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Abstract
This work presents a systematic investigation into
the trustworthiness of explanations generated by
self-interpretable graph neural networks (GNNs),
revealing why models trained with different ran-
dom seeds yield inconsistent explanations. We
identify redundancy—resulting from weak con-
ciseness constraints—as the root cause of both
explanation inconsistency and its associated inac-
curacy, ultimately hindering user trust and limit-
ing GNN deployment in high-stakes applications.
Our analysis demonstrates that redundancy is dif-
ficult to eliminate; however, a simple ensemble
strategy can mitigate its detrimental effects. We
validate our findings through extensive experi-
ments across diverse datasets, model architectures,
and self-interpretable GNN frameworks, provid-
ing a benchmark to guide future research on ad-
dressing redundancy and advancing GNN deploy-
ment in critical domains. Our code is available
at https://github.com/ICDM-UESTC/
TrustworthyExplanation.

1. Introduction
Graph neural networks (GNNs) have emerged as a powerful
paradigm for learning representations on graph-structured
data, serving a plethora of applications from social network
analysis (Wu et al., 2022a) to molecular structure identifi-
cation (Wang et al., 2022). However, notwithstanding their
remarkable success, the inner workings of GNNs remain
largely inscrutable. This, in turn, presents a significant bar-
rier to their widespread adoption, especially in high-stakes
domains (e.g., healthcare (Pfeifer et al., 2022), molecular
dynamics (Quesado et al., 2024), finance (Rajput & Singh,
2022) and cybersecurity (Warmsley et al., 2022)) where
explainability is not an option but a stringent requirement.
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Figure 1: Illustration of explanation inconsistency of models
for molecular structure detection and impactful components.
Darker colors indicate higher weights.

As a result, a variety of GNN explanation methods have been
developed in recent years. Some researchers focus on post-
hoc methods, which interpret pre-trained GNNs using auxil-
iary models (Ying et al., 2019; Luo et al., 2020) or tailored
strategies (Yuan et al., 2021; Chen et al., 2024b). While
flexible and broadly applicable, these methods are sensitive
to model initialization (Miao et al., 2022) and are affected
by distribution shift (Hooker et al., 2019; Zhang et al., 2023)
and, some researchers argue, may not accurately represent
the true decision-making logic of the target GNN (Rudin,
2019; Ragodos et al., 2024). Such challenges have spurred a
growing interest in self-interpretable GNNs (Lin et al., 2020;
Dai & Wang, 2021; Miao et al., 2022; Sui et al., 2022; Deng
& Shen, 2024) which, by design, jointly learn explanations
and predictions.

Given the critical need for explainability in high-stakes ap-
plications, self-interpretable GNNs appear to offer a com-
pelling solution. But do they truly live up to expectations?
Motivated by experiments from (Ying et al., 2019; Zhao
et al., 2023b), Figure 1 shows an example from our experi-
ments from the domain of molecular chemistry. The left and
middle portions illustrate the outcome of two runs of models
trained in different random seeds aiming to detect benzene
rings. Although both have same predictive accuracy (100%
accuracy in detecting benzene rings), they show inconsistent
explanations. Worse still, “Run 1” assigns higher weights
(0.997–0.998) to an irrelevant three-membered ring as op-
posed to the benzene ring (0.991). Such inconsistencies and
explanation-inaccuracies can yield misleading interpreta-
tions that can have dire ramifications on decision-making
and affect users’ trust in the practical applicability of self-
interpretable GNNs.

Through systematic investigation, we identify Redundancy
as the underlying cause: self-interpretable GNNs success-
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fully identify those key features but also overemphasize
some irrelevant ones. We argue that hyperparameters used
to enforce explanation conciseness are set overly relaxed,
granting the model excessive flexibility to retain irrelevant
features, thus weakening the trustworthiness of GNN ex-
planations. Through theoretical analysis and experiments,
we show that redundancy is inherently difficult to eliminate.
Existing techniques (Madhyastha & Jain, 2019; Zhao et al.,
2023a; Deng & Shen, 2024), despite promising results in
other related fields, fail to address this challenge.

While a complete solution to eliminating redundancy re-
mains an open challenge, we find that a simple, tuning-free
strategy—Explanation Ensemble (EE)—can significantly
mitigate its adverse effects. By aggregating explanations
from multiple independently trained models, EE retains
the signal of truly relevant features while suppressing the
noise from irrelevant ones, leading to more consistent and
accurate explanations. Extensive experiments across diverse
datasets, model architectures, and self-interpretable GNN
frameworks validate the effectiveness of EE.

In sum, we present a systematic investigation into the trust-
worthiness of explanations generated by self-interpretable
GNNs. Our central contribution is identifying redundancy
as a fundamental cause of explanation inconsistency and
inaccuracy. To address this, we introduce EE as both a prac-
tical mitigation strategy and a benchmark for future research.
We hope our findings will encourage the development of
more principled, theoretically grounded approaches, paving
the way for the safe and effective deployment of GNNs in
high-stakes applications.

2. Preliminaries
We begin by formally defining graphs and GNNs. Following
this, we define self-interpretable GNNs and classify existing
methods into four types based on their design principles.

2.1. Basic Definitions

Graph. A graph G is a quadruplet (V, E ,X,A), where
V = {v1, v2, . . . , vN} is the set of nodes, E ⊆ V × V is
the set of edges, X ∈ RN×d is the feature matrix where
each row represents the feature vector of a node, and A ∈
{0, 1}N×N is the adjacency matrix, where Aij = 1 if there
is an edge between nodes vi and vj , and 0 otherwise.

Graph Neural Network (GNN). GNN (Scarselli et al.,
2008) is a type of a neural network designed to operate on
graph-structured data, making it particularly well-suited for
tasks where understanding relationships between entities is
crucial. Taking the graph classification task as an example,
we structure the GNN as a combination of two modules:
f = hŶ ◦ hZ . In this context, the module hZ (G 7→ Rd)
learns the graph representation, while hŶ (Rd 7→ R) gener-

ates the prediction Ŷ to approximate Y .

Self-Interpretable GNNs. To enhance the interpretability
of GNNs, current explanation methods aim to illuminate the
model’s decision-making process by identifying a concise
yet crucial set of features within the graph. Therefore, a self-
interpretable GNN can be represented as f = hŶ ◦hZ ◦hGs ,
and the optimization objective is formalized as:

max
Gs⊆G,|Gs|≤K

I(Gs;Y ) (1)

where G, Gs, and Y represent the graph, its subset, and
the graph label, respectively. The goal is to maximize the
mutual information (MI) between the graph subset and the
label while controlling the size (K) of the subset. Along the
lines of prevalent graph explanation efforts (Amara et al.,
2022; Chen et al., 2023), we focus on the contribution of
the structural features, namely the edges.

2.2. Taxonomy of Self-Interpretable GNNs

We classify existing self-interpretable GNNs into four types
based on their design principles.

Type I (Attention). The attention mechanism, introduced
in Vaswani et al. (2017), is an early method for understand-
ing how NNs make decisions. It works by assigning dif-
ferent levels of importance to different features. Attention-
based self-interpretable GNNs take advantage of this built-in
ability to learn which edges are most important during train-
ing. This happens without the need for any extra rules or
penalties (loss constraints) to force the model to explain
itself (Velickovic et al., 2018):

LGE = LCE(Y, Ŷ |Gs) (2)

where LCE is classification loss (e.g., cross-entropy loss).

Type II (Causal Learning). Some works approach GNN
interpretability from a causal perspective, aiming at learning
truly causal patterns that go beyond pure spuriosity-prone
statistical correlation (Wu et al., 2022b). Techniques such
as disentanglement and causal intervention are often used
to optimize the learning process (Sui et al., 2022):

LGE = LCE(Y, Ŷ |Gs) + β · DKL(Pθ(Ȳ |Ḡs)||Q(Ȳ ))

+ γ · LCE(Y, Ŷ
′|Gs ∪ Ḡ′

s) (3)

where β and γ are pre-defined hyperparameters, Ḡs = G \
Gs is the complement of Gs, and Ḡ′

s represents the result of
intervening on Ḡs (e.g., shuffling the edge weights of Ḡs).
Q(Ȳ ) is often set to a uniform distribution.

Type III (Size Constraint). To encourage more concise
and human-understandable explanations, some works ex-
tend attention-based methods by adding regularization terms
that constrain the size of Gs. A representative example is
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(a) Important (Type I) (b) Important (Type II) (c) Important (Type III) (d) Important (Type IV)

(e) Unimportant (Type I) (f) Unimportant (Type II) (g) Unimportant (Type III) (h) Unimportant (Type IV)

Figure 2: Histograms of edge weights trained on the BA-2MOTIFS dataset. The first row shows the distribution of edge
weights assigned to truly important edges, while the second row shows those assigned to unimportant edges. The vertical
axis represents the epoch numbers. Histograms for other datasets are provided in Appendix B.

Lin et al. (2020), which introduces a sparsity loss that nor-
malizes the constraint by dividing it by the graph size:

LGE = LCE(Y, Ŷ |Gs) + β · |Gs|
|G|

(4)

Type IV (MI Constraint). Some works constrain the size
of Gs from an MI perspective, encouraging concise expla-
nations by minimizing MI between Gs and G. One work
(Yu et al., 2021) uses a computationally expensive technique
(Belghazi et al., 2018) to estimate MI, while the other (Miao
et al., 2022) adopts a tractable variational upper bound:

LGE = LCE(Y, Ŷ |Gs) + β · DKL(Pθ(Gs|G)||Q(Gs)) (5)

where Q(Gs) is a Bernoulli distribution. Since the sampling
process is non-differentiable, Gumbel-Softmax trick (Jang
et al., 2017) is employed for continuous relaxation.

3. Inconsistency Investigation
We begin by examining two commonly presumed sources of
explanations inconsistency—(1) training instability (Mad-
hyastha & Jain, 2019), and (2) spurious correlations (Zhao
et al., 2023a;b)—both of which have been studied as con-
tributing factors in previous literature.

3.1. Training Instability

Training instability has been identified as a key contribu-
tor to explanation inconsistency in attention-based NNs for
NLP tasks (Madhyastha & Jain, 2019). Their work sug-
gests that the inherent complexity of non-convex loss sur-
faces—characterized by numerous saddle points and local
minima—hampers stable training, resulting in inconsistent

model performance, which in turn can manifest as variation
in the generated explanations. To mitigate this issue, Mad-
hyastha & Jain (2019) adopted Stochastic Weight Averaging
(SWA) (Izmailov et al., 2018) and its variants, which stabi-
lize training by averaging weights collected from different
points along the optimization trajectory. This approach en-
courages convergence to flatter optima, thereby improving
explanation consistency.

To investigate whether training instability leads to expla-
nation inconsistency in self-interpretable GNNs, we apply
SWA to four self-interpretable GNN frameworks across four
datasets. Our experimental results (cf. Table 1) show that
SWA improves explanation consistency in only 7 out of 16
tests. This suggests that while training instability may con-
tribute to explanation inconsistency, it does not fully explain
the phenomenon in self-interpretable GNNs.

3.2. Spurious Correlations

Spurious correlations have been identified as a key contrib-
utor to explanation inconsistency in post-hoc GNN meth-
ods (Zhao et al., 2023a;b). Their works argue that when
the explainer is optimized solely based on predicted out-
puts—e.g., by training it to generate subgraphs whose pre-
dictions align with those of raw graphs—it becomes prone
to overfitting spurious patterns: features correlated with the
output but not causally informative. This vulnerability stems
from the two-stage pipeline, where the explainer is trained
separately to mimic the behavior of a pre-trained GNN and
lacks access to its training dynamics and inductive biases.
Depending on initialization and optimization dynamics, the
explainer may attend to different features across runs, some-
times capturing truly relevant ones and other times latching
onto spurious cues. Such instability results in explanation
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inconsistency across random seeds.

To examine whether spurious correlations underlie ex-
planation inconsistency in self-interpretable GNNs, we
conduct experiments on several benchmark datasets. As
shown in Figure 2 (a)–(d), when evaluated on synthetic
datasets without deliberately introduced spurious patterns,
self-interpretable GNNs consistently assign high weights to
truly important edges, indicating strong robustness to spuri-
ous correlations. This likely stems from the nature of expla-
nation generation: unlike post-hoc methods, which mimic
the behavior of pre-trained GNNs and are thus susceptible
to optimization bias (Miao et al., 2022) and confounding
effects (Wu et al., 2022b), self-interpretable GNNs learn ex-
planations jointly with predictions, embedding them directly
into the model’s decision-making process.

4. Redundancy in Explanation
Figure 2 (e)–(h) suggests another source of explanation in-
consistency in self-interpretable GNNs: redundancy. When
trained with different random seeds, models consistently
identify key features but vary in their inclusion of irrelevant
ones, leading to inconsistent explanations. We attribute this
redundancy to the limitations of global hyperparameters
in enforcing conciseness. Given the varying graph sizes
and explanation sizes across instances, fixed hyperparame-
ter values are rarely optimal, allowing the model excessive
flexibility to retain redundant edges.

The suboptimality of global hyperparameters is further il-
lustrated in Figure 3, where histograms of |Gs|/|G| show
that the generated explanations consistently include more
edges than the ground-truth ones. This behavior is expected:
in the absence of ground-truth explanations in real-world
scenarios, hyperparameters are empirically tuned to balance
classification accuracy and explanation conciseness. In our
experiments, retaining more edges stabilizes training and
improves classification performance. This also aligns with
recent findings (Wu et al., 2022b; Miao et al., 2022), which
recommend retaining 50%–80% of edges to achieve a favor-
able trade-off. To formalize the notion of redundancy, we
establish a connection to explanation budgets as follows:
Proposition 4.1. Define the crucial graph subset as the
optimal GNN explanation G∗

s . When K ≥ |G∗
s|, there exist

≥ 1 valid GNN explanations that can satisfy Equation (1).

The proof is provided in Appendix A. As discussed above,
because the true size of graph explanations is unknown in
practice, designing size-specific loss objectives to directly
address redundancy is challenging.

Instead of explicitly targeting explanation size, recent work
(Deng & Shen, 2024) adopted contrastive learning (Oord
et al., 2018) as an indirect strategy to eliminate redundancy.
Their method is grounded in two key properties that an ideal

GNN explanation G∗
s should satisfy: (1) Sufficiency, mean-

ing the explanation must preserve all critical information
required for accurate prediction; and (2) Necessity, meaning
the removal of any edge in G∗

s would impair the model’s
prediction due to loss of crucial information.

To enforce these properties, the authors introduced an aux-
iliary contrastive loss. Given a generated explanation Gs

(serving as the anchor), they constructed two variants: (1) a
positive sample G+

s , obtained by adding edges to Gs such
that it still contains sufficient information for accurate pre-
diction; and (2) a negative sample G−

s , obtained by remov-
ing essential edges, thereby disrupting critical substructures
and causing the GNN to fail in making correct predictions.
The contrastive loss is formulated as1:

LCL = − log
exp

(
sim(ẑs, ẑ

+
s )/τ

)
exp

(
sim(ẑs, ẑ

+
s )/τ

)
+ exp

(
sim(ẑs, ẑ

−
s )/τ

)
where ẑs, ẑ+s , and ẑ−s denote the projected representations
of Gs, G+

s , and G−
s , respectively; for example, ẑs is ob-

tained by applying an MLP to zs, i.e., ẑs = MLP(zs). The
function sim(·, ·) denotes cosine similarity, and τ is a tem-
perature hyperparameter. This loss encourages maximizing
the similarity between the representations of Gs and G+

s

while minimizing that between Gs and G−
s . As a result, the

model learns to generate concise and meaningful explana-
tions that satisfy both sufficiency and necessity, reducing
redundancy without sacrificing predictive power.

However, it is important to note that the efficacy of the above
strategy relies on a restrictive assumption: for each graph G,
the optimal explanation G∗

s should simultaneously satisfy
sufficiency and necessity. In practice, this assumption is
often unattainable. For instance, in datasets like BENZENE
(Morris et al., 2020), where graphs are labeled to indicate
the presence of one or more benzene rings, each indepen-
dent explanation (i.e., each benzene ring) constitutes a valid
explanation. In such cases, sufficiency and necessity repre-
sent inherently conflicting criteria: prioritizing sufficiency
leads to retaining all benzene rings, whereas emphasizing
necessity discards alternative valid substructures, as a single
benzene ring suffices to explain the graph. This conflict can
be formalized as follows:
Proposition 4.2. Assume that G has multiple independent
explanations G∗

s = {G1,∗
s , G2,∗

s , . . . , Gm,∗
s } with pairwise

disjoint edge sets. Then, no single edge is strictly necessary.

The proof is provided in Appendix A. To investigate the prac-
tical implications, we conduct experiments on two datasets:
BA-2MOTIFS (Luo et al., 2020) and BENZENE (Sanchez-
Lengeling et al., 2020), which exemplify single-explanation
and multi-explanation scenarios, respectively.

Our quantitative results (see Table 2 in Appendix D) confirm

1We use one positive and one negative sample for simplicity.
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Figure 3: Histograms of |Gs|/|G| on the BA-2MOTIFS dataset. GT refers to Ground Truth. Only results from settings that
successfully converge are shown. Histograms for other datasets are provided in Appendix C.

the theoretical insights presented above. Specifically, on
the BA-2MOTIFS dataset, incorporating contrastive loss re-
duces explanation inconsistency and improves accuracy, as
the removal of necessary edges directly disrupts the unique
explanation. In contrast, on the BENZENE dataset, removal
of certain edges does not invalidate the remaining expla-
nations. Consequently, both positive and negative samples
retain sufficient information for accurate predictions, result-
ing in ambiguity that leads to degraded performance across
all metrics due to convergence difficulties. These findings
highlight the need for broadly applicable methods that do
not rely on restrictive dataset-specific assumptions.

5. Explanation Ensemble
In this section, we demonstrate that simple Explanation En-
semble (EE), which aggregates explanations from multiple
independently trained models, can effectively alleviate the
detrimental effects of explanation redundancy. To formally
analyze the effectiveness of EE in reducing explanation
inconsistency, we present the following proposition:
Proposition 5.1. Let X be a random variable with E[X] =
a and Var(X) = b, where X ∈ [0, 1]. Let x1, x2 be in-
dependent draws from X , and let X̄1, X̄2 be the sample
means of two independent n-samples from X . For a positive
hyperparameter k ∈ (0, 1], we have:

P(|X̄1 − X̄2| < k|x1 − x2|) ≥ 1− 2b

nk2|x1 − x2|2
(6)

The proof is provided in Appendix A. In self-interpretable
GNNs, X represents the importance score (ranging from 0
to 1) assigned to an edge, reflecting its contribution to the
model’s prediction. The inconsistency in edge importance
between two models is quantified by |x1 − x2|, where x1

and x2 are the importance scores assigned to the same edge.
Proposition 5.1 shows that by aggregating explanations from
n independently trained models (forming two ensembles
with average importance scores X̄1 and X̄2), the probability
that the ensemble inconsistency |X̄1 − X̄2| is less than k
times the individual model inconsistency |x1 − x2| has a
lower bound that increases with n. Note that the above edge-
level analysis readily extends to subgraphs, as graph-level

inconsistency can be viewed as the average inconsistency
of its constituent edges.

To formally analyze the effectiveness of EE in improving
explanation accuracy, we present the following proposition:

Proposition 5.2. Let X and W be independent random
variables with X ∈ [0, 1] and W ∈ [δ, 1], where 0 < δ ≤ 1.
Let X̄ be the sample mean of n independent observations of
X . If E[X] < δ, then we have:

P(X̄ < W ) ≥ 1− exp(−2n(δ − E[X])2) (7)

The proof is provided in Appendix A. Let X and W de-
note the importance scores of an irrelevant and a relevant
edge, respectively, where X ∈ [0, 1] and W ∈ [δ, 1] with
0 < δ ≤ 12. Proposition 5.2 demonstrates that aggre-
gating explanations from n independently trained models,
yielding the average importance score X̄ for the irrelevant
edge, increases a lower bound on the probability of cor-
rectly distinguishing irrelevant edges from relevant ones
(i.e., P(X̄ < W )). This increased probability directly con-
tributes to a higher ROC-AUC score, a key metric for evalu-
ating explanation accuracy (Ying et al., 2019).

From a more intuitive perspective, the explanation generated
by a self-interpretable GNN can be viewed as consisting of
two components: (1) edges that the model genuinely deems
important, and (2) edges that are assigned high importance
just because sufficient budget allocation (redundancy). EE
can improve explanation consistency and accuracy, as these
redundant edges typically exhibit high variance and tend to
receive lower average importance after aggregation.

6. Experiments
Metrics. To evaluate explanation consistency, we follow
Zhao et al. (2023a;b), run each method multiple times with
different random seeds and report the average Structural
Hamming Distance (SHD) (Tsamardinos et al., 2006) across
the generated explanations. SHD quantifies the structural
differences between two graphs by counting mismatched

2We assume that truly important edges are assigned high impor-
tance scores, an assumption supported by our earlier investigations.
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Table 1: We run each method 10 times, reporting the mean and standard deviation. Results significantly outperforming the
baseline ✘ (GIN, paired t-test, p < 0.05) are underlined. Values in brackets show performance changes after Explanation
Ensemble. Dark green indicates performance improvement, while dark red indicates performance degeneration.

METHOD METRIC STRATEGY BA-2MOTIFS 3MR BENZENE MUTAGENICITY

Type I
(Attention)

SHD
✘ 4.75±4.68 (↓ 3.53) 5.59±3.19 (↓ 2.68) 6.11±4.34 (↓ 3.21) 5.02±6.60 (↓ 4.99)

+SWA 12.07±8.21 (↓ 1.81) 4.27±2.56 (↓ 2.34) 7.42±4.61 (↓ 2.55) 11.24±6.18 (↓ 5.64)
+EA 4.04±3.80 (↓ 2.49) 9.79±6.56 (↓ 5.04) 2.01±2.63 (↓ 1.96) 9.63±14.37 (↓ 9.10)

AUC (%)
✘ 99.30±0.34 (↑ 0.31) 97.25±0.66 (↑ 1.27) 83.50±2.23 (↑ 7.40) 91.71±6.00 (↑ 6.25)

+SWA 99.03±0.36 (↑ 0.11) 97.81±0.13 (↑ 0.73) 85.78±1.48 (↑ 4.26) 98.57±0.34 (↑ 0.66)
+EA 97.73±1.41 (↑ 1.31) 97.86±0.75 (↑ 1.30) 88.61±3.76 (↑ 5.11) 97.19±3.09 (↑ 2.23)

ACC (%)
✘ 97.10±8.70 (↑ 2.90) 96.53±1.45 (↑ 0.70) 91.60±0.66 (↑ 1.15) 92.97±0.78 (↑ 0.94)

+SWA 98.20±1.53 (↑ 0.80) 95.32±0.99 (↑ 0.87) 89.63±2.02 (↑ 1.20) 89.59±1.53 (↑ 0.61)
+EA 100.00±0.00 (0.00) 97.99±0.70 (↑ 1.31) 90.71±0.66 (↑ 0.70) 90.33±1.13 (↑ 1.89)

Type II
(Causal Learning)

SHD
✘ 7.75±5.11 (↓ 3.51) 5.92±3.79 (↓ 2.98) 9.17±5.79 (↓ 4.07) 19.57±14.49 (↓ 10.44)

+SWA 11.29±7.58 (↓ 6.59) 4.01±2.60 (↓ 1.97) 9.02±5.72 (↓ 4.71) 12.60±6.21 (↓ 4.88)
+EA 7.59±9.63 (↓ 7.57) 9.24±4.83 (↓ 3.85) 4.14±4.51 (↓ 2.49) 19.11±16.31 (↓ 10.45)

AUC (%)
✘ 97.44±1.97 (↑ 2.00) 95.76±1.51 (↑ 2.28) 77.12±2.98 (↑ 8.62) 95.16±1.72 (↑ 3.77)

+SWA 95.93±1.99 (↑ 2.72) 96.56±0.31 (↑ 1.48) 78.80±2.99 (↑ 5.66) 98.32±0.40 (↑ 0.98)
+EA 96.56±1.95 (↑ 2.68) 96.46±1.55 (↑ 2.08) 83.69±4.02 (↑ 8.13) 95.56±3.22 (↑ 3.35)

ACC (%)
✘ 90.60±12.33 (↑ 9.40) 94.29±2.01 (↑ 2.24) 84.21±5.88 (↑ 3.37) 91.08±1.46 (↑ 0.37)

+SWA 81.30±12.10 (↑ 9.70) 93.39±1.48 (↑ 1.07) 84.33±4.84 (↑ 2.50) 89.05±0.89 (↓ 0.54)
+EA 99.90±0.30 (↑ 0.10) 97.30±1.35 (↑ 0.94) 87.83±1.18 (↑ 1.33) 89.93±0.92 (↑ 0.27)

Type III
(Size Constraint)

SHD
✘ 11.41±9.37 (↓ 6.93) 3.50±2.44 (↓ 1.82) 6.91±4.48 (↓ 2.47) 5.97±4.22 (↓ 2.40)

+SWA 11.84±8.57 (↓ 2.85) 3.85±2.43 (↓ 1.90) 7.58±4.63 (↓ 4.59) 7.23±4.13 (↓ 3.78)
+EA 9.64±8.66 (↓ 7.47) 7.17±4.09 (↓ 3.17) 16.34±9.80 (↓ 2.15) 15.17±9.86 (↓ 4.22)

AUC (%)
✘ 99.32±0.36 (↑ 0.35) 96.99±0.76 (↑ 1.43) 84.38±2.71 (↑ 8.09) 98.11±0.38 (↑ 1.01)

+SWA 99.19±0.33 (↑ 0.09) 97.60±0.22 (↑ 0.81) 85.67±2.02 (↑ 5.16) 98.16±0.43 (↑ 1.12)
+EA 96.54±4.43 (↑ 1.93) 97.04±1.37 (↑ 2.13) 85.72±5.35 (↑ 7.27) 97.96±0.87 (↑ 1.47)

ACC (%)
✘ 95.50±12.51 (↑ 4.50) 97.30±1.31 (↑ 0.62) 91.11±0.62 (↑ 1.22) 89.52±0.99 (↑ 1.69)

+SWA 97.10±2.66 (↑ 0.90) 94.25±2.71 (↑ 1.25) 88.24±3.36 (↑ 1.34) 88.51±1.40 (↑ 0.34)
+EA 99.80±0.40 (↑ 0.20) 97.43±0.72 (↑ 1.53) 89.23±1.92 (↑ 1.93) 89.22±0.91 (↑ 1.32)

Type IV
(MI Constraint)

SHD
✘ 3.29±2.97 (↓ 1.74) 7.71±5.51 (↓ 3.69) 4.13±3.15 (↓ 2.50) 13.30±10.29 (↓ 7.17)

+SWA 1.63±1.47 (↓ 0.65) 4.97±3.65 (↓ 2.95) 5.81±3.98 (↓ 2.90) 0.14±0.24 (↓ 0.14)
+EA 0.54±1.08 (↓ 0.54) 3.49±2.50 (↓ 1.86) 6.73±6.29 (↓ 3.45) 17.02±18.09 (↓ 9.31)

AUC (%)
✘ 98.44±0.60 (↑ 0.32) 98.37±0.31 (↑ 0.80) 90.66±0.88 (↑ 2.00) 99.00±0.30 (↑ 0.39)

+SWA 98.53±0.25 (↑ 0.06) 98.97±0.10 (↑ 0.29) 91.10±0.39 (↑ 1.14) 99.07±0.31 (↑ 0.29)
+EA 96.89±1.67 (↑ 1.54) 98.74±0.22 (↑ 0.52) 92.40±0.86 (↑ 1.88) 99.23±0.23 (↑ 0.26)

ACC (%)
✘ 100.00±0.00 (0.00) 98.54±0.80 (↑ 0.76) 91.48±0.87 (↑ 0.85) 92.43±1.00 (↑ 0.13)

+SWA 100.00±0.00 (0.00) 98.13±0.46 (↑ 0.83) 91.48±0.49 (↑ 0.93) 91.38±0.94 (↑ 0.84)
+EA 99.60±0.66 (↑ 0.40) 97.92±0.84 (↑ 0.34) 88.80±0.39 (↓ 0.05) 89.32±1.26 (↑ 1.22)

edges (either missing or extra edges). Since NNs output
continuous soft edge weights, these must first be discretized
to compute SHD. A threshold of 0.5 is used in this study:
edges with weight greater than 0.5 are considered present,
while those below 0.5 are deemed absent3. To evaluate ex-
planation accuracy, we choose datasets with ground-truth
explanations, as they provide objective benchmarks for com-
parison (Chen et al., 2024a). Following established practices
(Wu et al., 2022b; Miao et al., 2022), we use ROC-AUC
(AUC) to evaluate explanation quality and Accuracy (ACC)
to evaluate predictive performance.

Datasets. We select four datasets: a synthetic dataset, BA-

3We chose a threshold of 0.5 because determining whether an
edge is important is essentially a binary classification task, and 0.5
is a standard and prior-free choice. In contrast, other thresholds or
Top-K selections all require domain knowledge.

2MOTIFS (Luo et al., 2020), and three real-world dataset
– 3MR (Rao et al., 2022), BENZENE (Sanchez-Lengeling
et al., 2020), and MUTAGENICITY (Debnath et al., 1991)
– all sourced from the graph learning community and have
ground-truth explanation labels.A detailed discussion on the
choice of metrics and datasets is provided in Appendix E.

Baselines. To ensure fair, reliable, and comprehensive ex-
periments, we evaluate two GNN backbones, GIN (Xu et al.,
2019) and GCN (Kipf & Welling, 2017), alongside four
types of self-interpretable GNN methods: Type I to Type IV.
Due to space limitations, GIN results are presented in the
main paper, with GCN results in Appendix F.

+SWA: Madhyastha & Jain (2019) introduced SWA to ad-
dress attention inconsistency. To investigate whether train-
ing instability contributes to explanation inconsistency of
self-interpretable GNNs, we use SWA as a baseline.
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Run 0:  ACC 1.00  AUC 0.79 Run 1:  ACC 1.00  AUC 0.96

Ground Truth

Run 2:  ACC 1.00  AUC 0.80 Run 3:  ACC 1.00  AUC 0.86 Run 4:  ACC 1.00  AUC 0.72

+EE:  ACC 1.00  AUC 1.00

Run 5:  ACC 1.00  AUC 1.00 Run 6:  ACC 1.00  AUC 0.79 Run 7:  ACC 1.00  AUC 0.94 Run 8:  ACC 1.00  AUC 1.00 Run 9:  ACC 1.00  AUC 0.96

Run 0:  ACC 1.00  AUC 0.74 Run 1:  ACC 1.00  AUC 0.79

Ground Truth

Run 2:  ACC 1.00  AUC 0.61 Run 3:  ACC 1.00  AUC 0.62 Run 4:  ACC 1.00  AUC 0.71

+EE:  ACC 1.00  AUC 0.94

Run 5:  ACC 1.00  AUC 0.93 Run 6:  ACC 1.00  AUC 0.84 Run 7:  ACC 1.00  AUC 0.69 Run 8:  ACC 1.00  AUC 0.92 Run 9:  ACC 1.00  AUC 0.94

Case 1

Case 2

AUC (%): 88.60 → 100.00 

AUC (%): 78.46 → 94.87 

Figure 4: Illustration of Explanation Ensemble. Darker colors indicate higher weights. Only edges with weights greater than
0.5 are highlighted, as they collectively form the explanations.

+EA: Zhao et al. (2023a;b) argued that optimization solely
based on predicted labels can easily lead to overfitting to
spurious correlations. To address this, they proposed several
alignment-based loss objectives to enhance semantic consis-
tency between raw graphs and identified subgraphs in the
embedding space. An example implementation employs the
Euclidean absolute distance to align graph representations.
Formally, let z and zs denote the pooled embeddings of the
raw graph and the identified key graph subset, respectively.
The embedding alignment (EA) loss is defined as:

LEA = ∥z− zs∥2. (8)

We use EA as a baseline. Additional details about experi-
mental setup are provided in Appendix G.

6.1. Overall Performance

Table 1 reports the overall performance and we have the
following observations:

(O1): SWA does not consistently improve the quality of
GNN explanations: it decreases SHD in approximately 44%
of cases and increases AUC in around 63%. This result can
be attributed to two factors. First, self-interpretable GNNs
often train stably and converge to near-optimal solutions,
leaving limited room for further gains. Second, averaging
weights may pull the model away from a sharp yet accurate
optimum toward a flatter but suboptimal region in the loss
landscape. While flatter minima can sometimes improve
generalization, they may also lead to less precise explana-
tions, thereby reducing performance in some cases.
(O2): EA also fails to improve the quality of GNN explana-

tions. For example, on the BA-2MOTIFS dataset, it causes
an AUC drop of up to 3% across all self-interpretable GNN
frameworks. We attribute this to the difference in how the
alignment loss operates in different settings. In post-hoc
methods, the alignment loss is applied solely to the ex-
plainer, which learns to match the representation of a fixed,
pre-trained GNN. Since the target representation remains
unchanged across runs, this alignment directly promotes ex-
planation consistency. In contrast, self-interpretable GNNs
train both the explainer and the GNN jointly, and the loss
influences both. As a result, the explainer is constantly align-
ing to a moving target—its own co-evolving GNN—which
weakens the intended effect of enforcing consistency.
(O3): EE is the only approach that consistently improves
explanation quality across all evaluated settings, reducing
SHD and improving AUC in all 48 cases. Moreover, EE
also improves downstream classification accuracy (ACC) in
46 out of 48 cases. The simplicity of EE and its indepen-
dence from specific training procedures (unlike EA, which
requires an additional loss term, and SWA, which necessi-
tates changes to the training regime) make it highly suitable
for real-world applications.

6.2. Case Study

While Table 1 provides a quantitative overview of EE’s per-
formance, we now present two case studies to qualitatively
illustrate how EE impacts explanation accuracy (Figure 4).

In the first case, the average AUC of the initial explanations
is 88.60%. After applying EE, the weights of irrelevant
edges are effectively reduced, leading to a perfect AUC of
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Figure 5: Trustworthiness (SHD and AUC) vs. Efficiency (1×, 2×, 3×, 4×, 5×) on four datasets.

100%. This demonstrates EE’s ability to retain the signal
of truly relevant features while suppressing the noise from
irrelevant ones. In the second case, the average AUC of the
initial explanations is 78.46%. Applying EE substantially
improves the AUC to 94.87%, with the weights of most irrel-
evant edges significantly reduced. However, a few irrelevant
edges still retain relatively high weights because these edges
are consistently identified as important across all 10 models.
This observation also aligns with our theoretical analysis
in Proposition 5.2, which suggests that EE’s effectiveness
is diminished when the weights of certain irrelevant edges
remain consistently high.

Together, these two cases demonstrate EE’s capability to
improve explanation accuracy. Given its simplicity, empir-
ical effectiveness, and theoretical foundation, we believe
that EE can serve as a strong baseline for future research
on trustworthy self-interpretable GNNs and may inspire the
development of more principled solutions.

6.3. Efficiency-Trustworthiness Trade-off

Although EE consistently improves explanation quality, its
ensemble nature requires training multiple models, increas-
ing training and deployment costs linearly with n. To investi-
gate the relationship between trustworthiness and efficiency,
we vary n and plot the resulting SHD and AUC values.
As shown in Figure 5, we have the following two key ob-
servations: (1) Increasing n generally leads to improved
performance across all metrics and datasets. (2) Most sig-
nificant performance gain is observed when n is increased
from 1 to 2. These findings suggest n = 2 as a practical
choice in balancing trustworthiness and efficiency. Another
limitation of EE—its incompatibility with faithfulness met-
rics—is discussed in Appendix H.

7. Related Work
A variety of methods have been proposed to explain GNN
predictions, with most efforts focusing on improving expla-
nation accuracy (Ying et al., 2019; Yuan et al., 2021; Wang
et al., 2021; Dai & Wang, 2021) or computational efficiency

(Luo et al., 2020; Lu et al., 2024; Luo et al., 2024). However,
as GNNs are increasingly deployed in high-stakes domains,
other critical properties – such as robustness (Bajaj et al.,
2021; Li et al., 2024; Fang et al., 2024), generalizability
(Wu et al., 2022b; Miao et al., 2022; Azzolin et al., 2025),
and fairness (Medda et al., 2024; Dong et al., 2022) – have
gained growing attention (Dai et al., 2024).

Zhao et al. (2023a;b) took a pivotal step in investigating the
consistency of GNN explanations. They concluded that spu-
rious correlations are the core reason behind inconsistency
in post-hoc GNN explanation methods (Ying et al., 2019;
Luo et al., 2020). Inspired by their work, we conduct an ex-
tended investigation on self-interpretable GNNs (Velickovic
et al., 2018; Sui et al., 2022; Miao et al., 2022; Deng & Shen,
2024), and find that explanation inconsistency persists even
in the absence of spurious correlations. This observation
motivates us to look beyond existing hypotheses, ultimately
leading to the identification of redundancy—stemming from
the weak conciseness constraints—as a core and previously
underexplored reason for inconsistency.

8. Conclusion & Future Work
In this work, we identify redundancy as a root cause of
explanation inconsistency and its associated inaccuracy in
self-interpretable GNNs. While existing methods struggle
to eliminate this redundancy, we demonstrate that a simple,
tuning-free ensemble strategy EE can substantially mitigate
its negative effects, leading to more consistent and accu-
rate explanations. Extensive experiments across diverse
datasets, model architectures, and self-interpretable GNN
frameworks validate the effectiveness of EE.

We hope this work, which also serves as an evaluation study,
will inspire researchers and practitioners to recognize ex-
planation consistency as an indispensable criterion in the
design and evaluation of self-interpretable GNNs. Future
research efforts involve moving beyond reactive strategies
(such as EE) and prioritizing the development of proactive
strategies that directly address redundancy during model
training, enabling highly trustworthy GNN systems.
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A. Proofs
Proposition 4.1. Define the crucial graph subset as the optimal GNN explanation G∗

s . When K ≥ |G∗
s|, there exist ≥ 1

valid GNN explanations that can satisfy Equation (1).

Proof. Based on Lagrangian, adjusting β actually corresponds to setting different budget values K (Zhang et al., 2022).
In our experiments, K ≥ |G∗

s| generally holds true in existing self-interpretable GNNs. By definition of MI, optimizing
Equation (1) equals:

max
Gs⊆G,|Gs|≤K

H(Y )−H(Y |Gs). (9)

Since H(Y ) is a constant once the dataset is given, maximizing the above equals:

max
Gs⊆G,|Gs|≤K

−H(Y |Gs)︸ ︷︷ ︸
≤0

, (10)

where H(Y |Gs) = 0 means the graph subset Gs contains enough information to predict the label Y , i.e., G∗
s ⊆ Gs. If K is

larger than the size of the optimal GNN explanation, i.e., K ≥ |G∗
s|, we have

∑K−|G∗
s |

n=0

(|G−G∗
s |

n

)
different explanations that

can satisfy Equation (1). This completes the proof.

Proposition 4.2. Assume that G has multiple independent explanations G∗
s = {G1,∗

s , G2,∗
s , . . . , Gm,∗

s } with pairwise
disjoint edge sets. Then, no single edge is strictly necessary.

Proof. An edge e ∈ E is strictly necessary if removing e from Gs causes I(Gs;Y ) to decrease, i.e., e is indispensable for
any valid explanation of Y . By definition, each explanation Gi,∗

s in the set G∗
s = {G1,∗

s , G2,∗
s , . . . , Gm,∗

s } is sufficient to
fully explain Y . Therefore:

I(Gi,∗
s ;Y ) = I(G;Y ) ∀i (11)

Suppose e ∈ E is considered strictly necessary. Then, its removal must render all valid explanations of Y invalid. Formally,
we have:

I(Gs \ {e};Y ) < I(Gs;Y ) ∀Gs ∈ G and |Gs| ≤ K (12)

However, by the independence property of the explanations, each explanation Gi,∗
s = (Vi

s, E i
s) satisfies the following

condition:

E i
s ∩ Ej

s = ∅, ∀i ̸= j, i, j ∈ {1, 2, . . . ,m}. (13)

Therefore, for any Gi,∗
s that contains e, there exist at least one Gj,∗

s (j ̸= i) that does not rely on e. Thus, the removal of e does
not invalidate all explanations, and I(Gs \ {e};Y ) = I(Gs;Y ) still holds for at least one Gs ∈ {G1,∗

s , G2,∗
s , · · · , Gm,∗

s }.
Since this reasoning holds for any edge e ∈ E , we conclude that no single edge is strictly necessary when G has multiple
independent explanations. This completes the proof.

Proposition 5.1. Let X be a random variable with E[X] = a and Var(X) = b, where X ∈ [0, 1]. Let x1, x2 be independent
draws from X , and let X̄1, X̄2 be the sample means of two independent n-samples from X . For a positive hyperparameter
k ∈ (0, 1], we have:

P(|X̄1 − X̄2| < k|x1 − x2|) ≥ 1− 2b

nk2|x1 − x2|2
. (14)

Proof. We aim to derive a lower bound for the probability P(|X̄1 − X̄2| < k|x1 − x2|). First, we rewrite the probability
using the complement rule:

P(|X̄1 − X̄2| < k|x1 − x2|) = 1− P(|X̄1 − X̄2| ≥ k|x1 − x2|). (15)

12
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Next, we apply Chebyshev’s inequality4. Chebyshev’s inequality states that for any random variable Z with finite mean
E[Z] and variance Var(Z), and any positive value ϵ:

P(|Z − E[Z]| ≥ ϵ) ≤ Var(Z)

ϵ2
. (16)

Now, we let Z = X̄1 − X̄2 and ϵ = k|x1 − x2|. Applying Chebyshev’s inequality, we get:

P(|X̄1 − X̄2 − E[X̄1 − X̄2]| ≥ k|x1 − x2|) ≤
Var(X̄1 − X̄2)

(k|x1 − x2|)2
. (17)

Since E[X̄1] = E[X] = a and E[X̄2] = E[X] = a, we have:

E[X̄1 − X̄2] = E[X̄1]− E[X̄2] = a− a = 0. (18)

Substituting Equation (18) into Equation (17), we obtain:

P(|X̄1 − X̄2| ≥ k|x1 − x2|) ≤
Var(X̄1 − X̄2)

k2|x1 − x2|2
. (19)

Now, we calculate the variance of X̄1 − X̄2. Since X̄1 and X̄2 are the sample means of two independent samples of size n
from X , we have:

Var(X̄1) =
Var(X)

n
=

b

n
, (20)

Var(X̄2) =
Var(X)

n
=

b

n
, (21)

Because X̄1 and X̄2 are independent, the variance of their difference is the sum of their variances:

Var(X̄1 − X̄2) = Var(X̄1) + Var(X̄2) =
b

n
+

b

n
=

2b

n
. (22)

Substituting Equation (22) into Equation (19), we get:

P(|X̄1 − X̄2| ≥ k|x1 − x2|) ≤
2b

nk2|x1 − x2|2
. (23)

Finally, substituting Equation (23) back into Equation (15), we obtain the desired lower bound:

P(|X̄1 − X̄2| < k|x1 − x2|) ≥ 1− 2b

nk2|x1 − x2|2
. (24)

This completes the proof.

Proposition 5.2. Let X and W be independent random variables with X ∈ [0, 1] and W ∈ [δ, 1], where 0 < δ ≤ 1. Let X̄
be the sample mean of n independent observations of X . If E[X] < δ, then we have:

P(X̄ < W ) ≥ 1− exp(−2n(δ − E[X])2). (25)

Proof. Since W ∈ [δ, 1], if X̄ < δ, then it must also be true that X̄ < W . Therefore:

P(X̄ < δ) ≤ P(X̄ < W ). (26)

We can calculate P(X̄ < δ) as follows:

P(X̄ < δ) = 1− P(X̄ ≥ δ). (27)

4https://en.wikipedia.org/wiki/Chebyshev%27s_inequality
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Next, we apply Hoeffding’s inequality5. Hoeffding’s inequality states that for several independent random variables
Z1, . . . , Zn with Zi ∈ [a, b] for all i, where −∞ < a ≤ b < +∞, we have:

P

(
1

n

n∑
i=1

(Zi − E[Zi]) ≥ t

)
≤ exp

(
− 2nt2

(b− a)2

)
. (28)

In our case, X ∈ [0, 1], so (b− a) = 1. Applying Hoeffding’s inequality with t = δ − E[X] (since E[X] < δ, t > 0), we
have:

P(X̄ ≥ δ) = P(X̄ − E[X] ≥ δ − E[X]) ≤ exp

(
−2n(δ − E[X])2

12

)
= exp(−2n(δ − E[X])2). (29)

Thus,
P(X̄ < δ) ≥ 1− exp(−2n(δ − E[X])2). (30)

Combining Equation (30) with Equation (26), we obtain:

P(X̄ < W ) ≥ 1− exp(−2n(δ − E[X])2). (31)

This completes the proof.

B. Spurious Correlations Are Not the Primary Drivers of Inconsistency

(a) Important (Type I) (b) Important (Type II) (c) Important (Type III) (d) Important (Type IV)

(e) Unimportant (Type I) (f) Unimportant (Type II) (g) Unimportant (Type III) (h) Unimportant (Type IV)

Figure 6: Histograms of edge weights trained on the 3MR dataset.

In this section, we present histograms of edge weights for the 3MR, BENZENE, and MUTAGENICITY datasets (see
Figure 6, Figure 7, and Figure 8). The results indicate that, when evaluated on datasets without deliberately introduced
spurious patterns, all self-interpretable GNNs are able to identify truly important edges. However, explanation inconsistency
still persists. This suggests that spurious correlations are not the root cause of explanation inconsistency in self-interpretable
GNNs. Instead, we attribute this inconsistency to redundancy: different irrelevant edges are identified as important across
training runs, leading to variations in explanations.

C. Hyperparameter Tuning Fails to Address Redundancy
To quantify the impact of hyperparameter tuning, we present histograms of |Gs|/|G| for the 3MR, BENZENE, and
MUTAGENICITY datasets, shown in Figure 9, Figure 10, and Figure 11, respectively. The results show that redundancy
cannot be addressed by hyperparameter tuning. Increasing the value of β generally leads to a decrease in the model’s
prediction accuracy. For instance, on the Type III framework, setting β to 1 results in an accuracy reduction of 5%-20%.

5https://cs229.stanford.edu/extra-notes/hoeffding.pdf
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(a) Important (Type I) (b) Important (Type II) (c) Important (Type III) (d) Important (Type IV)

(e) Unimportant (Type I) (f) Unimportant (Type II) (g) Unimportant (Type III) (h) Unimportant (Type IV)

Figure 7: Histograms of edge weights trained on the BENZENE dataset.

(a) Important (Type I) (b) Important (Type II) (c) Important (Type III) (d) Important (Type IV)

(e) Unimportant (Type I) (f) Unimportant (Type II) (g) Unimportant (Type III) (h) Unimportant (Type IV)

Figure 8: Histograms of edge weights trained on the MUTAGENICITY dataset.

D. Contrastive Learning Fails to Address Redundancy
When it comes to incorporating contrastive loss into existing self-interpretable GNNs, we present our results in Table 2.
“+CL (c)” means positive and negative samples were created by adding/removing c edges from Gs. On the BA-2MOTIFS
dataset, incorporating contrastive loss reduces explanation inconsistency and improves accuracy. However, on the BENZENE
dataset, incorporating contrastive loss leads to performance degradation across all metrics.

E. Rationale for Metrics and Datasets Selection
E.1. Metrics Selection

To evaluate explanation quality, two types of metrics are commonly used in the community: those that rely on ground-truth
explanations and those that do not. Ground-truth-based metrics, such as ROC-AUC, offer unbiased evaluation standards, as
they directly measure how well the explanation aligns with predefined important substructures. However, their applicability
is limited by the scarcity of high-quality annotated datasets. Moreover, even when such annotations exist, they may not fully
reflect the internal reasoning of the model—they can rely on alternative, equally valid but human-incomprehensible patterns
to make correct predictions. As a result, agreement with ground-truth does not always guarantee that an explanation truly
captures the model’s behavior.
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Figure 9: Histograms of |Gs|/|G| on the 3MR dataset.
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Figure 10: Histograms of |Gs|/|G| on the BENZENE dataset.
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Figure 11: Histograms of |Gs|/|G| on the MUTAGENICITY dataset.

In contrast, metrics that do not require ground-truth labels aim to assess faithfulness (Amara et al., 2022), i.e., how well the
explanation aligns with the model’s own decision-making process. A widely used class of such metrics is the family of
Fidelity (FID) metrics (Amara et al., 2022), which quantify the change in the model’s prediction when the identified important
subgraph is either removed or retained. These metrics are more broadly applicable and, in theory, enable explanation quality
to be assessed in any scenario. However, their reliability remains an active topic of debate (Faber et al., 2021), particularly
due to distribution shifts introduced by input perturbations (Zheng et al., 2024). As long as OOD exists, FID-based metrics
assess not only explanation quality but also the model’s generalization ability (Azzolin et al., 2025), introducing confounding
factors that weaken the objectivity of the evaluation.

AUC vs. FID has long been debated, and neither is perfect. The key contribution of our work is to raise awareness in the
community that redundancy in explanations weakens explanation quality. Given (1) the specific nature of our task (we need
ground-truth to assess redundancy), (2) that AUC’s limitations can be fully addressed in certain cases, and (3) that the FID’s
limitations can’t be fully addressed (to date), we ultimately chose AUC and just feel that SHD and AUC are enough to
support our findings.

As discussed above, ground-truth explanations can sometimes be misleading, as they may not accurately reflect the reasoning
process of the trained model. To avoid this risk, we were highly selective in choosing datasets and only included four
well-established benchmarks that have been extensively validated by the community. Specifically, BA-2MOTIFS and
MUTAGENICITY have been adopted in prior works such as GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al.,
2020), DIR (Wu et al., 2022b), and GSAT (Miao et al., 2022), all of which use AUC for evaluation. For 3MR and BENZENE,
AUC was also employed by Rao et al. (2022). To further ensure that ground-truth explanations align with the model’s
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Table 2: We run each method 10 times, reporting the mean and standard deviation. Results significantly outperforming the
baseline ✘ (GIN, paired t-test, p < 0.05) are underlined. Type I is selected for our case study.

DATASET STRATEGY SHD AUC ACC

BA-2MOTIFS

✘ 4.75±4.68 99.30±0.34 97.10±8.70
+CL (1) 4.27±3.90 99.67±0.10 100.00±0.00
+CL (3) 4.77±4.38 99.35±0.57 100.00±0.00
+CL (5) 4.71±5.36 99.29±0.28 99.69±0.90

BENZENE

✘ 6.11±4.34 83.50±2.23 91.60±0.66
+CL (1) 10.89±6.57 81.97±2.68 90.49±1.64
+CL (3) 13.05±8.36 79.47±3.46 88.37±4.44
+CL (5) 9.14±5.54 81.77±3.77 87.92±3.07

Table 3: Statistics of the datasets.

BA-2MOTIFS 3MR BENZENE MUTAGENICITY

# Graphs 1000 2877 12000 2951
# Nodes / Graph 25.00 20.31 20.58 30.13
# Edges / Graph 25.48 22.27 21.82 30.45
# Node Features 10 14 14 14

Multiple Types of Rationales? No No No -NO2 and -NH2
Multiple Identical Explanations? No ≥ 1 Three-membered Rings ≥ 1 Benzene Rings ≥ 1 Explanations
# Ratio of Multiple Explanations 0.00% 8.21% 33.64% 32.01%

learned knowledge, we manually inspected the outputs of trained models. Specifically, we validated dataset reliability by
checking: (1) whether, in correctly classified cases, the model assigns high importance to truly relevant edges; and (2)
whether the model relies on any unintended shortcuts. While such manual inspection cannot guarantee absolute reliability, it
provides a reasonable safeguard against misleading explanations.

We acknowledge that verifying the absolute faithfulness of ground-truth explanations remains a fundamental challenge.
Designing more principled and robust evaluation protocols is an important direction for future work.

E.2. Datasets Selection

We select four datasets: a synthetic dataset, BA-2MOTIFS (Luo et al., 2020), and three real-world dataset – 3MR (Rao et al.,
2022), BENZENE (Morris et al., 2020), and MUTAGENICITY (Morris et al., 2020) – all sourced from the graph learning
community and have ground-truth explanation labels.

BA-2MOTIFS: A synthetic dataset with binary graph labels created by Luo et al. (2020). Class labels are determined by
house motifs and cycle motifs, which serve as the ground-truth explanations for the two classes. Each graph has only one
explanation.

3MR: A real-world molecular property prediction dataset where nodes represent atoms and edges represent chemical bonds
(Rao et al., 2022). Each graph is labeled binary to indicate the presence of one or more three-membered rings. Multiple
explanations may exist for each graph.

BENZENE: A real-world molecular property prediction dataset where nodes represent atoms and edges represent chemical
bonds (Sanchez-Lengeling et al., 2020). Each graph is labeled binary to indicate the presence of one or more benzene rings.
Multiple explanations may exist for each graph.

MUTAGENICITY: A real-world molecular property prediction dataset where nodes represent atoms and edges represent
chemical bonds (Debnath et al., 1991). Each graph is labeled binary to indicate its mutagenic effect, with -NO2 and -NH2
considered ground-truth explanations (Luo et al., 2020). Multiple explanations may exist for each graph.

These datasets are selected to represent a variety of characteristics commonly encountered in graph explanation tasks.
BA-2MOTIFS, a synthetic dataset, has a single, unambiguous ground-truth explanation for each instance. 3MR, a real-world
dataset, while having multiple possible explanations for each instance, has a relatively low proportion (8%) of instances with
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Table 4: We run each method 10 times, reporting the mean and standard deviation. Results significantly outperforming the
baseline ✘ (GIN, paired t-test, p < 0.05) are underlined. Values in brackets show performance changes after Explanation
Ensemble. Dark green indicates performance improvement, while dark red indicates performance degeneration.

METHOD METRIC STRATEGY BA-2MOTIFS 3MR BENZENE MUTAGENICITY

Type I
(Attention)

SHD
✘ 2.74±2.75 (↓ 1.37) 6.44±3.85 (↓ 2.91) 0.00±0.00 (0.00) 2.90±5.80 (↓ 2.90)

+SWA 3.89±3.66 (↓ 2.70) 3.06±2.15 (↓ 1.77) 0.00±0.00 (0.00) 7.79±5.35 (↓ 4.38)
+EA 3.80±3.84 (↓ 2.01) 4.82±3.07 (↓ 2.67) 0.00±0.00 (0.00) 0.12±0.25 (↓ 0.12)

AUC (%)
✘ 99.12±0.17 (↑ 0.14) 98.89±0.20 (↑ 0.56) 83.63±4.34 (↑ 6.59) 97.22±0.89 (↑ 1.56)

+SWA 99.06±0.13 (↑ 0.08) 98.56±0.12 (↑ 0.31) 86.93±2.68 (↑ 2.38) 98.83±0.28 (↑ 0.37)
+EA 98.95±0.28 (↑ 0.17) 98.78±0.15 (↑ 0.56) 82.33±5.96 (↑ 8.30) 96.59±1.82 (↑ 2.06)

ACC (%)
✘ 100.00±0.00 (0.00) 99.13±0.41 (↑ 0.17) 91.17±0.36 (↑ 0.41) 92.22±1.08 (↑ 0.34)

+SWA 70.30±5.00 (↓ 2.00) 94.15±0.58 (↓ 0.04) 87.72±0.26 (↑ 0.36) 89.93±0.47 (↓ 0.41)
+EA 100.00±0.00 (0.00) 99.37±0.33 (↑ 0.28) 91.36±0.39 (↑ 0.14) 92.22±0.95 (↑ 0.78)

Type II
(Causal Learning)

SHD
✘ 1.34±1.30 (↓ 0.66) 3.66±2.51 (↓ 2.00) 0.00±0.00 (0.00) 0.15±0.24 (↓ 0.15)

+SWA 3.54±3.28 (↓ 2.20) 4.22±2.88 (↓ 2.14) 0.00±0.00 (0.00) 7.15±4.82 (↓ 3.95)
+EA 2.57±2.70 (↓ 1.76) 4.86±3.16 (↓ 2.75) 0.00±0.00 (0.00) 0.01±0.03 (↓ 0.01)

AUC (%)
✘ 97.80±0.42 (↑ 1.08) 98.42±0.10 (↑ 0.70) 73.66±6.03 (↑ 8.72) 96.87±0.80 (↑ 1.59)

+SWA 96.96±1.17 (↑ 1.67) 97.23±0.49 (↑ 0.99) 66.65±4.43 (↑ 8.25) 97.83±0.43 (↑ 1.22)
+EA 97.53±0.59 (↑ 1.33) 98.36±0.30 (↑ 0.85) 75.25±6.92 (↑ 7.14) 95.27±1.51 (↑ 2.38)

ACC (%)
✘ 78.59±4.05 (↑ 6.41) 98.30±0.66 (↑ 1.00) 84.20±1.73 (↑ 3.21) 89.66±1.10 (↑ 0.88)

+SWA 65.50±6.77 (↑ 0.50) 88.75±1.04 (↑ 0.52) 82.79±1.02 (↑ 2.62) 90.03±0.48 (↑ 0.17)
+EA 80.19±6.70 (↑ 7.81) 99.03±0.43 (↑ 0.62) 73.15±4.89 (↑ 3.76) 89.72±0.83 (↑ 0.48)

Type III
(Size Constraint)

SHD
✘ 2.77±2.57 (↓ 1.68) 3.51±2.37 (↓ 1.62) 0.00±0.00 (0.00) 18.74±11.70 (↓ 9.91)

+SWA 4.95±4.28 (↓ 3.10) 2.89±2.22 (↓ 1.52) 0.00±0.00 (0.00) 11.49±6.87 (↓ 6.13)
+EA 3.15±3.45 (↓ 1.67) 3.53±2.41 (↓ 1.69) 0.00±0.00 (0.00) 11.07±8.91 (↓ 6.74)

AUC (%)
✘ 99.11±0.16 (↑ 0.11) 98.44±0.19 (↑ 0.72) 85.75±4.06 (↑ 5.83) 97.49±0.86 (↑ 1.57)

+SWA 98.94±0.18 (↑ 0.09) 98.37±0.09 (↑ 0.42) 89.16±1.02 (↑ 1.73) 98.67±0.28 (↑ 0.48)
+EA 99.10±0.12 (↑ 0.09) 98.35±0.23 (↑ 0.75) 82.31±4.92 (↑ 7.82) 97.00±1.46 (↑ 1.91)

ACC (%)
✘ 100.00±0.00 (0.00) 98.85±0.46 (↑ 0.45) 90.67±0.29 (↑ 0.58) 91.35±1.22 (↑ 0.87)

+SWA 68.80±5.11 (↑ 0.20) 93.04±1.08 (↑ 0.73) 87.83±0.33 (↑ 0.25) 89.66±0.40 (↓ 0.14)
+EA 100.00±0.00 (0.00) 99.30±0.40 (↑ 0.35) 91.37±0.26 (↑ 0.13) 91.95±1.04 (↑ 0.95)

Type IV
(MI Constraint)

SHD
✘ 3.72±3.54 (↓ 2.25) 5.75±2.90 (↓ 2.25) 3.78±2.50 (↓ 2.11) 13.53±10.86 (↓ 5.98)

+SWA 3.13±3.58 (↓ 2.73) 4.89±3.51 (↓ 2.86) 0.48±0.73 (↓ 0.48) 0.00±0.00 (0.00)
+EA 2.33±2.34 (↓ 1.51) 6.64±3.65 (↓ 2.49) 4.78±2.88 (↓ 2.76) 11.91±8.38 (↓ 5.13)

AUC (%)
✘ 98.73±0.14 (↑ 0.20) 99.31±0.15 (↑ 0.19) 88.15±1.24 (↑ 1.01) 99.15±0.19 (↑ 0.17)

+SWA 99.21±0.16 (↑ 0.13) 98.40±0.23 (↑ 0.24) 89.09±0.65 (↑ 0.87) 99.14±0.07 (↑ 0.13)
+EA 98.16±0.33 (↑ 0.29) 99.14±0.18 (↑ 0.24) 86.69±1.18 (↑ 1.14) 99.19±0.22 (↑ 0.21)

ACC (%)
✘ 100.00±0.00 (0.00) 99.51±0.16 (↓ 0.21) 88.83±0.46 (↑ 0.35) 91.58±0.57 (↑ 0.64)

+SWA 87.30±8.03 (↑ 6.70) 93.07±0.99 (↑ 0.27) 86.96±0.68 (↑ 0.79) 89.86±0.72 (↑ 0.68)
+EA 100.00±0.00 (0.00) 99.27±0.24 (↑ 0.38) 87.62±0.47 (↑ 0.46) 91.85±1.22 (↑ 0.71)

multiple explanations. BENZENE, in contrast, exhibits a higher degree of multi-explanations, with 33% of its instances
having multiple valid explanations. Finally, MUTAGENICITY also features instances with multiple explanations, and these
explanations can be of varying types. This diverse selection of datasets ensures a comprehensive evaluation of our proposed
method. Statistics of the datasets are provided in Table 3.

F. More Quantitative Results
In this section, we present the results of using GCN as the model architecture (see Table 4). Some self-interpretable GNNs
achieve zero SHD (indicating no inconsistency) on certain datasets, but this result is misleading. It does not imply that they
produce meaningful explanations. Instead, the zero SHD is often an artifact of the model assigning weights above 0.5 to
all edges. In our experiments, we used a 3-layer GCN and a 2-layer GIN, as a 2-layer GCN failed to achieve satisfactory
classification performance. However, we observe that even with improved accuracy, the explanations produced by GCN
remain much less meaningful compared to GIN. This may be because GCN’s aggregation mechanism (i.e., neighborhood
averaging) tends to dilute node-specific signals, especially as the number of layers increases. As a result, the model may
become less sensitive to specific substructures and assign uniformly high attention to all edges, leading to deceptively low
SHD scores. In contrast, GIN, which is more expressive and theoretically as powerful as the Weisfeiler-Lehman test, appears
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Table 5: Datasets and their URLs

DATASET URL
BA-2MOTIFS https://github.com/Graph-COM/GSAT?tab=readme-ov-file

3MR https://drive.google.com/drive/folders/1b0MowzK4LSlkih3ie1bnj6IkjRqPAKH5
BENZENE https://chrsmrrs.github.io/datasets/docs/datasets

MUTAGENICITY https://github.com/flyingdoog/PGExplainer/tree/master/dataset

to better preserve local discriminative structures and yields more valuable explanations.

G. Experimental Settings
Considering that some of the datasets we selected were not used in the original papers of certain methods, and to ensure a
(relatively) fair comparison, we built our backbone entirely upon the official GSAT (Type IV) implementation and then
reimplemented ATT (Type I), GISST (Type III), and CAL (Type III) on top of this backbone. Specifically:

• ATT (Velickovic et al., 2018): This only required modifying the loss function (classification loss).

• GISST (Lin et al., 2020): This only required modifying the loss function (classification loss + L1 loss + entropy
loss). In practice, we observed that due to the use of Gumbel sampling during training, the model naturally tends to
produce near-binary outputs. As a result, the entropy loss became unnecessary and was ultimately omitted in our final
implementation.

• CAL (Sui et al., 2022): We reimplemented CAL within the GSAT framework based on its original implementation.
Besides modifying the loss function, CAL requires three classifiers, each taking different inputs, as described in
Equation (3). In the original GSAT (Miao et al., 2022), the final classifier is a single linear layer. However, during our
experiments, we found that 1-layer classifier(s) led to convergence issues for CAL. Therefore, we changed it to 3-layer
classifier(s). For consistency, we also applied this modification to ATT, GISST, and GSAT.

SHD Calculation. We run each method 10 times with different random seeds. To evaluate stability, we randomly divide the
10 models into two disjoint groups and compute the SHD between their corresponding EE-generated explanations. For
Table 1 and Table 4, we consider all possible 5-vs-5 splits and report the average SHD across all such pairs. For Figure 5,
we vary the ensemble size n from 1 to 5 and sample all possible disjoint n-vs-n pairs from the 10 models, reporting the
average SHD for each n.

To compute the standard deviation of SHD, we take a sample-level approach: for each individual graph, we calculate the
SHD scores across all valid disjoint model groupings, then compute the standard deviation of these scores for that graph.
The final reported value is the average of these per-sample standard deviations across the dataset. This reflects sample-level
variability, rather than population-level variance over the whole dataset.

Model Architectures. GIN consists of 2 layers with a hidden size of 64, while GCN has 3 layers with the same hidden size.
Following Miao et al. (2022), we employ a 3-layer Multi-Layer Perceptron (MLP) to predict edge weights, with hidden
sizes set to 256, 64, 1. Model hyperparameters are selected based on validation set performance: the learning rate is chosen
from {0.01, 0.005, 0.001, 0.0005, 0.0001} to maximize classification accuracy, and for SWA, we use either the optimal
learning rate or half of it, whichever yields better validation accuracy. The coefficient for EA is selected from {0.01, 0.1, 1,
10, 100} based on classification performance on the validation set. We start using SWA from the 10-th epoch, and at the end
of every optimization step, a snapshot of the weights will be added to the SWA running average.

Self-Interpretable GNN frameworks. The workflow of the self-interpretable GNNs is described as follows (we use GIN
as a study case). First, a 2-layer GIN is used to update node representations:

H = GIN(G). (32)

Next, a 3-layer MLP (explainer) with hidden size {256, 64, 1} is used to predict edge weights. For a certain edge (i, j), its
edge weight is calculated as:

wij = σ(MLP([hi;hj ])), (33)
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where σ is the sigmoid function, hi and hj represent the representation of the i-th node and j-th node in H, respectively,
and σ is the sigmoid function. Then, Gs is factorized as:

P(Gs) =
∏
i,j∈E

P(wij), (34)

where E is the set of edges in the raw graph G, and P(wij) is the Bernoulli distribution Bern(wij), representing the
probability of edge (i, j) being included in Gs. Following existing works (Miao et al., 2022; Deng & Shen, 2024; Luo et al.,
2024), we employ the Gumbel Softmax technique (Jang et al., 2017) for generating GNN explanations during training. The
edge weight eij is calculated by:

ϵ ∼ Uniform(0, 1), eij = σ((log ϵ− log(1− ϵ) + wij)/τ) (35)

where σ is the sigmoid function, and τ is the temperature parameter. Finally, Gs is fed to the above GIN:

zs = POOL(GIN(Gs)), (36)

where POOL is a pooling operation R|V|×d 7→ Rd (e.g., sum, mean, max). The other 3-layer MLP with hidden size
{64, 64, 1} is used to make final predictions:

y = MLP(zs). (37)

The optimization objectives defined in Section 2.2 are used during training. The hyperparameters (e.g., β, γ) are selected
from {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}, primarily based on classification accuracy on the validation set. In practice, we
also heuristically consider explanation conciseness during selection, and discard configurations that yield uninformative
explanations. Detailed hyperparameter settings can be found in our code.

Computing resources. All experiments were conducted using PyTorch, trained with the Adam optimizer (Kingma & Ba,
2015), and executed on one NVIDIA RTX 4090 GPU with Intel Core i7-13700KF CPU. Running all our experiments on a
single GPU took approximately 3 days.

Open Access to Data and Code. All datasets are published and can be downloaded from the Internet (see Table 5).

H. Limitations
While EE is effective in improving explanation consistency and its associated accuracy through ensemble averaging, it is
inherently incompatible with commonly used faithfulness metrics. These metrics typically rely on perturbing or masking
parts of the input based on a single model’s explanation and observing the change in its prediction (Amara et al., 2022).
However, EE produces explanations by aggregating multiple models’ outputs, making it unclear which model should be
evaluated under perturbation. Nonetheless, EE is just a first step toward more trustworthy explanations. We envision that
future solutions may achieve similar or even better results without relying on ensembling.

I. Other Related Work
As suggested by one of the reviewers, we reviewed a set of recent works on self-interpretable methods in NLP. While these
studies primarily focus on rationalization in language models, one of the papers—Multi-Generator Based Rationalization
(MGR) (Liu et al., 2023)—shares certain similarities with our work. Specifically, MGR introduces multiple independently
trained rationale generators to produce diverse explanations, which are then used to train a more robust predictor. Both MGR
and our proposed EE adopt ensembling strategies, but they address different issues and operate in different ways: MGR
targets spurious correlations and degeneration in text-based tasks and applies ensembling only during training, whereas
EE, developed in the context of self-interpretable GNNs, aggregates explanations at inference time to mitigate the negative
impact of redundancy. We plan to investigate whether redundancy also exists in self-interpretable language models.
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