j ≥ m, j ≥ max

(
τµ, 2

⌈ log(Cmix

β0

√
j + 1

)
log(1/ρ)

⌉
,
⌈ log(Cmix(j + 1)/c

)
log(1/ρ)

⌉)}
,

where

τµ :=
⌈ log(Cmix

1
µ

)
log(1/ρ)

⌉
Assume Assumption 1 holds, and we run K ≥ kmix inner iterations per outer iteration for either the
TV uncertainty set or the Wasserstein-ℓ uncertainty set. Then, for any T ≥ 1, we have

E
[
∥Q̂T −Qrob,π∥∞

]
≤ γT ∥Clip(Φθ0)−Qrob,π∥∞ +

rateinner(K)

(1− γ)2
+

ϵapprox
1− γ

+
2
√
2
(
1 + 2

K

)µc
4 ϵdualapprox

µ(1− γ)
,

where the term rateinner(K) is of the following order in terms of inner iteration number K:

rateinner(K) =


O
(
K−µc/4

)
, αk =

c

k + 1
, µc < 2,

O
(
(logK)1/2K−1/2

)
, αk =

c

k + 1
, µc = 2,

O
(
K−1/2

)
, αk =

c

k + 1
, µc > 2,

where the notation O captures the problem-dependent constants depending on
(µ, δ, Cmix, ρ, Bν , β0, c).
Remark 1. A fully constant-explicit version of Theorem 1 is provided in Theorem 2 in the Appendix.

Recall the slow time-scale step-size rule is αk = c
k+1 ,∀k. The sample complexity to achieve an

ϵ-approximate robust Q-function estimate can be derived in the following manner. Assume µc > 2. If
we choose T = O

(
ln
(

1
ϵ(1−γ)

))
andK = O

(
1

(ϵ(1−γ)2)2

)
,we have γT ∥Clip(Φθ0)−Qrob,π∥∞ +

rateinner(K)
(1−γ)2 = O(ϵ). This gives us the following sample complexity result.

Corollary 1 (Sample Complexity). Suppose the step-size rule αk = c
1+k is used with µc ≥ 2. Then

the sample complexity for Algorithm 1 achieves an element-wise ϵ-accurate estimate of Qrob,π up to
the function approximation error is

O
(
ln

(
1

ϵ(1− γ)

)
1

ϵ2(1− γ)4

)
. (9)

Similar sample complexity results can be obtained for other values of µc.

We note that the step-size rule c
k+1 achieves the best sample complexity, but it requires c to be chosen

sufficiently large. This is consistent with similar results in the non-robust RL literature; see, for
example, Chen et al. (2023).
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4 KEY IDEAS AND PROOF OUTLINE

While the detailed proof of Theorem 1 is presented in Appendix C, we provide the key ideas behind
the proof in this section.

We define the stacked reward vector r ∈ R|S||A| by

rs,a := R(s, a), (s, a) ∈ S ×A,
using some fixed ordering of state-action pairs.

Fix an outer loop iteration t. Recall the definition F ∗,V
s,a := supλa

s
F (λas ;V, P0(·|s, a)). Define the

inner loop error for outer iteration index t as et,k := θt,k − θ∗t with

θ∗t := (Φ⊤DπΦ)−1Φ⊤Dπ
[
r + γ F

∗,V rob
θ̂t

]
. (10)

The next lemma bounds the expected estimation error at the final outer-loop iterate in terms of the
inner-loop error terms.
Lemma 1. Under the setting in Theorem 1, Algorithm 1 guarantees

E
[
∥Q̂T −Qrob,π∥∞

]
≤ γT ∥Clip (Φθ0)−Qrob,π∥∞ +

T∑
t=1

γT−tE [∥et,K∥∞]︸ ︷︷ ︸
Inner loop convergence error

+
ϵapprox
1− γ

.

The proof of Lemma 1 is provided in Appendix C.1 and is inspired by the analysis in Chen et al.
(2023) for non-robust Q-learning.

In the analysis that follows, we establish that the inner loop error remains small (up to function
approximation error terms) in ℓ∞-norm for sufficiently large k. We decompose the slow time-scale
update at inner loop k in Algorithm 1 into mean drift, noise and bias terms as

θt,k+1 = θt,k + αk

[
H(θt,k) + bθt,k + nθt,k+1

]
,

where

H(θt,k) := Φ⊤Dπ
[
r + γF

∗,V rob
θ̂t − Φθt,k

]
=︸︷︷︸

from Equation (10)

Φ⊤DπΦ(θ∗t − θt,k),

bθt,k := γΦ⊤Dπ
[
F

V rob
θ̂t (ν̄t,k)− F

∗,V rob
θ̂t

]
,

nθt,k+1 := TDt,k+1 ϕ(St,k, At,k)−H(θt,k)− bθt,k.

Idealized recursion (without noise and bias). The mean drift term corresponds to the deterministic
recursion:

θt,k+1 = θt,k + αkΦ
⊤DπΦ(θ∗t − θt,k).

This recursion admits θ∗t as its unique fixed point. Since the matrix Φ⊤DπΦ is symmetric and
positive definite with minimum eigenvalue µ > 0, in the absence of bias and noise terms, the iterates
satisfy

∥θt,k+1 − θ∗t ∥2 ≤ (1− αkµ) ∥θt,k − θ∗t ∥2, (11)
which implies geometric convergence of θt,k to θ∗t at a rate governed by µ.

Bias term analysis. Recall that the bias term is given by

bθt,k := γΦ⊤Dπ
[
F

V rob
θ̂t (ν̄t,k)− F

∗,V rob
θ̂t

]
.

We show that this term becomes small for large k, up to a function approximation error ϵdualapprox.

In the fast time-scale analysis, we prove that the stochastic update on ν performs a super-gradient
ascent on the concave objective

Lt(ν) :=
∑
s,a

dπ(s, a)F
(
ψ(s, a)⊤ν; V rob

θ̂t
, P0(·|s, a)

)
,

8
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which has bounded super-gradients. By a standard Lyapunov function argument for stochastic
approximation under a mixing Markov chain, we obtain the following guarantee on the iterates from
the fast time-scale for sufficiently large k (stated in detail in Lemma 4 in Appendix C):

E
[
max
ν∈Mν

Lt(ν)− Lt(ν̄t,k)
]

≤ Cfast√
k
, (12)

where the constant Cfast is given in equation 25.

Using ∥ϕ(s, a)∥2 ≤ 1 and F
∗,V rob

θ̂t
s,a ≥ F

V rob
θ̂t (ν̄t,k)s,a for all (s, a), we can write

∥bθt,k∥2 ≤ γ
∑
s,a

dπ(s, a)
∣∣∣FV rob

θ̂t (ν̄t,k)s,a − F
∗,V rob

θ̂t
s,a

∣∣∣ = γ
∑
s,a

dπ(s, a)
(
F

∗,V rob
θ̂t

s,a − F
V rob
θ̂t (ν̄t,k)s,a

)
≤ γ inf

ν∈Mν

∑
s,a

dπ(s, a)
(
F

∗,V rob
θ̂t

s,a − F
V rob
θ̂t (ν)s,a

)
︸ ︷︷ ︸

≤ϵdual
approx

+ γ
[

sup
ν∈Mν

Lt(ν)− Lt(ν̄t,k)
]

︸ ︷︷ ︸
fast-scale objective gap

.

Handling the noise term. Finally, to handle the noise terms nθt,k+1, we employ the approach in
Srikant & Ying (2019), where a bound is obtained on the expectation of the error ∥θt,k − θ∗t ∥22 con-
ditioned with respect to the filtration generated by the set (St,0, At,0, St,1, At,1, ..., St,k−τ , At,k−τ ).
By choosing a lag τ such that the underlying Markov chain has mixed sufficiently, the effect of noise
can be controlled.

5 DISCUSSION

As mentioned in the introduction, we provide the first proof of convergence and finite-time bounds for
robust TD learning with function approximation, without making any assumptions on the underlying
model or imposing very restrictive assumptions on the discount factor. Some immediate extensions
and open problems are identified below:

1. The algorithm and the results can be extended to other families of distances between
probability distributions, such as the Cressie-Read family of f -divergences considered in
Liang et al. (2023), which admit duality representations that allow one to obtain unbiased
estimators of the quantities of interest. For the Cressie-Read family, this would require the
addition of one more time-scale, but the rest of the analysis would be similar. Our results
also apply to the R-contamination set, but the algorithm is even simpler in that case due to
the fact that the dual problem has a closed-form solution Xu et al. (2025).

2. Although the results in the main body of the paper have been presented for robust TD
learning, they can be easily extended to robust Q-learning with function approximation to
obtain optimal policies; see the Appendix.
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A CONTENTS

The contents of the Appendix are as follows:

1. In Section B, we analyze the TV distance and Wasserstein-ℓ uncertainty sets in detail.

2. Section C proves the main result of the paper, that is, Theorem 1 in detail.

3. In Section E, we present the robust Q learning algorithm with linear function approximation
(Algorithm 2) and discuss how the theoretical analysis for robust TD learning can be
extended to the robust Q learning straightforwardly.

B CONDITIONS FOLLOWED BY TV AND WASSERSTEIN-ℓ UNCERTAINTY SETS

To aid the analysis, in the this section we outline a few properties of the uncertainty sets considered
in this paper: TV and Wasserstein-ℓ uncertainty sets. In Section 5, we discuss how our algorithm can
be trivially modified to satisfy a similar convergence guarantee for the R-contamination uncertainty
set and Cressie-Read family of f-divergences considered in Liang et al. (2023).

Lemma 2. The TV and Wasserstein uncertainty sets considered in this paper satisfies the following
conditions. The optimization problem σPa

s
(V ) for a generic value function V as defined in Equation

(4) has an equivalent dual optimization problem corresponding to a dual variable λas :

σPa
s
(V ) ≡ sup

λa
s≥0

(F (λas ;V, P0(·|s, a)))

where F (λas ;V, P0(·|s, a)) is a λas -concave function with the following properties:

1. Let G(λas ;V, P0(· | s, a)) be a super-gradient of the concave function F (λas ;V, P0(· | s, a)).
There exists an unbiased estimator Ĝ(λas ;V, S

′) of G(λas ;V, P0(· | s, a)) based on a sample
of the next state S′ ∼ P0(· | s, a), that is,

ES′∼P0(·|s,a)[Ĝ(λ
a
s ;V, S

′)] = G(λas ;V, P0(· | s, a)),

and it satisfies |Ĝ(λas ;V, S′)| ≤ CG <∞ for all λas ∈ R for some constant CG ≥ 0.

2. There exists an unbiased estimator F̂ (λas ;V, S
′) of the dual objective F (λas ;V, P0(·|s, a))

based on a sample of next state S′ ∼ P0(·|s, a), that is,

ES′∼P0(·|s,a)[F̂ (λ
a
s ;V, S

′)] = F (λas ;V, P0(·|s, a)).

Moreover, the estimator is uniformly bounded on bounded sets of λas : for every M > 0
there exists a constant CF,M <∞ such that, for all |λas | ≤M and all s′ ∈ S,∣∣F̂ (λas ;V, s′)∣∣ ≤ CF,M .

Next, we discuss in detail the uncertainty sets considered in this paper, namely, TV distance uncer-
tainty and Wasserstein-ℓ uncertainty sets and prove the Lemma 2. For each uncertainty set,

1. We define the uncertainty set first. Then, we discuss and analyze the equivalent dual
optimization that corresponds to the inner-optimization problem defined in Equation 4.

2. We show the uncertainty set satisfies the conditions described in Lemma 2 and hence prove
Lemma 2.

B.1 TOTAL VARIATION DISTANCE UNCERTAINTY SET

The total variation uncertainty set is defined for each (s, a) pair as,

Pa
s
TV = {q ∈ ∆S :

1

2
∥q − P0(·|s, a)∥1 ≤ δ}.

11
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Next, we show that the optimization problem given in Equation 4 in the main body of the paper
with Pa

s
TV as the uncertainty set satisfies the conditions described in Lemma 2. Let us rewrite the

optimization problem here for the TV distance uncertainty set.

σPa
s
TV (V ) = min

q∈Pa
s
TV
q⊤V.

From Lemma 4.3 in Iyengar (2005), we know that the above optimization problem can be solved
under the dual formulation :

σPa
s
TV (V ) = max

f∈R|S|
+

(
ES∼P0(·|s,a)[V (S)− f(S)]− δspan(V − f)

)
. (13)

Next, we prove that the above dual optimization problem is equivalent to a scalar optimization
problem.

Lemma 3. The optimization problem given in Equation (13) is equivalent to the following optimiza-
tion problem:

σPa,TV
s

(V ) ≡ δmin
s′

V (s′) + max
λa
s∈[mins′ V (s′),maxs′ V (s′)]

{ES∼P0(·|s,a)[min{V (S), λas}]− δλas}.

(14)

Proof. From the µ-vector dual to a 1–D cut off problem: The optimization problem in Equation
(13) can be written as

max
f∈R|S|

+

{
ES∼P0(·|s,a)

[
V (S)− f(S)

]
− δ

[
maxs′(V (s′)− f(s′))−mins′(V (s′)− f(s′))

]}
. (15)

Step 1 – restrict to “cut–off” vectors: For any scalar z ∈ [mins′ V (s′),maxs′ V (s′)], define

fz(s) :=
[
V (s)− z

]
+

= max
{
0, V (s)− z

}
.

Replacing an arbitrary feasible f by the corresponding fz:=maxs′ (V (s′)−f(s′)) cannot decrease
the objective in equation 15, so an optimizer always has the form fz∗ for some z∗ ∈
[mins′ V (s′),maxs′ V (s′)].

Step 2 – plug fz into the objective. Because V (s)− fz(s) = min{V (s), z},

max
s

(
V − fz

)
= z, min

s

(
V − fz

)
= min

s′
V (s′),

and
ES∼P0

[V (S)− fz(S)] = ES∼P0

[
min{V (S), z}

]
.

Substituting these identities into equation 15 yields the scalar optimization

σPa,TV
s

(V ) = δmin
s′

V (s′) + max
z∈[mins′ V (s′),maxs′ V (s′)]

{
ES∼P0(·|s,a)

[
min{V (S), z}

]
− δ z

}
.

(16)

As we are dealing with V functions for which V (s) ∈ { −1
1−γ ,

1
1−γ }, the optimum dual variable lies

in: λas ∈ { −1
1−γ ,

1
1−γ } and we can equivalently write from Lemma 3,

σPa,TV
s

(V ) = δmin
s′

V (s′) + max
λa
s∈{ −1

1−γ , 1
1−γ }

{ES∼P0(·|s,a)[minV (S), λas ]− δλas}.

It is easy to verify that the concave objective has a super-gradient:

GTV (λas ;V, P0(·|s, a)) := PS∼P0(·|s,a)[V (S) ≥ λas ]− δ.

12
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An unbiased estimate of the super-gradient for a value of λas and the value function V from a next
state S′ ∼ P0(·|s, a) can be given as:

ĜTV (λas ;V, S
′) := 1V (S′)≥λa

s
− δ. (17)

An unbiased estimate of the dual objective for a value of λas and the value function V from a next
state S′ ∼ P0(·|s, a) can be given as

F̂TV (λas ;V, S
′) = δmin

s′
V (s′) + min(V (S′), λas)− δλas . (18)

As we have |V (s)| ≤ 1
1−γ ,∀s ∈ S, its easy to see that,

|ĜTV (λas ;V, S
′)| ≤ CTV

G := max(δ, 1− δ),∀λas ∈ R,

and, for any 0 < M <∞,

|F̂TV (λas ;V, S
′)| ≤ CTV

F,M := (1 + δ)

(
M +

1

1− γ

)
,∀λas ∈ [−M,M ].

B.2 WASSERSTEIN-ℓ UNCERTAINTY SET

We define the Wasserstein-ℓ uncertainty set for each (s, a) pair as:

Pa
s
Wℓ = {q ∈ ∆S :Wℓ(P0(·|s, a), q) ≤ δ},

where δ > 0 is the uncertainty radius and Wℓ(P0(·|s, a), q) is the Wasserstein-ℓ distance defined next.
Consider the generic metric space (S, d) by defining some distance metric d. For some parameter
ℓ ∈ [1,∞), and two distributions p, q ∈ ∆S , define the Wasserstein-ℓ distance between them as
Wℓ(q, p) = infN∈Γ(p,q) ∥d∥N,ℓ, where Γ(p, q) denotes the distribution over S × S with marginal
distributions p, q and ∥d∥N,ℓ = (E(X,Y )∼N [d(X,Y )ℓ])1/ℓ. Let us use the distance matrix with
normalization, ensuring |d(s, s′)| ≤ 1,∀(s, s′).

Next, we show that the following optimization problem with Pa
s
Wℓ as the uncertainty set satisfies the

conditions described in Lemma 2.

σPa
s
Wℓ (V ) = min

q∈Pa
s
Wℓ

q⊤V.

From Gao & Kleywegt (2023), we know that the above optimization problem can be solved under the
dual formulation :

σPa
s
(V ) = sup

λa
s≥0

(
−λasδℓ + EP0(·|s,a)[infy

(V (y) + λasd(S, y)
ℓ)]

)
.

As the state space S is finite, we can replace the inner-optimization [infy(V (y) + λasd(S, y)
ℓ)] with

[miny(V (y)+λasd(S, y)
ℓ)]. Next, we show that the optimum dual variable of the above optimization

problem lies inside a compact set
[
0, λWℓ

M

]
with λWℓ

M := span(V )
δℓ

.

As point-wise minimum of affine functions is concave, the above optimization problem is a concave
optimization problem. It is easy to verify that the concave objective has a super-gradient:

GWℓ(λas ;V, P0(·|s, a)) = −δℓ + EX∼P0(·|s,a)[d(X, y
∗
λa
s
(X))ℓ], (19)

where,
y∗λa

s
(x) ∈ argmin

y
[V (y) + λasd(x, y)

ℓ].

Let us fix an S = s and its minimizer y∗λa
s
(x) for the inner-optimization [infy(V (y) + λasd(s, y)

ℓ)] .
Because the candidate y = s is always feasible,

V (y∗λa
s
(s)) + λasd(s, y

∗
λa
s
)ℓ ≤ V (s).

13
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Rearrange:

d(s, y∗λa
s
(s))ℓ ≤

V (s)− V (y∗λa
s
(s))

λas
≤ span(V )

λas
.

Taking expectation in Equation 19 and using the above equation gives

GWℓ(λas ;V, P0(·|s, a)) ≤ −δℓ + span(V )

λas
.

Now, for any λas > λWℓ

M = span(V )
δℓ

, we have,

GWℓ(λas ;V, P0(·|s, a)) ≤ 0.

Due to the concavity of the objective, a non-positive super-gradient means the function is non-
increasing for all λas > λWℓ

M . Combining the observation with the boundedness of the objective for
bounded λas , we conclude that the supremum is attained and lies in [0, λWℓ

M ].

An unbiased estimate of the super-gradient for a value of λas and the value function V from a next
state S′ ∼ P0(·|s, a) can be given as:

ĜWℓ(λas ;V, S
′) = −δℓ + d(S′, y∗

′
)ℓ, (20)

where,
y∗

′
= argmin

y
[V (y) + λasd(S

′, y)ℓ].

An unbiased estimate of the dual objective for a value of λas and the value function V from a next
state S′ ∼ P0(·|s, a) can be given as

F̂Wℓ(λas ;V, S
′) = −λasδℓ + V (y∗

′
) + λasd(S

′, y∗
′
)ℓ. (21)

If we assume |V (s)| ≤ 1
1−γ ,∀s ∈ S, its easy to show that,

|ĜWℓ(λas ;V, S
′)| ≤ CWℓ

G := 1 + δℓ,∀λas ∈ R,

and, for any 0 < M <∞,

|F̂Wℓ(λas ;V, S
′)| ≤ CWℓ

F,M := (δℓ + 1)M +
1

1− γ
,∀λas ∈ [−M,M ].

C CONVERGENCE ANALYSIS OF ALGORITHM 1 AND THE PROOF OF
THEOREM 1

In this section, we provide the proof of Theorem 1. The proof follows in a similar manner described
in the proof sketch in the main body of the paper. We start with proving Lemma 1 which establishes
the convergence of the outer loop iterates in terms of inner loop convergence error. Subsequently, we
establish the convergence of the inner loop. Finally we combine them to prove Theorem 1.

C.1 OUTER LOOP CONVERGENCE ANALYSIS: PROOF OF LEMMA 1

In this subsection, we prove Lemma 1. The proof is inspired by the analysis in Chen et al. (2023) for
non-robust Q-learning. The analysis of the outer loop follows from the paper (Chen et al., 2023). To
write the bound for the outer loop, we have to start with a few notations as used in the mentioned
paper. Recall, the function approximation error ϵapprox is defined as:

ϵapprox := sup
Q=Clip(Φθ),θ∈Rnθ

∥∥Clip (ΠT rob,π(Q)
)
− T rob,π(Q)

∥∥
∞ .

Also, recall the definition of θ∗t from Equation 10.

Recall the fact that Qrob,π = T rob,π(Qrob,π).

14
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Then, for any t = 1, 2, ..., T , we have,

∥Q̂t −Qrob,π∥∞ = ∥Clip(Φθ̂t)− T rob,π(Qrob,π)∥∞
= ∥(T rob,π(Q̂t−1)− T rob,π(Qrob,π))∥∞︸ ︷︷ ︸

I

+ ∥(Clip(Φθ̂t)− Clip(ΠT rob,π(Q̂t−1)))∥∞︸ ︷︷ ︸
II

+ ∥(T rob,π(Q̂t−1)− Clip(ΠT rob,π(Q̂t−1)))∥∞︸ ︷︷ ︸
≤ϵapprox

.

First Term:

I = ∥(T rob,π(Q̂t−1)− T rob,π(Qrob,π))∥∞ ≤ γ∥Q̂t−1 −Qrob,π∥∞,

as the robust bellman operator is a γ-contraction with respect to the ∞-norm (Iyengar, 2005).

Second Term:

II = ∥(Clip(Φθ̂t)− Clip(ΠT rob,π(Q̂t−1)))∥∞
≤︸︷︷︸
(a)

∥Φθ̂t −ΠT rob,π(Q̂t−1)∥∞

=︸︷︷︸
(b)

∥|Φ(θt−1,K − θ∗t−1)∥∞

≤ max
s,a

∥ϕ(s, a)∥2∥θt−1,K − θ∗t−1∥2

≤︸︷︷︸
(c)

∥θt−1,K − θ∗t−1∥2.

where (a) is using the non-expansive property of the clipping operator with respect to ∥ · ∥∞; for (b),
recall the definition of θ∗t in the inner loop in Equation 10; for (c), assume ∥ϕ(s, a)∥2 ≤ 1,∀(s, a) ∈
S ×A.

Hence, we get:

∥Q̂t −Qrob,π∥∞ ≤ γ∥Q̂t−1 −Qrob,π∥∞ + ∥θt−1,K − θ∗t−1∥2 + ϵapprox.

Unroll the recursion and take the expectation:

E∥Q̂T −Qrob,π∥∞ ≤ γT ∥Q̂0 −Qrob,π∥∞ +

T∑
t=1

γT−tE[∥θt−1,K − θ∗t−1∥2] +
ϵapprox
1− γ

.

C.2 INNER LOOP CONVERGENCE ANALYSIS

The purpose of this subsection is to bound the term E[∥θt−1,K − θ∗t−1∥2] for any fixed outer loop
iteration index t.

Using the notations stated in the Lemma 2, we instantiate different problem-dependent constants,
namely CG and CF,M as follows for differet uncertainty sets. In the fast time-scale, we have
∥νt,k∥2 ≤ Bν . This implies, |ψ(s, a)⊤νt,k| ≤ Bν for all (s, a) pair. Hence, for the rest of the
Appendix denote M := Bν and similarly CF,M := CBν

.

Recall from the Appendix B, we know that,

1. For total variation uncertainty sets, CBν
= (1 + δ)

(
M + 1

1−γ

)
.
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2. For Wasserstein-ℓ uncertainty sets, CBν
= (1 + δℓ)Bν + 1

1−γ .

Also, from the Appendix B, we know that,

1. For total variation uncertainty sets, CG = max(δ, 1− δ).
2. For Wasserstein-ℓ uncertainty sets, CG = 1 + δl.

In this subsection, we show that for each outer iteration t, the inner loop parameter θt,k converges to
θ∗t as defined in Equation (10). Recall the definition F ∗,V

s,a := supλa
s
F (λas ;V, P0(·|s, a)). We denote

the inner loop error for outer iteration index t as et,k := θt,k − θ∗t with

θ∗t := (Φ⊤DπΦ)−1Φ⊤Dπ
[
r + γ F

∗,V rob
θ̂t

]
. (22)

Using earlier notation, the dual objective corresponding to an (s, a)-pair for a target value function
V rob
θ̂t

is

max
λa
s

F (λas ;V
rob
θ̂t

, P0(·|s, a)).

For the rest of the discussion in this subsection, let us fix an outer loop iteration t and the target
parameter θ̂t is treated as a deterministic vector. For a given outer loop index t, for all inner loop
iterations k ≥ 1 let the filtration Ft,k be the sigma algebra generated by the transitions sampled till
inner loop iteration index k − 1 that is, on the set {St,j , At,j , St,j+1 : 0 ≤ j ≤ k − 1}.

Observe that the pair process Zt,k := (St,k, At,k) is a Markov chain. We define another filtration
Gt,k as the sigma algebra over the set {Zt,0, Zt,1, ..., Zt,k}.

C.2.1 ANALYSIS ON THE FAST TIME-SCALE:

The fast time-scale update is given as

νt,k+1 = ProjMν
(νt,k + βk[Ĝ(ψ(St,k, At,k)

⊤νt,k;V
rob
θ̂t

, St,k+1)ψ(St,k, At,k)]).

Define the diagonal matrix Dt,k ∈ R|S||A|×|S||A| with each diagonal element as
Dt,k((s, a), (s, a)) = 1(s,a)=(St,k,At,k).

For each outer iteration t and dual vector νt,k, we define a vector ḡt(νt,k) ∈ R|S||A|, indexed by
(s, a) ∈ S ×A, via

[ḡt(νt,k)]s,a := ES′∼P0(·|s,a)
[
Ĝ
(
ψ(s, a)⊤νt,k; V

rob
θ̂t

, S′)].
Here S′ denotes the next-state random variable with distribution P0(· | s, a).

Also, define the stochastic update vector Xt,k ∈ R|S||A| defined as

[Xt,k]s,a := 1(s,a)=(St,k,At,k) · Ĝ(ψ(s, a)
⊤νt,k;V

rob
θ̂t

, St,k+1)ψ(s, a).

We split the update into stationary drift and different noise terms as:

νt,k+1

=ProjMν

νt,k + βk

Ψ⊤Dπ ḡt(νt,k) +Xt,k − E[Xt,k|Gt,k]︸ ︷︷ ︸
mν

k+1

+E[Xt,k|Gt,k]−Ψ⊤Dπ ḡt(νt,k)︸ ︷︷ ︸
ζν
k+1


 .

We see that,
ζνk+1 = E[Xt,k|Gt,k]−Ψ⊤Dπ ḡt(νt,k).

So the update now becomes,

νt,k+1 = ProjMν

(
νt,k + βk

[
Ψ⊤Dπ ḡt(νt,k) +mν

k+1 + ζνk+1

])
.
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In the above equation, mν
k+1 denotes the state-innovation noise that is a martingale difference on the

filtration Gt,k.

Hence,

E[mν
k+1|Gt,k] = 0.

We analyze the finite time convergence of the fast time-scale first. We show that the fast time-scale
update is equivalent to performing a stochastic gradient super-gradient ascent on the following
objective function:

Lt(ν) :=
∑
s,a

dπ(s, a)F
(
ψ(s, a)⊤ν; Vθ̂t , P0(·|s, a)

)
.

It is easy to show that Lt(ν) is concave on ν. Let ν∗t be one maximizer of the above objective function
Lt(ν) in the domain Mν . Notice that the fast time-scale update depends on the target parameter
vector θ̂t and independent of the slow time-scale parameters for a fixed outer loop.

Our goal is to bound the sub-optimality gap of the dual objective (the weighted objective Lt(ν)) for
each iteration in the inner loop. We will be able to use the error in estimating the dual objective from
the fast time-scale as a bias in the slow time-scale to get a sample complexity bound for the inner
loop of the algorithm 1.

Let us define the dual objective sub-optimality at ν = νt,k for the fast time-scale as :

Lt,k :=
∑
s,a

dπ(s, a)[F (ψ(s, a)⊤ν∗t ;V
rob
θ̂t

, P0(·|s, a))− F (ψ(s, a)⊤νt,k;V
rob
θ̂t

, P0(·|s, a))].

Define the Lyapunov function for the fast time-scale as

eνt,k = ∥νt,k − ν∗t ∥22.

Using the non-expansiveness of projection,

eνt,k+1 ≤ ∥νt,k + βkΨ
⊤Dπ ḡt(νt,k) + βk(m

ν
k+1 + ζνk+1)− ν∗t ∥22.

We can write:

eνt,k+1 ≤ ∥(νt,k − ν∗t )∥22 + 2βk(νt,k − ν∗t )
⊤Ψ⊤Dπ ḡt(νt,k)

+ 2βk(νt,k − ν∗t )
⊤(mν

k+1 + ζνk+1)

+ β2
k∥Ψ⊤Dπ ḡt(νt,k) +mν

k+1 + ζνk+1∥22.

We simplify the term (νt,k − ν∗t )
⊤Ψ⊤Dπ ḡt(νt,k) first.

(νt,k − ν∗t )
⊤Ψ⊤Dπ ḡt(νt,k) =

∑
s,a∈S×A

dπ(s, a)ḡt(νt,k)(s, a)(νt,k − ν∗t )
⊤ψ(s, a)

= (νt,k − ν∗t )
⊤∇ν=νt,k

Lt(ν).

Hence, from the first order optimality condition on a concave objective, we can write:

(νt,k − ν∗t )
⊤Ψ⊤(Dπ)ḡt(νt,k) ≤ −Lt,k

Hence, we get,

eνt,k+1 ≤ ∥(νt,k − ν∗t )∥22 − 2βkLt,k

+ 2βk(νt,k − ν∗t )
⊤(mν

k+1) + 2βk(νt,k − ν∗t )
⊤(ζνk+1)

+ β2
k∥Ψ⊤Dπ ḡt(νt,k) +mν

k+1 + ζνk+1∥22.
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Now we condition on a lagged filtration Gt,k−τ where τ ≤ k would be chosen later.

E
[
eνt,k+1|Gt,k−τ

]
≤ E

[
eνt,k|Gt,k−τ

]
− 2βkE [Lt,k|Gt,k−τ ]

+ 2βkE
[
(νt,k − ν∗t )

⊤(mν
k+1)|Gt,k−τ

]
+ 2βkE

[
(νt,k − ν∗t )

⊤(ζνk+1)|Gt,k−τ

]
+ β2

kE
[
∥Ψ⊤Dπ ḡt(νt,k) +mν

k+1 + ζνk+1∥22|Gt,k−τ

]
.

Let us first bound the β2
k terms. Recall from the conditions described in Lemma 2, ∥ḡt(νt,k)∥∞ ≤ CG.

As ∥ψ(s, a)∥2 ≤ 1,∀(s, a) ∈ S × A, one can easily show that ∥Ψ⊤Dπ ḡt(νt,k)∥2 ≤ CG and
∥mν

k+1∥2 ≤ 2CG and ∥ζνk+1∥2 ≤ 2CG. Hence,

β2
kE
[
∥Ψ⊤Dπ ḡt(νt,k) +mν

k+1 + ζνk+1∥22|Gt,k−τ

]
≤ 25β2

kC
2
G.

Now we work on the cross terms. Let us start with 2βkE
[
(νt,k − ν∗t )

⊤Dπ(mν
k+1)|Gt,k−τ

]
.

We write:

2βkE
[
(νt,k − ν∗t )

⊤Dπ(mν
k+1)|Gt,k−τ

]
= 2βkE

[
E
[
(νt,k − ν∗t )

⊤Dπ(mν
k+1)|Gt,k

]
|Gt,k−τ

]
= 2βkE

[
(νt,k − ν∗t )

⊤Dπ[E
[
(mν

k+1)|Gt,k

]
|Gt,k−τ

]
= 0.

Now we focus on the term 2βkE
[
(νt,k − ν∗t )

⊤(ζνk+1)|Gt,k−τ

]
.

We use the shorthand
Zt,k := (St,k, At,k) ∈ S ×A

for the state-action pair at outer iteration t and inner iteration k.

Define the vector eZt,k

eZt,k
(s, a) := 1St,k,At,k=s,a.

Recall the definition

ηt,τk (·) := P
(
(St,k, At,k) ∈ ·

∣∣St,0, At,0, . . . , St,k−τ , At,k−τ

)
From Assumption 1, we know the following holds:

∥ηt,τk − dπ∥TV ≤ Cmix ρ
τ (0 < ρ < 1).

Thus, we can write:

2βkE
[
(νt,k − ν∗t )

⊤(Ψ⊤(eZt,k
− dπ)⊙ ḡt(νt,k))|Gt,k−τ

]
= 2βkE

[
(Ψ(νt,k − ν∗t ))

⊤((eZt,k
− dπ)⊙ ḡt(νt,k))|Gt,k−τ

]
≤ 2βkE

[
∥(Ψ(νt,k − ν∗t ))∥∞∥((eZt,k

− dπ)⊙ ḡt(νt,k))∥1|Gt,k−τ

]
≤ 2βkE

[
2BνCG∥(eZt,k

− dπ)∥1|Gt,k−τ

]
≤ 8βkBνCGCmixρ

τ .

Putting it together, we have:

E
[
eνt,k+1|Gt,k−τ

]
≤ E

[
eνt,k|Gt,k−τ

]
− 2βkE [Lt,k|Gt,k−τ ] + 8βkBνCGCmixρ

τ + 25β2
kg

2
m.

Now we choose ∀l ∈ (⌊k/2⌋, k − 1), τ = τβl
:= ⌈

log(
Cmix
β0

√
l+1)

log( 1
ρ )

⌉, and assume k ≥ 2τβk
then,

taking unconditional expectation gives us: (as Cmixρ
τβl ≤ βl) ∀l ∈ (⌊k/2⌋, k − 1):

2βkE[Ll] ≤ E[eνt,l]− E[eνt,l+1] + β2
l (8BνCG + 25C2

G).
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Next, we use telescoping for iterates over the index l from ⌊k
2 ⌋ to k − 1.

2

k−1∑
l=⌊k/2⌋

βlE[Ll] ≤ 4B2
ν + (8BνCG + 25C2

G)

k−1∑
l=⌊k/2⌋

β2
l , (23)

where, we used that ∥et,⌊k/2⌋∥2 ≤ 4B2
ν due to the projection step ProjMν

. Recall, the fast time-scale
passes the following suffix-average of the dual parameter vector iterates to the slow time-scale at
each iterate k:

ν̄t,k =
1

⌈k/2⌉

k−1∑
⌊k/2⌋

νt,k.

We use the step-size rule of βk = β0√
k+1

.

Similar to the definition of Lt,k, let us define

Lt,k :=
∑
s,a

dπ(s, a)[F (ψ(s, a)⊤ν∗t ;V
rob
θ̂t

, P0(·|s, a))− F (ψ(s, a)⊤ν̄t,k;V
rob
θ̂t

, P0(·|s, a))] (24)

Hence, using Jensen’s inequality, we write:

E[Lt,k] ≤
1

⌈k/2⌉

k−1∑
l=⌊k/2⌋

E[Lt,l]

≤︸︷︷︸
(a)

1

⌈k/2⌉

√
k

β0

k−1∑
l=⌊k/2⌋

βlE[Lt,k] ≤
2

k

√
k

β0

k−1∑
l=⌊k/2⌋

βlE[Lt,l]

≤︸︷︷︸
(b)

4B2
ν

β0
√
k
+

(8BνCG + 25C2
G)

β0
√
k

k−1∑
l=⌊k/2⌋

β2
l

=
4B2

ν

β0
√
k
+

(8BνCG + 25C2
G)

β0
√
k

k−1∑
l=⌊k/2⌋

β2
0

l + 1

≤︸︷︷︸
(c)

4B2
ν

β0
√
k
+

(8BνCG + 25C2
G)
(
β2
0(1 + ln(k)− ln(k/2))

)
β0

√
k

≤ Cfast√
k

where

Cfast =
(4B2

ν + β2
0(8BνCG + 25C2

G) ln(2e))

β0
. (25)

In (a), we used βk ≥ β0√
k
,∀k ≤ k − 1. In (b), we used Equation 23. In (c), we used the following

identity: ln(k) ≤ 1 + 1
2 + ...+ 1

k ≤ 1 + ln(k) .

In summary, we have the following guarantee from the fast time-scale:

Lemma 4. Fix an outer loop t ≥ 0. The following holds for the fast time-scale iterates of the

Algorithm 1: If k ≥ 2
⌈
log(

Cmix
β0

√
k+1)

log( 1
ρ )

⌉
,

E[Lt,k] ≤
Cfast√

k
, (26)

where, Lt,k is defined in Equation (24) and Cfast is given in Equation (25).
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C.2.2 SLOW TIME-SCALE ANALYSIS

Next, we will prove the convergence of the slow time-scale iterates θt,k to θ∗t for sufficiently large k.
We denote the inner loop error for outer iteration index t as et,k := θt,k − θ∗t with

θ∗t := (Φ⊤DπΦ)−1Φ⊤Dπ
[
r + γ F

∗,V rob
θ̂t

]
(27)

Recall the notation Zt,k = (St,k, At,k). The slow update is

θt,k+1 = θt,k + αk TDt,k+1 ϕ(Zt,k),

TDt,k+1 = R(Zt,k) + γ F̂ (ψ(Zt,k)
⊤ν̄t,k;V

rob
θ̂

, St,k+1)− ϕ(Zt,k)
⊤θt,k,

with ν̄t,k the suffix average produced by the fast time-scale updates.

For each outer iteration t and dual vector νt,k, we define a vector f̄t(νt,k) ∈ R|S||A|, indexed by
(s, a) ∈ S ×A, via

[f̄t(νt,k)]s,a := ES′∼P0(·|s,a)
[
F̂
(
ψ(s, a)⊤νt,k; V

rob
θ̂t

, S′)].
Here S′ denotes the next-state random variable with distribution P0(· | s, a).
We decompose the term TDt,k+1ϕ(Zt,k) as

Hθ
t,k + bθt,k + ξθt,k+1 + mθ

t,k+1,

where

Hθ
t,k := Φ⊤Dπ

[
r + γF

∗,V rob
θ̂t − Φθt,k

]
=︸︷︷︸

from Equation (10)

Φ⊤DπΦ(θ∗t − θt,k),

bθt,k := γΦ⊤Dπ
[
F

V rob
θ̂t (ν̄t,k)− F

∗,V rob
θ̂t

]
,

ξθt,k+1 := Φ⊤(Dt,k −Dπ
)[
r + γF

V rob
θ̂t (ν̄t,k)− Φθt,k

]
= Φ⊤(Dt,k −Dπ

)[
r + γf̄t(ν̄t,k)− Φθt,k

]
,

mθ
t,k+1 := γ Φ⊤Dt,k

(
F̂ (ψ(Zt,k)

⊤ν̄t,k;Sk+1, V
rob
θ̂t

)− f̄t(ν̄t,k)
)
.

Note E[mθ
t,k+1 | Gt,k] = 0 and, by tower property of conditional expectation, E[e⊤t,kmθ

t,k+1 |
Gt,k−τ ] = 0 for a lag τ ≤ k.

Recall the definition

ηt,τk (·) := P
(
(St,k, At,k) ∈ ·

∣∣St,0, At,0, . . . , St,k−τ , At,k−τ

)
From Assumption 1, we know the following holds:

∥ηt,τk − dπ∥TV ≤ Cmix ρ
τ (0 < ρ < 1).

For the fixed lag (to be chosen later) τ ≥ 1 and define Ht,k as the sigma algebra over the set
{Gt,k−τ , θt,k, ν̄t,k} .

Conditioning on Ht,k “freezes” et,k := θt,k − θ∗t and

yt,k := r + γ f̄t(ν̄t,k)− Φθt,k.

We use: for any signed vector w on S ×A,∥∥Φ⊤w
∥∥
2

=
∥∥∥∑

z

ws,a ϕ(s, a)
∥∥∥
2

≤
∑
s,a

|ws,a| = ∥w∥1, (28)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

because each row vector satisfies ∥ϕ(s, a)∥2 ≤ 1. We also write the Markov noise term in terms of
yt,k as

ξθt,k+1 = Φ⊤(Dt,k −Dπ
)
yt,k.

Finally set Y0 := 1 + γCF,M + 1
(1−γ)

√
µ so that

∥yt,k∥∞ ≤ Y0 + ∥et,k∥2, (29)

using Lemma 7 and, r(·) ∈ [0, 1], ∥f̄t(·)∥∞ ≤ CF,M , and ∥ϕ(z)∥2 ≤ 1.

Recall the definition et,k = θt,k − θ∗t with

θ∗t := (Φ⊤DπΦ)−1Φ⊤Dπ
[
r + γ F

∗,V rob
θ̂t

]
.

(I) ONE-STEP LYAPUNOV EXPANSION UNDER A CONDITIONAL EXPECTATION WITH A
FILTRATION UNDER A GENERIC LAG τ

With xt,k := ∥et,k∥2, for k ≥ τ , as E[e⊤t,kmθ
t,k+1 | Gt,k−τ ] = 0, we can write, if k ≥ τ

E[xk+1 | Gt,k−τ ] = E
[∥∥et,k + αk(H

θ
t,k + bθt,k + ξθt,k+1 +mθ

t,k+1)
∥∥2 ∣∣∣Gt,k−τ

]
= xt,k + 2αk E

[
e⊤t,kH

θ
t,k

∣∣Gt,k−τ

]
+ 2αk E

[
e⊤t,kb

θ
t,k

∣∣Gt,k−τ

]
+ 2αk E

[
e⊤t,kξ

θ
t,k+1

∣∣Gt,k−τ

]
+ α2

k E
[
∥Hθ

t,k + bθt,k + ξθt,k+1 +mθ
t,k+1∥2

∣∣Gt,k−τ

]
. (30)

(II) MAIN DRIFT

Recall, we denote µ as the minimum eigenvalue of the matrix Φ⊤DπΦ and from Assumption 1,
µ > 0.

Since e⊤t,kH
θ
t,k = −e⊤t,k(Φ⊤DπΦ)et,k ≤ −µ ∥et,k∥2,

2αk E
[
e⊤t,kH

θ
t,k

∣∣Gt,k−τ

]
≤ −2µαk E[xt,k | Gt,k−τ ] . (31)

(III) CROSS TERM CORRESPONDING TO BIAS

By conditional Cauchy–Schwarz and Young inequality,

2αk E
[
e⊤t,kb

θ
t,k

∣∣Gt,k−τ

]
≤ µ

2
αk E[xt,k | Gt,k−τ ] +

2αk

µ
E
[
∥bθt,k∥2

∣∣Gt,k−τ

]
. (32)

(IV) CROSS TERM CORRESPONDING TO MARKOV NOISE

Lemma 5 (Cross with Markov noise). For any τ ≥ 1, if k ≥ τ

2αk E
[
e⊤t,kξ

θ
t,k+1

∣∣ Gt,k−τ

]
≤
(µ
2
+ 4min(1, Cmixρ

τ )
)
αk E

[
∥et,k∥22| Gt,k−τ

]
+

8Y 2
0

µ
αk min(1, Cmixρ

τ )2.

Proof. By the tower property,

E
[
e⊤t,kξ

θ
t,k+1

∣∣ Gt,k−τ

]
= E

[
E
[
e⊤t,kΦ

⊤(Dt,k −Dπ) yt,k
∣∣Ht,k

] ∣∣ Gt,k−τ

]
.

Given Ht,k, the only randomness is Zt,k ∼ ηt,τk . Hence

E
[
Φ⊤(Dt,k −Dπ) yt,k

∣∣Ht,k

]
= Φ⊤(ηt,τk − dπ) ⊙ yt,k.

Therefore, ∣∣∣E[e⊤t,kξθt,k+1

∣∣ Gt,k−τ

] ∣∣∣ ≤ E
[
∥et,k∥2

∥∥Φ⊤(ηt,τk − dπ) ⊙ yt,k
∥∥
2

∣∣ Gt,k−τ

]
.
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Apply Equation (28) and ∥(ηt,τk − dπ) ⊙ yt,k∥1 ≤ ∥ηt,τk − dπ∥1∥yt,k∥∞ ≤
2 min(1, Cmixρ

τ ) ∥yt,k∥∞:∣∣∣E[e⊤t,kξθt,k+1 | Gt,k−τ ]
∣∣∣ ≤ 2 min(1, Cmixρ

τ )E[∥et,k∥2 ∥yt,k∥∞ | Gt,k−τ ] .

Multiply by 2αk and split ∥yt,k∥∞ using Equation (29):

2αk|E[·] | ≤ 4αk min(1, Cmixρ
τ )E[∥et,k∥2 Y0 | Gt,k−τ ]+4αk min(1, Cmixρ

τ )E[∥et,k∥2 ∥et,k∥2 | Gt,k−τ ] .

For the first term in the right hand side, use Young’s inequality:

4αk min(1, Cmixρ
τ )Y0 ∥et,k∥2 ≤ αk

(
µ

2
∥et,k∥22 +

8 min(1, Cmixρ
τ )2 Y 2

0

µ

)
.

Combining,

2αk E
[
e⊤t,kξ

θ
t,k+1

∣∣Gt,k−τ

]
≤
(µ
2
+ 4min(1, Cmixρ

τ )
)
αk E

[
∥et,k∥22| Gt,k−τ

]
+
8Y 2

0

µ
αk min(1, Cmixρ

τ )2.

(V) REMAINING SECOND ORDER TERMS

Now from the fact that ∥ϕ(s, a)∥22 ≤ 1, and from the conditions described in Lemma 2, we can write

∥Hθ
t,k∥2 ≤ xt,k,

E
[
∥mθ

t,k+1∥2
∣∣Gt,k−τ

]
≤ 4γ2C2

F,M .

E
[
∥ξθt,k+1∥2

∣∣Gt,k−τ

]
≤ 8E[xt,k | Gt,k−τ ] + 8Y 2

0

Therefore,

α2
k E
[
∥Hθ

t,k + bθt,k + ξθt,k+1 +mθ
t,k+1∥2

∣∣Gt,k−τ

]
≤ α2

k

(
68E[xt,k | Gt,k−τ ] + 32γ2C2

F,M + 32Y 2
0 + 2E[∥bθt,k∥2 | Gt,k−τ ]

)
. (33)

Lemma 6 (Bias second order at 1/k). For k ≥ max(τ, 2τβk
),

E
[
∥bθt,k∥22

∣∣Gt,k−τ

]
≤ 2Cbias

k
+ 2(ϵdualapprox)

2,

with the explicit constant

Cbias := C2
fast + 2C2

F,M + 64C2
F,M

Cmixρ

1− ρ
,

and Cfast as in Lemma 4.

Proof. Using ∥ϕ(s, a)∥2 ≤ 1 for all (s, a), we can write using Equation (28),

∥bθt,k∥2 ≤ γ
∑
s,a

dπ(s, a)
∣∣∣FV rob

θ̂t (ν̄t,k)s,a − F
∗,V rob

θ̂t
s,a

∣∣∣
= γ

∑
s,a

dπ(s, a)
(
F

∗,V rob
θ̂t

s,a − F
V rob
θ̂t (ν̄t,k)s,a

)
≤ γ inf

ν∈Mν

∑
s,a

dπ(s, a)
(
F

∗,V rob
θ̂t

s,a − F
V rob
θ̂t (ν)s,a

)
︸ ︷︷ ︸

≤ϵdualapprox

+ γ Lt,k︸︷︷︸
fast-scale objective gap

.
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E
[
∥bθt,k∥22

∣∣Gt,k−τ

]
≤ 2E

[
(Lt,k)

2
∣∣Gt,k−τ

]
+ 2(ϵdualapprox)

2.

To bound the RHS at the 1/k scale, use the suffix average Lt,k ≤ 1
m

∑k−1
j=k−m Lt,j with m = ⌊k/2⌋.

We also use from Section B that and 0 ≤ Lt,j ≤ 2CF,M . Write

E
[
(Lt,k)

2
∣∣Gt,k−τ

]
≤ 1

m2

{
Var

 k−1∑
j=k−m

Lt,j

∣∣∣∣∣∣Gt,k−τ


︸ ︷︷ ︸

(I)

+
(
E

k−1∑
j=k−m

Lt,j |Gt,k−τ

)2
︸ ︷︷ ︸

(II)

}
.

Term (II) (mean square). By Lemma 4, for k ≥ τβk
, 1
m E

∑k−1
j=k−m Lt,j ≤ E[Lt,k] ≤ Cfast/

√
k, so

(II)/m2 ≤ C2
fast/k.

Term (I) (variance). Under geometric mixing of the underlying markov chain and 0 ≤ Lt,j ≤ 2CF,M ,
the conditional covariances obey |Cov(Lt,j , Lt,j+h | Gt,k−τ )| ≤ 16C2

F,MCmixρ
h. Thus

Var

 k−1∑
j=k−m

Lt,j

∣∣∣∣∣∣Gt,k−τ

 =
∑
j

Var(Lt,j | Gt,k−τ ) + 2

m−1∑
h=1

(m− h) Cov(Lt,j , Lt,j+h | Gt,k−τ )

≤ mC2
F,M + 32C2

F,M m

∞∑
h=1

Cmixρ
h ≤ m

(
C2

F,M + 32C2
F,M

Cmixρ

1− ρ

)
.

Dividing by m2 and using m ≥ k/2 gives
(I)

m2
≤ 2

k

(
C2

F,M + 32C2
F,M

Cmixρ

1− ρ

)
.

Combining the two terms yields

E
[
(Lt,k)

2
∣∣Gt,k−τ

]
≤ C2

fast

k
+

2

k

(
C2

F,M + 32C2
F,M

Cmixρ

1− ρ

)
,

which is the claimed bound with the displayed Cbias.

FINAL RECURSION FOR THE SLOW TIME-SCALE

From Equation (30) and the statements of the Lemma 5, Lemma 6 and from the analysis above, we
can write the following recursion for ∥et,k∥2.

We first characterize a suitable choice of the lag τ to use in the recursion for ∥et,k∥2. We make a few

observations. If τ ≥
⌈
log
(
Cmix(k+1)/(c)

)
log(1/ρ)

⌉
then Cmixρ

τ ≤ αk .

Also, if τ ≥ τµ :=
⌈
log
(
Cmix

1
µ

)
log(1/ρ)

⌉
, then Cmixρ

τ ≤ µ.

From the above two observations, a suitable choice for τ in each inner iteration k is ταk
:=

max{ταk
, τµ}. As we are conditioning on filtration Gt,k−τ , we need k ≥ τk. Moreover, to use

Lemma 4, we need k ≥ 2τβk
=
⌈
log(

Cmix
β0

√
k+1)

log( 1
ρ )

⌉
.

Hence, we use the following definitions:

ταk
:=
⌈ log(Cmix(k + 1)/c

)
log(1/ρ)

⌉
, (34)

τβk
:=
⌈ log(Cmix

β0

√
k + 1

)
log(1/ρ)

⌉
, (35)

τµ :=
⌈ log(Cmix/µ

)
log(1/ρ)

⌉
(36)
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∀k ≥ max(ταk
, 2τβk

, τµ) :

E
[
∥et,k+1∥22

∣∣Gt,k−τ

]
≤
(
1− µαk + Ce α

2
k

)
E
[
∥et,k∥22Gt,k−τ

]
+
(

2αk

µ + 2α2
k

) (2Cbias

k
+ 2(ϵdualapprox)

2

)
+ Ccrossα

2
k + C0 α

2
k,

and hence, after taking total expectation, ∀k ≥ max(τ, 2τβk
, τµ)

E∥et,k+1∥22 ≤
(
1− µαk + Ce α

2
k

)
E∥et,k∥22 +

+
(

2αk

µ + 2α2
k

) (2Cbias

k
+ 2(ϵdualapprox)

2

)
+ Ccross α

2
k + C0 α

2
k. (37)

The constants in the above recursion are given as:

Ce := 72,

C0 := 32γ2C2
F,M + 32

(
1 + γCF,M +

1

(1− γ)
√
µ

)2

,

Ccross := 8

(
1 + γCF,M +

1

(1− γ)
√
µ

)2

,

Cbias := C2
fast + 2C2

F,M + 64C2
F,M

Cmixρ

1− ρ
,

Cfast :=
(4B2

ν + β2
0(8BνCG + 25C2

G) ln(2e))

β0
.

Now we derive the last iterate convergence of the error ∥eθt,k+1∥2.

We also know from the definition of εdual
approx,

|εdual
approx| ≤

1

1− γ
+ CF,M .

In compact notations, ∀k ≥ max(ταk
, 2τβk

, τµ)

E∥et,k+1∥22 ≤
(
1− µαk + Ce α

2
k

)
E∥et,k∥22 +

α2
k

( (
4
cµ + 2

)
2Cbias + Ccross + C0 + 4

(
1

1− γ
+ CF,M

)2
)

+
4αk(ϵ

dual
approx)

2

µ

Or,

E∥et,k+1∥22 ≤
(
1− µαk + Ce α

2
k

)
E∥et,k∥22 + α2

kC1 +
4αk(ϵ

dual
approx)

2

µ
(38)

with C1 =

( (
8
cµ + 4

)
Cbias + Ccross + C0 + 4

(
1

1−γ + CF,M

)2)
.

Next, we derive the final iterate convergence from the above recursion for the step-size rule αk =
c

1+k , ∀k ∈ [0,K − 1]:
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C.3 LAST-ITERATE CONVERGENCE FOR αk = c
k+1

Recursion on E
[
∥et,k∥22

]
: From Equation (38), we have that, whenever

k ≥ kmix := max
(
ταk

, 2τβk
, τµ
)
,

E
[
∥et,k+1∥22

]
≤
(
1− µαk + Ce α

2
k

)
E
[
∥et,k∥22

]
+ α2

k C1 + 4
µ αk

(
εdual

approx

)2
, αk = c

k+1 .

(39)

Let
ok := 1− µαk + Ce α

2
k, k0 := max

{⌈
2Cec
µ

⌉
,
⌈
µc
⌉}

,

Then for all j ≥ k0, 0 < oj ≤ 1 − µc
2 /(j + 1) ≤ 1. When kmix < k0, define the finite pre-burn

product before the contraction kicks in as follows

Hpre :=

k0−1∏
j=kmix

oj , and set Hpre = 1 if kmix ≥ k0.

Assume the final iterate index K > kmix

Tail-product bounds. For m ≤ u, set Gu
m :=

∏u
j=m oj . Then

GK−1
k0

≤
K−1∏
j=k0

(
1−

µc
2

j+1

)
≤
(
k0 + 1

K

)µc
2

, and if kmix ≥ k0, GK−1
kmix

≤
(
kmix + 1

K

)µc
2

.

(40)

Unrolling from kmix. Fix K > kmix. Unrolling equation 39 from t = kmix to K − 1 yields

E
[
∥et,K∥22

]
≤ E

[
∥et,kmix

∥22
]
GK−1

kmix︸ ︷︷ ︸
initial term

+

K−1∑
t=kmix

α2
tC1G

K−1
t+1 +

4

µ

(
εdual

approx

)2 K−1∑
t=kmix

αtG
K−1
t+1 .

(41)

Splitting at k0 . Split each sum at k0:

K−1∑
t=kmix

(·) =

k0−1∑
t=kmix

(·)︸ ︷︷ ︸
finite “pre-window”

+

K−1∑
t=k0

(·)︸ ︷︷ ︸
tail

.

Initial term. If kmix ≥ k0, then by equation 40

E
[
∥et,kmix

∥22
]
GK−1

kmix
≤ E

[
∥et,kmix

∥22
](kmix + 1

K

)µc
2

.

If kmix < k0, then

E
[
∥et,kmix

∥22
]
GK−1

kmix
≤ E

[
∥et,kmix

∥22
]
Hpre

(
k0 + 1

K

)µc
2

.

Variance sum. Define the finite pre-window constant

U (mix)
pre (kmix, k0) :=

k0−1∑
t=kmix

c2C1

(t+ 1)2

k0−1∏
j=t+1

oj (define it as 0 if kmix ≥ k0).
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Then
K−1∑

t=kmix

c2C1

(t+ 1)2
GK−1

t+1 ≤ U (mix)
pre (kmix, k0)

(
k0 + 1

K

)µc
2

+

K−1∑
t=k0

c2C1

(t+ 1)2

(
t+ 2

K

)µc
2

.

Using integral approximation, we can prove that the above term has the following upper bound:

K−1∑
t=k0

c2C1

(t+ 1)2

(
t+ 2

K

)µc
2

≤



c2C1
µc
2 − 1

1

K
+

c2C1
µc
2 − 1

(k0 + 2)
µc
2 −1

K
µc
2

, µc
2 > 1,

c2C1

K

(
1 + ln

K

k0 + 2

)
, µc

2 = 1,

c2C1

1− µc
2

(k0 + 2)
µc
2 −1

K
µc
2

, 0 < µc
2 < 1.

Dual-approximation sum. Define the finite pre-window constant

B(mix)
pre (kmix, k0) :=

k0−1∑
t=kmix

αt

k0−1∏
j=t+1

oj (again 0 if kmix ≥ k0).

Then
K−1∑

t=kmix

αtG
K−1
t+1 ≤ B(mix)

pre (kmix, k0)

(
k0 + 1

K

)µc
2

+

K−1∑
t=k0

c

t+ 1

(
t+ 2

K

)µc
2

.

For the tail, an integral comparison yields
K−1∑
t=k0

c

t+ 1

(
t+ 2

K

)µc
2

≤ c

K
µc
2

∫ K

k0

(x+2)
µc
2 −1dx =

c
µc
2 Kµc/2

[
(K +2)µc/2 − (k0 +2)µc/2

]
.

We also know that,

|εdual
approx| ≤

1

1− γ
+ CF,M .

We can also write,
c

µc
2 Kµc/2

[
(K + 2)µc/2 − (k0 + 2)µc/2

]
≤ 2

µ

(
1 +

2

K

)µc
2

Therefore,

4

µ

(
εdual

approx

)2 K−1∑
t=kmix

αtG
K−1
t+1

≤ 4

µ

(
1

1− γ
+ CF,M

)2

B(mix)
pre (kmix, k0)

(
k0 + 1

K

)µc
2

+
8

µ2

(
1 +

2

K

)µc
2

(εdual
approx)

2.

Bounding the initial iterate at kmix. Recall that the slow update of Algorithm 1 satisfies

θt,k+1 = θt,k + αk TDk+1 ϕ(Zt,k),
∥∥TDk+1 ϕ(Zt,k)

∥∥
2

≤ 1 + CF,M + ∥θt,k∥2,

with θt,0 = 0. Define uk := ∥θt,k∥2 . Then

uk+1 ≤ uk + αk

(
1 + CF,M + uk

)
= (1 + αk)uk + αk(1 + CF,M ).

Introduce the shifted sequence vk := uk + (1 + CF,M ). We then have

vk+1 = uk+1 + (1 + CF,M ) ≤ (1 + αk)uk + αk(1 + CF,M ) + (1 + CF,M )

= (1 + αk)
(
uk + 1 + CF,M

)
= (1 + αk)vk.
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Iterating from k = 0 to kmix − 1 and using θt,0 = 0 (so u0 = 0 and v0 = 1 + CF,M ) yields

vkmix ≤ (1 + CF,M )

kmix−1∏
i=0

(
1 + αi

)
= (1 + CF,M )

kmix−1∏
i=0

(
1 +

c

i+ 1

)
.

Using 1 + x ≤ ex and the harmonic-sum bound
∑kmix−1

i=0
1

i+1 ≤ 1 + ln kmix, we obtain

kmix−1∏
i=0

(
1 +

c

i+ 1

)
≤ exp

(kmix−1∑
i=0

c

i+ 1

)
≤ exp

(
c
(
1 + ln kmix

))
= ec k c

mix.

Therefore
ukmix

= ∥θt,kmix
∥2 ≤ vkmix

≤ (1 + CF,M ) ec k c
mix.

Finally, recall that et,k := θt,k − θ∗,t, where θ∗,t is the (time-t) fixed point of the mean ODE. Using
∥et,kmix∥22 ≤ 2∥θt,kmix∥22 + 2∥θ∗,t∥22 and the standard bound ∥θ∗,t∥2 ≤ (1− γ)−1/

√
µ, we obtain

E
[
∥et,kmix∥22

]
≤ 2(1 + CF,M )2e2ck 2c

mix +
2

µ(1− γ)2

=: C
(mix,1)
init .

This constant will be used as the initial-error term in the last-iterate bound for the αk = c/(k + 1)
schedule.

Final bound. Combining the pieces, for any K > kmix,

E
[
∥et,K∥22

]
≤


C

(mix,1)
init

(
kmix + 1

K

)µc
2

, if kmix ≥ k0,

C
(mix,1)
init Hpre

(
k0 + 1

K

)µc
2

, if kmix < k0,

+ U (mix)
pre (kmix, k0)

(
k0+1
K

)µc
2 +



c2C1
µc
2 − 1

1

K
+

c2C1
µc
2 − 1

(k0 + 2)
µc
2 −1

K
µc
2

, µc
2 > 1,

c2C1

K

(
1 + ln

K

k0 + 2

)
, µc

2 = 1,

c2C1

1− µc
2

(k0 + 2)
µc
2 −1

K
µc
2

, 0 < µc
2 < 1,

4

µ

(
1

1− γ
+ CF,M

)2

B(mix)
pre (kmix, k0)

(
k0 + 1

K

)µc
2

+
8

µ2

(
1 +

2

K

)µc
2

(εdual
approx)

2.

C.4 FORMAL VERSION OF THEOREM 1

Theorem 2 (Main finite-time guarantee under function approximation). Let Q̂t := Φθ̂t be the
estimate of Qrob,π returned by Algorithm 1 at outer iteration t.

kmix

:=min

{
m ∈ N : ∀j ≥ m, j ≥ max

(
τµ, 2

⌈ log(Cmix

β0

√
j + 1

)
log(1/ρ)

⌉
,
⌈ log(Cmix(j + 1)/(c)

)
log(1/ρ)

⌉)}
,

where,

τµ :=
⌈ log(Cmix

1
µ

)
log(1/ρ)

⌉
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Assume 1 holds, and we run K ≥ kmix inner iterations per outer iteration for either the TV or the
Wasserstein-ℓ uncertainty sets.. Then, for any horizon T ≥ 1,

E
[
∥Q̂T −Qrob,π∥∞

]
≤ γT ∥Φθ0 −Qrob,π∥∞ +

Asched(K)

1− γ
+

ϵapprox
1− γ

+
2
√
2
(
1 + 2

K

)µc
4 ϵdualapprox

µ(1− γ)
. (42)

Here Asched(K) ≥ 0 is the schedule-dependent residual, which takes one of the following explicit
forms depending on the range of c.

Recall the definition k0 = max
{⌈

144c
µ

⌉
,
⌈
µc
⌉}

and

Set

oj :=
(
1− cµ

j + 1

)
+

72c2

(j + 1)2
, Hpre :=

k0−1∏
j=kmix

oj ,

U (mix)
pre (kmix, k0) :=

k0−1∑
t=kmix

c2C1

(t+ 1)2

k0−1∏
j=t+1

oj , B(mix)
pre (kmix, k0) :=

k0−1∑
t=kmix

αt

k0−1∏
j=t+1

oj ,

with the convention that Hpre = 1, U (mix)
pre = 0, B(mix)

pre = 0 when kmix ≥ k0. Also set

C
(mix,1)
init := 2(1 + CF,M )2e2ck 2c

mix +
2

µ(1− γ)2
.

Then Asched(K) =
√
Ξ1(K) with

Ξ1(K) :=


C

(mix,1)
init

(kmix + 1

K

)µc
2

, kmix ≥ k0,

C
(mix,1)
init Hpre

(k0 + 1

K

)µc
2

, kmix < k0,

+ U (mix)
pre (kmix, k0)

(k0 + 1

K

)µc
2

+



c2

µc
2 − 1

1

K
C1 +

c2

µc
2 − 1

(k0 + 2)
µc
2 −1

K
µc
2

C1,
µc
2 > 1,

c2

K

(
1 + ln

K

k0 + 2

)
C1,

µc
2 = 1,

c2

1− µc
2

(k0 + 2)
µc
2 −1

K
µc
2

C1, 0 < µc
2 < 1,

+
4

µ

( 1

1− γ
+ CF,M

)2
B(mix)

pre (kmix, k0)
(k0 + 1

K

)µc
2

.

Restating the Constants

C0 = 32γ2C2
F,M + 32

(
1 + γCF,M +

1

(1− γ)
√
µ

)2

,

Ccross = 8

(
1 + γCF,M +

1

(1− γ)
√
µ

)2

,

Cfast =
4B2

ν + β2
0(8BνCG + 25C2

G) ln(2e)

β0
,

Cbias = C2
fast + 2C2

F,M + 64C2
F,M

Cmixρ

1− ρ
,

C1 =

( (
8
cµ + 4

)
Cbias + Ccross + C0 + 4

(
1

1− γ
+ CF,M

)2
)
.
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D REMAINING PROOFS

D.1 BOUND ON θ∗t

We drop the superscript t from θ∗t as t is fixed throught the discussion of this subsection. Recall,

θ∗t = (Φ⊤DπΦ)−1Φ⊤Dπ[r + γf̄t(λ
∗)]

Lemma 7 (Bound on the optimal weight vector). Let

θ∗ =
(
Φ⊤DπΦ

)−1
Φ⊤Dπ

[
r + γf̄t(λ

∗)
]
,

where

• Φ ∈ R|S||A|×d has full column rank and row vectors ϕ(s, a) satisfying ∥ϕ(s, a)∥2 ≤ 1;

• Φ⊤DπΦ is positive definite with min-eigenvalue ν. The diagonal entries of the matrix Dπ

satisfy di ≥ dmin > 0 and
∑

i di = 1;

• each entry of r obeys |ri| ≤ 1;

• each entry of f̄t(λ∗) obeys
∣∣f̄t(λ∗)i∣∣ ≤ 1/(1− γ).

Then
∥θ∗∥2 ≤ 1

1− γ

1
√
µ
.

Proof. Set
C := Φ⊤DπΦ, v := r + γ f̄t(λ

∗).

By definition of θ∗,
Cθ∗ = Φ⊤Dπv.

Multiply by θ∗⊤ on the left:

θ∗⊤Cθ∗ = θ∗⊤Φ⊤Dπv = (Φθ∗)⊤Dπv.

Let y := Φθ∗. Then
θ∗⊤Cθ∗ = y⊤Dπv.

On the other hand,

θ∗⊤Cθ∗ = θ∗⊤Φ⊤DπΦθ∗ = (Φθ∗)⊤Dπ(Φθ∗) = y⊤Dπy.

Thus
y⊤Dπy = y⊤Dπv.

Apply Cauchy–Schwarz in the Dπ–weighted inner product:

y⊤Dπv = (Dπ1/2y)⊤(Dπ1/2v) ≤ ∥Dπ1/2y∥2 ∥Dπ1/2v∥2 = (y⊤Dπy)1/2 (v⊤Dπv)1/2.

If y⊤Dπy = 0, then θ∗ = 0 and the desired bound is trivial, so assume y⊤Dπy > 0 and divide both
sides by (y⊤Dπy)1/2:

(y⊤Dπy)1/2 ≤ (v⊤Dπv)1/2 =⇒ y⊤Dπy ≤ v⊤Dπv.

Recalling y⊤Dπy = θ∗⊤Cθ∗, we obtain

θ∗⊤Cθ∗ ≤ v⊤Dπv.

Upper bound on v⊤Dπv. For each component,

|vi| ≤ |ri|+ γ|f̄t(λ∗)i| ≤ 1 +
γ

1− γ
=

1

1− γ
.

Hence
v⊤Dπv =

∑
i

div
2
i ≤

∑
i

di

( 1

1− γ

)2
=
( 1

1− γ

)2
.
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Lower bound via the minimum eigenvalue. Since C = Φ⊤DπΦ ⪰ µI ,

θ∗⊤Cθ∗ ≥ µ ∥θ∗∥22.

Combining the upper and lower bounds,

µ ∥θ∗∥22 ≤ θ∗⊤Cθ∗ ≤
( 1

1− γ

)2
,

so
∥θ∗∥2 ≤ 1

1− γ

1
√
µ
.

E ROBUST Q-LEARNING

In this section, we discuss a robust Q-learning algorithm with function approximation that finds the
optimal policy for the worst-case transition kernel in the uncertainty set considered in this paper. We
first define the optimal state-action value function Qrob,∗ as the state-action value function of the best
admissible policy to maximize Qrob,π for each (s, a)-pair.

Qrob,∗(s, a) = max
π

Qrob,π(s, a),∀(s, a) ∈ S ×A.

It is shown in prior literature (Iyengar, 2005) that Qrob,∗ satisfies the following equation, which is
called the robust Bellman optimality equation

Qrob,∗(s, a) = R(s, a) + γ min
q∈Pa

s

∑
s′

q(s′) max
a′

Qrob,∗(s′, a′)︸ ︷︷ ︸
=: V rob,∗(s′)

. (43)

Equivalently, define the robust Bellman optimality operator (T rob,∗Q)(s, a) := R(s, a) +
γ σPa

s
(V Q,∗) with

V Q,∗(s′) := max
a′

Q(s′, a′), (44)

and σPa
s
(V ) is given in Equation (4). Iyengar (2005) proved that the robust Bellman optimality

operator is γ-contraction in ℓ∞ norm.

Now, we discuss how the TD learning algorithm presented in Algorithm 1 in the main body of the
paper can be extended to estimate Qrob,∗ in a relatively straightforward manner.Similar to the TD
learning setup, assume that we can sample data corresponding to a behavioral policy πb from the
nominal model P0. Also, assume that the policy πb satisfies Assumption 1.

The goal here is to approximate Qrob,∗ by Φθ∗ for an appropriately chosen θ∗. Our Q-learning
algorithm is presented in Algorithm 2. The algorithm computes an estimate θ̂t of this parameter at
each iteration t of the outer loop. The quantity V rob,∗

θ̂t
in the description of the algorithm is given by

V rob,∗
θ̂t

(s) = max
a

Clip
(
ϕ(s, a)⊤θ̂t

)
,∀s ∈ S. (45)

Difference between Algorithm 2 and Algorithm 1: The only difference between the robust Q-
learning algorithm in Algorithm 2 and the robust TD learning algorithm in Algorithm 1 is that, we
use V rob,∗

θ̂t
instead of V rob

θ̂t
in the calculation of the dual super-gradient in line 6 and the calculation

of the dual objective in line 10 in Algorithm 2.

Finite-Time Performance Bound for the Robust Q-Learning (Algorithm 2): Recall that we
established a finite-time performance bound for the robust TD learning in Theorem 1. By following
the steps of the proof of that theorem, it is easy to see that an analogous guarantee holds for the
estimate of Qrob,∗ produced by Algorithm 2. The reason that the proof is identical is that the robust
Bellman optimality operator is a γ-contraction in the ℓ∞ norm as was the robust Bellman operator
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for a fixed policy. The only difference is that the function approximation error for approximating
the Q-function should now be defined as the error in approximating Qrob,∗ by the class of functions
{Φθ : θ ∈ Rnθ} :

ϵ∗approx := sup
Q=Clip(Φθ),θ∈Rnθ

∥∥Clip (ΠT rob,∗(Q)
)
− T rob,∗(Q)

∥∥
∞ . (46)

The above definition is completely analogous to the TD learning setting in the main body of the paper,
but with T rob,∗ instead of T rob,π for a policy π.

Thus, the sample complexity of robust Q-learning is of the same order as that of robust TD-learning
up to a function approximation error.

Algorithm 2 Robust Q-learning with Function Approximation

1: Input: Integers T,K. Initial ν0 ∈ Rnλ , θ0 := zero vector, fast time-scale step-sizes βk =
β0√
k+1

, slow time-scale step-sizes αk = c
(k+1) for some c : 0 < c <∞; θ̂0 = θ0, θ0,0 = θ0,

behavioral policy πb, Reward function R : (S ×A) 7→ [−1, 1], initial state S0,0.
2: for t = 0, 1, · · · , T − 1 do
3: for k = 0, 1, . . . ,K − 1 do
4: Take action At,k according to the behavioral policy πb and sample St,k+1 (St,k+1 ∼

P0(·|St,k, At,k))
5: fast time-scale (βk)

6: Compute Ĝ(ψ(St,k, At,k)
⊤νt,k;V

rob,∗
θ̂t

, St,k+1) from Equation (17) for TV uncertainty set
and Equation (20) for Wasserstein-ℓ uncertainty set

7: νt,k+1 = ProjMν
(νt,k + βk[Ĝ(ψ(St,k, At,k)

⊤νt,k;V
rob,∗
θ̂t

, St,k+1)ψ(St,k, At,k)])

8: Slow time-scale (αk)
9: Compute ν̄t,k from Equation (7)

10: Compute F̂ (ψ(St,k, At,k)
⊤ν̄t,k;V

rob,∗
θ̂t

, St,k+1) from Equation (18) for TV uncertainty set
and Equation (21) for Wasserstein-ℓ uncertainty set

11: TDt,k+1 = R(St,k, At,k)+ γF̂ (ψ(St,k, At,k)
⊤ν̄t,k;V

rob,∗
θ̂t

, St,k+1)−ϕ(St,k, At,k)
⊤θt,k

12: θt,k+1 = θt,k + αkTDt,k+1ϕ(St,k, At,k)
13: end for
14: θ̂t+1 = θt,K , St+1,0 = St,K , θt+1,0 = θt,K , νt+1,0 = νt,K .
15: end for
16: Output: θ̂T
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USE OF LARGE LANGUAGE MODEL

The authors used large language models (e.g., ChatGPT) to polish the language in certain parts of the
paper. All technical content, proofs, and conclusions are the sole work of the authors.
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