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ABSTRACT

Distributionally robust reinforcement learning (DRRL) focuses on designing poli-
cies that achieve good performance under model uncertainties. In particular, we
are interested in maximizing the worst-case long-term discounted reward, where
the data for RL comes from a nominal model while the deployed environment
can deviate from the nominal model within a prescribed uncertainty set. Ex-
isting convergence guarantees for robust temporal-difference (TD) learning for
policy evaluation are limited to tabular MDPs or are dependent on restrictive
discount-factor assumptions when function approximation is used. We present the
first robust TD learning with linear function approximation, where robustness is
measured with respect to the total-variation distance uncertainty set. Additionally,
our algorithm is both model-free and does not require generative access to the MDP.
Our algorithm combines a two-time-scale stochastic-approximation update with an
outer-loop target-network update. We establish an O(1/€2?) sample complexity to
obtain an e-accurate value estimate. Our results close a key gap between the empir-
ical success of robust RL algorithms and the non-asymptotic guarantees enjoyed by
their non-robust counterparts. The key ideas in the paper also extend in a relatively
straightforward fashion to robust Q-learning with function approximation.

1 INTRODUCTION

Reinforcement learning (RL) aims to learn policies that maximize long-term reward. Standard RL
methods learn the optimal strategy from trajectories generated by a simulator or the real environment,
implicitly assuming that training and deployment environments share the same dynamics. Many
applications face two issues: simulation—reality gaps and distribution shift between training and de-
ployment. These call for policies that are robust to perturbations in the environment. Distributionally
robust RL (DRRL) tackles this by assuming the true environment lies in an uncertainty set around a
nominal model. It then learns a policy that maximizes the worst-case cumulative reward over that
set, using data from trajectories corresponding to the nominal model. In this work, we focus on
model-free DRRL with linear function approximation for the value function to deal with large state
spaces.

In contrast to our model-free approach, model-based DRRL often proceeds by fitting an empirical
transition model, defining an uncertainty set from it, and then optimizing for a robust policy (Shi &
Chil, 2024} [Wang & Zoul 2021} Xu et al., 2023} |Panaganti & Kalathil, [2022; |Yang et al.l 2022} Zhou
et al.} 2021). In some model-based papers, access to a generative-model is assumed, which is not
realistic in many cases (Wang & Zou, [2021; Xu et al., [2023). Whether one assumes generative access
or not, the number of parameters that need to be estimated in a model-based approach grows with the
cardinality of the state and action spaces, unless one makes additional structural assumptions on the
model.

Another line of work focuses on model-free learning of robust policies, that is, learning without
constructing an empirical transition matrix. In the tabular setting, |[Liang et al.| (2023) analyzes
Cressie—Read f-divergence—based uncertainty sets and establishes asymptotic convergence guarantees
for robust temporal-difference (TD) learning. A complementary tabular result, [Li et al.|(2022)), studies
the R-contamination uncertainty set and exploits a distinctive property: the robust Bellman operator



Under review as a conference paper at ICLR 2026

in this model admits an unbiased stochastic estimator. The techniques developed there extend to any
uncertainty set that likewise permits an unbiased estimator of the robust Bellman operator, enabling
unbiased policy evaluation and, consequently, policy improvement in a model-free manner. However,
these papers do not consider function approximation, which is essential to deal with large stae spaces.

When function approximation is introduced to represent the robust value function, the literature
typically proceeds along two directions with different limitations. One line of research constructs the
uncertainty set expressly so that the robust Bellman operator admits an unbiased estimator (Zhou
et al., 2023)), allowing standard stochastic approximation arguments to go through or restrict to
R-contamination uncertainty set (Wang & Zou, 2021). For R-contamination uncertainty set,|Wang &
Zou|(2021) investigates the TD-C algorithm under function approximation and provides finite-time
bounds for convergence to a stationary point of the associated objective, offering non-asymptotic
guarantees in a setting where the objective is nonconvex and only stationarity is generally attainable.
The other direction assumes extremely small discount factors to induce a contraction mapping for the
robust Bellman operator, which restores fixed-point uniqueness and enables convergence proofs Zhou
et al.| (2023)); [Badrinath & Kalathil| (2021)); [Tamar et al.|(2014). Both approaches trade generality
for tractability: the first restricts attention to uncertainty sets with unbiased estimators and focuses
only on local optimality, while the second relies on unrealistically small discounting to guarantee
contraction.

Another line of work (Tang et al., 2024; Ma et al.l |2022) for model-free DRRL considers linear
Markov decision process (MDP) for DRRL where the transition matrix of the underlying MDP has a
lower-dimensional structure. This reduces the complexity associated with large state spaces. In this
paper, we do not make such a modeling assumption.

In summary, most existing results on model-free robust RL are limited in at least one crucial way: they
prove only local or asymptotic convergence; focus on narrow uncertainty models (e.g., Liang et al.
(2023)) observe on FrozenLake that R-contamination—-based methods can mirror non-robust baselines
and even underperform due to over-conservatism); restricted to tabular settings; assume generative
access; or require extremely small discount factors. In particular, there are no finite-time guarantees
for robust TD with function approximation from a single trajectory under broad, practically motivated
uncertainty classes—such as those induced by total variation or Wasserstein-¢ distances. At the same
time, practice-oriented deep-RL pipelines often use ad-hoc “robust TD” heuristics, leaving a sizable
gap between theory and deployment. This work closes a portion of that gap by establishing finite-time
guarantees for robust TD learning with function approximation under commonly used uncertainty sets,
without relying on generative sampling, vanishing discount factors, or purely asymptotic arguments.

Contributions. Our main contributions are summarized below.

1. General conditions and finite-time guarantees. We identify a set of mild structural condi-
tions—satisfied by widely used uncertainty metrics such as total variation and Wasserstein-
{/—under which distributionally robust policy evaluation considered in the paper with linear
function approximation admits non-asymptotic guarantees from a single trajectory. For any
uncertainty model obeying these conditions, our robust TD method achieves an e-accurate
value estimate with sample complexity O(1/¢2).

2. Overcoming projection mismatch via target networks. While the robust Bellman operator
is a contraction in ¢, (Iyengar, [2005), function approximation induces a projected fixed-
point equation that breaks direct contraction arguments. Prior approaches either remain
tabular or require unrealistically small discount factors. We resolve this by incorporating a
target-network mechanism—conceptually related to Munos & Szepesvari (2008) and, in
the non-robust setting, (Chen et al.|(2023)—and prove stable, finite-time convergence of the
resulting projected robust TD updates without restrictive discount-factor assumptions.

3. Function approximation in the dual space. Standard DRRL solvers compute the worst-
case distribution at each step of an RL algorithm by using a dual formulation Iyengar| (2005).
However, this requires estimating a dual variable for each (state, action) pair, which is
infeasible for large state spaces. To overcome this problem, we provide the first analysis of
function approximation in the dual space.

4. Robust Q-Learning. The main technical contributions of the paper are in the proof of con-
vergence and sample complexity bounds for robust TD learning with function approximation.
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It is straightforward to use these ideas to obtain finite-time bounds for robust Q-learning
with function approximation, which, to the best of our knowledge, has not been studied
in the literature. We refer the reader to the short argument in the supplemental material
(Section[E).

Since our paper focuses on discounted-reward robust RL, we have not made an exhaustive comparison
of our work with work on average-reward robust RL; see, for example, Xu et al.| (2025); Roch et al.
(2025)); |Chen et al.| (2025). However, to the best of our knowledge, it is worth noting that there are no
performance guarantees even in the average-reward literature when function approximation is used.

2 MODEL AND PRELIMINARIES

Model We consider finite state and finite action infinite horizon discounted MDPs denoted by
M = (S, A, P,r,v), where S is the state space, A is the action space, P(- | s,a) € Ag is the
transition kernel, 7 : S x A — 0, 1] is the bounded instantaneous reward, and y € (0, 1) the discount
factor. A (stochastic) policy m maps states to distributions over actions: 7(a | s) € A 4. For any
policy 7 and transition model P, the (policy-dependent) state—action value is

oo

D o A'r(Si, Ay

t=0

Q};(S,a) =K 5028,140:@7 AtNﬂ'(' ‘ St), St+1 NP( | St,At)

Robust MDPs (RMDPs) and uncertainty sets. Distributionally robust RL (DRRL) models tran-
sition uncertainty via an uncertainty set around a nominal kernel Py. We adopt the standard (s, a)-
rectangular model:

Pe = {quS: D(q, Po(-|3,a))§5}, P=QPr, 1)
(5,a)

where D(-, -) is a probability distance or divergence (e.g., total variation or Wasserstein-¢), and 6 > 0
is the radius. An RMDP is then the tuple

Mr = (S,A,P,T, 7)

Robust value functions (fixed policy). Given a fixed policy m, the robust state—action value
function is the worst-case value over P (subscript r stands for “robust”):

n := min Q% ' = n . 2
Q7 (s,0) = min Qp(s,a),  V/(s) zajﬂa [ 5) Q7 (s,0) @
It satisfies the robust Bellman equation:
™ — . ! ! ! ™ !/ / . 3
QT (s,a) = r(s,a) +’yqré1713r§zs;q(s \s,a)za;w(a | sYQT (s, a") 3
=: V[ (s')

Equivalently, defining the robust Bellman operator (7,7 Q)(s, a) := 7(s,a) + v op« (V) with

op: (V) = min ) q(s'[5,0)V(s), V() =y wd |)Q ), @

S/
the fixed point relation is Q7 = 7,7 Q7. We can write from the definitions,

1
VIS s Q)| < 2 Vi),

For a fixed , evaluating Q7 reduces to solving for Equation (3), which at each (s, ) requires solving
the inner problem Equation (4).
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2.1 ROBUST TEMPORAL-DIFFERENCE LEARNING: CHALLENGES

Function approximation. Fix a policy 7. We approximate the robust state—action value function
by a linear function class

Qrg(s.a) = ¢(s,a)78,  [o(s,a)]l2 < 1,Y(s,a)
with feature matrix ® € RISIMIX4_ Let d™ (s, a) be the stationary distribution of (.S, A;) under 7, and
define D™ := diag({d™ (s, a)}(s,4)). Assume the weighted feature covariance is well-conditioned:
®'D"® = ply for some p > 0.
Let W := {®0 : § € R%} and denote by TI : RIS/l )V the D™-orthogonal projection,
If = ®@"'D"d) o' D"f.
We define the function approximation error for approximating the robust Q-function as:

1 1

€approx = sup _41 — ’y’ T

Q=Clip(®0,— 1,1 ),0€R?

Clip (m:ff(cz), )—77(@)“ e

o0

where Clip(f, a,b) denotes the element-wise clipping of a vector f to the interval [a, b].

Key challenges in robust policy evaluation and our approach. Model-free robust policy eval-
uation on a single trajectory typically hinges on a data-driven unbiased estimate 5p. (V') of the
inner-optimization objective defined in Equation (). Except for special uncertainty sets (e.g., R-
contamination), there is no direct plug-in unbiased single-sample estimator of this inner minimum,
which creates a bias in standard TD updates. To overcome this challenge, we use a two-time-scale
stochastic-approximation scheme in the inner loop of the algorithm: a fast time scale solves for the
inner optimization problem defined in Equation () in its equivalent dual form, while the slow loop
performs TD learning updates on 6 using the estimate of the inner-optimization objective of the fast
time scale. Our two-time scale algorithm is motivated by the algorithm in|Liang et al.|(2023)), but the
key difference here is the use of function approximation which necessitates a different analysis.

While 7,7 is a y-contraction in /.-norm (Iyengar [2005)), function approximation introduces the
projected operator II7,™, which is not known to be a contraction in any norm for typical v € (0, 1).
Prior work |Zhou et al.|(2023) circumvents this by imposing restrictive assumptions on « which we do
not adopt. We address the non-contraction of II7,” via a target-network mechanism prevalent in deep
RL, analyzed by [ Munos & Szepesvari| (2008) and later used in the non-robust setting by |Chen et al.
(2023)), for Q-learning to overcome the contraction issue with the projected robust Bellman operator.

At outer iteration ¢, we freeze a target parameter 6, and solve
9 = I T7(D6,)

in the inner loop, then update the target in the outer loop. This decoupling stabilizes the projected
robust updates and enables our finite-time analysis under linear function approximation.

3 RoOBUST TD LEARNING WITH LINEAR FUNCTION APPROXIMATION

Before presenting the robust policy evaluation algorithm, we discuss a few assumptions on the
uncertainty sets considered.

3.1 UNCERTAINTY SETS

We outline a few properties of uncertainty sets in the following assumption, satisfied by common
uncertainty sets defined by distance metrices D in Equation (I as the total variation distance
Drv(p,q) = %|lp — q||1 and the Wasserstein-¢ distance (discussed in detail later). We provide
theoretical convergence guarantee of the robust policy evaluation Algorithm (1| under Assumption
[1] In Section[5] we discuss how our algorithm can be trivially modified to satisfy a similar conver-
gence guarantee for the R-contamination uncertainty set and Cressie-Read family of f-divergences

considered in |Liang et al.| (2023).
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Assumption 1 The optimization problem ap. (V') for a generic value function V as defined in
Equation (@) has an equivalent dual optimization problem corresponding to a dual variable \? :

opg (V) = sup (F(OA5V, Po(([s, a)))

where F(A\%; V, Py(+|s, a)) is a A\%-concave function with the following properties:
1. There exists at least one maximizer in the compact set |[\%| < Ay for some Ay < oc.

2. Let G(A\%;V; Py(-|s,a)) be a supergradient of the concave function F(\%; Py(-|s,a)).
There exists an unbiased bounded estimator of G(A%;V, Py(-|s,a)) as g(A%; S", V) from
a sample of the next state as S’ ~ Py(:|s,a), that is, ]ES/NPO(,‘S,Q)[g()\g;S’,V)] =
g( AL Vi Py(+|s, a)) satisfying |g(A2, S V)| < gy < oo for all |A¢] < Ay

3. There exists an unbiased estimator of the dual objective F(\%;V, Py(+|s,a)) denoted as
o(Ag; 8", V) from a sample of next state as S’ satisfying, Eg.p,(.|s,0)0(A%; S, V) =
F(A%V, Py(-|s,a)) and |o(A%; S", V)| < o for some oy < oo for all |22 < Ay

3.1.1 UNCERTAINTY SETS SATISFYING ASSUMPTION[I]

Total Variation Uncertainty Metric: The total variation uncertainty set is defined as: for each (s, a),
PV ={q € A(S) : 5lla = Po([s,a)llL < 6}

Simplications (see: Appendix [B) on the dual formulation originally given by Tyengar (2005) for the
Total Variation uncertainty set. We get the following equivalent dual optimization:

opa(V) = max {Epy(.|s,0) min (V(X), AT)] — 0AS}

YT .

In Appendlx [Bl we prove that the Total Variation uncemalnty set satisfies Assumption[I|with Ay, =
,gM—maX(6 1—0),VAL: XS] < Ayand oy = 77 5+ 6, VAL A% < Aps.

Wasserstein-¢ uncertainty Set: The uncertainty metric is defined as: for each (s, a) as: P? We —
{qg € A(|S]) : We(Po(|s,a),q) <}, where 6 > 0 is the uncertainty radius and W;(Py(+|s, a), q)
is the Wasserstein-/ distance defined in detail in Appendix[B.2]

In Appendix [B] we prove that the Wasserstein-¢ uncertainty set satisfies Assumption [[|with Ay, =
V) | gag =14 0%, ¥A2 € 0, Ayr] and oy 1= (8 + DA + 2, VAL € [0, A,

3.2 ALGORITHM AND MAIN RESULTS

In this subsection, we present our robust policy evaluation algorithm and the main results of the paper.

3.2.1 ROBUST PoLICY EVALUATION ALGORITHM

Our robust TD learning algorithm is presented in Algorithm [I} In the rest of this section, we
describe the algorithm and explain the notation used in the algorithm. In the outer loop (1ndexed by
t=0,. — 1), we freeze a target parameter 6,; at the end of the inner loop we set 9t+1 to the
inner loop s final iterate. In the inner loop (indexed by k£ = 0, . — 1) we approximately solve for
0 satisfying:

9 = IT7(D6,),

using a two-time-scale stochastic approximation: a fast loop for the dual variables corresponding to
the inner optimization problemd] and a slow loop for the TD parameters. For a fixed outer loop t, the
inner loop iterates are 6, j for k € [0, K.

Each inner loop iteration k, in a fast time scale, we approximately solve the equivalent dual optimiza-
tion problem in . Instead of maintaining a separate dual variable A? for each (s, a) (which would
be tabular), we parameterize the dual variables A\* with the learnable parameter vector v € R*¢ as

/\g ~ ¢(57a) v, |W(Saa)||2 < I,V(s,a)
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with feature matrix U € RISIIAIXdx We define the function approximation error for approximating
the dual variables next. For compactness of notation, denote for a value function V, for each (s, a) ,
F{j”av = supya F(\GV, Po(¢|s,a)) and FV (V)4 == F(¥(s,a) "v; V, Py(-|s,a)). Define

pual sup inf [[F*Y — FY (1)) ©)

approx
V:Q=Clip(6,— 1, 1= );0€Rd;mer VEMy

Denote the value function estimate V; evaluated at the target parameter ét as

1—79"1—

Vs (s) = Zﬂ(a|s)0lip ((;5(3, a)" 0, —

a

1 1 >,vses. 7
5

The quantity Vj; can be computed exactly for any fixed target parameter 6,. In the case of the TV
distance uncertainty set, it suffices to compute V (s) only for the state visited in each inner-loop

iteration, rather than for all states. We update v; ;, with step size [ using a projected super-
gradient ascent on the dual objective with a super-gradient evaluated at the fresh data sample
(Sh, AL, St +1)- The projection Proj,, enforces projection of dual parameter vector into the set

M, ={v e R% :||v||z < B,} to keep the iterates bounded.

In the algorithm, 7, ;, denotes the half-tail iterate-average of the dual parameter vector, i.e.,

k—1
e =[2/k] Y v ®)
I=|k/2]

which can be calculated easily by keeping track of the following two quantities: Zf;ol vy, and
Z;:le /2] Vel While many elements of our algorithm have been used in implementations of robust

TD learning, to the best of our knowledge, such an averaging of the dual variables has not been used
previously. The averaging turns out to be crucial in obtaining finite-time bounds, since it allows us to
control the variance of the dual objective.

In the slow time scale of the inner loop, 6% is updated using asynchronous stochastic approximation
with a step size denoted by oy, with a robust TD-target T'D; ;1. The two-time-scale scheme ensures
that, at the slow scale, the dual variables appear near their sample-path equilibrium, yielding an
(asymptotically) unbiased robust TD target.

3.2.2 MAIN RESULT

We make the following assumption on the policy 7.

Assumption 2 The policy 7 induces an irreducible and aperiodic Markov chain under the nominal
transition kernel F.

Let p}7 () := P(SE, AL € - | S§, Af, St, AL, ..., St AL ) for some 7 < k. Note that the above
assumption ensures that the Markov chain is geometrically mixing :

AChix < 00 : ||ll‘i; - dﬂ—HTV < Cmix pT (0 <p< 1), Vt € [O,T — 1].

In Theorem we present our main result, which establishes the convergence of QT to the robust
value function @7, up to terms arising from function-approximation error.

Theorem 1 Let Qt := ®0, be the estimate of QT returned from Algorithm at iteration t. Under
Assumptions|l|and 2] the following guarantee holds for the algorithm:

. A € 2€dual
EQr — QF loo <77 [[®00 — Q7 [0 + + P PR ©)
1=y  1=v  pl-9)

where the constant A depends on the chosen schedule.
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Algorithm 1 Robust TD learning with Function Approximation

1:

A AN

~

8:
9:
10:

11:

12:
13:
14:
15:
16:

Input: Integers 7', K. Initial vy € R%, 6, := zero vector, fast time-scale step-sizes (3 =

\/2%, slow time-scale step-sizes oy = m for some w € (0.5, 1]; 6y = 6o, o0 = 6o,

candidate policy 7, Reward function r : (S x A) ~ [0, 1], initial state SJ.
for t=0,1,....,T —1do
fork=0,1,... K —1do
Take action A75 according to policy 7 and Sample S} | (S}, ~ Po(-|S}, A},))
Fast scale ()
Compute g(1(SE, AL) T SE s Vj,) from Equation (19) for TV distance and Equation
for Wasserstein-¢ uncertainty
Vikt1 = Proja, (Vek + Brlg(V(Sk, AL) Tvews Sk, Vs, )0 (), AL)))
Slow scale (o)
Compute 7; j, from Equation
Compute o (¢(SE, AL) "0 ks S, Vj,) from Equation l| for TV distance and Equation
- 23) for Wasserstein-¢ uncertainty
TDy 1 =1(SE, AL) + vo(W(SE, AL) "o i; SE, Va,) — P(SL, AL) "0y,

Ot k1 = Or + T Dy r16(Sy, Ap)
end for
01 = 0.5, S5 = S, 010 = 0o, V10 = 10
end for

Output: O

(A) Polynomially decaying step size: For the slow time scale step-size oy, = = k)w ;we (1/2,1),

where, with the notation kg = [

(B) Harmonic step size :  For the slow time scale step size rule o, =

C,
A=\ & 10)

2C.c
el

N 1 202, 5 2w 8c2Cy
C*:max{(ko-i-l) H1<(1—7)2M+ 2 +c*Cy 1)) o [

max(Cryiz, 1) B
Cy = Aﬂ((l—v)z’) <29ﬂogﬁ4 2 +2B2g%, + 2%your + 20 + 57%-@)

Cy=14+4C + 16(1 + 02, ) Hy = ki—f (1 _cp n Coc? >
- mix mzw I - " o
o (k+1) (k+1)

< _
k+1°

1 ko+1\ %
— 2 2
A= \/H2 <(1 i + (Cic? + ZCaM)ln(ko)> ( n 1) +17I

cp
5201 1 SQLCH (ko+2)2 ~* oo q
SR+ D F-1 e 2
cu
2

cr
Pl 1

2
02 C
K41 <1+1n(£§ié>> ,

(

where,
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Corollary 1 (Sample Complexity) The following sample complexity results hold:

o If the step size rule oy, = ﬁ w € (1/2,1), is used, then with T = O (ln (%)) and

K =0 (%) , Algorithmachieves an element-wise e-accurate estimate of QT up to
€ w

the function approximation error. Thus, to achieve this approximation error, the sample

complexity is
o(m (1> 12). (an
€ €Ew

o [f the step size rule oy, = p%k is used, then the sample complexity is given by O (1n (%) 6%)
ifep > 2.

We note that the step size rule ¢/(1 + k) achieves the best sample complexity, but it requires ¢ to be
chosen sufficiently large. This is consistent with similar results in the non-robust RL literature; see,
for example, |Chen et al.| (2023).

4 KEY IDEAS AND PROOF OUTLINE

While the detailed proof of Theorem|I]is presented in Appendix [C] we provide the key ideas behind
the proof in this section.

Fix an outer loop iteration ¢. Recall the definition F};)" := supya. F(A%; V, Py(+|s, a)). Define the
inner loop error for outer iteration index ¢ as e, := 6; j, — 6% with

0*t = (@TD"®) ' D" [r 4y F*Vo:] (12)

The next lemma bounds the expected estimation error at the final outer-loop iterate in terms of the
inner-loop error terms.

Lemma 1 Under Assumptions[l\and 2] Algorithm[l| guarantees
T

~ 4 €
E[Qr = QT lloo <77 I1®80 — QT lloo + > 7" "E [Jleklloc] +%m;.
t=1

Inner loop convergence error

The proof of Lemma(I]is provided in Appendix [C.T]and is inspired by the analysis in [Chen et al.
(2023)) for non-robust Q-learning.

In the analysis that follows, we establish that the inner loop error remains small (up to function
approximation error terms) in ¢,.-norm for sufficiently large k. We decompose the slow time-scale
update at inner loop k in Algorithm[I]into mean drift, noise and bias terms as

Ori1 = O + ap [GOrk) + bf,k +”f,k+1] )
where

G(Osp) == @ D™ [+ yF* o — 30,] OTDTD(0" — 0, 4),

~—
from Equation (T2)

by =@ D" [FVi (i) — FVa]
with the noise term nz 41 collects all remaining terms.

Idealized recursion (without noise and bias). The mean drift term corresponds to the deterministic
recursion:
9t,k:+1 = (I)TDﬂ-(I)(a*’t — 9,57;@)

his recursion admits §*** as its unique fixed point. Since the matrix ® " D™ ® is symmetric and positive
definite with minimum eigenvalue ;1 > 0, in the absence of bias and noise terms, the iterates satisfy

10t k1 = 0% ll2 < (1 = aps) 1Bk — 072, (13)
which implies geometric convergence of 6; ;, to 6*' at a rate governed by .
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Bias term analysis. Recall that the bias term is given by
bl == ®TD™|F (i) — F*Vee|.

dual

We show that this term becomes small for large k, up to a function approximation error €, ;o o -

In the fast time scale analysis, we prove that the stochastic update on v performs a supergradient
ascent on the concave objective

L'v) =Y d"(s,a) F({(s,a) "v; Vj,, Po(']s,a)),

which has bounded supergradients. By a standard Lyapunov argument for stochastic approximation
under a mixing Markov chain, we obtain

} Chast (14)

E[ max L'(v) — L'(7,)| < N

veM,
where the constant Cf,g; is given in equation

Using ||¢(s, a)|l2 < 1 forall (s,a), we can write

A *, V5
160 ll2 <> " (s,0) [PV (Br)sa — Fla ™
s,a

*,V5 -
=7 Z dﬂ-(S, CL) (Fs,a t— FVet (f/t,k)s,a)

*, Vs .
<~ inf d™(s,a) <Fs7a o _ Ve, (y)s)a) + [ sup L'(v) — Lt(Dk)} )
veM, veM,

s,a

<edual fast-scale objective gap
S€approx

Handling the noise term. Finally, to handle the noise terms nf’ w41 We employ the approach

in |Srikant & Ying| (2019), where a bound is obtained on expectation of the error ||y, — 6*||3
conditioned on a lagged filtration over the set (S, Af, St, A, ..., Sk__, AL ). By choosing a lag 7
such that the underlying Markov chain has mixed sufficiently, the effect of noise can be controlled.

5 DISCUSSION

As mentioned in the introduced, we provide the first proof of convergence and finite-time bounds for
robust TD learning with function approximation without making any assumptions on the underlying
model or making very restrictive assumptions on the discount factor. Some immediate extensions and
open problems are identified below:

1. The algorithm and the results can be extended to other families of distances between
probability distributions, such as the Cressie-Read family of f-divergences considered in
Liang et al.| (2023), which admit duality representations that allow one to obtain unbaised
estimators of the quantities of interest. For the Cressie-Read family, this would require the
addition of one more time-scale but the rest of the analysis would be similar. Our results
also apply to the R-contamination set, but the algorithm is even simpler in that case due to
the fact that the dual problem has a closed-form solution [Xu et al.[(2025).

2. While the computational complexity of the algorithm is quite small for TV distance un-
certainty set, the super-gradient computation for the Wasserstein-¢ distance can be quite
prohibitive for large state-spaces. This is due to the fact that the super-gradient computation
in Equation (22)), in the supplemental material, requires a minimization over all states. It is
an interesting open question whether this computational complexity can be mitigated for
Wassertein-/ distances.

3. Although the results in the main body of the paper have been presented for robust TD
learning, they can be easily extended to robust Q-learning with function approximation to
obtain optimal policies; see the supplemental material.
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A CONTENTS

The contents of the Appendix are as follows:

1. In Section|B] we analyze the TV distance and Wasserstein-¢ uncertainty sets in detail. We
prove that both of them satisfy Assumption

2. Section [C|proves the main result of the paper, that is, Theorem|I]in detail.

3. In Section[E] we present the robust Q learning algorithm (Algorithm [2) and discuss how
the theoretical analysis for robust TD learning can be extended to the robust Q learning
straightforwardly.

B DETAILED ANALYSIS ON UNCERTAINTY METRICES CONSIDERED IN THIS
PAPER

In this section, we discuss in detail the uncertainty sets considered in this paper, namely, TV distance
uncertainty and Wasserstein-¢ uncertainty sets. For each uncertainty set,

1. We define the uncertainty set first. Then, we discuss and analyze the equivalent dual
optimization that corresponds to the inner-optimization problem defined in Equation 4]

2. We show the uncertainty set satisfies Assumption [I] and provide data-driven, unbiased
estimates of the dual objective and the corresponding super-gradient.

B.1 TOTAL VARIATION DISTANCE UNCERTAINTY SET

The total variation uncertainty set is defined for each (s, a) pair as,

1
Pt ={qe A(S): slla = Polls,a)ll < 4}

Next, we show that the optimization problem given in Equationdin the main body of the paper with
”P;‘TV as the uncertainty set satisfies assumption Let us rewrite the optimization problem here for
the TV distance uncertainty set.

Oparv (V)= min ¢'V
PSTV( ) qepgweq

From Lemma 4.3 in lyengar| (2005), we know that the above optimization problem can be solved
under the dual formulation :

oparv (V) = max (Ep,(|s.0) [V = f] = Ispan(V - f)) (15)

!

Next, we prove that the above dual optimization problem is equivalent to a scalar optimization
problem.

Lemma 2 The optimization problem given in Equation (I3) is equivalent to the following optimiza-
tion problem: Let us say, m = min, V(s) and M = max; V (s).
oparv(V) = R H%aXM]{EPo(-Isya) [min V(X), \2] — A%} (16)
s 2e[m,

Proof 1 From the p-vector dual to a 1-D cut off problem: The optimization problem in Equation
(I3) can be written as

operv (V) = max {Bp(aV = f] = 8 [maxy (V= f) = ming (V= )] }. (A7)

a ferlSIAl

Step 1 — restrict to “cut—off” vectors: For any scalar a € [m, M), with m := min, V(s), M :=
max; V(s), define
fa(s) == [V(s) —a}+ = max{0, V(s) —a}.

12
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Replacing an arbitrary feasible f by the corresponding f,.—max,(v—f) cannot decrease the objective
in equation[I7] so an optimizer always has the form fg-.

Step 2 — plug f, into the objective. Because V (s) — fo(s) = min{V (s),a},
max(V — fa) =a, min(V — fa) =m,

and
Ep, [V — fa] = Ep, [min{V(X),a}].

Substituting these identities into equation[I7]yields the scalar optimization

oparv (V) = aéy[ln?:}(w]{]Epo(.|s,a)[min{V(X), a}] - 6 a}. (18)
As we are dealing with V' functions for which V (s) € {—ﬁ, ﬁ}, the optimum dual variable lies
in: \? € {—ﬁ, ﬁ} and we can equivalently write,
O',P;L,TV (V) = max . {Epo(‘b’a)[minV(X),)\g] - 5)\?}

/\‘ZE{—ﬁ7ﬁ}

It is easy to verify that the concave objective has a super-gradient:
GTV(ALV) = Pxapy(fsa [V(X) 2 AL =6
An unbiased estimate of the supergradient for a value of A\? and the value function V' from a next
state S” ~ Py(:|s,a) can be given as:
9" (G S V) =1y (s — 0 (19)

An unbiased estimate of the dual objective for a value of A¢ and the value function V' from a next
state S” ~ Py(+|s,a) can be given as

oV (XS, V) = min(V(S'), A7) — 0 (20)
If we assume [V (s)| < 125, Vs, its easy to see that,

19TV (A2 8", V)| < bV == max(,1 — 6),YA% € [0, \}F]
and,
1
" OGS VIS ok = 7 VAT € 0 4]

B.2 WASSERSTEIN-{ UNCERTAINTY SET

We define the Wasserstein-¢ uncertainty set for each (s, a) pair as:
Pt = {q € A(S]) : We(Po(-]s,a),q) < 6}

where 0 > 0 is the uncertainty radius and Wy (Py(|s, a), ¢) is the Wasserstein-£ distance defined next.
Consider the generic metric space (S, d) by defining some distance metric d. For some parameter
¢ € [1,00), and two distributions p, ¢ € A(S), define the Wasserstein-¢ distance between them as
We(q,p) = infner(p,q) lldll,,e. where T'(p, ¢) denotes the distribution over S x S with marginal
distributions p, g and ||d||n,c = (E(x,y)~n[d(X,Y)¢])}/*. Let us use the distance matrix with
normalization, ensuring |d(s, s")| < 1,V(s, s').

Next, we show that the following optimization problem with P?Wz as the uncertainty set satisfies
Assumption I}

0paw, (V)= min ¢'V.
’Pswe( ) qugWZq

13
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From |Gao & Kleywegt (2023), we know that the above optimization problem can be solved under the
dual formulation :

ops (V) = sup <—A55f + Epy (.0 [If(V(y) + A3d(S, y)é)]) :

As the state space S is finite, we can replace the inner optimization [inf, (V (y) + A\2d(S, y)*)] with
[min, (V (y) +A%d(S, y)?)]. Next, we show that the optimum dual variable of the above optimization
problem lies inside a compact set [O, A } with \J¢ = %e(v)-

As point-wise minimum of affine functions is concave, the above optimization problem is a concave
optimization problem. It is easy to verify that the concave objective has a super-gradient:

GV (NG V, Pol]s, ) = =6° + Exopy (s, [A(X, y3a (X))] 21)

where,

Ve () € argminlV (y) + Ad(z,y)’
Let us fix an S = s and its minimizer y3, (x) for the inner optimization [inf, (V (y) + A%d(s, y)")] .
Because the candidate y = s is always feasible,

V(yxe(s)) + Ad(s,yxe) < V(s).

Rearrange:
V(s) = V(yxe) < span(V)

Taking expectation in Equation [2T]and using the above equation gives

span(V) .

GGV Po(]s,a) < 6"+ =—2

Now, for any X¢ > A1 = 222) e have,

G (A V Po(-s,a)) <0
Due to the concavity of the objective, a non-positive super-gradient means the function is non-

increasing for all A2 > )\%’3. Combining the observation with the boundedness of the objective for
bounded \?, we conclude that the supremum is attained and lies in [0, A}’].

An unbiased estimate of the supergradient for a value of A? and the value function V' from a next
state S” ~ Py(-|s,a) can be given as:

gW[ (At& S/, V) _ _62 + d(S/,y*/)Z (22)

where, ,
y* = argmin[V (y) + \%d(S’,y)"]
y

An unbiased estimate of the dual objective for a value of A\§ and the value function V' from a next
state S’ ~ Py(+|s, a) can be given as

oWE NG S V) = =M+ V() + Md(S' ) (23)
If we assume |V (s)| < ﬁ, Vs, its easy to show that,
9" (AL S V)| < gyt =146, YAL € [0, 4]
and,

1
|oWe (A% S V)| < oyt = (8F + DAY + ﬁ,vxg € [0,\]

14
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C CONVERGENCE ANALYSIS OF ALGORITHM [I] AND THE PROOF OF
THEOREM [1I

In this section, we provide the proof of Theorem|[I] The proof follows in a similar manner described
in the proof sketch in the main body of the paper. We start with proving Lemma([I] which establishes
the convergence of the outer loop iterates in terms of inner loop convergence error. Subsequently, we
establish the convergence of the inner loop. Finally we combine them to prove Theorem|[I]

C.1 OUTER Loor CONVERGENCE ANALYSIS: PROOF OF LEMMA[]]

In this subsection, we prove Lemmal|I] The proof is inspired by the analysis in|Chen et al.| (2023) for
non-robust Q-learning. The analysis of the outer loop follows from the paper (Chen et al.,[2023). To
write the bound for the outer loop, we have to start with a few notations as used in the mentioned
paper. Recall, the function approximation error €gpproz is defined as:

ciip (7@~ 1 ) - T @)

€approx = sup _ﬁv 1—4

Q=Clip(®0,— 1=, 1= ),0€r?

Also, recall the definition of §*! from Equation
Recall the fact that QT = 7,.(QT).
Then, forany ¢t = 1,2, ..., T, we have,
1Q: = QF oo = [IClip(®hr) — To(QF)l|oo
= (T (Qe-1) = To(Q7))lloo

I
+ [ (Clip(®6;) — Clip(TIT;(Q—1)))|loc

+ H(Tr(th) - Clip(nﬁ(Qtfl)))Hoo

Seapproa:

First Term:

I=[[(To(Qi=1) = To(QF D loe < Y1Qe—1 — QFlloo

as the robust bellman operator is a y-contraction with respect to the co-norm (Iyengar, 2005).

Second Term:

II = ||(Clip(®;) — Clip(IIT;(Q4—1)))lso
< [y — TIT(Orr)
~~
(a)
_ e
\_/H‘(I)(etfl,l( 6 Moo
(b)
< max (s, a)ll2 |01, — 0"t

1641, — 9*’t71||2

where (a) is using the non-expansive property of the clipping operator with respect to || - ||; for (b),
recall the definition of #* in the inner loop in Equation (12} for (c), assume ||¢(s, a)|l2 < 1,V(s,a).

Hence, we get:

1Q¢ = QFlloo < YNQe-1 = Qoo + 18e—1.5 = 8"~ |12 + €appros
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Unroll the recursion and take the expectation:

T-1
9 U A ™ —t— * t— €approx
E|Qr - QFlloo <77N1Q0 — Qflloo + Y A" E[I0s—1,x — 077 ||2] +
t=0 1—x

C.2 INNER LoOP CONVERGENCE ANALYSIS

In this subsection, we show that for each outer iteration ¢, the inner loop parameter 0; j, converges to
0*-* where. Recall the definition £}, = sup e F(AG; V, Po(+]s, a)). We denote the inner loop error
for outer iteration index ¢ as e}, := 0, , — 0™ with
0"t == (@' D"®) '@ D [r +y F*Vo] (24)

Using earlier notation, the dual objective corresponding to an (s, a)-pair for a target value function
Vg, 1s

min F(/\(s7 a’); ‘/é 7PO('|37 CL))

A(s,a) t

For the rest of the discussion in this subsection, let us fix an outer loop iteration ¢. For a given outer
loop index ¢, for all inner loop iterations k£ > 1 let the filtration F}, be the sigma algebra generated by
the transitions sampled till inner loop iteration index k — 1. Formally, F} = (S}, A}, S5, : 0 <
i<k-1).

Observe that the pair process Zi = (S}, A}) is a Markov chain. We define another filtration
Gt =o(28, 28, ..., Z1).

C.2.1 THE FAST TIME SCALE:

Define the diagonal matrix D, € RISIMIXISIAI with each diagonal element as Dy ((s, a), (s, a)) =
1(5,0)=(5y,A,,)- Define the (s, a)-th component of the mean super-gradient vector as a function of the

dual vector v as .
(G50 = Esinpy(1s,a)[9(¥(s,0) '35, V)]
Also, define the stochastic update vector Xj, € RISIMAI defined as
[Xli] = 1(37’1):(5127‘42) : 9(1/1(87 a)TVk; Sltc—i-lv Vé,W(& a)
The fast scale update is given as

Va1 = Proja, (Ve + Belg(0(Sk, AL) Tvws Shr, Vg, )0 (SEs AL))

We split the update into stationary drift and different noise terms as:

Vi1 = Proja, | ves + B | ¥ D7g(v) + Xi — E[X{|GL] +E[X}|G) — W7 D7g(vy)

bt D
Myt Chi1

We see that, .
Cher = E[XE|GL] — W' D7g(vy)
So the update now becomes,

. T _

Vi1 = Projau (ver + Bk (W' D™ g(ve) +mi 1 + Ciya)
In the above equation, mg 1 denotes the state-innovation noise that is a martingale difference on the
filtration G/ .

Hence,
E[mjy_ ]G] =0

16
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We analyze the finite time convergence of the fast time scale first. Let v* be one solution of the dual
optimization problem in the domain M. As the slow time scale parameter does not influence the fast
time scale, we can analyse the fast time scale convergence independently.

Let d(s,q) = D™((s,a), (s,a)).

Our goal is to bound the sub-optimality gap of the dual objective for each iteration in the inner loop.
We will be able to use the error in estimating the dual objective from the fast time scale as a bias in
the slow time scale to get a sample complexity bound for the inner loop of the algorithm T}

Let us define the dual objective sub-optimality for the fast time scale as :

Ly = Zd(S,a)[F(w(sva)TV*; Vét,Po(-‘S,a)) - F("/}(Saa)TVt,k; Vét’PO('|5aa))]

Define the Lyapunov function for the fast time scale as
2
i = lvere — 73
Using the non-expansiveness of projection,

e} i1 < lvek + Be¥  DTg(ver) + Be(miyy + Ciyy) — v¥II3 o

We can write:

et rsr < (e = v)I3 + 28 (v — v*) "W T DTg(ve k)
+ 285 (v h — ) T (Mg + )
+ BRI T DTG (k) +mi iy + G I3

We simplify the term (v;  — v*) "W T D™g(vy 1) first.

(Vt,k - V*)T\IITDW.@(VLI@) = Z d(s,a) (Vt,k(sa a) - V*(Saa))g(l/t,kx&a)w(sa Cl)
$,aESXA

Now as the L*(v) is a concave function ,

(e —v*) T (D™)g(vex) < —Li

Hence, we get,
e g1 < N (wew — )3 — 2Bk Li
+ 28k (e — ) T (mE 1) + 286((ver — V) T (¢E4)
+ Bev T D g(vi) + mi 1 + a3

Now we condition on a lagged filtration G}, __ where 7 would be chosen later.

E (e} kr1|Gi—r] < E[e}ilGi_r] — 26:E [Li|G}_,]
+ 264 [(ve — ) T (M 1) 1Gk—r ] + 2BkE [(ver — v) T (GFe1) |Gk ]
+ BE [T D g(v1k) +miyy + e 316k, ]

197 D7G() 2 < gar and [, 12 < 2gar and [|Z, 1 [3]2 < 2gar- Hence,

BRE [T D™ g(ve ) + misy + G 131GE_,] < 258793,

Let us first bound the 37 terms. Recall from Assumption 15(vk)]loo < grr. We can show that

Now we work on the cross terms. Let us start with 28, E [(v4 — v*) " D™ (mY,)|Gf_ ]

17
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We write:
28 (i — v*) " D™ (M4 1)|Gh ) = 2B%E [E [(ver — v*) " D™ (mf,,)IGL] |Gk ]

= 2B4E (v — v*) " D™[E [(m{41)IG1] |GF._,]
=0.

Now we focus on the term 253, E [(v 1, — v*) T (Cry1)|GE_ ]

Define the vector ey,

€Zy (57 a) = 1SkgAk:5:a
Let i () := P(Zk € - | Gr—-) and assume the m—chain is geometrically S-mixing:

[ —d™lrv < B(1) = Crmixp”  (0<p<1).

We can write:

26 [(vi — )T (W (ez, —d™) © g(vi )|k ]

= 26:E [(¥(ver — v*))  ((ez, — d™) © g(vek))|Gr_, ]
<2B4E [[[(¥(vep — V)l ll((e20 — d™) © G(ve)) 111Gk -]
< 2:E [2Bugul(ez, — d™)[11G) ]

< 8Bk BugnmB(T)

Putting it together, we have:

E €] ;11161 -] <E e} 11Gk_+] — 26:E [Li|Gi_,] + 8Bk Bugn B(T) + 258792,

log(k+1)

20g(L) ], then, we have,

If we choose 7 = [

1
Gt_.] = 2BxE [Li|Gi_,] + (8BugniCumiz— + 2593 )57

E [etu’k+1‘g]€;77j| S E [etuxk BO

Changing the conditional expectation to a filtration G fk J2)—rr We write VI € ([k/2]), k —1:

v v 1
2ﬁkE[Ll‘gfk/2j7'r] < ]E[et,l|gfk/2jfr} - E[et,l%»l‘gfk/ﬂf'r] + 51%(831/9Mcmm% + 25912v1)

Next, we use telescoping for iterates over the index [ from L%j tok—1.

k-1 k-1
1
2 Y BE[LG )] < € o) + (SBVgMcmizF +253) > BF (25)
I=|k/2] 0 I=|k/2)

Recall, the fast time scale passes the following dual variable to the slow time scale at each iterate k:

=
Utk = a7 Vt k
[k/2] L%;J
We use the step size rule of 3 = \/%

Because of the clipping of each iterate, we know that e} k2] < 4B2 for any k > 0.

18
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Similar to the definition of Ly, let us define
Ly = Z d(s,a) [F(¢(s, a)TV*; Vét,Po("S, a)) — F(i(s, a)TDt,k; Vét,Po(~|s, a))]

Hence,
B 1 k-1
E[Ly|Glk/2) -] < Te/2] E[Li|G1/2)--]
I=|k/2)
1 VE X 2VE
< W* ﬁlE[Lk|gfk/2j—~r} < Ei 5ZE[Lk|ng/2J—T]
o 0 i=(k/2 0 Lk/2)
< e+ (88,531 Cmie 5y + 25911) ki:l st
?;)-/60\/% ’ 50\/E I=|k/2]

482 (8BugnCrmizg +250%) 2 B2

< + >
BoVk Bovk 1= 1h2) I+1
o 4B | (8Bugn Crmin = + 259%,) (B3 (In(k) — In(k/2)))
\(_/)" BoVk Bovk
Cfa,st
<
T Vk
where
(4B + B3 (8Bygn Crmiz 5 + 2593,) In(2))
Cfast = 50 (26)
. In (a), we used Sy, > ﬁ—lﬁkz <k —1.1In (b), we used Equation In (c¢), we used the following
identity: In(k) < Hj < 1+ In(k) where Hy, is the harmonic series up to an integer k.
C.2.2 SLow TIME SCALE ANALYSIS
We denote the inner loop error for outer iteration index t as e}, := 6, , — 6*" with
gt = (@' D"®) 1 D™ [r +~ F*Vo] 27)

With a slight abuse of notation, we drop the superscript ¢ from the variables for the remainder of this
subsection, since the outer loop index ¢ is fixed. We will make the dependence on ¢ explicit whenever
it is essential.

The slow update (no projection) is

Ors1 = Ok + i 01 0(Z1), Org1 = 1(Zi) + v o (W(Z1) "0 (Z1); Skt1, Vi) — (Z1) T O,
with 7, the suffix average produced by the fast scale.

Let us define the (s, a)-th component of the mean dual objective estimator for any v as:

[a-(y)]s,a = IES’NF’O(»|s,a) [UW(& a)Tl/a S/, ‘/ét)]

We decompose the sampled direction as
G(Ok) + b + &y + My,
where

G(0y) := @' D™ [r +yF* o — 0] dTDTH(0* — 6y),

—
from Equation (T2)
b == T D" [FVo (i) — Ve
&1 = @7 (ez, = D7) [ +90(3) — DO

m 1 1= 7@ ez, (0 Z0)i St ) — 3 (0)(Z0))-
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Note E[m{ , | | Gx] = 0 (innovation MDS) and, by tower, E[e/ m{,_, | Gx—-] = 0.

Notation and standing constants. We assume ||¢(s,a)||2 < Ly, ||®|/op < Lo, rewards r € [0, 1],
and |5 ()| < ops. Further set

B::ﬁ, Yo := 1+ o + Lgll07 ], Y := Ly, Lp :=||®" D"®||,,.

We know that the w—chain is geometrically S-mixing:

Crmizp
h) < Comix p", 0<p<l, h) < -l
B(h) < p p };5()—1,p

Finally, from the fast time scale we will use (proved in the fast-scale subsection)

CG.S
E[Ly |Gr] < &Et, (28)

with kg = | k/2] — 7 and the explicit constant
c (4B% + B3(8Bugni Crmin 5 + 2593,) In(2))
fast = .
Bo

(1) ONE-STEP LYAPUNOV EXPANSION UNDER LAG

With zy = ||ex]|?,

Elvis | Gr—s] = E[[lex + ar(G (k) + b + &1+ mi)|* | Gu—r ]
= + 20 ]E[e;G(Ok) ’ gk_r] + 2a, E[e;bz ‘ gk—'r]
+ 20, Elef €11 | Grr] + R E[IG(08) + b, + &Ly +mi|” [ G ] -
(29)

(1I1) MAIN DRIFT

2

s

Since e} G(0)) = —ef (T D™ ®)ey, < —pu|lex
20, E[ef G(0k) | Gr—r] < —2paElak|Gr—r]. (30)

Further Notations. Let Z, = (Si, Ay) and let G, = o(Zo, ..., Zy). Fix alag 7 > 1 and define
Hi = 0(Gh—r, Ok, M)

Conditioning on Hy, “freezes” ey, := 0 — 0* and yi, := r + 5 (v, ) — POy; only Zj, remains random.
Let p(-) :=P(Zy € - | Gr—-). We know that the 7—chain is geometrically S—mixing:

e — d™[|rv < Crixp” (0O<p<1).

Let the notation z denote an arbitrary (s, a)-pair. We use: for any signed vector w on S x A,
Wl = | Sonot], < Sl = b ;
[27el, = || 2 w- 0|, < 3 el = flwlh 31)

because each row vector satisfies ||¢(2)]|2 < 1. We also write the Markov mismatch (“mixing noise”)
as

€z+l = (I)T (ezk - Dﬂ') Yk
Finally set Yp := 1 + yop + ||0%]|2 and Y7 := 1 so that
lykllo < Yo+ Y1 |lexll2, (32)

using r € 0,1 1) loe < o7, and [l9(2)]l> < 1.
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(1) CROSS WITH FAST-BIAS

By conditional Cauchy—Schwarz and Young inequality,

20, E[e b, | Gior] < pawElay|Gror] + %%JEUwzH2|gk,T]. (33)

Lemma 3 (Cross with Markov mismatch) Forany T > 1,

8Y{
20, Efey €41 | Grr] < (%+4Y15(7')) arE [|lexl3] Gr-r] + MO ay B(1)?,

Here B(1) := ||, — d™||rv and ju > 0 is the minimum eigenvalue of ® T D™ ®.
Proof 2 By the tower property,
B[l €11 | Gur] = E[E[e] @ (ez, ~ D™ ui | #a] | Gucs]
Given Hy, the only randomness is Zj, ~ uy. Hence
E[®(ez, — D™)yx | Hi] = @' (1 — D™) ys.
Therefore,
|E[ef ¢lr | Ger] | < E[lexlle [ @7 (i = D7) will, | Ger]

Apply Equation (31) and || (. — D™) yrllv < [[ie — D7 l1llyklloe = 2 8(7) 1yl
\E[elf;‘iﬂ | Gr—rl| < 2B(7) Elllexll2 lyrlloo [ Gr—r]-
Multiply by 2«, and split ||yx||co using Equation .'

20| B[] | < 4o B(7) Elllexl2 Yo | Gr—r] + 4anB(7) Ellex |2 Vallerll2 | Gr—r] -

For the Yy term use Young’s inequality with parameter n = p/2:

16BUVY§>
).

sau ) Voleula < o (el +

Combining,
T 0 H 2 8Yo2 2
2000 Elef &0 11 | Gr—r] < (5 + 45/15(7')) o E [[lexll3| Gr—r] + e ar B(1)*.

Lemma 4 (Second moment of the Markov mismatch) Forany 7 > 1,
E[ gl 13 | Gr] < 16(1+ B(r)%) (Y8 + Y2 E [llenl3 Gr—r] )

Proof 3 Decompose at the lag:

=@ (ez, —mr)ye + @7 (uk — D)y

(0) (b)
Eria Eri1

Then ©) ®)
0 2 2 2
1€k41 112 < 21651 112 + 201€x-1 112

Centered part. By Equation (31)),

0
Ik N2 < Iz — pme) wiell,-
Using (a + b)? < 2a% + 2b% and conditioning on Hy,

E[ll(ez, — pr) yillT | Hi] < 2E[|lyw(Ze)* | Hie] + 2 lnyiells < 41lyellZ.
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Hence
0
E[ I 13 | Ga-r] < 4Bllunl%.
Bias part. Again by equation |31}

b ™
& lle < G = D7) wiell, < 28() leloe,
50
b

E[ 113 | Ge-r] < 48() Ellunl.

Combine and unfreeze yj,. Therefore,
E[I601103 ] Gr—r] < 2-4E[ysllZ +2- 4 8(m)? EllyellZ = 8 (1 + B(1)*) Elly |
Use (a + b)? < 2a® + 2b% in equationto obtain
Ellyell3, < 2Y§ + 2Y7 Ellex]|3,

hence the stated bound with the factor 16(1 + B(7)?).

(V) QUADRATIC BLOCK

We use
1GOOI < Ly ar,  E[llmiy1*|Gr-r] < Cr = 4y"L03;.

For §Z 1> a crude (mixing-free) bound yields

E[I€8 117 | Gre-r] < Ceo + CenElaw|Grr], Ceo:=8L3Yy, Cen:=8L3Y{Y.

Therefore,
E[IG(Ok) + W + €Lo1 + 4|2 [ Ghr] < of (CoElog | Gomrl+Co+ 2Bl | Go-rl),
(34)
with

C, = L% + 0571, Co:= 0570 + C),.

Lemma 5 (Bias second order at 1/k) Let b} := F (0, vx) — F(0),v*). Then
26’bias

B[00 |Ger] < 250 4 oetuat 2
with the explicit constant
32 C p 1
Chias = C2. 16 B2 mixl B:i=——,
b fast 2 + 1 . p 1 . "Y
and Ciygy, as in equation 28|
Proof 4 Using ||¢(s,a)||2 < 1 forall (s,a), we can write
PO *, V5
el < 7350 |FYo (00— Fia™
7')/Zd775a ( sa Fet(%‘k)sa)
<~ inf ™ (F — FY% (1), a) L
v, inf Sad(sa) (¥)sa) +7 k

fast-scale objective gap

<6dual

approx

E[6012| Go—r] < 2E[(T1)? | Gror] + 2(e2ne! )2
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To bound the RHS at the 1/k scale, use the suffix average Lj, < -+ Z;:;_m L; withm = [k/2]
and 0 < L; < B. Write

k-1 k-1
E[(Li)? | Gr—r] < mi{ Var Z Li\Gr—r | + (E Z ngk77>2 }
j=k—m

j=k-m

(1) (IT)

Term (II) (mean square). By equation IEZJ e L < E[L;] < Cfast/\/E, so (IT)/m? <
szast/k'

Term (I) (variance). Under geometric $—mixing and 0 < L; < B, the conditional covariances obey
|Cov(Lj, Litn | Ger)| < 4B% B(h) < 4B>Crnixp™. Thus

— m—
Var Z L;|Gr—r :ZVar(Lj| Z m —h) Cov(L;, Ljtp | -)
j=k—m j h=1
B? B? Chixp
< L 2 < L 2 Umix .
<m=— + 8B m};/)’(h m(4 +8B 1—,0)

Dividing by m? and using m > k/2 gives

@ < (52+8BQ lexp)

m2 — k 1—

Combining the two terms yields

— |9 CtQast g 22 QCmixp
B0 [Ger] < =t 4 3 (T +88° 7).

which is the claimed bound with the displayed Chys.

FINAL RECURSION FOR THE SLOW TIME SCALE (MARKOV SAMPLING, LAGGED)

Let e, := 0}, — 0* and 7, := E||e;.||3. Fix alag 7 > 1 and condition on Gj_,. Combining the drift,
the two cross terms, and the quadratic block (with the second-moment bounds proved above) yields

Efllexs1ll3 ]G] < (1= 4% an+Co}) Efllesl30h—] (35)

2Chias wa
+ (5 +203) ( . +2(6pr£om)2) + Ceross i B(r)* + Coaf,
(36)

and hence, after taking total expectation,

Elless1l3 < (1-%ax+Coa}) Elexl + (37)

o 20 ias ua
+ (TZC + 20[%) < IZ + 2(62;0137["037)2) + Ccross Qg 6(7')2 + Co Ot%. (38)
Constants (explicit). We use that D™ is a probability diagonal (3, d7 = 1) and [|¢(2)|]2 < 1,
which implies ||® T D™®v||2 < |lv]|3 and thus we can take

ri= 8T D ||, < 1

Yy := 1+vyou+107 |2, Y1:=1, B(r) = |P(Zr€" | Grer)—d" ||V,
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and assume geometric mixing 3(7) < Cip” With 0 < p < 1. Then:
Ce :=4Y1Crmip + Ly + 16(1+B(1)?)Y? = 144Cnie + 16(1+B(1)?),
Co :=16(1+ B(1)%) Y§ +20° + 4y%03,,

Ccross = 8}/027
1
B? Crmi (4B2 + B3(8B,grs Crmiz = + 2593,) In(2))
Cbias = C?ast + 7 + 16 32 1m7m:pp7 Cfast = 0 5sz Bo M .
N 0

Recommended lag schedule. If 7, = [%w then 3(7;) < Cpizc/k and the mixing
penalty in equation [37]becomes

Qg
Ceross Qg /B(Tk)z < Ceross Cfnz'xCQ m’

with no log k factor.

Now we derive the last iterate convergence of the error [, ; [|2.

Hence,
2 u 2 2
Ellex+1]l5 < ( —Sap+Ce ak) Ellex2 +
C ias
ai ( (% + 2) bk + C?rossCrQnim + CO)
205 (€Gppros)’
4,44JEEAJEL442,
n
Or,

2 1 2 2 2 2ak (egz;gf“ox)z
Ellers1ll3 < (1—4an+Ceaf) Elesl +afCy + ——-2rree

(39)

with C = ( (% + 2) Gias 02, C2.. + Co).

Next, we derive the final iterate convergence from the above recursion for the following two step size
rules:

l. we (1.2,1)
2. w=1

C.3 LAST ITERATE CONVERGENCE GUARANTEE FOR STEP-SIZE RULE «;, = (1+Lk) (WITH
DUAL APPROXIMATION TERM)

Recall the recursion

ue 2 C
Efllexs1ll3] < (1-4ax+Ceoa)Eflenl] + afCr + 2 ap (sme)’s ok = 555 (40)
Define
ap = —%ak—i—Ceai, ]{/’0 = ’77261;60—‘7
so that for all j > ko,
ue
<1
A TSy
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For s < u, set
u ko—l

= Haj, HO = H Qg.
j=s j=0

Then for any s < k — 1,
GF! = Hy Gt
0
The tail product admits the standard bound
ko +1\" ue
< = —. 41
Define
k‘,()—l
H() = H Qj.
j=0
Also define
k?()*l 2 k:()fl
C 01
Upre (ko) = Z 2 H aj
t=0 (t+1) j=t+1
Unrolling equation 40| yields
k—1
E[llexl3] < E[lleol3] G54 + Y i1 Girl + = 6‘33§lox Zat ehmy

t=0
Splitting the variance sum at ko and using equation [41] gives the bound:

ko+1\" & 20, [t+2
2 2 0 1
Elleul] < (Elleold) o+ Ustho) (357) + X 751 (53)

t=ko
ko—1 ko—1 k—1
ko+1 t+2
e’ e I e () + 2 i (7))
= Jj=t+1 t=ko
Bire (ko)

An elementary algebraic bound on the variance tail yields the same case split in p
C201 1 6201 (k‘o + 2)p—1 > 1,

p—1k+1 p-1 (k+1)y ~°

k=1 9 P 2
C t+2 C k+1

Yy L R N P LA p=1,

S 12 \k+1 k+1 ko + 2

- 2Cy (ko +2)P~!
c’Cy (ko +2) , 0<p<l.
1—p (k+1)r

For the dual-approximation contribution, the pre-burn part is a constant times (klfjll )P

ko +1\"
Bpre(k(])<l:+1>

The tail part is handled by comparing the sum to an integral:
k-1 p k p
t+2 ko + 2
E' ¢ (tx= Sé/(l‘#—Q)pildx:E 1_ (Fot2 _
t:k0t+1 kE+1 (k+1)7 Ji, p k+2

Therefore, the total dual—approximation contribution satisfies

2 ¢ 2 ko +1Y\” e
k—1 0
gll)l;]rox Zat Gt+1 < ; ';(f:-gll)lglrox) + 0-12\43177"6(]{;0) < ]{1+1> ) p= ?
——
_ 4
e
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Final bound. Combining the pieces, for p = &7,
ko+1 > r

Ellexl] < (Ellell) Ho + Upetho)) (2

0201 1 0201 (ko + 2)’)71

>1
p2—1k‘+1 p—1 (k+1) ~’ ’
cCy k+1
1+1 =1
* k+1( +nko+2>’ P==
0201 (k‘o + 2)p_1
0 1
1—p (k+1)p SP<S
4 dual 2 2 k'0+1 P
— (e B, (k .
+ 2 (approx) . + o8By (0)<k+1

With this final bound along with the bound on ||¢*/*||5 from subsection|D.1] we arrive at the result in

Theorem for the step size rule ap = 7

C.4 LAST-ITERATE CONVERGENCE FOR « = ﬁ WITH APPROXIMATION ERROR

Fix w € (3, 1) and constants c, 1 > 0. Let a := cu, and suppose the error sequence s;, := E[| ex[|3]
satisfies, for some C; > 0and C, > 0,

a D b o
< (1- ) . D=0, b= 20,
S < T T s e g c c
k+1(k1+k12 U P R (| ¢ !
(42)
where the following term comes from the function-approximation bias on the slow time scale:
dual 2
pil — 2 o (edual )2 — % . M p/ o % (edual )2
(ki + 1)w U approx L (k’+ l)w ’ . L approx
Burn-in index. Define
koo 1= {(%)”‘ﬂ 1, ke = [(%w)”“’“’)] 1, ko o= max{kaz, Kres)-
Then, for all k& > ko,
a D a 1
1— <l—-=——F. 43
Grir Ty ST e “43)

Bias removal by shifting. Introduce the shifted sequence
/

ty = Sp— —.
a

Substituting s, = t; + p’/a into equation 42| and simplifying (the p’/(k + 1)* cancels with the
—a/(k + 1)“ part) yields

/

D - D
a b= b+pa. (44)

TESC (k+1)2w>tk RS

thr1 < (1—

Rescaling and max-envelope. Let g, := (k + 1)“t;. Multiplying equation 4] by (k + 2) and
using equation 3| for k > ko, a bit of algebra gives

w a 1 2b
< g1+ -2 _2. ) k> k. 45
g < o1+ 557 Groe) T e 2 ko )
Letny, := §(k 4 1)~ and gy, := maxo<;<k g;. Then, for k > ko,
_ - 2b
Jk+1 = Gk — NMkGk k+ 1)«
Choose N
8b
G = Inax{ sup g, —}
0<j<ko a
———
pre-burn
Since 7y, - %b = ﬁ > (kﬁ)w , a standard induction yields g < G for all k > k.
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Bounding the pre-burn maximum. Dropping the negative drift for k£ < k( and iterating gives

sup t; < exp(DZ ZW) (to—&—i)C(Qw)),

0<j<ko

where ((s) = >0, m™* and {(2w) < 1+ 5. Hence

/ /

sup g; < (ko+1)% exp( D) (to + bC(2w)) to = 59 — £ < sp+—. (46)
0<5<ko a a

Last-iterate bound (all £ > 0). Combining the pieces and recalling ¢, = s — p’/a, we obtain

1 x ;- 8b '
Ef[lex3] < +——— max{ (ko + 1) exp(%zD) (so +£&£+ bC(Qw)), — + £ k> 0.
(k+ 1)~ a a a
finite pre-burn constant tail constant approx. floor
(47)
In particular, the approximation-induced floor is
ﬂ/ _ %(egggi”OX)Q _ 2 (eggg}"ox)Q
a cp pro

This proves the result in Theorem for the step-size rule o, = m forw € (1/2,1).

D REMAINING PROOFS

D.1 BOUND ON §**
We drop the superscript ¢ from 6% as ¢ is fixed throught the discussion of this subsection. Recall,
0" = (@' D"®)'®" D™ [r + va(\*)]
Lemma 6 (Bound on the optimal weight vector) Let
- = (@TD"®) e D [r + va(\)],
where

» & € RISIAIXD has full column rank and row vectors ¢(s, a) satisfying ||p(s, a)|]2 < 1;

® T D™ ® is positive definite with min-eigenvalue v. The diagonal entries of the matrix D™
satisfy d; > dwin > 0and ), d; = 1;

* each entry of v obeys |r;| < 1;
* each entry of 5(\*) obeys |G(X*);| < 1/(1 — 7).

Then

. 1
1072 < —— —

1—’7\f

Proof 5 Set
C:=d"D", vi=14v5(\%).
Because C' is invertible, 0* = C~'® T D™y satisfies CO* = ® " D™v. Multiply on the left by 6* T :
0*TCo* = 0*T®T D™y = (®F*)" D™ w.

Let y = ®6%. With the weighted Cauchy-Schwarz inequality and D™/? .=
operatornamediag(\/d;):

yTDﬂ'U _ (Dﬂ1/2y)T(D7r1/2,U) < HDW1/2y||2HD7r1/2,U”2.
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But |D™/?y||3 = y " D™y, and y" D™y =y D™v so
y DTy < [|ID™2ylla D™ P0lly = (yTDTy) DT 0],
Whenever y" D™y > 0 (otherwise 8* = 0 and the bound is trivial), divide both sides to obtain
y D7y < [D™V2[3 = T D",

Returning to 0*:
0*"Co* =y"'D"y < v D™.

E ROBUST Q-LEARNING

In this section, we discuss a robust Q-learning algorithm with function approximation that finds the
optimal policy for the worst-case transition kernel in the uncertainty set considered in this paper. We
first define the optimal state-action value function Q) as the state-action value function of the best
admissible policy to maximize QT for each (s, a)-pair.

Qr(s,a) = max Qr(s,a),¥Y(s,a).

It is shown in prior literature (Iyengar] [2005)) that Q) satisfies the following equation, which is called
the robust Bellman optimality equation

* — . / * / / . 48
Qr(s,a) = r(s,a) + 7 nin E/ q(s" | 5,a) max Q7(s",a’) (48)
s ————
= V()

Equivalently, define the robust Bellman optimality operator (7.*Q)(s,a) := r(s,a) + vy opa(V,F)
with
V(') = max Q(s',a'), (49)

and opa (V) is given in Equation (E]) Iyengar| (2005) proved that the robust Bellman optimality
operator is ~y-contraction in £, norm.

Now, we discuss how the TD learning algorithm presented in Algorithm [I]in the main body of
the paper can be extended to estimate () in a relatively straightforward manner.Similar to the TD
learning setup, assume that we can sample data corresponding to a behavioral policy 7, from the
nominal model P. Also, assume that the policy 7, satisfies Assumption 2]

The goal here is to approximate () by ®0* for an approprlately chosen 8*. Our Q-learning algorithm

is presented in Al gorlthml 2| The algorithm an estimate 0, of this parameter at each iteration ¢ of the
outer loop. The quantity V* in the description of the algorithm is given by
t

N 1 1
* _ : T -
Vét(s)fmélXC’lzp <¢(s,a) 0, T 1_7) ,Vs e S. (50)

Difference between Algorithm 2] and Algorithm [T} The only difference between the robust Q-
learning algorithm in Algorithm[Z] and the robust TD learning algorithm in Algorithm [T]is that, we
use V* instead of Vj; in the calculation of the dual super-gradient in line 6 and the calculation of the

dual obJ ective in hne 10 in Algorithm 2]

Finite-Time Performance Bound for the Robust Q-Learning (Algorithm [2): Recall that we
established a finite-time performance bound for the robust TD learning in Theorem I} By following
the steps of the proof of that theorem, it is easy to see that an analogous guarantee holds for the
estimate of @ produced by Algorithm [2] The reason that the proof is identical is that the robust
Bellman optimality operator is a y-contraction in the ¢, norm as was the robust Bellman operator
for a fixed policy. The only difference is that the function approximation error for approximating
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the Q-function should now be defined as the error in approximating @} by the class of functions
{®6:0 € RYY} -

1 1
1—v"1—x

€ = sup

approx
— ; 1 1 d
Q=Clip(®0,— -, 12-),0€R

czz'p<n77<cz>, )—7;*<Q>H .61

o0

Thus, the sample complexity of robust Q-learning is of the same order as that of robust TD-learning
up to a function approximation error.

Algorithm 2 Robust Q-learning with Function Approximation

1: Input: Integers T, K. Initial vy € R, 6y = zero vector, fast time-scale step-sizes 3, =

\/2%, slow time-scale step-sizes oy, = m for some w € (0.5, 1]; 6y = 6o, 6p,0 = 6o,

candidate policy 7, Reward function r : (S x A) ~ [0, 1], initial state SJ.
2: for t=0,1,..., 7T — 1do
3: fork=0,1,...,K —1do
4: Take action A}, according to the behavioral policy m, and Sample S}, (S}, ~
Po(|Sk, AL))

5:  Fastscale (5)
6: Compute g(¢p(SE, AL) Tve g Shoy s V(;Z) from Equation li for TV distance and Equation
for Wasserstein-¢ uncertainty
7: Vigtr = Proja, (Vek + Brlg(d(Sk, AL) Tvews Sk, Vs, )0 (SE, AL)))
8:  Slow scale («y,)
9: Compute 74 j, from Equation
10: Compute o (¢(SE, AL) "0 s S, V) from Equation for TV distance and Equation

for Wasserstein-/ uncertainty
11: T.Dt,k+1 = T(S}i, A};) + ’YJ(w(S}iﬂ AZ)TDt’k; S/t’-l—l’ ‘/ét) — (b(S}i, Ai,)—ret’k

12: 0t k1 = Or  + T Dy 41 90(S}, AL)

13:  end for

14: 9t+1 = 9@](7 SéJrl = S}(, 9t70 = 90’ Vto =10
15: end for

16: Output: 67

USE OF LARGE LANGUAGE MODEL

The authors used large language models (e.g., ChatGPT) to polish the language in certain parts of the
paper. All technical content, proofs, and conclusions are the sole work of the authors.
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