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Abstract

Spiking Neural Networks (SNNs) offer an energy-efficient paradigm for machine
intelligence, but their continued scaling poses challenges for resource-limited de-
ployment. Despite recent advances in binary SNNs, the storage and computational
demands remain substantial for large-scale networks. To further explore the com-
pression and acceleration potential of SNNs, we propose Sub-bit Spiking Neural
Networks (S2NNs) that represent weights with less than one bit. Specifically, we
first establish an S2NN baseline by leveraging the clustering patterns of kernels
in well-trained binary SNNs. This baseline is highly efficient but suffers from
outlier-induced codeword selection bias during training. To mitigate this issue, we
propose an outlier-aware sub-bit weight quantization (OS-Quant) method, which
optimizes codeword selection by identifying and adaptively scaling outliers. Fur-
thermore, we propose a membrane potential-based feature distillation (MPFD)
method, improving the performance of highly compressed S2NN via more precise
guidance from a teacher model. Extensive results on vision tasks reveal that S2NN
outperforms existing quantized SNNs in both performance and efficiency, making
it promising for edge computing applications.

1 Introduction

Spiking Neural Networks (SNNs), with their unique event-driven paradigm, are seen as a promising
energy-efficient solution for realizing the next generation of machine intelligence [1, 2]. Specifically,
SNNs employ binary spikes for information transmission and process them in a sparse event-driven
manner. This computational paradigm transforms convolution operations in traditional artificial
neural networks (ANNs) from computationally intensive multiply-accumulate (MAC) to efficient
accumulate (AC), thereby significantly improving computational efficiency [3]. Moreover, the event-
driven nature of SNNs has spurred the development of neuromorphic hardware, such as SpiNNaker
[4], TrueNorth [5], Loihi [6], and Tianjic [7], further harnessing their potential for energy efficiency.
However, as large language models (LLMs) exhibit superior performance, the SNN community has
begun scaling up SNN models to improve their performance on complex tasks [8, 9, 10]. While this
scaling has enhanced performance, it has sacrificed SNNs’ inherent efficiency advantages, posing
storage and computational challenges for their deployment on resource-constrained edge devices.

In recent years, researchers have increasingly investigated compression techniques for SNNs, such as
pruning [11, 12], neural architecture search [13, 14], quantization [15, 16], and others [17, 18, 19].
As an extreme quantization technique, binarization restricts parameters to only two values, i.e.,
-1 and +1 [20]. By applying binarization, researchers have developed lightweight binary SNNs
(BSNNs). BSNNs not only inherit the sparse event-driven paradigm of SNNs, but also further convert
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convolution operations from AC to cost-effective bitwise operations. This greatly reduces the resource
overhead of SNNs, especially on edge devices. However, as neural networks are scaled to greater
depths to meet practical demands, the computational burden remains a significant challenge, even
for binary-weighted versions [21, 22]. This raises an important question: “Can the compression and
acceleration potential of SNNs be further exploited?"

Studies on Binary Neural Networks (BNNs) have shown that binarized convolutional kernels in well-
trained BNNs exhibit clustering patterns within each layer. This phenomenon becomes increasingly
pronounced as the network depth increases [23, 24]. In the case of a 3×3 kernel, an analysis of the
distribution of all possible 3×3 kernel values (23×3, representing the full codebook) reveals that
only a small subset of binary kernels (codewords) is frequently activated. Based on this observation,
kernels in each layer can be restricted to a subset of binary convolution kernels (a compact codebook)
during training, enabling sub-bit model compression. This method achieves higher compression
ratios and faster inference speeds compared to BNNs. However, despite these promising efficiency
gains, sub-bit techniques remain unexplored in the context of SNNs.

In this paper, we introduce sub-bit spiking neural networks (S2NNs) to further harness the compression
and acceleration potential of SNNs. We first construct an S2NN baseline that encodes weights using
less than 1 bit. However, we observe that this baseline is prone to outliers when mapping 32-bit kernels
to a binary kernel subset, resulting in suboptimal binary kernel selection. To address this issue, we
propose an outlier-aware sub-bit weight quantization (OS-Quant) method that improves binary kernel
selection by identifying and scaling outliers. Furthermore, to enhance the baseline performance, we
introduce a membrane potential-based feature distillation (MPFD) method, which utilizes a teacher
model to guide the training of the highly compressed baseline. The main contributions are as follows:

• We introduce a S2NN baseline that achieves extreme model compression by encoding
weights with less than 1 bit. This approach achieves higher compression ratios than BSNNs,
further unlocking the potential of SNNs in terms of both compression and acceleration.

• We identify that the baseline suffers from outlier-induced codeword selection bias, negatively
impacting performance. To address it, we propose an outlier-aware sub-bit weight quantiza-
tion (OS-Quant). OS-Quant effectively eliminates the influence of outliers on quantization
while preserving the spatial features of kernels, ensuring optimal codeword selection.

• We propose a membrane potential-based feature distillation (MPFD) framework which
employs a teacher model to guide the training of the highly compressed baseline. By applying
distillation at the membrane potential level, MPFD achieves more accurate knowledge
transfer, improving performance without compromising compression benefits.

• Extensive experiments demonstrate that integrating OS-Quant and MPFD into the baseline
enables S2NN to achieve state-of-the-art (SOTA) performance and efficiency. Furthermore,
tests across diverse tasks and architectures validate the scalability of our method.

2 Related Works

Binary Neural Network Binarization is traditionally considered the most extreme quantization
method, which helps reduce computational overheads but compromises model accuracy. Therefore,
most early BNN research focuses on narrowing the gap between BNNs and full-precision models.
For example, [25] propose floating-point scaling factors for BNNs to fit real-value weights. [26]
approximate real-value weights by linearly combining multiple binary weight bases. [27] propose
adding shortcuts similar to ResNet to reduce information loss during the binarization process. [28]
retains information in BNNs by maximizing information entropy and minimizing gradient errors.
[29] adopt a generalized activation function to capture the distribution reshape and shift, achieving
excellent accuracy on ImageNet-1K.

As the performance gap between BNNs and full-precision models continues to narrow, a few recent
studies have begun to further compress BNNs, successfully reducing parameter bitwidths to less than
1 bit. [30] propose a flexible encryption algorithm that encrypts subvectors of flattened weights into
low-dimensional binary codes. [23] observe the kernel clustering distribution characteristic of BNNs
and then constrain kernels within a prescribed binary kernel subset during training. [31] applies
the concept of stacked low-dimensional filters and product quantization to achieve sub-bit model
compression. [32] propose minimum spanning tree compression, which uses the fact that output
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channels in binary convolution can be calculated using another output channel and XNOR operations.
Recently, [33] has been learning sequences of binary tiles to populate the layers of DNNs, achieving
sub-bit storage of neural network parameters.

Binary Spiking Neural Network Given SNNs’ binary spike activations, researchers have devel-
oped BSNNs with 1-bit synaptic weights to reduce storage and accelerate computation. Early works
explore ANN-SNN conversion to obtain BSNNs. For instance, [34] first train a binary convolutional
neural network and then convert it to a BSNN. [35] introduces a weight-threshold balanced conversion
approach to minimize conversion errors and enhance BSNN performance. However, these conversion-
based methods inevitably suffer from accuracy degradation and fail to process sequential datasets.
This leads researchers to explore direct BSNN training methods. [36] directly train BSNNs using
surrogate gradient (SG) methods. [37] propose a novel Bayesian-based BSNNs learning algorithm
that outperforms SG methods in accuracy. [38] presents a time-encoded BSNN where neurons emit
at most one spike and learn in an event-driven manner, thereby offering substantial energy benefits.
By combining BNN and SNN advantages, [16] propose BitSNN, which enhances energy efficiency
through binary weights, single-step inference, and sparse activations. Recently, [15] draw from
information theory and introduce a weight-spike dual regulation method, aimed at achieving the
performance of full-precision SNNs (FP SNNs) by improving BSNN’s information capacity. Despite
these advances, current methods still face key limitations. Firstly, these studies mainly focus on
narrowing the performance gap between BSNNs and FP-SNNs. However, as networks scale up
to meet practical application demands, the computational burden remains a challenge even with
binary versions. Secondly, these studies are limited to simple image classification tasks, leaving their
scalability to complex tasks and diverse architectures unexplored.

To address these limitations, we propose a novel method to further explore SNNs’ potential in
compression and acceleration. Moreover, our method emphasizes scalability across complex tasks
and diverse architectures, making it practical for broad applications. These efforts will facilitate the
efficient deployment of large-scale SNNs on edge devices.

3 Sub-bit Spiking Neural Networks Baseline

In this section, we construct a sub-bit SNN baseline by leveraging existing knowledge, primarily
including the employed spiking neuron models and the sub-bit weight quantization.

Spiking Neuron Model Various neuron models are proposed to replicate the information processing
capabilities of biological neurons, such as Hodgkin-Huxley [39], Izhikevich [2], and Leaky Integrate-
and-Fire (LIF) [40] models. Due to its computational efficiency, the LIF model is widely used.
Therefore, we also employ the classic LIF model in our work; its membrane potential is described as,

ũℓ[t] = τuℓ[t− 1] + f(wℓ
f , s

ℓ−1[t]), (1)

sℓ[t] = Θ(ũℓ[t]− θ), (2)

uℓ[t] = ũℓ[t]
(
1− sℓ[t]

)
, (3)

where τ is the leaky factor, wℓ
f is the 32-bit weight matrix of layer ℓ, f(·) is the convolution or

linear operation followed by batch normalization (BN), and Θ(·) is the Heaviside step function. As
described above, neurons integrate inputs and emit a spike s when the membrane potential ũ exceeds
the threshold θ. After each spike emission, the hard reset mechanism is invoked, where u is reset to
zero upon emitting a spike and remains unchanged in the absence of a spike.

Sub-Bit Weight Quantization The S2NN baseline is constructed based on the sub-bit weight
quantization technique, as shown in Fig. 1(b). This technique is applied to the binary convolutional
kernels of the network. Therefore, we first construct a BSNN by quantizing the weight matrix wℓ

f in
Eq. (1) to a 1-bit representation, described as,

wℓ
b = α · sign(wℓ

f ), sign(w
ℓ
f ) =

{
−1, if wℓ

f < 0,
+1, otherwise,

(4)

where α is the channel-wise scaling factor that is calculated as the average of the absolute value
of weights in each output channel [25], and wℓ

b is the binary weight matrix. By combining this
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Figure 1: (a) Convolutional kernels in well-trained BSNNs exhibit clustering patterns. This motivates
us to achieve higher compression ratios than BSNNs by using a compact codebook P instead of the
full codebook K. (b) The constructed S2NN baseline.

binarization with Eq. 1, the convolution or linear operation can be transformed from wℓ
f ⊛ sℓ−1[t] to

α · (sign(wℓ
f )⊕ sℓ−1[t]), where arithmetic operations are replaced with efficient bitwise operations

⊕. For simplicity, we omit the scaling factor in subsequent analysis as it is applied after the bitwise
convolution operation.

Before introducing sub-bit weight quantization, we first present the clustering pattern of binary
kernels. We formulate the weight matrix wℓ

b as the channel-wise concatenation of each binary kernel,

i.e., wℓ
b =

∥∥cℓout·c
ℓ
in

c=1
wℓ

b,c, where cℓout and cℓin are the number of output and input channels in layer ℓ,
respectively. Each binary kernel wℓ

b,c ∈ K is derived by wℓ
b,c = sign(wℓ

f,c). Here, K = {±1}kw·kh

denotes the set of all possible binary kernels (i.e., full codebook) with size kw × kh. This full
codebook contains |K| = 2kw·kh unique binary kernels (i.e., codewords). Previous studies reveal
these codewords exhibit layer-dependent clustering patterns in well-trained BNNs, especially in
deep layers [23, 24]. We conduct a similar analysis in well-trained BSNNs and observe the same
phenomenon, as illustrated in Fig 1(a). Based on prior studies and the clustering patterns of BSNNs,
we use a compact codebook rather than the full codebook K to construct the S2NN baseline. We
present in Appendix A the top-k codeword proportions for BSNN. The findings validate the clustering
and reveal increased clustering patterns in deeper layers.

The S2NN baseline is built by (1) sampling layer-specific codeword subsets Pℓ (i.e., compact
codebook), (2) mapping each 32-bit kernel to its nearest codeword in Pℓ for inference, depicted in
Fig. 1(b). It is defined as [23],

Forward propagation: wℓ
b,c = argmin

k∈Pℓ

∥∥k−wℓ
f,c

∥∥2
2
, (5)

Backward propagation:
∂L

∂wℓ
f,c

= 1|wℓ
b,c|≤1 ·

∂L
∂wℓ

b,c

, (6)

where Pℓ ⊂ K, |Pℓ| = 2η , and η < kw ·kh. Noteworthy, each binary codeword in Pℓ can be optimized
during training, so sign(·) must be applied after optimization to preserve its binary representation.
By integrating Eq. (5) with Eq. (1), the S2NN baseline is established.

The sub-bit quantization in Eq. (5) computes the squared L2 distance between wℓ
f,c and each candidate

codeword k in Pℓ, and selects the nearest k to replace wℓ
f,c for forward propagation. This approach

achieves below 1-bit compression by using an index to represent each binary kernel. Specifically,
for weights in the ℓ-th layer, i.e., wℓ

b ∈ {±1}c
ℓ
in·c

ℓ
out·kw·kh , BSNN requires kw · kh · cℓin · cℓout bits

to store the whole parameters, while the S2NN baseline requires bits of η · cℓin · cℓout for indicies
and 2η · kw · kh for the storage of Pℓ. Since η is designed to be smaller than kw · kh, the S2NN
baseline achieves an compression ratio of η·cℓin·c

ℓ
out+2η·kw·kh

kw·kh·cℓin·cℓout
≈ η

kw·kh
for each weight. Consider the

commonly used 3×3 convolutional kernel, the S2NN baseline represents each parameter with 0.44,
0.56, and 0.67 bit when η of 4, 5, and 6, respectively. A comprehensive analysis of the baseline’s
compression and acceleration advantages is presented in Appendix H.
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Figure 2: (a) The outliers dominate the distance calculations, diminishing the contributions of other
elements and leading the baseline to select an undesirable codeword for inference. (b) During the
training process of the S2NN baseline, we randomly sample several kernels and analyze their weight
distributions using a box plot. Discrete points in the figure indicate outliers.

4 Method

In this section, we first analyze how the S2NN baseline is adversely affected by outlier-induced code-
word selection bias. Then, we propose an outlier-aware sub-bit weight quantization that eliminates
outlier interference while preserving kernels’ spatial features. Finally, we introduce a membrane
potential-based distillation, improving the S2NN’s performance via the guidance of a teacher model.

4.1 Outlier-induced Codeword Selection Bias

A key step in the S2NN baseline is to compute the squared L2 distance between the 32-bit kernel wℓ
f,c

and each candidate codeword k in Pℓ, then select the nearest codeword to replace wℓ
f,c for inference.

While it achieves sub-bit weight compression, this process is susceptible to outliers, leading to biased
codeword selection. This bias can be regarded as quantization errors in parameter compression.

To illustrate this issue, we consider an example of a 3×3 kernel, as shown in Fig. 2(a). Given
wℓ

f,c and some candidate codewords. From a binarization perspective, k2 is the optimal choice to
replace wℓ

f,c, as it better maintains the sign patterns of the majority elements in wℓ
f,c. However, the

presence of an outlier 5 causes the baseline to choose k3 instead. We define this inconsistency as the
outlier-induced codeword selection bias. This issue occurs since the employed squared L2 distance is
sensitive to large values, causing outliers to dominate the distance computation and overshadow the
contribution of other elements. Unfortunately, the chosen non-optimal codeword cannot capture the
true sign pattern of wℓ

f,c, adversely affecting the baseline learning. In Fig. 2(b), we show that many
outliers exist in the learning process, indicating that the baseline suffers from a severe codeword
selection bias. This motivates us to address the bias for stable convergence and improved performance.
In Appendix B, we count the percentage of kernels containing outliers in each layer to demonstrate
that this bias is a common phenomenon.

4.2 Outlier-Aware Sub-Bit Weight Quantization

We introduce the OS-Quant to address the codeword selection bias caused by outliers. The OS-Quant
comprises two steps: (1) interquartile range (IQR)-based outlier detection, and (2) spatially-aware
outlier scaling. This approach effectively mitigates the negative impact of outliers on the quantization
process, while simultaneously preserving the spatial information inherent in float-point kernels.

IQR-based Outlier Detection During the sub-bit quantization, we use quartile statistics to deter-
mine the boundaries for normal weight values in wℓ

f,c, and consider values outside these boundaries
as outliers. Specifically, we first calculate the interquartile range of wℓ

f,c, as defined in [41],

IQRℓ
f,c = Q3 −Q1, (7)
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Figure 3: Schematic diagram of the proposed OS-Quant and MPFD method.

where Q1 and Q3 denote the first and third quartiles of wℓ
f,c, respectively. Then, a threshold coefficient

γ is applied to define the normal weight range as follows,
Rℓ

f,c = [Q1 − γ · IQRℓ
f,c,Q3 + γ · IQRℓ

f,c], (8)
where γ is a coefficient that controls the sensitivity of outlier detection. A larger γ yields fewer
outliers, while a smaller γ leads to more. Following the well-established ‘Tukey’s fences’ [42], γ is
typically set to 1.5. Detail analysis of this hyperparameter is provided in Appendix C. Accordingly,
any weights outside this range are classified as outliers. We define the set of outlier coordinates in
wℓ

f,c as,

Oℓ
f,c =

{
(i, j) | wℓ

f,c(i, j) /∈ Rℓ
f,c

}
, (9)

where (i, j) is the coordinates in the kernel, and wℓ
f,c(i, j) corresponds to the weight value at the

specified position. As shown in Eq. (7), the interquartile range metric focuses on the central 50%
of all weights in the kernel, thus being less affected by outliers. This makes our outlier detection
method exhibit greater robustness than methods relying on mean and variance, thereby providing a
more reliable kernel adjustment to resolve the codeword selection bias.

Spatially-Aware Outlier Scaling After detecting outliers, we propose a spatially-aware scaling
approach to eliminate their impact on distance computation. This method leverages the relationships
between outliers and their spatial neighbors, preserving the spatial feature of 32-bit kernels.

Given the outlier set Oℓ
f,c of the kernel wℓ

f,c, we determine spatial neighbors for each outlier within
this set. For an outlier located at (i, j) ∈ Oℓ

f,c, its neighbor set is defined as,

N(i,j) = {(i± 1, j), (i, j± 1)} ∩ [1, kw]× [1, kh], (10)
where kw and kh denote the kernel’s width and height, respectively. This set effectively represents
the local spatial relationships of the outlier within the kernel. Based on this spatial information, we
introduce a regularization term to adaptively scale the outliers, and it is computed as,

Ωi,j =
1

|N(i,j)|
∑

(p,q)∈N(i,j)

∣∣wℓ
f,c(i, j)−wℓ

f,c(p, q)
∣∣ , (11)

where |N(i,j)| is the number of spatial neighbors. Ωi,j is calculated as the mean of the absolute
differences between an outlier and its neighbors. Then, we derive an adjusted 32-bit kernel ŵℓ

f,c,

ŵℓ
f,c(i, j) =

{
(1/Ωi,j) ·wℓ

f,c(i, j), if (i, j) ∈ Oℓ
f,c,

wℓ
f,c(i, j), otherwise.

(12)

As a result, the OS-Quant method is described as follows,

Forward: wℓ
b,c = argmin

k∈Pℓ

∥∥k− ŵℓ
f,c

∥∥2 ; Backward:
∂L

∂wℓ
f,c

= 1|wℓ
b,c|≤1 ·

∂L
∂ŵℓ

b,c

·
∂ŵℓ

f,c

∂wℓ
f,c

. (13)

In summary, OS-Quant effectively addresses the codeword selection in sub-bit quantization bias by
detecting and scaling outliers. Furthermore, in the process of outlier scaling, OS-Quant preserves the
spatial features of full-precision kernels, enhancing the training stability and performance of S2NN.
We also compare our OS-Quant with several alternative outlier-handling methods in Appendix D.
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4.3 Membrane Potential-based Feature Distillation

The S2NN baseline yields great efficiency gains but suffers from performance degradation. To
overcome this, we introduce a distillation technique to preserve the compressed model’s performance
[43]. Distillation is categorized into logit-based knowledge distillation (LGKD) and feature-based
distillation (FD) [44]. FD typically distills a better-performing student since mimicking the teacher’s
intermediate features provides the student with more precise optimization directions [45, 46].

In the SNN domain, existing FD methods regard the firing rate of neurons as network intermediate
features and aim at aligning the firing rates between teacher and student networks. These firing
rate-based FD (FRFD) methods achieve this alignment by adjusting membrane potentials and further
controlling the spike generation in backpropagation [47]. Mathematically, the gradient of the
distillation loss to the membrane potential is expressed as:

∂Ldistill

∂ũℓ[t]
=

∂LFRFD

∂sℓ[t]
· ∂s

ℓ[t]

∂g(·)
· ∂g(·)
∂ũℓ[t]

, (14)

where ∂LFRFD

∂sℓ[t]
can be directly calculated from the distillation loss function. Notably, this distillation-

related gradient computation involves an extra surrogate gradient function g(·), which causes the
gradient induced by distillation on the membrane potential to be imprecise, thereby compromising
the distillation optimization process. As a result, we propose a direct MPFD method at the membrane
potential level to achieve more precise optimization directions. Mathematically, within MPFD, the
gradient of the distillation loss to the membrane potential ∂Ldistill

∂ũℓ[t]
can be derived directly from the

distillation loss function LMPFD. The MPFD is formulated as,

LMPFD =
∑

{ℓ′,ℓ}∈P

∑
t

∥∥∥Gℓ′

tea[t]−Gℓ
stu[t]

∥∥∥
2
, (15)

Gℓ
M[t] =

Q(ũℓ
M[t]) · Q(ũℓ

M[t])T

∥Q(ũℓ
M[t]) · Q(ũℓ

M[t])T∥2
, (16)

where {ℓ′, ℓ} ∈ P denotes layer pairs between teacher and student,M∈ {tea, stu} is the network
type, and Q : Rb·c·h·w → Rb·chw is a operation transforming tensor dimensions from [b, c, h, w] to
[b, c× h× w]. In Eq. (16), we introduce a metric G using a normalized Gram matrix of membrane
potentials, which can effectively represent the network’s semantic information [48].

We summarize the advantages of MPFD in two aspects. First, by directly imposing distillation on
membrane potentials, it achieves more precise knowledge transfer from teacher to student networks.
Second, the inner product-based formulation of G facilitates cross-architecture distillation, without
requiring matched network layers or identical layer dimensions between teacher and student networks.
As a result, the MPFD significantly enhances the effectiveness and flexibility of knowledge distillation.
Further analysis of MPFD is available in Appendix E.

4.4 Workflow and Supplementary Details for S2NN

We develop the S2NN by integrating the OS-Quant and MPFD into the baseline, with its workflow
described in Algorithm 1. We provide more details of S2NN in the Appendix. In Appendix H, we
provide an in-depth discussion of how S2NN achieves below-1-bit compression and its acceleration
advantages. In Appendix I, we present a comparison between S2NN and BSNN on an FPGA,
highlighting the advantages of S2NN in terms of both compression and acceleration.

The proposed S2NN aims to optimize SNN deployment efficiency. Notably, the involved distance
calculations, outlier detection, outlier scaling, and distillation in our methods introduce no additional
overhead during inference. After training, only the compact codebook P and the weight-to-codeword
indices are stored. During inference, the model reconstructs binary kernels directly from the indices
and P, without performing distance calculations, OS-Quant, or membrane potential–based distillation.
Consequently, our S2NN achieves below 1-bit model compression, which further explores the
potential of SNNs for both compression and acceleration while maintaining high performance,
making S2NN particularly suitable for applications in resource-limited scenarios that require reliable
and efficient processing.
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Algorithm 1 One training iteration process of the S2NN.

1: Input: Initial SNN model: M = {w1
f , · · · ,wL

f }; Size of P: η; A well-trained teacher model:
Mtea; Input;

2: Initialize: Randomly sample layer-specific Pℓ, where |P| = 2η and η < kw · kh; Initialize an
empty list F ;

3: for ℓ← 1 to L do
4: for c← 1 to cℓout · cℓin do
5: ▷ Calculate IQR to confine a normal weight range: Rℓ

f,c = [Q1−γ ·IQRℓ
f,c; Q3+γ ·IQRℓ

f,c];

6: ▷ Get the coordinates of outliers in the kernel:
Oℓ

f,c = {(i, j) | wℓ
f,c(i, j) /∈ Rℓ

f,c};
7: ▷ Calculate a regularization term for each outlier:

Ωi,j=
1

|N(i,j)|
∑

(p,q)∈N(i,j)
|wℓ

f,c(i, j)−wℓ
f,c(p, q)|,

8: ▷ Spatially-aware scale each outlier:

ŵℓ
f,c(i, j) =

{
(1/Ωi,j) ·wℓ

f,c(i, j), if (i, j) ∈ Oℓ
f,c,

wℓ
f,c(i, j), otherwise;

9: ▷ Apply OS-Quant to achieve sub-bit quantization: wℓ
b,c = argmink∈Pℓ ∥k− ŵℓ

f,c∥2;
10: end for
11: ▷ Concatenate and reshape: wℓ

b ← concat&reshape(wℓ
b,1, · · · ,wℓ

b,cℓout·cℓin
);

12: ▷ ũℓ[t] = τuℓ[t− 1] +BN(α · (wℓ
b ⊕ sℓ−1[t])),

13: ▷ Record ũ for distillation: F ← F .append(ũℓ[t]);
14: ▷ Calculate sℓ[t] and uℓ[t] according to Eq. (2∼3);
15: ▷ Perform the inference on the modelMtea based on Eq. (1∼3) and record its membrane

potential;
16: end for
17: LMPFD =

∑
{ℓ′,ℓ}

∑
t

∥∥∥Gℓ′

tea[t]−Gℓ
stu[t]

∥∥∥
2
;

18: Compute the loss: L = Lce + λLMPFD;
19: Backpropagation and update model parameters;

5 Experiment

In this section, we evaluate the performance of S2NN on various tasks, including classification, object
detection, and semantic segmentation. Then, we conduct ablation studies to verify the effect of the
OS-Quant and MPFD. Details on experimental setups are provided in Appendix K.

5.1 Performance Comparison
Image Classification We assess S2NN on various architectures like MS-ResNet [49], VGGSNN
[50], and spike-driven Transformer v3 (SDT3) [21], comparing it with advanced compression methods
in SNNs, like BitSNN [16], Q-SNN [15], Q-Spikformer [51], and BESTformer [52]. Results in Tab.
1 reveal three conclusions. First, with η = 6 (W is 0.67 bit), S2NN achieves SOTA results on all
datasets, reducing size and OPs by 1.4× ∼ 6.8×. Second, despite significant reductions in size and
OPs when η = 4, S2NN outperforms the base on CIFAR-10 and ImageNet-1K, with only a small
performance drop on other datasets. Third, S2NN performs as well as FP SNN on simple datasets
with fewer resources. Despite a gap on ImageNet-1K, it outperforms the advanced work [52] by
3.5%∼4.6%. In Appendix F, we supplement our comparison with related BNN methods.

Object Detection We use the COCO dataset to evaluate the efficacy of S2NN in detection tasks.
Following previous studies [53, 21], we use the mmdetection codebase, with S2NN as the backbone
for feature extraction and Mask R-CNN [54] for detection. The backbone is initialized using a
network pre-trained on ImageNet-1K, with η = 6. Visualization and results are shown in Fig. 4(a)
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Table 1: Performance of image classification. The colored values in brackets are the reduction factor
of S2NN relative to the baseline.

DATASET METHOD ARCITECTURE
BIT

(W/A)
SIZE

(MBIT)
OPS
(G)

ACC.
(%)

CIFAR-10

FP SNN RESNET-19 32/1 400.07 15.70 96.68
BITSNN [16] RESNET-18 1/1 11.34 - 94.37
Q-SNN [15] RESNET-19 1/1 13.04 BASE 6.40 BASE 95.54 BASE

S2NN RESNET-19 0.67/1 8.92 (1.5×) 4.29 (1.5×) 96.43 (+0.9)

S2NN RESNET-19 0.56/1 7.55 (1.7×) 3.58 (1.8×) 96.36 (+0.8)

S2NN RESNET-19 0.44/1 6.05 (2.2×) 2.82 (2.3×) 95.99 (+0.5)

CIFAR-100

FP SNN RESNET-19 32/1 401.55 18.89 80.42
Q-SNN [15] RESNET-19 1/1 14.52 BASE 6.50 BASE 78.77 BASE

S2NN RESNET-19 0.67/1 10.40 (1.4×) 4.39 (1.4×) 78.77 (+0.0)

S2NN RESNET-19 0.56/1 9.03 (1.6×) 3.67 (1.8×) 78.43 (-0.3)

S2NN RESNET-19 0.44/1 7.53 (1.9×) 2.88 (2.3×) 77.40 (-1.4)

IMAGENET-1K

FP SNN SDTV3-19M 32/1 607.57 16.03 79.80
QSPIKF [51] SPIKFORMER-8-512 1/1 36.80 2.12 54.54
BESTF [52] SPIKFORMER-8-512 1/1 44.56 BASE 5.67 BASE 63.46 BASE

S2NN SDTV3-19M 0.67/1 17.32 (2.6×) 0.84 (6.8×) 68.02 (+4.6)

S2NN SDTV3-19M 0.56/1 15.88 (2.8×) 0.78 (7.3×) 67.43 (+4.0)

S2NN SDTV3-19M 0.44/1 14.31 (3.1×) 0.73 (7.8×) 67.00 (+3.5)

DVSCIFAR-10

FP SNN VGGSNN 32/1 296.60 1.97 82.3
Q-SNN [15] VGGSNN 1/1 10.91 BASE 0.31 BASE 81.6 BASE

S2NN VGGSNN 0.67/1 7.86 (1.4×) 0.20 (1.6×) 82.0 (+0.4)

S2NN VGGSNN 0.56/1 6.85 (1.6×) 0.17 (1.8×) 81.6 (+0.0)

S2NN VGGSNN 0.44/1 5.74 (1.9×) 0.13 (2.4×) 81.3 (-0.3)

and Tab. 2. We compare S2NN with advanced SNN and BNN models, and results reveal two
conclusions. First, the S2NN achieves comparable results to FP SNNs while remarkably reducing
resource cost. For instance, our mAP@0.5 is comparable to that of [21] (i.e., 41.8%), but saves 2.08×
in model size and 3.27× in power consumption. Second, compared to BNN methods, S2NN exhibits
SOTA results, surpassing the advanced work [55] by 7.4%.

Semantic Segmentation We use the ADE20K dataset to evaluate the efficacy of the S2NN in
segmentation tasks. Following prior studies [53, 21], we use the mmsegmentation, with S2NN as the
backbone for feature extraction and semantic FPN for segmentation. The initialization mirrors that of
the detection task. Visualization and results are shown in Fig. 4(b) and Tab. 3. We compare S2NN
with advanced SNNs and BNNs, and results reveal two conclusions. First, S2NN is far superior to
methods in BNN, e.g., it surpasses the advanced work [56] by 17%∼17.6%. Second, S2NN yields
comparable performance to FP SNNs with fewer resources, sufficiently validating the efficacy of our
model in segmentation tasks. For example, our method outperforms [53] by 1.1% in the MIoU metric
and reduces the model size and power consumption by 34.6× and 19.8×, respectively.

GT S2NN GT S2NN

(a) Detection visualization of S2NN.

GT S2NN GT S2NN

(b) Segmentation visualization of S2NN.
Figure 4: Detection and segmentation visualization of S2NN on COCO 2017 and ADE20K.
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Table 2: Object detection results on COCO 2017.

METHOD
BIT

(W/A)
TIME
STEP

SIZE
(MBIT)

OPS
(G)

MAP
(@50%)

[57] 32/1 64 547.2 - 33.1
[58] 32/1 7 803.2 - 41.9

[53] 32/1 1 2400 - 51.2
32/1 1 1117 - 44.0

[21] 32/1 8 1238 - 58.8
32/1 2 1238 - 41.8

[59] 1/1 - 10.99 0.55 31.0
[60] 1/1 - 175.0 3.22 32.9
[61] 1/1 - 173.3 3.21 37.2
[55] 1/1 - 15.52 0.6 32.6

S2NN 0.67/1 8 595.5 0.84 40.0

Table 3: Segmentation results on ADE20K.

METHOD
BIT

(W/A)
TIME
STEP

SIZE
(MBIT)

POWER
(MJ)

PIX
ACC(%)

MIOU
(%)

[29] 1/1 - - - 62.8 9.22
[62] 1/1 - - - 59.5 7.16
[63] 1/1 - - - 59.5 9.74
[56] 1/1 - - - 67.3 18.8

[53] 32/1 1 528 22.1 - 32.3
32/1 4 1914 183.6 - 35.3

[21] 32/1 4 352 27.2 - 40.1
32/1 8 352 33.6 - 41.4

S2NN 0.67/1 8 55.39 9.27 77.3 36.4
S2NN 0.56/1 8 55.36 9.23 77.5 36.2
S2NN 0.44/1 8 55.32 9.19 77.4 35.8

5.2 Ablation Study

Table 4: Ablation study of our S2NN.

BASELINE OS-QUANT LGKD FRFD MPFD ACC. (%)

" - - - - 75.11 BASE

" " - - - 75.59 (+0.48)

" " " - - 75.92 (+0.81)

" " - " - 76.71 (+1.60)

" " - - " 78.77 (+3.66)

We conduct ablation studies on the
proposed OS-Quant and MPFD meth-
ods to demonstrate their effectiveness.
Experiments are conducted on CIFAR-
100 with η = 6 (weight set to 0.67 bit).
The results are summarized in Tab. 4.
First, we replace the sub-bit weight
quantization in the baseline with the
QS-Quant, resulting in a 0.48% per-
formance improvement. This result
underscores the effectiveness of OS-
Quant. In addition, we compare three
distillation methods mentioned in Sec. 4.3 to validate the effectiveness of MPFD. Specifically, the
performance for LGKD, FRFD, and MPFD are 75.92%, 76.71%, and 78.77%, respectively. These re-
sults indicate that feature-based distillation outperform logit-based methods, and our MPFD achieves
higher performance than firing rate-based feature distillation by providing more precise optimization
directions. In conclusin, integrating the OS-Quant and MPFD into the baseline improves S2NN’s
performance by 3.66%, underscoring their effectiveness.

6 Conclusion

SNNs have emerged as a promising paradigm for energy-efficient machine intelligence. However,
as SNNs scale up to meet practical demands, their storage and computational requirements pose
challenges for resource-constrained deployment. This work introduces S2NN, a novel sub-bit
compression framework for SNNs that represents weights with less than one bit. Through the
introduction of OS-Quant and MPFD, S2NN effectively addresses quantization bias and preserves
performance. Experiments show that S2NN achieves SOTA performance while significantly reducing
model size and computational costs, making it particularly suitable for edge computing applications.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the experimental section and appendix, we provide corresponding evidence
for all claims made in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Appendix A.8, we discuss the limitations of our work, specifically that
it performs better on visual tasks, and while it also works well on non-visual tasks, the
performance on visual tasks is superior.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: In Section 4.3, we provide the full set of assumptions and complete (and
correct) proofs for our theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the relevant information in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the relevant information in the appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the relevant information in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not provide this.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the relevant information in Appendix A.14.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research complies with the NeurIPS Code of Ethics in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets, models, and code used have been appropriately cited. The
open-source code used in the experiments also complies with the relevant licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper are well documented in the supplementary
materials and the documentation is provided.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Ratio of Top-k codewords in Clustering Distribution

We analyze the top-k ratio in BSNN kernels for ResNet and VGG, with results shown Tab. 5. Both
models show clustered distributions, with the clustering becoming more noticeable in deeper layers.

Table 5: The top-k ratio in BSNN kernels for ResNet and VGG structures.

CIFAR-100, Res19 Top2 Top4 Top8 Top16 Top32 Top64 Top128

layer1.2 20.7% 24.4% 29.6% 37.2% 47.5% 60.8% 74.7%
layer2.2 21.8% 24.8% 30.0% 38.6% 50.2% 65.0% 80.0%
layer3.1 46.8% 50.2% 54.5% 60.1% 67.9% 75.7% 83.9%

DVSCIFAR10, VGGSNN Top2 Top4 Top8 Top16 Top32 Top64 Top128

conv3 15.1% 18.1% 23.6% 31.8% 43.2% 59.1% 74.7%
conv5 14.9% 18.6% 23.8% 31.6% 43.5% 59.9% 76.1%
conv7 14.2% 18.0% 24.6% 34.1% 47.7% 65.8% 82.3%

B Analysis of Outlier Occurrence about Models, Datasets, and Augmentation

Fig 2(b) depicts a small example of the first 60 kernels from ResNet-19’s second layer on CIFAR-100.
To demonstrate that the emergence of outliers is a common phenomenon, we count the percentage of
convolutional kernels containing outliers in each layer. Results are shown in Tab. 6, indicating that
while the number of outlier-containing kernels varies by models, datasets, and augmentation, outlier
occurrence remains a universal and severe issue.

Table 6: The percentage of convolutional kernels containing outliers.
Configuration layer1.1 layer2.1 layer3.1

CIFAR10, Res19 21.15% 17.62% 22.33%
CIFAR-100, Res19 33.19% 18.99% 20.19%
CIFAR-100, Res19, only RandomCrop 30.10% 26.24% 17.61%
CIFAR-100, Res19, only RandomHorizontalFlip 29.16% 21.61% 29.90%

conv3 conv5 conv7

DVSCIFAR10, VGGSNN 33.73% 15.99% 27.39%

C Analysis of Hyperparameter γ in OS-Quant

We test the performance of different γ values on CIFAR-100 with ResNet-19 (η=6). Results are
summarized as in Tab. 7, and the following conclusions are obtained:

• γ=0.5 (too low) treats too many values as outliers, causing excessive outlier scaling and
destroying the kernel’s spatial information.

• γ=3.0 (too high) fails to detect outliers effectively, degrading S2NN to baseline performance.

• γ=1.5 achieves optimal balance between outlier detection and spatial preservation.

• γ=1.0 and γ=2.0 perform well but slightly below γ=1.5.

Table 7: Accuracy under different γ values.
γ 0.5 1.0 1.5 2.0 3.0

Accuracy 74.48% 75.34% 75.59% 75.19% 75.08%
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D Comparison of OS-Quant with alternative outlier-handling methods

We test several outlier-handling methods against OS-Quant on CIFAR-100 using ResNet-19 (η=6):

• Hamming distance: Binarizes 32-bit kernels before calculating distance to codewords.
This is the simplest method to solve codeword selection bias but fails to preserve spatial
information.

• Clip methods: Instead of our IQR-based outlier detection and spatially-aware outlier
scaling methods, we select three clipping variants. (1) Layerclip: uses 1st/99th percentile of
layer weights as clipping bounds; (2) IQRclip: uses IQR for outlier detection and clipping;
(3) Z-scoreclip: uses Z-score for outlier detection and clipping.

• Smooth operation: Applied weight decay (1e-3 and 1e-4) during training.
• Z-scorescale: Combines Z-score outlier detection with our spatially-aware outlier scaling.

Table 8: Accuracy comparison of different outlier-handling methods.
OS-Quant Hamming Layerclip IQRclip Z-scoreclip 1e-3wd 1e-4wd Z-scorescale

Acc. 75.59 70.82 37.23 75.01 74.82 73.68 72.24 75.34

Experimental results are summarized in Tab. 8, which confirms the effectiveness of OS-Quant.
Furthermore, we analyze the potential reasons for the poor performance of other methods.

• Hamming distance: Removes outliers via binarization but creates selection ambiguity.
For example, given a full precision kernel f = [0.8, 0.7, 5, -0.9, -0.8, -0.7, -0.9, -0.8, -0.9],
and two codewords k1 = [1, -1, 1, -1, -1, -1, -1, -1, -1] and k2 = [1, 1, 1, -1, -1, -1, 1, -1,
-1]. f has equal Hamming distance, i.e., 1, to k1 and k2, causing selection ambiguity. In
contrast, OS-Quant clearly differentiates distances (0.33 vs 3.93), identifying k1 as a better
match. This shows the importance of preserving the spatial information of full-precision
kernels when handling outliers.

• Clip methods: Fig 2(b) shows significant variation in kernel distributions, meaning the
same value may be an outlier in some kernels but not others. Thus, using network-wide
or layer-wide parameters to determine clipping thresholds for each kernel is inappropriate,
as confirmed by Layerclip. Other clipping methods perform better but still lag behind
OS-Quant and Z-scorescale due to their failure to preserve outliers’ spatial information.

• Smooth operation: Based on our analysis of outlier distribution, this method can slightly
mitigate outlier occurrence but slows convergence, thereby yielding lower performance with
equal training epochs.

• Z-scorescale: Achieves top-2 results, but its effectiveness is limited because mean and
variance calculations are influenced by the outliers themselves. Its performance gap with
OS-Quant would widen on larger complex datasets.

E Detail Analysis of MPFD

In this section, we conduct a more detailed analysis of MPFD. Our main contribution to MPFD is
performing distillation at the membrane potential level, providing more precise gradient guidance
for highly compressed models. That is, directly using the 2-norm to calculate membrane potential
errors between teachers and students can also provide more accurate gradient guidance compared to
traditional FRFD and LGKD. Therefore, if your goal is to avoid introducing excessive computation
during training, you can choose to use simpler error calculation methods rather than the Gram matrix.
In the following, we will mainly discuss the impact of the Gram matrix in the MPFD method on the
performance, as well as the advantages and disadvantages of using and not using the Gram matrix.

We first evaluate membrane potential-based distillation performance with and without the Gram
matrix and other approaches. LGKD makes the student mimic the teacher network’s final logits
(the raw output values before the softmax activation function is applied) to transfer knowledge [43].
FRFD is a classic feature distillation scheme in the SNN domain [47], which uses the firing rate as
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the intermediate features of the network and align the firing rates between teacher and student models.
Therefore, neither LGKD nor FRFD uses a Gram matrix. Experiments are conducted on CIFAR-100
with ResNet-19. As shown in Tab. 9, the 2-norm membrane potential distillation achieves 78.32%
accuracy, which demonstrates that direct membrane potential distillation can also offer more precise
gradient guidance than FRFD, thus improving accuracy.

Table 9: Performance comparison of different knowledge distillation methods in sub-bit SNN.
LGKD FRKD MPFD(w/o Gram) MPFD(w/ Gram)

Accuracy 75.92% 76.71% 78.32% 78.77%

Both MPFD (w/o Gram) and MPFD (w/ Gram) perform distillation on membrane potentials, offer-
ing more precise gradient guidance. Their respective pros and cons are as follows:

• MPFD (w/ Gram). Gram matrix is typically regarded as capturing semantic relationships, so
MPFD is usually correctly classified with higher confidence, leading to superior performance.
This facilitates cross-architecture distillation without requiring matched network layers or
identical dimensions. However, it incurs small additional computational costs.

• MPFD (w/o Gram). It offers simpler implementation and lower computational costs. How-
ever, it has slightly lower performance than MPFD (w/ Gram), and it doesn’t capture the
semantic relationships between features that the Gram matrix version does.

F Supplementary Comparison with BNNs on Image Classification task

We supplement the comparison with related methods in the BNN domain on the image classification
task. The experimental results are summarized in the Table 10. These results demonstrate that S2NN
performs competitively against existing BNN methods on static datasets. Specifically, when compared
to the sub-bit neural network [23] that also operates with weights below 1-bit, S2NN achieves notable
accuracy improvements of 5%-6% on CIFAR-10 and 6%-9% on ImageNet-1K. Notably, S2NN
outperforms the sub-bit neural network, even when the latter employs 32-bit activations. Furthermore,
when compared to conventional BNNs with 1-bit weights, S2NN shows superior performance on
CIFAR-10 using sub-1-bit weights, while maintaining competitive accuracy with state-of-the-art
methods on ImageNet-1K. These comprehensive results, along with those presented in Table 1,
decisively validate the effectiveness of S2NN.

G Performance Improvement Analysis about OS-Quant and MPFD

OS-Quant improves performance in three ways:

• Observing the codeword selection bias, which is the quantization error that typically
causes performance degradation. Addressing it will yield accuracy improvements.

• Using IQR for outliers detection, which remains reliable even with limited data and isn’t
influenced by extreme values.

• Implementing spatially-aware scaling, which effectively eliminates outlier interference
while preserving crucial kernel spatial features for proper codeword selection.

MPFD improves performance by applying distillation at the membrane potential level, enabling more
precise optimization than firing rate-based distillation.

H Model Compression & Acceleration

Compression We explain in detail how S2NN achieves sub-1-bit model compression. For simplicity,
we analyze the parameter storage of a single layer in the model. Consider a layer with cout×cin×kw×
kh parameters. As shown in the ‘kernel storage’ on the left side of Figure 5, standard BSNN requires
1 bit to store each weight parameter, resulting in a total storage requirement of cout × cin × kw × kh
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Table 10: Supplementary comparison with related BNN methods on the image classification task.
Dataset Method Arcitecture Sub-bit Weight Bit Activity Bit Accuracy (%)

CIFAR-10

IR-Net [28] [CVPR20] Res18 % 1 32 92.9

SNN [23] [ICCV2021]

Res18 " 0.67 32 92.7
Res18 " 0.56 32 92.3
Res18 " 0.44 32 91.9

IR-Net [28] [CVPR20] Res18 % 1 1 91.5

SNN [23] [ICCV21]

Res18 " 0.67 1 91.0
Res18 " 0.56 1 90.6
Res18 " 0.44 1 90.1

ProxConnect++ [64] [NeurIPS23] Res20 " 1 1 90.2
A&B[65] [CVPR24] ReAct18 % 1 1 92.3

S2NN Res19 " 0.67 1 96.43
S2NN Res19 " 0.56 1 96.36
S2NN Res19 " 0.44 1 95.99

ImageNet-1K

IR-Net [28] [CVPR20] Res34 % 1 32 70.4

SNN [23] [ICCV21]

Res34 " 0.67 32 68.0
Res34 " 0.56 32 66.9
Res34 " 0.44 32 65.1

Bi-Real [27] [IJCV20] Res34 % 1 1 62.2
IR-Net [28] [CVPR20] Res34 % 1 1 62.9

SNN [23] [ICCV21]

Res34 " 0.67 1 61.4
Res34 " 0.56 1 60.2
Res34 " 0.44 1 58.6

BiBert [66] [ICLR22] Swin-T % 1 1 68.3
BinaryViT [67] [CVPR23W] ViT % 1 1 67.7

ProxConnect++ [64] [NeurIPS23] ViT-B % 1 1 66.3
A&B[65] [CVPR24] ReActA % 1 1 66.9

S2NN SDT3 " 0.67 1 68.02
S2NN SDT3 " 0.56 1 67.43
S2NN SDT3 " 0.44 1 67.00

bits per layer. In contrast, S2NN requires fewer than cout × cin × kw × kh bits to achieve more
efficient storage. Specifically, as described in Section 3, S2NN performs forward propagation using a
compact codebook P rather than a full codebook. This allows S2NN to achieve compression below
1-bit by storing two components: (1) the indices of each kernel parameter in P, and (2) the mapping
relationship between indices and weights. For the first component, S2NN needs to store the indices
of each kernel parameter in the compact codebook, with a total number of cout × cin kernels (also
indices). Since the compact codebook contains 2η binary codewords, the indices range from 1 to 2η ,
requiring η bits per index. Therefore, representing the indices for this layer’s parameters requires
cin × cout × η bits. For the second component, S2NN involves storing the compact codebook P,
which contains 2η elements, and each element is a kw × kh binary kernel. Thus, storing P requires
2η × kw × kh bits. Therefore, the total storage requirement for S2NN is ci × co × η + 2η × kw × kh
bits. Compared to BSNN, S2NN achieves a compression ratio of cout×cin×η+2η×kw×kh

cout×cin×kw×kh
. Given that

η < kw × kh, this ratio approximates to η
kw×kh

.

Acceleration In addition to model compression, we also discuss the hardware-friendly charac-
teristics of S2NN. Benefiting from the advantages of model compression above, the hardware
implementation of S2NN is theoretically more efficient than that of the standard BSNN. Specifically,
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Figure 5: Comparison of compression and acceleration between standard BSNN and our S2NN
during the convolution process.

the weight transmission volume in each layer of S2NN are significantly lower than those of BSNN,
resulting in a substantial reduction in data movement between on-chip and off-chip. This reduction
yields three key improvements in hardware efficiency: first, it significantly lowers data transmission
latency between on-chip and off-chip, thereby accelerating the inference process; second, it reduces
the demand for on-chip storage, minimizing memory overhead. When η is set to 4, the on-chip storage
requirement can be saved by approximately 5

9 compared to the standard BSNN; third, it decreases the
number of off-chip memory accesses, which can lower energy consumption. Between on-chip and
off-chip data movement is typically one of the most power-hungry operations [68]. By maximizing
the reuse of weights in P, the movement of data between on-chip and off-chip is minimized, leading
to a more energy-efficient design. The outstanding features demonstrated by S2NN may inspire and
drive algorithm-driven chip design, while simultaneously reducing the algorithm exploration costs
required prior to hardware design.

I Hardware Validation

We compare S2NN and BSNN on an FPGA to quantify S2NN’s advantages. Experimental Settings:

• Platform: Xilinx Vivado 2021.2

• Simulation Platform: Modelsim

• Clock Frequency: 100MHz

• AXI Bit Width: 32 bits

• Model: SCNN: 32×32-64c3-128c3-128c3-256c3-256c3-256c3-10, T=8, η=5

We measure S2NN and BSNN’s per-layer data access and latency between on-chip and off-chip
memory. As shown in Tab. 11, despite additional indices, S2NN achieves lower data access due to
sub-bit compression (columns 2-3), and also reduces on/off-chip transmission latency (columns 4-5).
Compared to FPSNN, S2NN’s advantages are even more obvious. We also present the Modelsim
simulation results for the 5th layer in Fig 6, showing data access and access latency for S2NN and
BSNN. Notably, the benefits of sub-bit weight transmission are significant relative to the codebook
overhead. As per [69], off-chip DRAM access requires 128× more energy than on-chip SRAM
access and 6400× more than integer addition. Compared to BSNN, S2NN reduces DRAM access by
3.6× (Columns 2-3), thereby leading to highly significant energy savings benefits.
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Figure 6: Modelsim simulation results for the 5th layer, including data access and access latency for
S2NN (top) and BSNN (bottom).

Table 11: Hardware validation of S2NN and BSNN.
Data Access Access Latency (µs)

S2NN BSNN S2NN BSNN

Layer1 5138 18432 61.32 194.14
Layer2 10258 36864 122.44 388.38
Layer3 20498 73728 244.68 776.86
Layer4 40978 147456 489.17 1553.82
Layer5 81938 294912 978.12 3107.74
Layer6 81938 294912 978.12 3107.74

J Energy Consumption Calculation

We use the standard SNN energy calculation [70]: Etotal = EMAC · FLOPs1conv + EAC ·
(
∑N

n=2 SOPsN +
∑M

m=1 SOPsM ), where both SOPs = fr · T · FLOPs and EAC are bit-width
dependent. Most SNN research uses 45nm technology for energy calculations. After investigation,
binary weights reduce SOPs to 1/64 of fp32 values[71], but the literature lacks EAC for binary
operations at 45nm. For fair comparison with existing work, we use fp32-based EAC at 45nm (0.9pJ).
As a result, our actual energy is lower than reported.

K Experiment Details

K.1 Image Classification

Dataset CIFAR-10 [72] is a widely used computer vision dataset that contains 10 categories, with
6,000 32×32 pixel color images per category, totaling 60,000 images. CIFAR-100 [72] maintains
identical image dimensions and total count, containing 100 fine-grained categories grouped into 20
superclasses. ImageNet-1K [73] is a large-scale visual database comprising over 1.2 million training
images and 50,000 validation images across 1,000 object categories. Its extensive category coverage
and image diversity have established ImageNet-1K as a pivotal benchmark dataset in deep learning
and computer vision research. DVS-CIFAR10 [74] consists of 10,000 event streams generated by
converting the original CIFAR-10 images using an event-based sensor with a resolution of 128×128
pixels. The dataset preserves the original 10 categorization structure. These datasets hold substantial
importance within machine learning and neuromorphic computing, serving as standard benchmarks
for evaluating diverse methodologies.

Setup We conduct three experiments across all datasets. For convolutional layers with kernel size
greater than 1, we set the cardinality of the compact codebook P to 16, 32, and 64, corresponding
to parameter η values of 4, 5, and 6, respectively. Noteworthy, our S2NN method can also be
extended to convolutions with a kernel size of 1. Since 1×1 convolutions already have relatively low
computational complexity and parameter count, we do not apply further compression to these kernels.
In our experiments, we employ the Spike-driven Transformer v3 model with 19M parameters, which
uses a time step of 1 during training and 4 during inference. For the CIFAR-10 and CIFAR-100
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datasets, we adopt MS-ResNet with a time step of 6, following prior work [75, 49]. In contrast,
Q-SNN and BitSNN use SpikingResNet, which typically uses fewer time steps, such as 2 or 4. We
employ MS-ResNet due to its advanced membrane potential-based residual connections. Additionally,
we supplement experiments with SpikingResNet, achieving 95.56% accuracy on CIFAR-10 and
78.51% on CIFAR-100 with a bit-width of 0.44 and time step 2. In our experiments, we employ the
full-precision counterpart as the teacher model. The detailed hyperparameter settings are provided in
Table 12.

Table 12: Hyper-parameters for image classification.

Hyper-parameter ImageNet-1K CIFAR-10 CIFAR-100 DVS-CIFAR10

Timestep 1×4 6 6 10
Epochs 200 250 250 300

Resolution 224×224 32×32 32×32 48×48
Batch size 1024 128 128 32
Optimizer Adam Adam Adam Adam

Weight decay 0 0 0 0
Initial learning rate 6e-4 5e-4 5e-4 5e-4
Learning rate decay Cosine Cosine Cosine Cosine

Warmup epochs 10 None None None
Label smoothing 0.1 None None None

K.2 Object Detection

Dataset COCO 2017 [76] is a large-scale computer vision dataset designed for multiple tasks,
including object detection, segmentation, and image captioning. The dataset consists of 118,287
training images, 5,000 validation images, and 40,670 test images. It provides multiple types of
annotations, including object detection annotations (covering 80 common object categories), instance
segmentation masks (detailing the contours of each object), and natural language annotations with
five descriptive sentences per image. COCO emphasizes contextual relationships between objects
in everyday scenes, making it a crucial benchmark for evaluating computer vision algorithms in
practical applications.

Setup In the COCO experiment, similar to previous work [53, 21], we first convert the mmdetection
codebase to the spike version and then use it for our experiments. We employ our highly compressed
S2NN as the backbone and use Mask R-CNN as the detector to obtain the final model. The backbone
is initialized with the weights of the S2NN (η = 6) pre-trained on ImageNet-1K, while the additional
layers are initialized using Xavier [77] initialization. We fine-tune the model for 30 epochs on the
COCO dataset. During fine-tuning, we resize and crop both the training and test images to 1333×800.
Additionally, we apply random horizontal flipping and resize the training images with a ratio of 0.5.
The batch size is set to 16. We use the AdamW optimizer with an initial learning rate of 1e-4, and the
learning rate decays according to a polynomial schedule with an exponent of 0.9. The results of our
method on the COCO dataset are shown in Figure 4(a).

K.3 Semantic Segmentation

Dataset ADE20K is a comprehensive semantic segmentation dataset widely used in computer
vision research. It contains over 20,000 images spanning a diverse range of indoor and outdoor
scenes, with pixel-level annotations for 150 object and stuff categories, such as person, tree, and sky.
ADE20K covers a variety of challenging environments, including urban areas, streets, buildings, and
natural landscapes, making it ideal for training models to recognize and segment complex scenes.
The dataset is particularly valuable for evaluating semantic segmentation algorithms, as it provides
detailed ground truth annotations, including both object categories and background elements.

Setup Following our object detection experiments, we convert the mmsegmentation [78] codebase
to its spike version and use it for our experiments. Similar to the object detection task experiments, we
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employ our highly compressed S2NN as the backbone for feature extraction, integrated with Semantic
FPN [79] for segmentation. In this task, we conduct three experiments using S2NN pre-trained on
ImageNet-1K with η values of 4, 5, and 6 for the backbone initialization. The newly added layers are
initialized using Xavier initialization [77]. During training, we use the AdamW optimizer with an
initial learning rate of 1× 10−4 that follows a polynomial decay schedule with an exponent of 0.9.
We train for 160K iterations with a batch size of 16, incorporating a linear warm-up period during the
first 1500 iterations. The results of our method on the ADE20K dataset are shown in Figure 4(b).

L Novelty of S2NN

S2NN is an incremental innovation based on existing research, with contributions in three key aspects.

• SNN domain. First, we pioneer introducing the sub-bit concept and realize below 1-bit
SNN models. This provides a potential solution for the deployment of SNN at edge devices
and the future development of neuromorphic hardware. Second, we provide a MPFD, which
offers more accurate gradient guidance than existing feature distillation, improving highly
compressed SNN performance.

• Model compression domain. We first identify the ‘Outlier-induced Codeword Selection
Bias’ and propose OS-Quant to address the quantization error caused by outliers, improving
accuracy and convergence.

• Comprehensive evaluation. We extensively evaluate S2NN on diverse architectures, vi-
sion, and NLP tasks, establishing a new comparative benchmark lacking in previous SNN
compression research.
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