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ABSTRACT

Distributionally robust reinforcement learning (DRRL) focuses on designing poli-
cies that achieve good performance under model uncertainties. In particular, we
are interested in maximizing the worst-case long-term discounted reward, where
the data for RL comes from a nominal model while the deployed environment
can deviate from the nominal model within a prescribed uncertainty set. Ex-
isting convergence guarantees for robust temporal-difference (TD) learning for
policy evaluation are limited to tabular MDPs or are dependent on restrictive
discount-factor assumptions when function approximation is used. We present the
first robust TD learning with linear function approximation, where robustness is
measured with respect to the total-variation distance uncertainty set. Additionally,
our algorithm is both model-free and does not require generative access to the MDP.
Our algorithm combines a two-time-scale stochastic-approximation update with an
outer-loop target-network update. We establish an O(1/€2) sample complexity to
obtain an e-accurate value estimate. Our results close a key gap between the empir-
ical success of robust RL algorithms and the non-asymptotic guarantees enjoyed by
their non-robust counterparts. The key ideas in the paper also extend in a relatively
straightforward fashion to robust Q-learning with function approximation.

1 INTRODUCTION

Reinforcement learning (RL) aims to learn policies that maximize long-term reward. Standard RL
methods learn the optimal strategy from trajectories generated by a simulator or the real environment,
implicitly assuming that training and deployment environments share the same dynamics. Many
applications face two issues: simulation—reality gaps and distribution shift between training and de-
ployment. These call for policies that are robust to perturbations in the environment. Distributionally
robust RL (DRRL) tackles this by assuming the true environment lies in an uncertainty set around a
nominal model. It then learns a policy that maximizes the worst-case cumulative reward over that
set, using data from trajectories corresponding to the nominal model. In this work, we focus on
model-free DRRL with linear function approximation for the value function to deal with large state
spaces.

In contrast to our model-free approach, model-based DRRL often proceeds by fitting an empirical
transition model, defining an uncertainty set from it, and then optimizing for a robust policy (Shi &
Chil, 2024} [Wang & Zoul 2021} Xu et al., 2023} |Panaganti & Kalathil, [2022; |Yang et al.l 2022} Zhou
et al.} 2021). In some model-based papers, access to a generative-model is assumed, which is not
realistic in many cases (Wang & Zou, [2021; Xu et al., [2023). Whether one assumes generative access
or not, the number of parameters that need to be estimated in a model-based approach grows with the
cardinality of the state and action spaces, unless one makes additional structural assumptions on the
model.

Another line of work focuses on model-free learning of robust policies, that is, learning without
constructing an empirical transition matrix. In the tabular setting, |[Liang et al.| (2023) analyzes
Cressie—Read f-divergence—based uncertainty sets and establishes asymptotic convergence guarantees
for robust temporal-difference (TD) learning. A complementary tabular result, [Li et al.|(2022)), studies
the R-contamination uncertainty set and exploits a distinctive property: the robust Bellman operator
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in this model admits an unbiased stochastic estimator. The techniques developed there extend to any
uncertainty set that likewise permits an unbiased estimator of the robust Bellman operator, enabling
unbiased policy evaluation and, consequently, policy improvement in a model-free manner. However,
these papers do not consider function approximation, which is essential to deal with large state spaces.

When function approximation is introduced to represent the robust value function, the literature
typically proceeds along two directions with different limitations. One line of research constructs the
uncertainty set expressly so that the robust Bellman operator admits an unbiased estimator (Zhou
et al., 2023)), allowing standard stochastic approximation arguments to go through or restrict to
R-contamination uncertainty set (Wang & Zou, 2021). For R-contamination uncertainty set,|Wang &
Zou|(2021) investigates the TD-C algorithm under function approximation and provides finite-time
bounds for convergence to a stationary point of the associated objective, offering non-asymptotic
guarantees in a setting where the objective is nonconvex and only stationarity is generally attainable.
The other direction assumes extremely small discount factors to induce a contraction mapping for the
robust Bellman operator, which restores fixed-point uniqueness and enables convergence proofs Zhou
et al.| (2023)); [Badrinath & Kalathil| (2021)); [Tamar et al.|(2014). Both approaches trade generality
for tractability: the first restricts attention to uncertainty sets with unbiased estimators and focuses
only on local optimality, while the second relies on unrealistically small discounting to guarantee
contraction.

Another line of work (Tang et al., 2024; Ma et al.l |2022) for model-free DRRL considers linear
Markov decision process (MDP) for DRRL where the transition matrix of the underlying MDP has a
lower-dimensional structure. This reduces the complexity associated with large state spaces. In this
paper, we do not make such a modeling assumption.

In summary, most existing results on model-free robust RL are limited in at least one crucial way: they
prove only local or asymptotic convergence; focus on narrow uncertainty models (e.g., Liang et al.
(2023)) observe on FrozenLake that R-contamination—-based methods can mirror non-robust baselines
and even underperform due to over-conservatism); restricted to tabular settings; assume generative
access; or require extremely small discount factors. In particular, there are no finite-time guarantees
for robust TD with function approximation from a single trajectory under broad, practically motivated
uncertainty classes—such as those induced by total variation or Wasserstein-¢ distances. At the same
time, practice-oriented deep-RL pipelines often use ad-hoc “robust TD” heuristics, leaving a sizable
gap between theory and deployment. This work closes a portion of that gap by establishing finite-time
guarantees for robust TD learning with function approximation under commonly used uncertainty sets,
without relying on generative sampling, vanishing discount factors, or purely asymptotic arguments.

Contributions. Our main contributions are summarized below.

1. Finite-time guarantees for Robust TD Learning For total variation and Wasserstein-¢
uncertainty sets, we establish that the distributionally robust policy evaluation considered
in the paper with linear function approximation admits non-asymptotic guarantees from a
single trajectory. The robust TD method achieves an e-accurate value estimate with sample
complexity O(1/€?).

2. Overcoming projection mismatch via target networks. While the robust Bellman operator
is a contraction in £, (Iyengar, 2005)), function approximation induces a projected fixed-
point equation that breaks direct contraction arguments. Prior approaches either remain
tabular or require unrealistically small discount factors. We resolve this by incorporating a
target-network mechanism—conceptually related to [Munos & Szepesvari| (2008) and, in
the non-robust setting, |Chen et al.| (2023)—and prove stable, finite-time convergence of the
resulting projected robust TD updates without restrictive discount-factor assumptions.

3. Function approximation in the dual space. Standard DRRL solvers compute the worst-
case distribution at each step of an RL algorithm by using a dual formulation Iyengar (2005).
However, this requires estimating a dual variable for each (state, action) pair, which is
infeasible for large state spaces. To overcome this problem, we provide the first analysis of
function approximation in the dual space.

4. Robust Q-Learning. The main technical contributions of the paper are in the proof of con-
vergence and sample complexity bounds for robust TD learning with function approximation.
It is straightforward to use these ideas to obtain finite-time bounds for robust Q-learning
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with function approximation, which, to the best of our knowledge, has not been studied in
the literature. We refer the reader to the short argument in the Appendix (Section [E).

Since our paper focuses on discounted-reward robust RL, we have not made an exhaustive comparison
of our work with work on average-reward robust RL; see, for example, Xu et al.|(2025)); [Roch et al.
(2025)); |Chen et al.| (2025). However, to the best of our knowledge, it is worth noting that there are no
performance guarantees even in the average-reward literature when function approximation is used.

2 MODEL AND PRELIMINARIES

Model We consider finite-state, finite-action, infinite-horizon discounted MDPs M :=
(S, A, P,R,~), where S is the (finite) state space and .A is the (finite) action space. For any fi-

nite set X', we denote by Ay := {M € ]R‘f‘ DY wen M) = 1} the probability simplex over X’; in
particular, Ag and A 4 are the simplices over states and actions, respectively.

Throughout, we use lowercase letters s € S, a € A to denote deterministic (non-random) states and
actions, and uppercase letters S, S’, A to denote random states and actions taking values in S and A.
Given a state-action pair (s, a), the transition kernel P(- | s,a) € Ag specifies the distribution of
the next-state random variable S’ ~ P(- | s, a). The reward functionis R : § x A — [—1,1], and
~ € (0, 1) is the discount factor. A (stochastic) policy 7 maps states to distributions over actions, that
is, (- | s) € A4 foreach s € S, and we write w(a | s) for the probability of choosing action a in
state s.

Let {(St, A¢) }+>0 denote the state-action process for a policy . Then for policy 7 and transition
model P, the (policy-dependent) state-action value is defined as

Q}S(s,a) = E SQZS,A():CL, AtNT((' ‘ St), St+1 NP( | St,At)

Z ’th(Sta At)

t=0

Robust MDPs (RMDPs) and uncertainty sets. Distributionally robust RL (DRRL) models tran-
sition uncertainty via an uncertainty set around a nominal kernel P,. We adopt the standard (s, a)-
rectangular model (Iyengar, [2005; Nilim & EI Ghaoui, [2005):

P = {qEAS: D(q7 PO(-|s,a))§(5}, P = ® P2, 1
(s,a)eSxA
where D(-, -) is a probability distance or divergence (e.g., total variation or Wasserstein-¢), and 6 > 0
is the radius. An RMDP is then the tuple (superscript ‘rob’ stands for “robust” throughout the rest of
the paper)
M = (S, A,P,R,7).

Robust value functions (fixed policy). Given a fixed policy 7, the robust state-action value function
is the worst-case value over P :

Qrob,ﬂ(&a) = glel% Q}E(S’a)v Vrob,ﬂ-(s) = Z?T(a ‘ s) QTOb,ﬂ-(S,a). 2)

a

It satisfies the robust Bellman equation:

Q0 (s.a) = R(s,a) + 7 min Doals | 5.0) Yonla' | ) Q) @)

a’

—: Vrob,7r(sl)
Equivalently, defining the robust Bellman operator (77°*"Q)(s, a) := R(s,a) + v opa (V7 (s'))
with
a(V) := mi NV(s V(s = Iy '), 4
opa(V) min ;q(S) (s"), (s) ==Y m(a' | &) Qs d) 4

a’

the fixed point relation is Q™P™ = TP QP We can write from the definitions,

1 1
0 < Vb (s) < E,VS €S, 0 < Q™" (s,a) < E,V(s,a) €S x A
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For a fixed 7, evaluating Q"™ reduces to solving Equation , which at each (s, a) requires solving
the inner problem Equation (@).

2.1 ROBUST TEMPORAL-DIFFERENCE LEARNING: CHALLENGES

Function approximation. Fix a policy 7. We approximate the robust state-action value function
by a linear function class with the learnable parameter vector § € R™?

gob,ﬂ'(S?a) ~ ¢(S7G)T97 ||¢(S,a/)||2 < 1,V(s,a) eSxA

with feature matrix ® € RISIMIX7s et d7 (s, a) be the stationary state-action distribution of (S;, A;)
under 7, and define D™ := diag({d’“(s7 a)}(s,a)eSx A). Assume the weighted feature covariance is
well-conditioned:

dTD™D = wly, for some p > 0.
Let W := {®0 : § € R"} and denote by II : RISIAI W the D™-orthogonal projection,
If = ®@"'D"®)" e ' D"f.
For any scalar z € R, we define the clipping operator
. . 1
Clip(z) := mm{max{x, —ﬁ}, ﬁ}

When applied to a vector v € R™®, Clip(v) denotes component-wise application of this operation.

We define the function approximation error for approximating the robust Q-function as:

€approx — sup HChp (HTrObJT(Q)) - 7—T0b7W(Q)H

Q=Clip(®0),0cR"0

®

oo’

Key challenges in robust policy evaluation and our approach. Model-free robust policy eval-
uation on a single trajectory typically hinges on a data-driven unbiased estimate Gpa (V) of the
inner-optimization objective defined in Equation (). Except for special uncertainty sets (e.g., R-
contamination), there is no direct plug-in unbiased single-sample estimator of this inner minimum,
which creates a bias in standard TD updates. To overcome this challenge, we use a two-time-scale
stochastic-approximation scheme in the inner loop of the algorithm: a fast time-scale solves for the
inner-optimization problem defined in Equation () in its equivalent dual form, while the slow loop
performs TD learning updates on 6 using the estimate of the inner-optimization objective of the fast
time-scale. Our two-time-scale algorithm is motivated by the algorithm in|Liang et al.[(2023)), but the
key difference here is the use of function approximation which necessitates a different analysis.

While 77 is a ~-contraction in £,-norm (Iyengar, 2005)), function approximation introduces the
projected operator TIT™°P™, which is not known to be a contraction in any norm for typical v € (0, 1).
Prior work by|Zhou et al.|(2023)) circumvents this by imposing restrictive assumptions on  which we
do not adopt. We address the non-contraction of II7°"™ via a target-network mechanism prevalent
in deep RL, analyzed by Munos & Szepesvari (2008) and later used in the non-robust setting by (Chen
et al.| (2023)), for Q-learning to overcome the contraction issue with the projected robust Bellman

operator. At outer iteration ¢, we freeze a target parameter 6, and solve
DY = ILITP7(Dh,)

in the inner loop, then update the target in the outer loop. This decoupling stabilizes the projected
robust updates and enables our finite-time analysis under linear function approximation.

Standard DRRL literature solves the inner-optimization problem in Equation () in a corresponding
dual space. However, solving it for each state-action pair is impractical for problems with large state
and action spaces. We consider linear function approximation in the dual space of the optimization
problem in Equation @] and provide the first finite-sample analysis under this function approximation
setup.
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3 ROBUST TD LEARNING WITH LINEAR FUNCTION APPROXIMATION

3.1 UNCERTAINTY SETS

Before presenting the robust policy evaluation algorithm, we discuss the uncertainty sets considered
in the paper: Total Variation (TV) uncertainty set and Wasserstein-¢ uncertainty set.

Total variation uncertainty set: The total variation uncertainty set is defined as: for each (s, a),
P ={q€ As: 5lla— Polls,a)llx < 6}

Simplifying (see: Appendix [B]) on the dual formulation originally given by [[yengar (2005) for the
Total Variation uncertainty set, we get the following equivalent dual optimization:

ope(V)=  max  {Es p(fs,a)[min(V(5), AT)] — 0AT}

MNel= 1=

Wasserstein-/ uncertainty set: The uncertainty set is defined as: for each (s,a): P*"* = {¢q €
As : Wy(Py(+]s,a),q) < 6}, where 6 > 0 is the uncertainty radius and Wy (Py(-|s,a), q) is the
Wasserstein-¢ distance defined in detail in Appendix

The detailed analysis on TV and Wasserstein-£ uncertainty sets and the corresponding dual optimiza-
tion problem are given in the Appendix

3.2 ALGORITHM AND MAIN RESULTS

In this subsection, we present our robust policy evaluation algorithm and the main results of the paper.

3.2.1 ROBUST PoLICY EVALUATION ALGORITHM

Our robust TD learning algorithm is presented in Algorithm [} In the rest of this section, we
describe the algorlthm and explain the notation used in the algorithm. In the outer loop (1ndexed by

t=20,- — 1), we freeze a target parameter 0,; at the end of the inner loop we set 9t+1 to the
inner loop S ﬁnal iterate. In the inner loop (indexed by k = 0, - - - , K — 1) we approximately solve
for 0 satisfying:

0 = TIT7(0f,),
using a two-time-scale stochastic approximation: a fast loop for the dual variables corresponding to
the inner-optimization problem ] and a slow loop for the TD parameters. For a fixed outer loop ¢,
the inner loop iterates are 6, j, for k € [0, K — 1].

At each inner loop iteration k, in a fast time-scale, we approximately solve the equivalent dual
optimization problem in () using a super-gradient ascent step. Instead of maintaining a separate dual
variable \? for each (s, a) (which would be tabular), we parameterize the dual variables A? with the
learnable parameter vector v € R™* as

~1(s,a) v, [l (s,a)|l2 < 1,V(s,a) € S x A,
with feature matrix ¥ € RISIMAIxnx

Denote the robust value function estimate VérOIO evaluated at the target parameter 6, as
t

V@r:’b(s) = ZW(CL\S)CHP (¢(S, a)Tét> Vs €S. (6)

a
The quantity Vg"b can be computed exactly for any fixed target parameter 0;. In the case of
t

the TV distance uncertainty set, it suffices to compute Vémb(s) only for the state visited in each
t

inner-loop iteration, rather than for all states. We update v ;; with step-size ) using a projected
super-gradient ascent on the dual objective with a super-gradient evaluated at the fresh data sample
(St,ks At ki, St.k+1)- Let B, > 0 be a fixed finite radius, and define

M, = {1/ ER™ : ||y||s < Bl,}.
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The projection operator Proj,, projects the dual parameter vector onto M, ensuring that the
iterates remain bounded. Since M, is an ¢, ball, this projection can be computed by simple norm
scaling.

In the algorithm, 7, ;, denotes the half-tail iterate-average of the dual parameter vector, i.e.,

Do [ Z Vi )

I=|k/2)

which can be calculated easily by keeping track of the following two quantities: fool vy and

Zz |k/2) Vt,1- While many elements of our algorithm have been used in implementations of robust
TD learning, to the best of our knowledge, such an averaging of the dual variables has not been used
previously. The averaging turns out to be crucial in obtaining finite-time bounds, since it allows us to
control the variance of the dual objective.

In the slow time-scale of the inner loop, 6; j, is updated using asynchronous stochastic approximation
with a step-size denoted by «, with a robust TD-target T'D; j41. The two-time-scale scheme ensures
that, at the slow scale, the dual variables appear near their sample-path equilibrium, yielding an
(asymptotically) unbiased robust TD target.

Algorithm 1 Robust TD learning with Function Approximation

1: Input: Integers T, K. Initial vy € R™ 6 := zero vector, fast time-scale step-sizes S =

)/’;%, for some 0 < [y < 0o, slow time-scale step-sizes oy = (k+1) for some 0 < ¢ < o0;
0o = 6o, 0,0 = by, candidate policy m, Reward function R : (S x A) — [—1, 1], initial state
So,o.

for t=0,1,...,7—1do
fork=0,1,..., K —1do
Take action A j, according to policy 7 and sample Sy 11 (St.p+1 ~ Po(-|St.ks At k)
fast time-scale ()
Compute G (t(St. i, A k) Ve s V. mb , St.k+1) from Equation (17) for TV uncertainty set
and Equation (20) for Wasserstein- E uncertainty set
7. Vigy1 = Projag (ver + B[G (1/J(St,kaAt,k) Vg k5 V(;:Ob7 St k+1)V (St ks, At k)])
8:  Slow scale (ay)
o: Compute 7y j, from Equation @
10: Compute F'((S¢ k, Atyk) Ve s V. rob g, k+1) from Equation (18) for TV uncertainty set
and Equation for Wasserstein- E uncertainty set

AN AR

11: TDi g1 = R(Stk, Ack) + vEW(Stk, Ark) Do V, ) D Skt1) — Stk Ark) Ok
12: Ot o+1 = Ot + T Dy o1 10(St ey At i)

13:  end for

14: 01 =0t i, Si41,0 = St 01410 = O K, Ve1,0 = Vi K-

15: end for

16: Output: Or

3.2.2 MAIN RESULT

We define the function approximation error for approximating the dual variables next. For compact-
ness of notation, denote for a value function V/, for each (s, a), F};V := sup xe FAGV, Po([s,a))
and FV (V)5 == F(¢(s,a) "v; V, Py(-|s,a)). Define

dual *, 1%
€ = sup inf [|F*Y — FY ()| oo 8)
PP ViV (s)=3, w(a|s)Clip($(s,a) T 0);0cRm0 VEMu

We make the following assumption on the policy 7.

Assumption 1. The policy 7 induces an irreducible and aperiodic Markov chain on S x A under
the nominal transition kernel P.
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For 7 < k, define

007 () = P((Ses Ar) € - | St.0s Ao, - -y Sthrs At i—r).-

Under Assumption [1} the Markov chain is geometrically mixing: there exist constants C\ix < 00
and p € (0, 1) such that

an"ridﬂ-HTV < CmixpT, Vt,k,’]‘.

Here Cyix and p depend only on the nominal model (Py, 7).

Let Q, == Clip (@@) be the estimate of Q™™ by Algorithmat outer iteration ¢.

In Theorem we present our main result, which establishes the convergence of QT to the robust
value function Q™™ up to terms arising from function-approximation error.

Theorem 1 (Finite-time bound: rates and dependencies (informal)). Define

kmix

:_min{mEN: Vi>m, j > max(mﬂ

{log( Cpix \/m)w [IOg(Cmix(j +1)/c) D }
log(1/p) I’ log(1/p) ’
where
_ log(Cmixﬁ)
w = [Ttz |

Assume Assumption[I|holds, and we run K > k,iy inner iterations per outer iteration for either the
TV uncertainty set or the Wasserstein-¢ uncertainty set. Then, for any T > 1, we have

E[|Qr — Q™" |oc]

< ~"||Clip(®0o) — Q™" |loc +

rateinner (K) L Capprox 2V2(1+ &) " edual
(1—7)? 11—~ p(l =) ’

where the term rateinmer (K) is of the following order in terms of inner iteration number K :

Kf/u:/4 _ c 2

O( )7 o7 k T 13 pe <2,
C

rateiner (K) = § O((log K)V2KT12),ap = o= pe =2,

O(K~1/2 - _° 9

( )’ Qg k + 17 pe > 9

where the notation O captures the problem-dependent constants depending on
(u, 67 Cmixa P, By, BOa C).
Remark 1. A fully constant-explicit version of Theoreml[l|is provided in Theorem[2]in the Appendix.

Recall the slow time-scale step-size rule is oy, = 717, Vk. The sample complexity to achieve an

e-approximate robust Q-function estimate can be derived in the following manner. Assume pc > 2. If
we choose T' = O (ln (ﬁ)) and K = O (W) , we have 77 || Clip(®6g) — Q"™ || 0o +

% = O(e). This gives us the following sample complexity result.

Corollary 1 (Sample Complexity). Suppose the step-size rule oy, = i7; is used with pc > 2. Then
the sample complexity for Algorithmachieves an element-wise e-accurate estimate of Q™™ up to

the function approximation error is

o (u (i) ma ) ®

Similar sample complexity results can be obtained for other values of jic.

We note that the step-size rule kfrl achieves the best sample complexity, but it requires c to be chosen

sufficiently large. This is consistent with similar results in the non-robust RL literature; see, for
example, Chen et al.| (2023).
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4 KEY IDEAS AND PROOF OUTLINE

While the detailed proof of Theorem|[I]is presented in Appendix [C] we provide the key ideas behind
the proof in this section.

We define the stacked reward vector r € RIS!M! by
Ts.a i= R(s,a), (s,a) € S x A,
using some fixed ordering of state-action pairs.

Fix an outer loop iteration ¢. Recall the definition F7,/ := supy. F(A%; V, Py(:|s, a)). Define the
inner loop error for outer iteration index ¢ as e; j, := 6 ;, — 07 with

rob
0; == (@' D"®) 1T D [r 4 F Ve ] (10)

The next lemma bounds the expected estimation error at the final outer-loop iterate in terms of the
inner-loop error terms.

Lemma 1. Under the setting in Theorem|[I] Algorithm|[I| guarantees

T

) rob,m i rob,m — €approx
E[1Qr = Q"] <47 Clip (®0) = Q" + 32" E [lev ] + 722
t=1

Inner loop convergence error

The proof of LemmaI]is provided in Appendix and is inspired by the analysis in[Chen et al.
(2023) for non-robust Q-learning.

In the analysis that follows, we establish that the inner loop error remains small (up to function
approximation error terms) in /.-norm for sufficiently large k. We decompose the slow time-scale
update at inner loop k in Algorithm[I]into mean drift, noise and bias terms as

Okt = Ouk + o [H(Ouk) + bl +1f 4],

where

*,VroP T *
H(0 1) =T D" [r +yF* o — @6, - STD (0 — 0,4),
from Equation @
b, = ®T D {Fvg:b(m) - F*’Vei‘,’b}

nf a1 = TDy i1 (S, Ar) — H(Or ) — bf .

)

Idealized recursion (without noise and bias). The mean drift term corresponds to the deterministic
recursion:
Ot 1 = O 1 + Oék‘I)TDWCD(H; = Ork)-

This recursion admits 6; as its unique fixed point. Since the matrix ® " D™® is symmetric and
positive definite with minimum eigenvalue p > 0, in the absence of bias and noise terms, the iterates
satisfy

10t k+1 — O3l < (1 — cnp) [10ec — 07 ]2, (11)

which implies geometric convergence of 0, j to 0] at a rate governed by (..

Bias term analysis. Recall that the bias term is given by
rob rob
by = @ D7 [FY (5 — FYT .

dual

We show that this term becomes small for large %, up to a function approximation error €, e, .-

In the fast time-scale analysis, we prove that the stochastic update on v performs a super-gradient
ascent on the concave objective

Li(v) = Zd”(s,a) F(i(s,a) v Vért‘)b, Py(-]s,a)),
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which has bounded super-gradients. By a standard Lyapunov function argument for stochastic
approximation under a mixing Markov chain, we obtain the following guarantee on the iterates from
the fast time-scale for sufficiently large k (stated in detail in Lemmaf4]in Appendix [C):

} < Chast

E[ L — Ly(v , 12
ume/%/lxl, t(l/) t(Vt,k) \/E (12)
where the constant Ct,g; is given in equation 23]

Vger rob .
Using ||¢(s,a)||2 < 1 and F:a % > (D11 )s,q for all (s,a), we can write

rob

V. rob
=Y (s.a) (Fu — FY (0000

%,V rob

vEer
19ll2 <> " (s,0) [FY37 (Bra)sa — Foa™
s,a

rob

*, V. TO
<~ inf d™(s,a) (Fsﬂ % — Fvetb(y)57a> + [ sup Li(v) — Lt(Dt’k)} .
veM, veEM,

s,a

dual fast-scale objective gap
—“approx

Handling the noise term. Finally, to handle the noise terms nf) x41» We employ the approach in

Srikant & Ying|(2019), where a bound is obtained on the expectation of the error ||6; ;, — 0; ||3 con-
ditioned with respect to the filtration generated by the set (St o, A¢0, St1, Ae.1, s St k—rs At k=7 ).
By choosing a lag 7 such that the underlying Markov chain has mixed sufficiently, the effect of noise
can be controlled.

5 DISCUSSION

As mentioned in the introduction, we provide the first proof of convergence and finite-time bounds for
robust TD learning with function approximation, without making any assumptions on the underlying
model or imposing very restrictive assumptions on the discount factor. Some immediate extensions
and open problems are identified below:

1. The algorithm and the results can be extended to other families of distances between
probability distributions, such as the Cressie-Read family of f-divergences considered in
Liang et al.|(2023), which admit duality representations that allow one to obtain unbiased
estimators of the quantities of interest. For the Cressie-Read family, this would require the
addition of one more time-scale, but the rest of the analysis would be similar. Our results
also apply to the R-contamination set, but the algorithm is even simpler in that case due to
the fact that the dual problem has a closed-form solution |Xu et al.[(2025).

2. Although the results in the main body of the paper have been presented for robust TD
learning, they can be easily extended to robust Q-learning with function approximation to
obtain optimal policies; see the Appendix.
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A CONTENTS

The contents of the Appendix are as follows:

1. In Section[B] we analyze the TV distance and Wasserstein-¢ uncertainty sets in detail.
2. Section [C|proves the main result of the paper, that is, Theorem|I]in detail.

3. In Section[E] we present the robust Q learning algorithm with linear function approximation
(Algorithm [2) and discuss how the theoretical analysis for robust TD learning can be
extended to the robust Q learning straightforwardly.

B CONDITIONS FOLLOWED BY TV AND WASSERSTEIN-¢ UNCERTAINTY SETS

To aid the analysis, in the this section we outline a few properties of the uncertainty sets considered
in this paper: TV and Wasserstein-¢ uncertainty sets. In Section [5] we discuss how our algorithm can
be trivially modified to satisfy a similar convergence guarantee for the R-contamination uncertainty
set and Cressie-Read family of f-divergences considered in|Liang et al.|(2023).

Lemma 2. The TV and Wasserstein uncertainty sets considered in this paper satisfies the following
conditions. The optimization problem opa (V') for a generic value function V as defined in Equation
has an equivalent dual optimization problem corresponding to a dual variable % :

opa(V) = sup (F(AS; V, Po(tls,a)))

where F'(\%;V, Py(-|s,a)) is a A%-concave function with the following properties:

1. Let GI\%; V, Py(- | s,a)) be a super-gradient of the concave function F(A\%; V, Py(- | s, a)).
There exists an unbiased estimator G(A%; V, S") of G(A%; V, Py(- | s8,a)) based on a sample
of the next state S' ~ Py(- | s,a), that is,

Esinpy( 1.0 [GAL V. 8] = GGV, Po- | 5,a)),
and it satisfies |G(\%; V, S")| < Cq < oo for all \* € R for some constant C > 0.

2. There exists an unbiased estimator F(\*;V,S") of the dual objective F(\%;V, Py(-|s, a))
based on a sample of next state S' ~ Py(:|s, a), that is,

Esimpy(-fs,a) [ FAG VL S)] = F(AG V. Po (-3, a)).

Moreover, the estimator is uniformly bounded on bounded sets of \2 : for every M > 0
there exists a constant C'p \; < 0o such that, for all |\¢| < M and all ' € S,

‘F()\Z’, V, S/)| S CF,M-

Next, we discuss in detail the uncertainty sets considered in this paper, namely, TV distance uncer-
tainty and Wasserstein-¢ uncertainty sets and prove the Lemma 2] For each uncertainty set,

1. We define the uncertainty set first. Then, we discuss and analyze the equivalent dual
optimization that corresponds to the inner-optimization problem defined in Equation 4]

2. We show the uncertainty set satisfies the conditions described in Lemma [Z]and hence prove
Lemmal2l

B.1 TOTAL VARIATION DISTANCE UNCERTAINTY SET

The total variation uncertainty set is defined for each (s, a) pair as,

1
PiTY = {q € As: lla— PoCls,a)ll < 4.

11
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Next, we show that the optimization problem given in Equation [4]in the main body of the paper

with P¢7" as the uncertainty set satisfies the conditions described in Lemma Let us rewrite the
optimization problem here for the TV distance uncertainty set.

oparv (V)= min ¢'V.
° qePTV

From Lemma 4.3 in Iyengar| (2005), we know that the above optimization problem can be solved
under the dual formulation :

oparv (V) = max (Egpy(.[s,0)[V(S) = F(S)] = dspan(V — [)) . (13)

|S]
ferl

Next, we prove that the above dual optimization problem is equivalent to a scalar optimization
problem.

Lemma 3. The optimization problem given in Equation is equivalent to the following optimiza-
tion problem:

Oparv(V)=dminV(s') + max Espy(-s,0) [min{V (S), A2}] — dA2}.
Ps TV( ) 5! ( ) e €[ming, V(s’),max, V(s’)]{ S~Polls, )[ { ( ) H }
(14)

Proof. From the p-vector dual to a 1-D cut off problem: The optimization problem in Equation
(T3) can be written as

mas {Esp,1mV(S) ~ £(5)] — 8 [maxy (V(s') ~ £(s")) ~ming (V(s) ~ f(s)] }. (15)

[S]
ferlS

Step 1 - restrict to “cut—off” vectors: For any scalar z € [miny V(s'), maxy V(s")], define
f(s) = [V(s) - z]+ = max{0, V(s) — z}.

Replacing an arbitrary feasible f by the corresponding f..—max_, (v (s')—f(s’)) cannot decrease
the objective in equation so an optimizer always has the form f,~ for some z* €
[ming V(s"), maxs V(s')].

Step 2 — plug f, into the objective. Because V' (s) — f.(s) = min{V(s), z},
max(V — f.) = z, min(V — f.) = min V(s),
and

Es~r,[V(S) = £2(9)] = Es~p, [min{V(5), 2}].
Substituting these identities into equation[I3]yields the scalar optimization

Oparv(V) = dminV(s') + {ESNPO(.|S,G)[min{V(S),z}} - 52}.

max
z€[ming V(s'),max s V(s')]

(16)

O

As we are dealing with V' functions for which V(s) € {{=, 125}, the optimum dual variable lies
in: A € {ﬁ, ﬁ} and we can equivalently write from Lemma ,

operv(V) =dminV(s") + max  {Eg.p,(|s,q)[min V(S), ] — AT}

° S =
It is easy to verify that the concave objective has a super-gradient:

GTV(AZ; ‘/a PO('|87a)) = ]P)SNPO(-\SM) [V(S) > A(ﬂ — 4.

12
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An unbiased estimate of the super-gradient for a value of A? and the value function V' from a next
state S” ~ Py(:|s,a) can be given as:

GTV()\l;; ‘/7 SI) = ]'V(S')Zkg — 0. (17)

An unbiased estimate of the dual objective for a value of \¢ and the value function V' from a next
state S” ~ Py(+|s,a) can be given as

FT™V(A\V,8") = 6min V() + min(V(S), A%) — 62 (18)

As we have [V (s)| < 125, Vs € S, its easy to see that,

IGTV (A%, V, 8| < €LV = max(5,1 — §),V\? € R,

and, for any 0 < M < oo,

. 1
PV < Ol = (1+0) (M + 2 ) v € [0

B.2 WASSERSTEIN-{ UNCERTAINTY SET

We define the Wasserstein-£ uncertainty set for each (s, a) pair as:
PSW" = {q S AS . WK(PO('|3aa‘)7q) S 6}a

where 0 > 0 is the uncertainty radius and Wy (Py(-|s, a), q) is the Wasserstein-£ distance defined next.
Consider the generic metric space (S, d) by defining some distance metric d. For some parameter
¢ € [1,00), and two distributions p, g € Ag, define the Wasserstein-¢ distance between them as
Wi(g,p) = infxer(p,q) |d]| n,e, where T'(p, q) denotes the distribution over S x S with marginal
distributions p, g and ||d||n,e = (E(x,y)~n[d(X,Y)])*/*. Let us use the distance matrix with
normalization, ensuring |d(s, s")| < 1,V(s, s').

Next, we show that the following optimization problem with P2 We as the uncertainty set satisfies the
conditions described in Lemmal[2l

Ungl (V) = qerg]}}‘l}‘/l qTV

From|Gao & Kleywegt|(2023), we know that the above optimization problem can be solved under the
dual formulation :

opa(V) = sup (—&?52 + Epy (.0 [ (V(y) + A2d(S, yV)]) :

As the state space S is finite, we can replace the inner-optimization [inf, (V (y) + A2d(S, y)*)] with

[min, (V' (y) + A2d(S,y)*)]. Next, we show that the optimum dual variable of the above optimization
problem lies inside a compact set [0, At } with \}¢ = %f‘/).

As point-wise minimum of affine functions is concave, the above optimization problem is a concave
optimization problem. It is easy to verify that the concave objective has a super-gradient:

GV (NG V, Polt]s, a)) = =0° + Exwpy (s, [A(X, 43 (X)), (19)
where,

i (¢) € argmin[V(y) + Xz, )"

Let us fix an S = s and its minimizer y3, (z) for the inner-optimization [inf, (V (y) + A%d(s,y)")] .
Because the candidate y = s is always feasible,

V(e () + Aod(s,y3)" < V(s).

13
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Rearrange:
Vi(is) —V(yia.(s Vv
d(s, % (5)) < (s) ( >\S< ) < span( )

s A¢ A¢

Taking expectation in Equation [I9]and using the above equation gives

|4
YOV, Pyl a)) < ot + P

S

W, _ span(V)
> AWe — span(V)

Now, for any A% 50— We have,

GVt (A% V, Po(-|s,a)) < 0.

Due to the concavity of the objective, a non-positive super-gradient means the function is non-
increasing for all A > )\VA‘;’Z. Combining the observation with the boundedness of the objective for
bounded A%, we conclude that the supremunm is attained and lies in [0, )\Z‘].

An unbiased estimate of the super-gradient for a value of A\¢ and the value function V' from a next
state S” ~ Py(:|s,a) can be given as:

G\, 8) = =8t +d(S", v )", (20)

where,

’

y* = arg mlD[V(y) + Agd(sla y)z]
Yy

An unbiased estimate of the dual objective for a value of \¢ and the value function V' from a next
state S’ ~ Py(+|s, a) can be given as

FWIOGV,8) = =X+ V() + X8d(8", )" (1)
If we assume |V (s)| < ﬁ, Vs € S, its easy to show that,

GVe(AGV, 8| < CFF =1+ 06", YA €R,

and, for any 0 < M < oo,

. 1
[FVe (A V, 8| < Oy = (0" + )M + m,vxg € [-M, M)].

C CONVERGENCE ANALYSIS OF ALGORITHM [I] AND THE PROOF OF
THEOREM 1]

In this section, we provide the proof of Theorem|[I] The proof follows in a similar manner described
in the proof sketch in the main body of the paper. We start with proving Lemma|[I] which establishes
the convergence of the outer loop iterates in terms of inner loop convergence error. Subsequently, we
establish the convergence of the inner loop. Finally we combine them to prove Theorem|[I]

C.1 OUTER LooP CONVERGENCE ANALYSIS: PROOF OF LEMMA[]]

In this subsection, we prove Lemma[l] The proof is inspired by the analysis in|Chen et al.| (2023) for
non-robust Q-learning. The analysis of the outer loop follows from the paper (Chen et al.,|[2023). To
write the bound for the outer loop, we have to start with a few notations as used in the mentioned
paper. Recall, the function approximation error €,pp,r0x is defined as:

€approx = sup |Clip (TT™°>™(Q)) — T™>™(Q)||

Q=Clip($0),0€R"0
Also, recall the definition of 6] from Equation
Recall the fact that Q°P»™ = Trob.m(Qrobm),

oo’

14
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Then, forany t = 1,2, ..., T, we have,

1Qt — Q"™ |loo = [|Clip(®6;) — TP ™ (Q"™) |
~ [T (@)~ T @)
T
+ |[(Clip(®0;) — Clip(TIT™"™ (Q¢-1)))]
I
+ (T (Qe—1) — Clip(ILT™*™ (Q¢-1)))]|oo -
<e€approx

First Term:

=T (Qe—1) = TP (Q" ™)) loo < 7| Q-1 = Q7" |oc
as the robust bellman operator is a y-contraction with respect to the co-norm (Iyengar, 2005).

Second Term:

II = ||(Clip(®8;) — Clip(IIT™"™(Q¢-1))) |
< |26, — TP (Qe-1) o
N
(a)
@01,k — 07 1) |l
(]
< max||¢(s, a) 2|01,k — 0712

< |0i—1.x — 071 ]l2-
(c

where (a) is using the non-expansive property of the clipping operator with respect to || - ||so; for (b),
recall the definition of 6] in the inner loop in Equation [10} for (c), assume [|¢(s, a)||> < 1,V(s,a) €
S x A.

Hence, we get:

”Qt - me’ﬂHoo < ’Y||Qt—1 — QTP

~

|oo + ||9t—1,K - 0:_1”2 + €approx-

Unroll the recursion and take the expectation:

T
A A — * €; X
ElQr = Qoo < 771Q0 = Qoo + 37" Ellfe-r1c — 67 2] + T,
t=1

C.2 INNER LOOP CONVERGENCE ANALYSIS

The purpose of this subsection is to bound the term E[||0,_1 x — 6;_,]|2] for any fixed outer loop
iteration index .

Using the notations stated in the Lemma 2} we instantiate different problem-dependent constants,
namely Cg and Cp s as follows for differet uncertainty sets. In the fast time-scale, we have
|lvekll2 < B,. This implies, |1 (s,a) v x| < B, for all (s,a) pair. Hence, for the rest of the
Appendix denote M := B, and similarly Cr s := Cp,.

Recall from the Appendix [B| we know that,

1. For total variation uncertainty sets, Cp, = (1 + 9) (M + ﬁ)
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2. For Wasserstein-¢ uncertainty sets, Cp, = (1+0°)B, + 1.

Also, from the Appendix [B] we know that,

1. For total variation uncertainty sets, Cg = max(d,1 — 9).
2. For Wasserstein-¢ uncertainty sets, Cg = 1 + 5t
In this subsection, we show that for each outer iteration ¢, the inner loop parameter 6 j, converges to

07 as defined in Equation || Recall the definition F};Y := sup xe (AL V, Po(+]s, a)). We denote
the inner loop error for outer iteration index ¢ as e; j, := 6, — 0; with

0; = (@D ) 1T D [r 4 FFV ] 22)

Using earlier notation, the dual objective corresponding to an (s, a)-pair for a target value function
Vrob g
04

max F(AG; V32", Po((ls, a)).

For the rest of the discussion in this subsection, let us fix an outer loop iteration ¢ and the target

parameter 0, is treated as a deterministic vector. For a given outer loop index ¢, for all inner loop
iterations k& > 1 let the filtration F; ;, be the sigma algebra generated by the transitions sampled till
inner loop iteration index k£ — 1 that is, on the set {.S; j, A¢ j, St j+1: 0 < j <k —1}

Observe that the pair process Z; i, = (S k, Ar i) is a Markov chain. We define another filtration
Gt.i; as the sigma algebra over the set {Z; g, Z; 1, ..., Zy . }

C.2.1 ANALYSIS ON THE FAST TIME-SCALE:
The fast time-scale update is given as

Vtk+1 = PYOJM,, (’/t,k + Bk [é(ﬂ)(st,m At,k)TVt,k; VértOb, St,k:+1)¢(5t,k7 At,k)])-

Define the diagonal matrix Dy, € RISIAIXISIA

Dy i((s,a),(5,a)) = 1(s,0)=(S, 1, Ar)-

with each diagonal element as

For each outer iteration ¢ and dual vector v ;, we define a vector g;(v; ;) € RISIII indexed by
(s,a) € S x A, via

(9 (Ve)]s.0 = Egrmpy(is,a) [G($(s,0) v V3P, S7)].
Here S’ denotes the next-state random variable with distribution Py (- | s, a).

Also, define the stochastic update vector X; 5 € RISIAI defined as

[Xtkls,a = L(s,a)=(S., A0 1) * G(Y(s,a) v VértOb,St,kH)il)(S,a)

We split the update into stationary drift and different noise terms as:

Vt k+1

=Projp, | ver + Br ‘I’TDﬂgt(Vt,k) + Xi ko — E[X4 1|Ge k) + E[ X k|Ge ] — ‘I’TDﬂgt(Vt,k)

My Cig1

We see that,
Chr = E[Xek[Grk] — O DG (v ).
So the update now becomes,

Vg1 = Projug, (vee + B [¥ T D7 ge(ver) + miyy + CHyal) -

16



Under review as a conference paper at ICLR 2026

In the above equation, my, ; denotes the state-innovation noise that is a martingale difference on the
filtration G; .

Hence,

E[m2+1|gt,k] =0.

We analyze the finite time convergence of the fast time-scale first. We show that the fast time-scale
update is equivalent to performing a stochastic gradient super-gradient ascent on the following
objective function:

Li(v) =Y _d"(s,a) F((s,a) 'v; Vj,, Po(']s,a)).

It is easy to show that L;(v) is concave on v. Let v/ be one maximizer of the above objective function
L(v) in the domain M,,. Notice that the fast time-scale update depends on the target parameter

vector 6; and independent of the slow time-scale parameters for a fixed outer loop.

Our goal is to bound the sub-optimality gap of the dual objective (the weighted objective L;(v)) for
each iteration in the inner loop. We will be able to use the error in estimating the dual objective from
the fast time-scale as a bias in the slow time-scale to get a sample complexity bound for the inner
loop of the algorithm I}

Let us define the dual objective sub-optimality at v = 1/, j, for the fast time-scale as :

Lt,k = Zdﬂ-(sa a)[F(w(sa a)TV:; ‘/@iOba PO("Sv a)) - F(T/J(Sa a)TVt,M ‘/értOba PO('|Sa a))}

Define the Lyapunov function for the fast time-scale as
2
e = ek = villa:
Using the non-expansiveness of projection,

et k1 < llver + BrU T D™ gy (v ) + Br(mi 1+ Cyr) — vil3-

We can write:

e} i1 < Wik — vOII3 + 28 (ve — v7) "W D7 gi(ve )
+ 28k (v — V:)T(mZ-H + (i)
+ Bel W T D™ g (v k) + My + CEpall3-

We simplify the term (v;  — v;) T U T D7 g, (14 1.) first.

(e —v7) "W D Gy (v r) = Z d™(s,a)ge(ver)(s,a) (Ve — vf) (s, a)
$,aESX A

-
= (Vt,k - ) vlf:l/t,kLt(V)-
Hence, from the first order optimality condition on a concave objective, we can write:

(e —v7) " (D) Ge(ven) < —Le,

Hence, we get,
el k1 < ek = vOII3 — 2Bk Lok
+ 285 (v p — V:)T(mZH) + 2Bk (Ve e — VZF)T(CIZH)
+ BRI T DTGy (v ) +mi g + Gl
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Now we condition on a lagged filtration G; j,_» where 7 < k would be chosen later.

E (€] ks1|Gth—r] <E (€] 11Gtk—r] — 2BkE [Lt.k| Gt r—r]
+ 28 E [(Z/t’k — U:)T(mZJrl)‘gt,ka} +28:E [(Vt,k - V:)T(CIZJA)WUC*T]
+ BRE [T D7 ge(vee) + mi gy + G l31Ge—r] -
Let us first bound the 37 terms. Recall from the conditions described in Lemma 1G: (Ve ) ||oo < Coa.

As [[¢(s,a)|]2 < 1,¥(s,a) € S x A, one can easily show that [|[¥T D" g, (v, 1)|]2 < Cq and
[my,1]l2 < 2Cq and ||} ||l2 < 2C¢. Hence,

BrE [”‘I’TDﬂgt(Vt,k) +myq + C}Z+1||%|gt,k—r] < 256C%.

Now we work on the cross terms. Let us start with 28, E [(v,x — 1) T D™ (my,1)|Ge k—r] -
We write:
28, E [(ve e — vf) " D™ (my1)|Gek—r) = 26:E [E [(ex — v7) " D™ (m41)|Ge] Gek—r]

=28, E [(Vt,k —vf) ' D"[E [(mZ+1)|gt,k] |gt,k—r]
=0.

Now we focus on the term 28, E [(ve,e — v7) " (¢4 1) |Gt k—r)-

‘We use the shorthand
Zt7k = (St)k;7At,k) eSxA

for the state-action pair at outer iteration ¢ and inner iteration k.

Define the vector e Zok

eZt,k (S’ a) = 1St‘k,At,k:s,a-

Recall the definition

77]2;77-(') = P((St,ka At,k) € - | St,o; At,()v R Sf,,k—Ta At,k—T)
From Assumption [I] we know the following holds:
g™ —d™lrv < Chix p” 0<p<1).

Thus, we can write:
28:E [(vee — v7) (9T (ez,, — d™) @ Ge(ve.r))|Grt v
= 260E [(T (i — 7)) " (€2, — d7) © Gu(v1,0))|Geh— )
< 2BkE [[[(¥ (ver — v))) o ll((ez, = d™) © Ge(ep) 111Gt 7]
<28,E [2B,Cc||(ez,, — d™)|1|Gt k—r]
< 8Bk B,CaCmixp” -

Putting it together, we have:

E (€] 511Gt k—r] < E[ef k|Gt r—r] — 26kE [Li k]Gt k—r] + 8Bk ByCiCrmixp” + 258497,

Cmix
Now we choose VI € (|k/2],k —1), 7 = 75, = [%
P

taking unconditional expectation gives us: (as Crixp™ < ) VI € (1k/2],k —1):
28:E[L;] < Elef;] — Ele} ;1] + B7(8B,Cq + 25CE).

1. and assume k > 275, then,
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Next, we use telescoping for iterates over the index [ from | £ to k — 1.

k—1 k—1
2 > BE[L] <AB2+ (8B,Ce+25C%) Y B, (23)
I=|k/2] I=|k/2]

where, we used that ||e; | /2|2 < 4B2 due to the projection step Proj o, . Recall, the fast time-scale
passes the following suffix-average of the dual parameter vector iterates to the slow time-scale at
each iterate k:

1 k—1
Utk = 55 Z Vt k-
[k/2] (573

Bo
VEk+1°

Similar to the definition of L, ;, let us define

We use the step-size rule of 8, =

Lo =Y d"(s,a)[F(¢(s,0) "vf5 Vi, Poltls,a)) = F(4(s,0) "o V3o, Po(t]s, )] (24)

Hence, using Jensen’s inequality, we write:

1 k—1
E[Lii] € ——— E[L
[ tJC] = ”{Z 2"| [ t,l]
I=|k/2]
1 \/E k—1 9 \/E k—1
< el BEILl < 5= > AEIL]
4 0 i=k/2) 0 1= k/2)
4B2  (8B,Cq +25C2) = .
< Z Bi
~~ BoVk Bovk =2
(b)
_ 4B} | (8B,Cg +25C2) ’“i 82
Bovk Bovk Sy il
o 4B} | (8B,Co +25C2) (B3(1L+In(k) ~ In(k/2)))
fﬁﬁm@ BoVk
Cfast
- Vk
where , , ,
4B B, 2 In(2
€,y — (BE+ BB, Co +25C) n(20)) 05
Bo
In (a), we used §j, > B—‘;, Vk <k —1.1In (b), we used Equation In (c), we used the following

identity: In(k) <1+ 1+ ..+ + <1+1In(k).
In summary, we have the following guarantee from the fast time-scale:

Lemma 4. Fix an outer loop t > 0. The following holds for the fast time-scale iterates of the

Cmix /TIT
Algorithm' Ifk>2 {%—‘,
P
T C as
E[L:x] < \f/{, (26)

where, th is defined in Equation and C'qst is given in Equation .
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C.2.2 SLOW TIME-SCALE ANALYSIS

Next, we will prove the convergence of the slow time-scale iterates 6, j to 8; for sufficiently large k.
We denote the inner loop error for outer iteration index ¢ as e; i, := 0 — 07 with

rob

0r == (& D"®) T D [+ FV ] 27)

Recall the notation Z; ,, = (St x, As x). The slow update is
Ot er1 =0t + ar TDy 1 ¢(Ze 1),
TDy i1 = R(Zy) + Y F(p(Zek) "0 VI, Stnsr) — (Zew) 01 s
with 7, ;. the suffix average produced by the fast time-scale updates.

For each outer iteration ¢ and dual vector v j, we define a vector ﬁ(ufk) € RISIAI indexed by

(s,a) € S x A, via
[feen)]sa = Esmpy(jsa [F (s, a) Tvnps; V3P, §)].

Here S’ denotes the next-state random variable with distribution Py (- | s, a).

We decompose the term T'D; j11¢(Z; 1) as

0 (] 0 [’
Ht,k + bt,k =+ ft,k+1 + My gy,

where
- w, VoD _ i}
HY =@ TD™[r+~yF" 0 — 30,,] = "D D0 — 0; 1),
from Equation (T0)
rob rob
b i i= 1@ D" [FYi (1) — F*V |
- V}fob _
& i1 =" (Do — D7) [’“ +AF (D) — ‘b@t,k]
=0T (Do — D7) [+ 1 fulmir) — ®01],
mtg,kﬂ =@ Dy (F(VJJ(Zt,k)Tﬁt,k; Sk+1, Vérfb) - ft(ﬂt,k))-
Note E[mik +1 | Geil = 0 and, by tower property of conditional expectation, ]E[ez k.mg kb1

Grr—r] =0foralagr < k.
Recall the definition

07 () = P((Se Arg) € - | St.0sAvo, - -y Sth—r At i—r)
From Assumption [I] we know the following holds:

" = d"llrv < Cmixp™  (0<p<1).

For the fixed lag (to be chosen later) 7 > 1 and define H; ; as the sigma algebra over the set
{Gtk—rs Oty Ui}

Conditioning on H; ;, “freezes” e; j, := 6, — 07 and

Ytk =T + ’Yf_.t(ljt’k) — (I)atﬁk.

We use: for any signed vector w on S X A,

[eTwl, = | weasts ), < 3w
z s,a

= [lwll, (28)
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because each row vector satisfies ||¢(s, a)||2 < 1. We also write the Markov noise term in terms of
Ytk aS
6 T
gt,k+1 =& (Dt,k - DW) Yt k-

. . 1
Finally set Yy := 14+ ~vCpa + a=vs 5° that
[veklloe < Yo+ [leckll2, (29)
using Lemmaand, r(-) € [0,1], | fe() oo < Cr o, and [[(2) ]2 < 1.
Recall the definition e; ;, = 6; j, — 6] with
* Aob

0y == (@ D"®) 1T D" [r 4y FHYe ]
(1) ONE-STEP LYAPUNOV EXPANSION UNDER A CONDITIONAL EXPECTATION WITH A
FILTRATION UNDER A GENERIC LAG T

With z; 5, = \|et7kH2, fork > 7, as ]E[ezkmg,ﬁ_l | Gt k—r] = 0, we can write, if & > 7

Elzgt1|Grp—r] = ]E[”et,k o (HY 00+ € + mg»k“)”Q ’ gt’k_T}
= 2ok + 200 Ele) o Hy | Gunr] + 200 Eleg b . | G o]
+ 20, E[ezkfgkﬂ |Gt ]
+ R B[ HYy + 0 g + & pir +mi o [I* | Gen—r] - (30)
(I1) MAIN DRIFT

Recall, we denote y as the minimum eigenvalue of the matrix ® " D™® and from Assumption
w> 0.

Since e,  H |, = —e[ (2T D™®)e; p < —puller r]|,
20, Ele/ HY | Gri—r] < —2p0rElzek|Gepr]. 31)

(1) CROSS TERM CORRESPONDING TO BIAS

By conditional Cauchy—Schwarz and Young inequality,

2
200 E[e] b1 [Grir] < 5 anElars | Gnor] + %E[Hbﬁ,knﬂgt,m]. (32)

(1v) CROSS TERM CORRESPONDING TO MARKOV NOISE

Lemma 5 (Cross with Markov noise). Forany T > 1, ifk > 7

2akﬁ[€:k55k+1 ‘ gtjc—f] S (g + 4mln(1a CrniXpT)) OékE |:||et;k7||§| gt:k_T]

8YZ

+—2 min(l,CmixpT)Q.

Proof. By the tower property,
E[etT,kff,kﬂ | Gip—r] = E[E[etT,k‘I’T(Dt,k — D) ye ke | Hen] | Geon—r] -
Given H 1, the only randomness is Z; , ~ nZ’T. Hence
E[®"(Dyp — D™) ye i | Hek] = ST (T —d™) Oy
Therefore,

B [eli&ir | Gunr] | < ELlenile [Tk — %) © il | Gun]
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Apply Equation and H(nz,r _ dﬂ') ® yt,k”l S ||,'72;7' _ dTr”lHyt,kHoo S
2 min(1, Crixp”) [|Y2,5

‘OO’

| Elel &l e | Guoes]
Multiply by 2ay, and split ||y k|| using Equation :
20| E[]| < 4ay, min(1, Crixp”) Efller k|2 Yo | Gek—r]+4ar min(L, Couip”) Efller k2 [lerkll2 [ Grp—r] -
For the first term in the right hand side, use Young’s inequality:
8 min(1, Cpixp™)? Y )
o

< 2 min(L, Cuixp”) Ellles k2 [[92,kllo | Grpr] -

tamin(L, Cui™) Yo ez < ax (leal 4

Combining,

Y2
9 oy min(l,CmiXpT)Q.

. ) 8
20, Ele] 16 i1 | Gre—r] < (% +4min(1, Crnixp )) arE [|lecrl3] Gen—r|+
O

(V) REMAINING SECOND ORDER TERMS
Now from the fact that ||¢(s, a)||2 < 1, and from the conditions described in Lemma we can write

1H? bl|* < e,

]E[|\m?,k+1|\2 | Gr—r] < 4’726%,1\/1-

E[1€] i1 I” | Ger—r] < 8E[xen | Grn—r] + 8YF
Therefore,
o} E[HHtgk + btg,k + ff,kﬂ + mf,kJrl [ ’ G|

< aj (68 Elze s | Grk—r] +320°Ch s + 32Y5 + 2E[[1b] 1)1 | gt,,H]). (33)

Lemma 6 (Bias second order at 1/k). For k > max(r, 27, ),

QCbias

p + 2(Edual )27

0
E[Hbt,kng | gt7k_7—:| < approx
with the explicit constant

Cmixp
1—-p’

Cbiab‘ = Canst + 20127,M + 640125‘,M
and Ch,s; as in Lemma

Proof. Using ||¢(s,a)||2 < 1forall (s,a), we can write using Equation (28),

0 . Vé""b B *7Vértob
||bt,kH2 < Vzd (s,a) F o (Vt,k')s,a - Fs,a

s,a

rob

*, V3 o
=Y d(s,a) (Fa” = F' (#a)sa)
s,a

*7VF°b rob _
<~ inf d™(s,a) (Fs,a % _ Y (V)5 a) + Ly
vEM,, ’ ~—

5,0 fast-scale objective gap

dual
Se€approx
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E[Hbngg ‘ gt,]f—T} < 2E [(zt,k’)z ‘ gt,k:—r] + Q(CZZZiow)Q'

To bound the RHS at the 1/k scale, use the suffix average L, < - ZJ e Lt j withm = [k/2].
‘We also use from Section@that and 0 < Ly j < 2CF 0. Write

k—1 k—1
1 2
]E[ L) |gt k— T] < W{ Var | ; Lij|Gep—r | + (E _ %: Lt,j|gt,k—7—> }
j=k—m j=k—m

(1) (ID)

Ltvj < E[Zt,k] < Cfast/\/E, SO

Term (II) (mean square). By Lemma L for k > 75, L ]EZJ b,

(II)/m2 S Canst/k'

Term (I) (variance). Under geometric mixing of the underlying markov chain and 0 < L; ; < 2CF ay,
the conditional covariances obey |Cov(Ly j, Ly j+p | Grx—r)| < 160%’M0mixph. Thus

— m—1
Var Z Lij|Gtk—r ZVar Lij| Gik—r) + 2 Z m — h) Cov(Ly j, Lt jin | Gt g—r)
j=k-—m J h=1
leXp
<mChy + 32CFMmZCm1xp < m(CFM+32CFM - )
h=1
Dividing by m? and using m > k/2 gives
(I) lexp
5 < (CFM+320FM - )

Combining the two terms yields

02 leX
E[(Lik)?| Grp—r] < ZSt + <CFM+32CFM 11— p)
which is the claimed bound with the displayed Cl;as. ]

FINAL RECURSION FOR THE SLOW TIME-SCALE

From Equation (30) and the statements of the Lemma(5] Lemma [6]and from the analysis above, we
can write the following recursion for ||e k ||2.

We first characterize a suitable choice of the lag 7 to use in the recursion for ||e; x||2. We make a few

observations. If 7 > [w
log(1/p)

—‘ then Cpixp” < oy .
log(Cm,x )
log(1/p)

From the above two observations, a suitable choice for 7 in each inner iteration k is 75, =
max{,,,7,}. As we are conditioning on filtration G, _-, we need k > 7. Moreover, to use

lo Cmix /k 1
Lemma| we need k > 275, = [%—‘.

Also,if T > 7, := [ W then Chuixp” < .

Hence, we use the following definitions:

B rlog(Crix(k + 1)/c)

= [ oY
- —log( Hmix k—l—l)

o log(l/p) W (33)
o 'log(Cmix/,u)

= Cogtiyp | oo
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VEk > max(Ta,, 278,, Tu)

Eflecks1ld|Gun—r] < (1-par+Ceai) Efllersl3gui--]

2C ias
+ (20 207) (22 4ol )+ Cornn? + o

k

and hence, after taking total expectation, Yk > max(7, 273, , 7,,)

Ellesisl} < (1-man+Ceal) Ellessl} +

2C%;
+ (2% + QOéz) ( ]I:as + 2(€g7;;£'o:c)2> + Ceross @i + Co .

w
The constants in the above recursion are given as:

C.:=172,
1

2
Cp = 32+4%C? +32<1+ C +) ,
O M TR T =) Va

1 2
Cmixp
1-p’
(4B2 + B3(8B,Cq + 25C%) In(2¢))

Cfast = ﬁo .

Ccross =8 (1 + ’YCF,M +

Cbias = Canst + 20}25‘,]\/[ + 640%,M

Now we derive the last iterate convergence of the error [[e , ;|2

dual

We also know from the definition of €555,

1
dual
‘ea;Srox| < 1—~ +Crm-

In compact notations, Yk > max(7a, , 273, , )

Ellecsal < (1-par+Ceal)Elensl +

1 2
Oé% ( ((% + 2) 2C’bias + Cm“oss + CO +4 (1_7 + CF,M) )

dual )2
approx

I

4ak(6

(€appron)”

Ellecsaly < (1-pax+Coa) Ellecsll} +afCr+

with C = < (% + 4) Chias + Ceross + Co + 4 (ﬁ + CF,M)Q)

(37)

(38)

Next, we derive the final iterate convergence from the above recursion for the step-size rule ay, =

5 Vke[0,K —1]:
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C.3 LAST-ITERATE CONVERGENCE FOR «y, = k—jl

Recursion on E[e; x[|3] :  From Equation (38), we have that, whenever

k > knix = maX(Taw QT,B;C’TM)v

dual )27 a =

E[”et,kJrl”%] < (1 — pog + Ce ai) E[”et,kng] + ai C1 + ! &5 (Eapprox

m F
(39
Let
o = 1— pay+C, ai, ko = maX{PC C—‘ [,uc—‘}
Then for all j > ko, 0 < 0; < 1 —£7/(j +1) < 1. When ki < ko, define the finite pre-burn
product before the contraction kicks i 1n as follows

k‘g 1
Hye = H 0j, and set Hy,;o = 1if kpix > ko.
J=kmix

Assume the final iterate index K > kpix

Tail-product bounds. For m < u, set G¥, := H;:m 0;. Then

K—1 e e
_ pe ko+1Y\ 2 . k + 1)\ 2
K—1 0 K—1 mix
GE! < H(l—j}rl) < ( = ) . andif ki > ko, GE 1< ( > )
(40)
Unrolling from kix. Fix K > kuyix. Unrolling equation[39|from ¢ = kp,ix to K — 1 yields
E(ller,x 5] < E[llespm 3] Grnl + Z a;CLGEL + = SSSlox Z a; Gt
initial term t=Fmix t=Fmix
41)
Splitting at ky .  Split each sum at ky:
K-1 ko—1 K-1
> )= G+ )0
t=Kmix t=kmix t=ko
finite “pre-window tail

Initial term. If &y, > ko, then by equation 0]

E[||€t7knﬁx g] A

< Emet,kmix

Kmix

2] (kmix"‘].)“;
2 K *

pe
ko+1\ 2%
3 e (22

If knix < ko, then

%} Gi-(m_ixl < ]E[”et,kmix

EI:”etqklnix

Variance sum. Define the finite pre-window constant

. k()*l 20 k}o 1
U8 (ki ko) = o 1 5 [T o5 (defineitas Oif kuix > ko).
t=Kmix ] =t+1
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Then
K-1

e K—1

ko+ 1Y\ 2 2C t+2

1 K 1 (mix) k 0 1 P

Z t+1 Gii1 < Upre™ (Kmix, 0)( K > +tzk (t+1)2< K>
=ko

t=Kmix

pe
2

Using integral approximation, we can prove that the above term has the following upper bound:

CQCl 1 0201 (k‘o-ﬁ-?)%_l

ot e 7>l
K- on t+2\ 2 %Cl K c
> — ) < 1+ 7 7 =1
t=k (t+1)2 K K ko 2
=ko 20, (k 25 -1
¢ ;C(OJFH)( , 0< & <1
1-— o5 K=
Dual-approximation sum. Define the finite pre-window constant
ko—1 ko—1
Bp(:::zlx)( mix; K Z Qt H 05 (again 0/if Fuix > ko).
t=Kkmix  Jj=t+1
Then
P e K—1 £
ko + 1Y 2 c [(t+2)\°
K-1 (mix) . M- —_—
t% Qi Gt+1 < Bpre (kmlkaO) ( K > + tzk t+1 < K )
mix - O

For the tail, an integral comparison yields

K-1 pe K
c t+2) 2 c e g B c /2 /2

t=k 0

We also know that,

dual

1
approx| = 1 ~ + OFM

We can also write,
c

gy |6+ 277 = (o + 27

Therefore,
K-1
4 ua. 2 —
- (ggppiox) Qi Gﬁ-ll
H t=Kmix
4/ 1 2 ko +1\% 8 2\ %
<-—|(—+C B (i, b =1+ = dual )2,
=L (1 — + F7M) pre ( ’ 0)( K + /~L2 + K (Eappr0x>

Bounding the initial iterate at k,,;.. Recall that the slow update of Algorithm satisfies
Ot kt1 =0 + g T D1 ¢(Ze 1), HTDkJrl <Z5(Zt,k)H2 < 14+ Cram + |01.5]l25
with 6, o = 0. Define uy, := ||6; k|| . Then
Upr1 < up + o (14 Crar +uk) = (1 + ag)ug + ar(l+ Croar).
Introduce the shifted sequence vy, := uy + (1 + Cp ). We then have
Vg1 = U1 + (1 +Crm) < (1 +ag)ur + ap(1+Cram) + (14 Crur)
=1+ o) (up+ 14 Crar) = (1+ au)vg.
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Iterating from k£ = 0 to kmix — 1 and using 60 = 0 (so up = 0 and vy = 1 + Cp ps) yields
kmix—1 Kmix—1

Ve < (1+Crar) H (1+O¢i):(1+CF,M) H (1+Z-_|c_1)°
i=0 1=0

Using 1 + = < € and the harmonic-sum bound Efﬁg‘_l 14%1 < 1+ In kyix, we obtain

Kmix—1 Kmix—1
H C C cic
0 <1+z’+1) = exp( Zj:o z‘+1> = eXp(C(l“nkmix)) = ¢ Finixc

=

Therefore

< (1 + CF,JV[) ef kI;:liX'

mix —

Uk iy = [0 ki l2 <

Finally, recall that e; j, := 6, — 6%, where 0" is the (time-t) fixed point of the mean ODE. Using

€t ke 13 < 2010t ki 13 + 2]16%(|3 and the standard bound ||6**(|o < (1 —~)~'/,/1t, we obtain
2
Elllet 3] <201+ Crm)?e® ks + ———5
[ d (1 —7)?
. ~(mix,1)
= Chie -

This constant will be used as the initial-error term in the last-iterate bound for the iy, = ¢/(k + 1)
schedule.

Final bound. Combining the pieces, for any K > kpix,

E{lles,x 3]
mix kmix + 1 % .
C’i(nit: b (K) ) if klnix 2 k07
= ue
(mix,1 kO +1 2 .
Cinit )Hpre <K , o if knix < ko,
Ci 1 0 (o +2)%F 70 e
“—%CC— 1K %I—(l K% T2 ’
mix ko+1 &2 c (U B
+ O o) (552) %+ {2 (140 ), b1,
20, (ko +2)7 1
c;c(o-i-L)Cz ’ 0< b1,
1 & K=
4/ 1 2 ko+1\7 8 2\ %
C.4 FORMAL VERSION OF THEOREM[]
Theorem 2 (Main finite-time guarantee under function approximation). Let Qt = (I)ét be the

estimate of Q™™™ returned by Algorithm at outer iteration t.

kmix

Fog(cgzjxm)w POg(Cmix(j + 1)/<c>)D } |

=min{ meN: Vj>m, j > max| 7,,2
{ < w2 Tog(1/p) log(1/p)

where,
L " log(cmix %L ) "‘
[ Tlog(1/p)
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Assume holds, and we run K > kuix inner iterations per outer iteration for either the TV or the
Wasserstein-{ uncertainty sets.. Then, for any horizon T > 1,

E[lQr — Q"o
pe
Asched (K) 6approx 2\/5 (1 + %) : Egggiox
+
L—v 1—v (L =)

Here Asened(K) > 0 is the schedule-dependent residual, which takes one of the following explicit
forms depending on the range of c.

<A@ — Q™| +

(42)

Recall the definition ky = max { [1446—‘ {,uc—‘ } and

Set
2 ko—1
cl ) T2c
0, :=(1— = 0,
! ( j+1 +(j+1)2 Hpre 1;[ !
J mix
o=l 20 kool ko—1 ko—1
i 1
Ué?é]x)( le7 Z t—|—1 H Oj; p?:x (kmika()) = Z Qi H Oja
t=Kmix =t+1 t=kmix  J=t+1

with the convention that Hy.. = 1, Ué?é]x) =0, Béﬂix) = 0 when ki > ko. Also set
2

C(mlx 1) p— 1+CFJW 2 2Ck26 )
8 ) MY

init mix

Then Agenea(K) = /21 (K) with

init

21 (K) = K

(mix,1) kO +1\7
let Hpre(?) ) kmix < kOa

k‘o-i—l)%
K

mix kmix 1 T
C( i 1) (7—’_) ’ ) kmix 2 kOv

UIS;I;X) (kmix ’ kO) (

+ f(ify+CFM> B;()I;«lelx)(kmix’k(’)( K

Restating the Constants

2
Co = 32v2C% +32(1+ C +) ,
SR RN

1 2
(1- 7)\/ﬁ> ’
4B2% + 83(8B,Cq + 25C%) In(2e)

Bo 7
Omlxp
1-—-

Ccross =8 (]- + ’YCF,]VI +

Cfast =

Chias = Chagy + 2OFM + 64CFM

1 2
C = <(cp,+4)Cbla€+c(’7‘09€+00+4<+CFM> )
Y
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D REMAINING PROOFS

D.1 BOUND ON 0

We drop the superscript ¢ from 6; as ¢ is fixed throught the discussion of this subsection. Recall,
07 = (@TD7®)" @ T D [r + 7 fi(A")]

Lemma 7 (Bound on the optimal weight vector). Let

0 = (8T D"®) T D™ [r + 7, (\")],

where
o & € RISIAIXD hag full column rank and row vectors ¢(s, a) satisfying || ¢ (s, a)||2 < 1;
« &7 D™ ® is positive definite with min-eigenvalue v. The diagonal entries of the matrix D™
satisfy d; > dmin > 0and ), d; = 1;
* each entry of r obeys |r;| < 1;
* each entry of f;(\*) obeys | fy(A*):| <1/(1—7).
Then ) )
1072 < —— —.
L=~ i
Proof. Set -
C:=3d"D", vi=r+5fi(A).
By definition of 6%,

Co* = ®"D™v.
Multiply by 8* " on the left:
0*TCo* = 0*Td " D™y = (®0*)" D™,

Let y := ®6*. Then

0*TCo* = y"D™v.
On the other hand,

0*TCo* =0"Td T DTBO* = (90*) D™(®O*) =y D™y.

Thus

y"'D™y = y' D™v.
Apply Cauchy—Schwarz in the D™—weighted inner product:

yTDﬂ'U — (Dﬂ1/2y)T(D7r1/2,U) < ||l)7r1/2y||2 ||l)7r1/2,u||2 — (yTDﬂ'y)l/Q (UTDWU)l/Q.

If y " D™y = 0, then #* = 0 and the desired bound is trivial, so assume y ' D™y > 0 and divide both
; T ym,\1/2.
sides by (y ' D™y)'/=:

(yTDTry)l/Q < (,UTD‘N,U)l/Q — yTDTry < UTDWU.
Recalling y " D™y = 6*T C#*, we obtain
0*TCo* < v' D™,

Upper bound on v D™v. For each component,

ok 1
il < il + 4| Fe(A)il <1+ ﬁ =1

Hence

UTDFU:zi:diU? <;di(1i7)2 _ (liv)z‘

29



Under review as a conference paper at ICLR 2026

Lower bound via the minimum eigenvalue. Since C' = D™ - ul,

070" > p)6|3-
Combining the upper and lower bounds,

1 2
ulol < o7co < (1)
SO

i 1
1072 < —— —

1—’yf

E ROBUST Q-LEARNING

In this section, we discuss a robust Q-learning algorithm with function approximation that finds the
optimal policy for the worst-case transition kernel in the uncertainty set considered in this paper. We
first define the optimal state-action value function Q*°P** as the state-action value function of the best
admissible policy to maximize Q™™™ for each (s, a)-pair.

QrOb’*(S, a) = max QrObm—(& a),V(& (l) €eSx A

It is shown in prior literature (Iyengar, 2005) that Q™* satisfies the following equation, which is
called the robust Bellman optimality equation

Q(s.) = Rlssa) + 7 min 3 als) e @ (') 43)
qePYE n a’
( = V!‘Ob,*(sl)
Equivalently, define the robust Bellman optimality operator (7™°>*Q)(s,a) := R(s,a) +

v opa (V™) with
V() = max Q(s',d), (44)

and opa (V) is given in Equatlon (E]) Iyengar| (2005) proved that the robust Bellman optimality
operator is ~y-contraction in £, norm.

Now, we discuss how the TD learning algorlthm presented in Algorithm [I)in the main body of the
paper can be extended to estimate Q™°P* in a relatively straightforward manner.Similar to the TD
learning setup, assume that we can sample data corresponding to a behavioral policy m;, from the
nominal model Py. Also, assume that the policy m, satisfies Assumption [I]

The goal here is to approximate Q*°"* by ®@* for an appropriately chosen #*. Our Q-learning
algorithm is presented in Algorlthml 2| The algorithm computes an estimate 0, of this parameter at
each iteration ¢ of the outer loop. The quantity V]rOb * in the description of the algorithm is given by

Vémb"*(s) = max Clip (gzﬁ(s, a)Tét) Vs € 8. (45)

Difference between Algorithm 2] and Algorithm [I; The only difference between the robust Q-
learning algorithm in Algorithm[2Jand the robust TD learning algorithm in Algorithm|T]is that, we

use V rob* instead of V“’b in the calculation of the dual super-gradient in line 6 and the calculation
of the dual objective in hne 10 in Algorithm[2]

Finite-Time Performance Bound for the Robust Q-Learning (Algorithm [2): Recall that we
established a finite-time performance bound for the robust TD learning in Theorem I} By following
the steps of the proof of that theorem, it is easy to see that an analogous guarantee holds for the
estimate of Q™°* produced by Algorithm l 2| The reason that the proof is identical is that the robust
Bellman optimality operator is a y-contraction in the ¢, norm as was the robust Bellman operator
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for a fixed policy. The only difference is that the function approximation error for approximating
the Q-function should now be defined as the error in approximating Q™" * by the class of functions
{®O:0 cR™}:

€approx = sup [Clip (IT7"*(Q)) = T (Q)||

Q=Clip(®0),0€R™6

(46)

o
The above definition is completely analogous to the TD learning setting in the main body of the paper,
but with 77°P* instead of 7°>™ for a policy 7.

Thus, the sample complexity of robust Q-learning is of the same order as that of robust TD-learning
up to a function approximation error.

Algorithm 2 Robust Q-learning with Function Approximation

1: Input: Integers T, K. Initial vy € R™, 6y = zero vector, fast time-scale step-sizes 5 =
\/%, slow time-scale step-sizes oy = (k—il) for some ¢ : 0 < ¢ < 00; 8y = by, Bo,0 = bo,
behavioral policy 7y, Reward function R : (S x A) — [—1, 1], initial state Sy o.

2: for t =0,1,---, T —1do

3: fork=0,1,...,K —1do

4: Take action A,y according to the behavioral policy 7, and sample Sy kt1 (Sp 1 ~
Py(-[St, Aer))

5:  fast time-scale ()

6: Compute G(¥(St.k, Atk) " Ve ks Vémb’*, St k+1) from Equation li for TV uncertainty set
and Equation for Wasserstein-¢ uncertainty set

7: Vi1 = Projag, (Ve + BelG (W (St s, Ark) " vers VértOb’*, St 1) (St Ak)])

8:  Slow time-scale («)

o: Compute 7, from Equation @)

10: Compute F(w(Styk, At’k)TDt,k; Vé’mb’*7 St k+1) from Equation for TV uncertainty set
and Equation for Wasserstein-¢ uncertainty set

11: TDyjs1 = R(Se, Arse) +VE (O (Sts Ae) T 01 k3 VéiOb’*, Ster1) — (St Avk) T O
12: Ot k1 = 01 + T Dy jo116(Stie, At k)

13:  end for

14: 041 = 04k, Si41,0 = St 0410 = O K Vig1,0 = Vi K-

15: end for

16: Output: Or
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USE OF LARGE LANGUAGE MODEL

The authors used large language models (e.g., ChatGPT) to polish the language in certain parts of the
paper. All technical content, proofs, and conclusions are the sole work of the authors.

32



	Introduction
	Model and Preliminaries
	Robust Temporal-Difference Learning: Challenges

	Robust TD Learning with Linear Function Approximation
	Uncertainty Sets
	Algorithm and Main Results
	Robust Policy Evaluation Algorithm
	Main Result


	Key Ideas and Proof Outline
	Discussion
	Contents
	
	Total Variation Distance Uncertainty Set
	

	
	
	Inner Loop Convergence Analysis
	Analysis on The Fast time-scale:
	Slow time-scale Analysis 

	
	Formal Version of Theorem 1

	Remaining Proofs
	

	Robust Q-Learning

