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ABSTRACT

Machine Unlearning (MU) addresses the fundamental requirement of removing
the influence of specific data samples from trained models, a need that arises in
privacy-sensitive applications where individuals can request the deletion of their
personal information in accordance with the “right to be forgotten™ principle.
While unlearning has been actively studied in classification domains (computer
vision, language modeling, speech), its extension to regression remains underex-
plored both methodologically and theoretically. In this work, we redefine unlearn-
ing and its evaluation in regression by building on recent advances in the broader
field of MU. We propose GURU (Guided Unlearning via Residual Uncertainty),
the first distillation-based method for regression unlearning. GURU derives pre-
dictive uncertainty directly from residual errors by scaling residuals with a con-
fidence factor, thereby defining a Gaussian predictive distribution that captures
both the model’s prediction and its confidence, providing a probabilistic view of
regression outputs. This formulation enables a closed-form Kullback—Leibler di-
vergence objective between teacher models and the student. We validate GURU
on four regression datasets spanning vision and language. We show that GURU
achieves competitive performance in terms of efficacy (removal of target informa-
tion), utility (preservation of retained knowledge), and efficiency (computational
cost). In addition, we propose GRUM, a regression-aware extension of the Global
Unlearning Metric (GUM) that jointly considers all previous principles.

1 INTRODUCTION

Recent advances in privacy-preserving machine learning have drawn notable interest in Machine
Unlearning (MU), the task of removing the influence of specific training data from a learned model.
This capability has become increasingly important with the introduction of numerous data protec-
tion regulations such as the EU’s General Data Protection Regulation (GDPR) (Voigt & Von dem
Busschel [2017)), which formally grants users the “right to be forgotten” (Mantelerol [2013)). The most
straightforward way to achieve this goal would be to retrain the model from scratch after removing
all data corresponding to individuals who request deletion. However, such a strategy is typically im-
practical due to the prohibitive computational, environmental, and financial costs of training modern
large-scale models (Crawford, 2022]).

While significant progress has been made in classification settings, extending unlearning to regres-
sion tasks remains largely unexplored. In recent years, a wide range of works have been made for
classification-based unlearning applied across a variety of domains, including computer vision (Fos-
ter et al., 2024; |[Fan et al., [2023), natural language processing with large language models (LLMs)
(Maini et al.| 2024} [Liu et al.l [2024), and speech processing (Koudounas et al., 2025} |Choi et al.,
2025)). Despite these advances, all these works rely on the discrete nature of classification problems,
leveraging characteristics such as the distribution of output logits (Kurmanji et al., 2023) or the dis-
crete and finite nature of classification (Chen et al., [ 2023)). Regression problems, on the other hand,
are generally characterized by continuous, single-valued outputs. As a consequence, regression un-
learning presents distinct theoretical and practical challenges that remain insufficiently addressed
in the literature. To the best of our knowledge, only Tarun et al.| (2023) has attempted to address
this gap by proposing the first dedicated methods (Blindspot Unlearning and Gaussian Amnesiac
Learning) and metrics for general deep regression unlearning.
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Figure 1: Overview of the GURU unlearning pipeline. The good teacher (frozen original model)
guides the student on D,., while the bad teacher (input-agnostic sampler) defines targets on Dy.
Both teachers and the student produce residual-based Gaussian predictions (u, o), and the student
is optimized by minimizing the KL divergence between its distribution and the appropriate teacher.
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To address these shortcomings, we introduce GURU (Guided Unlearning via Residual Uncertainty),
the first distillation-based approach for regression unlearning. In GURU, regression outputs are
recast as probabilistic predictions by deriving predictive uncertainty directly from residual errors.
Residuals are scaled into a variance term, yielding a Gaussian distribution for each prediction that
jointly encodes its mean and confidence. Unlearning is then formulated as a teacher-student dis-
tillation problem, where the student model minimizes a closed-form Kullback-Leibler divergence
between its Gaussian predictive distribution and those provided by the two teachers.

On the evaluation side, we build on the Generalized Unlearning Metric (GUM) introduced by
Koudounas et al.|(2025) and propose GRUM, a regression-aware extension that jointly captures the
three fundamental desiderata of unlearning: efficacy (removal of target information), utility (preser-
vation of useful knowledge), and efficiency (computational cost) (Hayes et al., 2024).

We validate GURU across four regression datasets spanning vision and language, all of which con-
tain information at the individual level, thereby emulating realistic unlearning scenarios where data
deletion is legally mandated. Experimental results show that GURU establishes a new state-of-the-
art for regression unlearning, outperforming previously proposed regression methods.

In summary, our main contributions are as follows:

* We introduce GURU, the first regression unlearning method based on teacher—student dis-
tillation. GURU derives predictive uncertainty from residuals and defines a Gaussian dis-
tribution over outputs, enabling a closed KL-divergence objective.

* We propose GRUM, a regression-aware evaluation metric that extends GUM to evaluate all
crucial aspects of an unlearning method jointly.

* We conduct extensive experiments on four vision and language regression datasets contain-
ing individual-level information, demonstrating that GURU achieves competitive unlearn-
ing performance in realistic deletion scenarios.

2 BACKGROUND

Machine Unlearning. Machine Unlearning refers to the process of removing the influence of spe-
cific training samples from a machine learning model. Formally, let a training set D be partitioned
asD = D, UDy,and D, N Dy = (), where D,. is the retain set (data that should be preserved)
and Dy is the forget set (data whose influence is to be removed). In addition, we assume access to a
disjoint fest set D¢, never used during training or unlearning, to assess the generalization capabilities
of a model. Let 7 (-) denote the training algorithm applied to a dataset, and (-, Dy, D,) represent
an unlearning process applied to a model. Within MU, three reference models are defined:

M©) = T(D), MY = T(D,), M® =y (M Dy, D,),
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where M () is the original model trained on the full dataset D before any deletion request, M (9)
is the gold model obtained by training from scratch on the retain set D, only, and M) is the
unlearned model produced by an unlearning algorithm I/ applied to M (). If M) = M), we
refer to U as an exact unlearning process. Exact unlearning is only applicable to limited cases. In
general, approximate unlearning is considered to be achieved if M () ~ M(9).

Distillation-Based Unlearning. A prominent approach in the unlearning literature is the teacher-
student distillation framework (Chundawat et al.l 2023). In this case, unlearning is formulated as a
re-teaching process: a student model is trained to imitate a good teacher — a model trained on the
full dataset — for samples belonging to the retain set D,., while concurrently matching a bad teacher
on samples belonging to the forget set Dy. The bad teacher typically corresponds to a randomly

initialized network, M (")

The unlearning process is obtained by minimizing the following loss function:

L= KLM"D(2) | S(x)) + > KL(M(z) ] S(z)) 1)

€Dy €D,

The central mechanism involves minimizing a KL divergence loss: the student is encouraged to
match the output distribution of the good teacher on D,. and align with the bad teacher on D;. This
contrastive distillation approach fundamentally relies on access to meaningful output distributions
— typically logits — making it naturally suited to classification tasks with discrete label spaces. For
this reason, extending teacher-based unlearning to regression settings introduces conceptual chal-
lenges. In continuous-output models, predictions are scalar and do not naturally define a probability
distribution over classes.

Unlearning Evaluation Principles. A meaningful evaluation of unlearning methods must consider
three complementary principles: efficacy, utility, and efficiency (Hayes et al.| 2024).

Efficacy measures the degree to which Dy has been erased from the unlearned model M (W), In
other words, the unlearned model M (") is expected to produce a behavior similar to that of the
gold model M(9), on forget samples. The most widely used proxy for efficacy is the membership
inference attack (MIA) (Chen et al.l 2021} Graves et al., 2021). In the context of MU, the MIA
score is the accuracy obtained by an adversary Apa, tasked with solving a binary problem: given
access to the unlearned model’s outputs over a set of samples, the adversary should distinguish
whether a sample x belongs to the forget set Dy or to a test set D, (Avia (M (x)) — {f,t}. If
unlearning is successful, the behavior of M (*) over samples from D + should be indistinguishable
from the behavior over samples from D;. In practice, the literature usually aligns the MIA score of
the unlearned model with that of the gold model M (%), which by definition has never been exposed
to the forget set.

Utility refers to the ability of the unlearned model M (*) to preserve the knowledge of D, acquired
during training, and to maintain generalization properties on D;. In other words, while the influence
of the forget set should be removed, the model should still perform well on all data that is meant to
be retained. A central challenge here is to avoid catastrophic forgetting, the phenomenon that occurs
when the process of unlearning causes the model not only to forget the targeted data D, but also to
inadvertently lose knowledge about D,. (Jagielski et al.,2022).

Efficiency concerns the cost of unlearning relative to full retraining. The most straightforward way
to satisfy a deletion request, in fact, would be to discard the original model and train a new one from
scratch on D,.. However, this procedure is typically infeasible in practice. MU methods are expected
to achieve results comparable to the gold model, but at a fraction of the cost of full retraining.
Efficiency is thus a crucial principle: an approach that provides high efficacy and utility but demands
nearly the same resources as full retraining defeats the practical purpose of unlearning.

Together, these three principles form the foundation of unlearning evaluation: a method should for-
get effectively (efficacy), preserve useful knowledge (utility), and do so at a reduced cost (efficiency).
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Figure 2: Toy example illustrating a possible MIA evaluation after unlearning. Forget samples (red)
remain separable from test samples despite being classified as test by the old MIA boundary (dashed
line). The new MIA boundary (solid line) correctly captures this separation.

3 RELATED WORKS

MU in regression tasks. Compared to classification, MU in regression tasks remains largely un-
derexplored. To the best of our knowledge, the only general study to date, Tarun et al.| (2023),
introduced two methods: Blindspot Unlearning, which leverages a partially trained model to guide
the forgetting process, and Gaussian Amnesiac Learning, which randomizes targets sampled from a
Gaussian distribution intended to mimic the behavior of the full training set. Within that study, the
authors used two baseline unlearning methods borrowed from classification to test their methods:
Finetuning, where the model is updated only on the retain set to mitigate the effect of the forget
set, and NegGrad, which applies stochastic gradient ascent to the forget set to erase its influence.
However, the evaluation protocol used in that work presents structural limitations when considered
in light of recent advances in unlearning. Beyond this work, domain-specific studies in areas such as
load forecasting (Xu & Tengl2024) and recommender systems (Liu et al.,[2022) have highlighted the
importance of unlearning for regression tasks. These efforts, although shaped for particular applica-
tions, underscore the need for systematic and generalizable approaches to regression unlearning.

Evaluation in regression unlearning. In classification, MIA typically exploits the distribution of
output logits (Hayes et al.,[2024). Regression models, however, only produce a single continuous
value; therefore, this strategy is not very informative. To overcome this, [Tarun et al. (2023) feed
richer features into a support vector classifier, including the model’s prediction, penultimate-layer
gradients, and hidden activations. By augmenting the input in this way, they provide the attacker
with sufficient information to compensate for the lack of logits, making the attack effective in regres-
sion. Their evaluation, however, has a fundamental limitation. They train the attacker to distinguish
between D, and D; and then apply it to Dy, assuming that predicting it as “test-like” proves suc-
cessful unlearning. In practice, this setup never directly compares forget samples to the actual test
distribution. Instead, it only ensures that Dy is not similar to D,., which can mask cases of over-
unlearning (Shi et al.,[2024)). In such cases, the model may superficially label forget samples as test
while still clustering them far from the actual D,. Figure 2] shows exactly this failure: the dashed
MIA boundary misclassifies almost all Dy as test, although they remain separable from D;.

GUM. While a wide range of works report results on isolated aspects of the three dimensions of
unlearning, the only unified metric that jointly considers all three is the Global Unlearning Metric
(GUM) (Koudounas et al., |2025). First, a normalized score is defined for each desideratum:

I] u o 2
EF=1 (ml {w(u),w(o)} - min{("’(g)v H;()}> 2)
_ 3 w () 4(0)
w(@) rnln{w(g)7 )f}
U= log o) +1
1 ’1/}(9) w(u)|, T - ( ) (3)

~ log(0@ + 1)

Here, w, 1, and 0 denote generic measures of efficacy (F), utility (U), and efficiency (T), respec-
tively. The superscripts specify the model variant used to compute the score: (o) refers to the origi-
nal model, (g) to the gold model, and (u) to the unlearned model. The formulation is intentionally
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abstract: in principle, any appropriate task-specific score can be used to instantiate these quantities.

In the original GUM paper for classification, ¢ was instantiated as the macro-F1 score on the test

set, w as the MIA accuracy between Dy and D, and 0 as the runtime of the method. Finally, the

three components are aggregated into a single measure through a weighted harmonic mean:
(1+a+B)UET

oFET +BUT +UE

where a and (8 are hyperparameters, commonly set to 1 to balance all three dimensions equally.

GUM = 4)

4 METHODOLOGY

In this section, we introduce our two main contributions: the proposed unlearning method, GURU
(Guided Unlearning via Residual Uncertainty), and the evaluation framework with the unified eval-
uation metric, GRUM (Global Regression Unlearning Metric).

4.1 GUIDED UNLEARNING VIA RESIDUAL UNCERTAINTY

One of the main challenges in adapting teacher-student unlearning to regression lies in the absence
of a natural probability distribution over outputs, unlike in classification, where logits define such
a distribution. To overcome this problem, we design GURU around a residual-driven estimation of
the uncertainty of the model, enabling a closed-form KL divergence objective.

Teachers, student, and target definition. We employ a dual-teacher setup to guide the distillation
process of the student model (i.e., the model undergoing unlearning). More specifically, we include
(1) a good teacher, i.e. the frozen original model trained on the full dataset, providing predictions
M (")(z) for samples in the retain set; and (ii) a bad teacher, providing stochastic, input-agnostic
predictions 45 ~ N (y, af), where y, and o, summarize the target distribution of samples in the
retain set D,.). In other words, the good teacher provides accurate predictions for samples that need
to be preserved, the bad teacher provides poor predictions for samples that need to be forgotten. Let
&(z) € {0,1} be an indicator function of whether a sample should be forgotten ({=1) or retained
(€=0). The teacher’s predicted mean value for a sample x is defined as:

gi(z) = @) gp + (1— &) MO (a). (5)

Throughout the unlearning process, we define as ¢, = M (%) (x) the prediction of the student model,
(i.e., the model undergoing unlearning).

Residual-based uncertainty. We make an assumption on the normality of the distributions of the
student’s and teachers’ outcomes. Since the predicted values are indeed available, we use those as the
means of the corresponding distributions. To estimate the uncertainty of the models’ distributions,
we use the residual between the prediction g (either from the student, or the teacher) and the ground
truth value y. The corresponding standard deviation is obtained as:

Sy, 9) = @ (©)

where z = &~ (1£<) corresponds to a desired confidence level ¢ (e.g., ¢ = 0.95 yields z ~ 1.96).
With this definition, the standard deviation obtained is the one that ensures that the ground truth y
lies at the boundary of a c-confidence interval around the prediction g. This construction ensures
that predictions closer to the ground truth are associated with small-variance Gaussian distributions,
whereas inaccurate predictions have larger variance. Teacher and student standard deviations are
estimated according to their respective residuals: o4 (z) = X(y, §:) and o5(z) = X(y, Js)-

Figure |3 illustrates this mechanism: for three different scenarios, the residual-driven construction
produces Gaussian distributions of varying width around teacher and student predictions. The result-
ing KL divergence values (shown in the titles) quantify the discrepancy between the two predictive
distributions. We note that we can only compute uncertainties in this way for training samples, for
which the ground truth value is known. However, since the unlearning process only involves D,. and
Dy data (which, together, constitute the training set), the assumption of availability of the targets
holds by construction.
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Figure 3: Residual-based uncertainty illustrated across three cases. Teacher (green) and student
(orange) distributions are derived from their residuals with respect to the true target (black dashed
line). The mean of each Gaussian corresponds to the model output i, while & is computed directly
from the residual according to Eq.[6] The KL divergence values quantify the discrepancy between
the predictive distributions, serving as the loss minimized during training.

KL objective and training loss. The distributions for the teacher, p;(y | ) = N (9, 02(x)) and
the student, ¢s(y | ) = N (§s,02(z)), are now available. Based on the assumption of normality
of the distributions, the Kullback-Leibler divergence KL(p; || ps) can be computed in closed-form.
With the goal of aligning the student with the teacher, the loss of interest can be defined (with
dependencies on x, y removed for ease of notation) as:

g o2 (Qt —QS)Q
L = log—2 4+ —t 4 x> 9% 1 7
KL(Ivy) 0og oy + 20_3 + 20_3 2 (7N

With the exception of the constant term —% that can be ignored during the optimization process, this
loss combines mean alignment and uncertainty calibration into a single closed-form objective. The
quadratic term (¢j; — 95)? /202 penalizes deviations in the means, with stronger penalties when the
student is confident (small o).

Figure [3] illustrates how this behavior supports the desiderata of unlearning. When teacher and stu-
dent produce similar predictions and comparable uncertainties (left plot), the resulting Gaussians
overlap, and the KL is close to zero, indicating that the student is already aligned. When the teacher
is certain and the student not (center plot), the loss increases moderately and pulls the student closer
to the teacher, improving accuracy while still tolerating uncertainty (utility). Finally, when the stu-
dent is confident but the teacher is not (right plot, a typical case of forget samples), the quadratic
penalty dominates and the KL is high; optimization pushes the student to follow the input-agnostic
teacher distribution, thereby enforcing efficacy. Overall, the procedure operates as a lightweight
distillation requiring only a standard training loop, ensuring efficiency.

4.2 PROPOSED METRICS

MIA Adaptation for Regression. To assess efficacy, we propose a modified MIA evaluation based
on the setup proposed by [Tarun et al.[(2023). We maintain their enhancement strategy, where the
inputs to the adversary classifier are enriched with the model’s prediction, utilizing the penultimate
layer gradients and activations, which provide more information than the scalar regression output
alone. However, rather than training the classifier to distinguish between retain and forget samples,
we focus on distinguishing between forget and test samples after unlearning, as done in many liter-
ature works (Kurmanji et al.| 2023} |Choi & Na, [2023). The rationale is that a successful unlearning
method should make the forget data indistinguishable from unseen test data, ideally leading to a
classification accuracy close to that of the gold model.

GRUM. To aggregate the efficacy/utility/efficiency dimensions into a single score, we adapt the
GUM metric (Koudounas et al.l |2025) by introducing a regression-specific variant, which we refer
to as GRUM (Global Regression Unlearning Metric). We maintain the definitions of efficacy and
efficiency unchanged, but modify the utility term to adopt the regression error rather than the model’s
classification accuracy.
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Figure 4: GRUM as a function of MIA (left), MAE (center), and unlearning time (right). Solid blue
vertical lines denote the performance of the gold model, while dashed red lines indicate the MIA
accuracy of the original model (left) and the baseline MAE of the naive regressor (center).

To define a meaningful utility score (U) in the regression setting, we compare the performance of
the unlearned model to both the gold reference model and a constant baseline. Let MAE,;; be the
mean squared error of the unlearned model on the test set, MAEgqq the MAE of a model retrained

from scratch using only the retain data, and MAE®®® is the error of a naive baseline model that
always predicts the mean of the training targets.

To ensure that U is bounded and interpretable, we define a clipped version of the unlearned MAE:

MAE = min (max (MAE®, MAE®) , MAE®®?) )

This clipping guarantees that utility is not overestimated in cases where My, performs better than
Mgold (which may indicate residual information from the forget set), and is also capped by the
worst-case baseline. The utility component is then defined as:

. MAEconst — 1\//I—‘X‘fiunl
- MAEconst - MAEgold +€

U €))

where € is a small constant set for numerical stability.

This formulation ensures that U = 1 when the unlearned model matches the gold model, and U = 0
when the model performs no better than a constant predictor, as shown in Figure ] By integrating
this regression-specific utility term with efficacy (via MIA) and efficiency (via speed-up), the GRUM
metric offers a unified view of unlearning quality across all three principles.

5 EXPERIMENTS

In this section, we first describe the experimental setup, including the datasets, model architectures,
and baseline unlearning methods considered. We then present the results obtained by GURU and
compare them against competing approaches across all evaluation metrics.

5.1 EXPERIMENT SETUP

Datasets and Models. To simulate realistic unlearning scenarios — such as when a user requests
the deletion of their data — we construct dataset splits based on identity information. For each
dataset, all samples associated with a given identity are assigned entirely to either the retain, forget,
or test set, ensuring no identity overlap and preventing leakage across partitions. Formally, let
each sample be (z;,y;,id;) with id; € Z denoting its identity. We partition the identity set into
three disjoint subsets Z = Z, UIf UZ;, corresponding to retain, forget, and test identities. The
data splits are then induced as D, = {(z,y,id) : id € Z.}, Dy = {(z,y,id) : id € Z;}, and
D, = {(z,y,id) : id € Z,}, ensuring no identity overlap across partitions. The forget set is chosen
so that [D¢|/|D,| + |Dy| ~ 0.05.
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We conduct experiments on two computer vision (CV) and two natural language processing (NLP)
datasets:

* AgeDB (Moschoglou et al.,2017): A curated dataset containing 16,488 face images of 568
celebrities, each annotated with the subject’s age.

* IMDB (Rothe et al., 2015): A large-scale dataset composed of 460,723 face images col-
lected from actor profiles on IMDB, covering 20,284 unique identities. The dataset is the
IMDB subset extracted from the original IMDB-WIKI dataset.

* IMDB Reviews (Maas et al.l [2011): This dataset contains 50,000 movie reviews labeled
with sentiment scores. Each review is associated with one of 7,037 films, which we treat
as identity labels for unlearning purposes. The task is to predict the sentiment score from
the review text.

. Scopusﬂ We collected a dataset of titles, abstracts and number of citations for articles
published by various authors, in 10 different areas of research, using the Scopus search
engine. We collected a total of 200 authors (20 per research field), each having between 25
and 100 published articles (60 on average). We frame a regression task by predicting the
number of citations received by a given article, based on their title and abstract.

For the CV datasets, we use a ResNet-18 (He et al., 2015) backbone trained for 20 epochs with a
learning rate of 10~—%. For the NLP ones, we fine-tuned a BERT-based (Devlinl, 2018)) model for 20
epochs using a learning rate of 2 - 1075,

Baseline Methods. We evaluate GURU against five unlearning approaches adapted to the regression
setting and already proposed by [Tarun et al.|(2023)):

* Fine-tuning (FT): The model continues training on the retain set only, starting from the
original weights. By updating model weights baed on retain data, the influence of the forget
set is reduced.

* NegGrad (NG) (Golatkar et al.,[2020): A method that updates the model by applying the
inverse of the gradient computed on the forget set. In this way, the effect of the target
samples on the model’s behavior is partially reversed. However, this approach often breaks
the model after a limited number of updates.

* Gaussian Amnesiac Learning (GAL) (Tarun et al., [2023)): Inspired by label randomiza-
tion in classification|Golatkar et al.[(2020), this method replaces the true labels of the forget
set with samples from a Gaussian distribution fitted to the full training label distribution.
The model is then finetuned on the retain set combined with the mislabeled forget data.

 Blindspot Unlearning (BU) (Tarun et al., [2023): This method uses an additional model
(the blindspot model), which is trained only on the retain set for a few epochs. Unlearning
is performed by optimizing the original model with a composite loss that includes: (i) a
standard regression loss on the retain set, (ii) an alignment term that pushes the model’s
outputs on the forget set to resemble those of the blindspot model, and (iii) a regularization
term that minimizes the distance between intermediate activations of the two models on the
forget samples.

All baselines are implemented using the same model architecture and data splits as GURU. Hyper-
parameters are tuned independently for each method to ensure a fair comparison and are reported in
the Appendix @ .

5.2 RESULTS

Tables E] and E] report results on AgeDB, IMDB, IMDB Reviews, and Scopus. For each dataset,
we evaluate utility (MAE), efficacy (MIA), and efficiency (speedup over retraining), along with the
unified GRUM score. It is important to note that for both MAE and MIA, an optimal outcome is one
that is closest to the gold model, rather than the lowest absolute value. To perform this comparison,
we also compute the gold (retrained) model.

!The public link to the HuggingFace dataset was redacted in compliance with the double-blind policy
2The code for our experiments is available at https://anonymous.4open.science/r/GURU.
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Table 1: Comparison of unlearning methods on the computer vision datasets AgeDB and IMDB.
Best results are shown in bold, and second-best are underlined. For MAE and MIA, the best
results are those closest to the Retrained model.

Method | AgeDB | IMDB
| LR MAEr MAEr MIA Speedup? GRUM? | LR MAEr MAEr MIA Speedup? GRUM 1

Orig. - 7703 2601 0732 1.000x 0.000 - 2056 0829 0631  1.000x 0.000
Retr. - 7272 6773 0658  1.000X 0.000 - 2112 2114 0560  1.000x 0.000
FT | le05 7.380 2041 0730  12.86x 0074 | le04 2060 0792 0632  14.70x 0.000
NG | 1e05 10377 7380 0712  200.0x 0456 | le-04 2424 2526 0523  2952x 0.000
GAL | 1e-03 7284 1864 0733  13.6l1x 0000 | 1e05 2002 0848 0631  15.35x 0.000
BU | 1e03 9618 9487 0607  7.002x 0387 | le04 330 3085 0569  8.112x 0.424
GURU | le04 7.387 6639 0.646  7.662x 0580 | le04 3760 3459 0554  7.499x 0.397

Table 2: Comparison of unlearning methods on the natural language process datasets IMDB Re-
views and Scopus. Best results are shown in bold, and second-best are underlined. For MAE and
MIA, the best results are those closest to the Retrained model.

Method \ IMDB Reviews \ Scopus
‘ LR MAEr MAEr MIA Speedupt GRUM T ‘ LR MAEr MAEr MIA Speedupt GRUM 1

Orig. - 0.942 0.251 0.697 1.000x 0.000 - 41.00 10.12 0.817 1.000x 0.000
Retr. 0.962 1.037 0.560 1.000x 0.000 - 45.11 36.33 0.786 1.000x 0.000
FT 1e-03 0.933 0.183 0.696 20.41x 0.021 le-05 40.31 9.990 0.817 19.57x 0.000
NG le-06 1.102 0.627 0.690 414.3x 0.135 le-05 74.94 70.04 0.807 494.0x 0.000
GAL le-03 0.983 0.272 0.692 19.34x 0.095 le-05 40.12 10.00 0.817 18.87x 0.000
BU le-04 1.116 0.951 0.563 7.688 x 0.450 le-04 74.02 70.51 0.749 7.786x 0.000
GURU ‘ le-04 1.178 0.889 0.573 14.00x 0.523 ‘ 1le-05 44.16 14.93 0.809 13.40% 0.371

On all datasets, GURU consistently achieves results comparable to the gold model across both MAE
and MTIA, while maintaining competitive efficiency.

It should be pointed out that some specific techniques occasionally achieves better performance
w.r.t. GURU according to specific metrics: for instance, NG is consistently faster than GURU (and
all other techniques). However, as is well known in the literature (Choi et al.| (2024), NegGrad sig-
nificantly compromises the utility of the model (high MAE). Indeed, GRUM highlights this aspect:
only methods that successfully balance the three unlearning dimensions achieve non-zero scores.
This is highlighted, for instance, on the Scopus dataset (Table , NG, GAL and BU all incur in
“catastrophic forgetting” (Jagielski et al.,2022)) (as highlighted by the high MAE), whereas FT does
not successfully remove forget samples (since it has the same MIA as the original model). Only
GURU successfully balances all three aspects simultaneously.

Across other datasets, the same pattern emerges: some techniques cannot successfully balance the
utility/efficacy trade-off. Instead, GURU emerges as a well-rounded approach to regression unlearn-
ing, jointly optimizing efficacy and utility while maintaining competitive efficiency.

6 CONCLUSIONS

We present GURU, a novel method for regression unlearning that uses residual-based Gaussians to
represent predictive uncertainty and makes use of a closed-form KL divergence as the unlearning
objective. This approach applies unlearning as a teacher-student distillation procedure, which has
so far been applied to unlearning only in classification tasks, and not in regression. To evaluate
regression unlearning in a principled manner, we further propose GRUM, a unified metric that jointly
accounts for utility, efficacy, and efficiency of unlearning methods.

Extensive experiments across four different CV and NLP datasets show that GURU consistently
balances the three desiderata of unlearning, both when assessed on individual metrics and when
measured by the unified GRUM. Notably, some challenging datasets (e.g., Scopus) highlight how
GURU is the only method that successfully achieves effective unlearning without incurring in catas-
trophic forgetting.



Under review as a conference paper at ICLR 2026

REFERENCES

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang.
When machine unlearning jeopardizes privacy. In Proceedings of the 2021 ACM SIGSAC confer-
ence on computer and communications security, pp. 896-911, 2021.

Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning: Rapid
forgetting of deep networks via shifting the decision boundary. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7766-7775, 2023.

Dasol Choi and Dongbin Na. Towards machine unlearning benchmarks: Forgetting the personal
identities in facial recognition systems. arXiv preprint arXiv:2311.02240, 2023.

Dasol Choi, Soora Choi, Eunsun Lee, Jinwoo Seo, and Dongbin Na. Towards efficient machine un-
learning with data augmentation: Guided loss-increasing (gli) to prevent the catastrophic model
utility drop. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 93—-102, 2024.

Woosung Choi, Junghyun Koo, Kin Wai Cheuk, Joan Serra, Marco A Martinez-Ramirez, Yukara
Ikemiya, Naoki Murata, Yuhta Takida, Wei-Hsiang Liao, and Yuki Mitsufuji. Large-scale training
data attribution for music generative models via unlearning. arXiv preprint arXiv:2506.18312,
2025.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching
induce forgetting? unlearning in deep networks using an incompetent teacher. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pp. 7210-7217, 2023.

Kate Crawford. Atlas of Al: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale
University Press, 2022.

J Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. arXiv preprint arXiv:2310.12508, 2023.

Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retraining
through selective synaptic dampening. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 38, pp. 12043-12051, 2024.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In CVPR, 2020.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 11516-11524, 2021.

Jamie Hayes, Ilia Shumailov, Eleni Triantafillou, Amr Khalifa, and Nicolas Papernot. Inexact
unlearning needs more careful evaluations to avoid a false sense of privacy. arXiv preprint
arXiv:2403.01218, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. corr abs/1512.03385 (2015), 2015.

Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine Lee, Nicholas Carlini,
Eric Wallace, Shuang Song, Abhradeep Thakurta, Nicolas Papernot, et al. Measuring forgetting
of memorized training examples. arXiv preprint arXiv:2207.00099, 2022.

Alkis Koudounas, Claudio Savelli, Flavio Giobergia, and Elena Baralis. ” alexa, can you for-
get me?” machine unlearning benchmark in spoken language understanding. arXiv preprint
arXiv:2505.15700, 2025.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
machine unlearning. Advances in neural information processing systems, 36:1957-1987, 2023.

10



Under review as a conference paper at ICLR 2026

Wenyan Liu, Juncheng Wan, Xiaoling Wang, Weinan Zhang, Dell Zhang, and Hang Li. Forgetting
fast in recommender systems. arXiv preprint arXiv:2208.06875, 2022.

Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. Machine unlearning in
generative ai: A survey. CoRR, 2024.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142-150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task
of fictitious unlearning for llms. arXiv preprint arXiv:2401.06121, 2024.

Alessandro Mantelero. The eu proposal for a general data protection regulation and the roots of the
‘right to be forgotten’. Computer Law & Security Review, 29(3):229-235, 2013.

Stylianos Moschoglou, Athanasios Papaioannou, Christos Sagonas, Jiankang Deng, Irene Kotsia,
and Stefanos Zafeiriou. Agedb: the first manually collected, in-the-wild age database. In proceed-
ings of the IEEE conference on computer vision and pattern recognition workshops, pp. 51-59,
2017.

Rasmus Rothe, Radu Timofte, and Luc Van Gool. Dex: Deep expectation of apparent age from a
single image. In Proceedings of the IEEE international conference on computer vision workshops,
pp. 10-15, 2015.

Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
Liu, Luke Zettlemoyer, Noah A Smith, and Chiyuan Zhang. Muse: Machine unlearning six-way
evaluation for language models. arXiv preprint arXiv:2407.06460, 2024.

Ayush Kumar Tarun, Vikram Singh Chundawat, Murari Mandal, and Mohan Kankanhalli. Deep
regression unlearning. In International Conference on Machine Learning, pp. 33921-33939.
PMLR, 2023.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A Practical
Guide, Ist Ed., Cham: Springer International Publishing, 10(3152676):10-5555, 2017.

Wangkun Xu and Fei Teng. Task-aware machine unlearning and its application in load forecasting.
IEEE Transactions on Power Systems, 39(6):7178-7189, 2024.

11


http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

Under review as a conference paper at ICLR 2026

A HYPERPARAMETER TUNING

This appendix reports the complete learning-rate hyperparameter tuning for all unlearning methods
across both computer vision (AgeDB, IMDB) and natural language processing (IMDB Reviews,
Scopus) datasets. These extended tables complement the main results by showing the performance
of each method under different settings. For each method and dataset, the configuration that achieves
the highest GRUM is highlighted in italics. In case of ties, the configuration with the best MITA
score is selected first, followed by the one with the best MAEr.

Table 3: Comprehensive results of unlearning methods on the datasets AgeDB and IMDB. For each
method and dataset, the best-performing learning rate configuration is reported in italics

Method LR | AgeDB | IMDB
| MAEr MAEr MIA Speedup? GRUMT | MAEr MAEr MIA Speedup? GRUM 1
Orig. - 7703 2601 0732  1.000x 0.000 2056 0829  0.631 1.000x 0.000
Retr. - 7272 6773 0.658  1.000x 0.000 2112 2114 0560  1.000x 0.000
FT  1e03 | 7.154 1665 0735  12.86x 0.000 2085 0820 0.634  1470x 0.000
FT  le04 | 7.193 1817 0732 12.86x 0.000 2060 0792 0.632  14.70x 0.000
FT  1e05 | 7380 2041 0730  12.86x 0.074 2051 0791 0632  14.70x 0.000
FT  1e06 | 7427 2162 0730  12.86x 0.074 2055 0799  0.632  14.70x 0.000
NG  1e03 | 1872 1571 0526 200.0x 0.000 2478 2557 0509  295.2x 0.000
NG  1e04 | 5823 6191 0681  200.0x 0.000 2424 2526 0523 295.2x 0.000
NG 1e05 | 1038 7380 0712  200.0x 0.456 68.82  69.99 0550  295.2x 0.000
NG  1e06 | 7.884 2950 0725  200.0x 0.233 2668 1812 0632  2952x 0.000
GAL  1e-03 | 7.284  1.864 0733  13.61x 0.000 2105 0950 0.633 15.35x 0.000
GAL  le-04 | 7.337 1944 0734  13.61x 0.000 2067 0810 0632  1535x 0.000
GAL  1e-05 | 7456  2.167 0734  13.61x 0.000 2092 0848 0631  1535x 0.000
GAL  le-06 | 7467 2223 0734  13.61x 0.000 2079 0827 0632  1535x 0.000
BU  1e03 | 9618 9487 0607  7.002x 0.387 4118 4210 0539  8.112x 0.374
BU  le04 | 7398 6030 0719  7.002x 0.306 3130 3085 0569  8.112x 0.424
BU  1e05| 7.028 1606 0723  7.002x 0.244 1956 0707  0.626  8.112x 0.152
BU  1le06 | 7.068 1587 0736  7.002x 0.000 1999 0718  0.636  8.112x 0.000
GURU 1e-03 | 10245 8893 0611  7.662x 0.410 5128  5.114 0534  7.499x 0.286
GURU 1e-04 | 7387 6639 0646  7.662x 0.580 3760 3459 0554  7.499x 0.397
GURU 1e05 | 7487 3176 0704  7.662x 0.452 2068 0911 0626  7.499x 0.150
GURU 1e06 | 7.555 2425 0722  7.662x 0.263 2059 0842  0.632  7.499x 0.000

Table 4: Full results of unlearning methods on the datasets IMDB Reviews and Scopus. For each
method, the best-performing learning rate configuration is reported in italics.

Method LR | IMDB Reviews | Scopus
| MAEr MAEr MIA Speedup] GRUM{T | MAEr MAEr MIA Speedupt GRUM 1

Orig. - 0.942 0.251 0.697 1.000x 0.000 41.00 10.12 0.817 1.000x 0.000
Retr. - 0.962 1.037 0.560 1.000x 0.000 45.11 36.33 0.786 1.000x 0.000
FT 1e-03 0.933 0.183 0.696 20.41x 0.021 40.58 9.298 0.821 19.57x 0.000
FT le-04 0.938 0.201 0.700 20.41x 0.000 39.46 10.12 0.821 19.57x 0.000
FT le-05 0.939 0.230 0.697 20.41x 0.000 40.31 9.990 0.817 19.57x 0.000
FT le-06 0.941 0.248 0.698 20.41x 0.000 4091 10.09 0.817 19.57x 0.000
NG le-03 102.7 102.8 0.519 414.3x 0.000 1652 1644 0.674 494.0x 0.000
NG le-04 38.88 38.93 0.557 414.3x 0.000 1157 1149 0.869 494.0x 0.000
NG le-05 19.25 19.30 0.628 414.3x 0.000 74.94 70.04 0.807 494.0x 0.000
NG le-06 1.102 0.627 0.690 414.3x 0.135 42.02 12.21 0.817 494.0x 0.000
GAL le-03 0.983 0.272 0.692 19.34x 0.095 40.52 10.07 0.819 18.87x 0.000
GAL le-04 0.980 0.259 0.698 19.34x 0.000 38.87 10.62 0.823 18.87x 0.000
GAL le-05 0.944 0.217 0.697 19.34x 0.000 40.12 10.00 0.817 18.87x 0.000
GAL 1e-06 0.941 0.245 0.698 19.34x 0.000 40.89 10.08 0.817 18.87x 0.000
BU le-03 3.283 3.279 0.508 7.688 % 0.004 38.22 28.97 0.564 7.786% 0.000
BU le-04 1.116 0.951 0.563 7.688x 0.450 74.02 70.51 0.749 7.786 x 0.000
BU le-05 0.923 0.218 0.674 7.688 % 0.260 40.17 10.47 0.819 7.786x 0.000
BU le-06 0.924 0.213 0.698 7.688 % 0.000 40.71 9.213 0.819 7.786x 0.000
GURU  1e-03 3.286 3.290 0.481 14.00x 0.000 1194 113.4 0.591 13.40x 0.000
GURU  le-04 1.178 0.889 0.573 14.00x 0.523 83.69 76.60 0.784 13.40x 0.000
GURU  1e-05 0.992 0.330 0.673 14.00x 0.293 44.16 14.93 0.809 13.40x 0.371
GURU  1e-06 0.944 0.238 0.696 14.00x 0.021 41.69 9.981 0.817 13.40x 0.000

12



Under review as a conference paper at ICLR 2026

LLM USAGE DISCLOSURE

During the preparation of this work, the authors used LLMs to correct typos and grammatical mis-
takes. After using this tool/service, the authors reviewed and edited the content as needed and take
full responsibility for the content of the published article.
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