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Abstract

Pre-trained language models (PLMs) such as BERT and GPT learn general text
representations and encode extensive world knowledge; thus, they can efficiently
and accurately adapt to various downstream tasks. In this work, we propose
to leverage these powerful PLMs as recommender systems and use prompts to
reformulate the session-based recommendation task to a multi-token cloze task.
We evaluate the proposed method on a movie recommendation dataset in zero-shot
and fine-tuned settings where no or limited training data are available. In the
zero-shot setting: we find that PLMs outperform the random recommendation
baseline by a large margin; in the meantime, we observe strong linguistic bias
when using PLMs as recommenders. In the fine-tuned setting: such bias is reduced
with available training data; however, PLMs tend to under-perform traditional
recommender system baselines such as GRU4Rec. Our observations demonstrate
potential opportunities as well as current challenges in this novel direction.

1 Introduction

Natural language processing (NLP) has been undergoing a significant paradigm shift driven by the
rapid developments of large pre-trained language models (PLMs) such as BERT [4] or GPT [14].
With the significant increase of model size and pre-training data amount, PLMs show the remarkable
capability of understanding a variety of natural language tasks given task descriptions (a.k.a., prompts)
and only a few or even zero demonstrations [3]. These PLMs are named as foundation models because
their effectiveness incentivizes homogenization of methods for different downstream tasks [1].

In this work, we propose language model recommender systems (LMRecSys) that use powerful PLMs
as recommender systems by reformulating recommendation as a language modeling task. Specifically,
we convert a user’s interaction sequence to a text inquiry (e.g., item sequence: 〈1193, 661, 914〉
to text sequence: A user watched One Flew Over the Cuckoo’s Nest, James and the Giant Peach,
My Fair Lady. Now the user wants to watch _ _ _., where _ is a special mask token.) and use PLMs
to fill in the masks for recommendation.

Our work differs from two types of previous works that combine NLP and recommender systems. The
first type of works uses textual information to augment item representations for better recommendation
performance [12, 22, 21, 20]; for example, CDL [22] and HRNN [12] use text embeddings generated
from item descriptions as one of the item features improve performance. The second type of works
treats items in users’ interaction sequences as text tokens in natural languages [6, 19, 18]. They
adapt NLP training techniques such as masked language modeling to learn users’ representations; for
example, BERT4Rec [18] is trained to predict masked items in user’s interaction sequences, similar
to predicting masked tokens for BERT [4]. Both types of methods require training models from
scratch on recommendation datasets. In contrast, our method, by converting the traditional item-based
recommendation to this text-based cloze task [16], hopes to leverage PLMs to tackle two challenging
problems for recommendation:
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The movie, The Truman Show, starring Jim Carrey, is a 1998 American satirical 
science fiction film directed by Peter Weir. The screenplay by Andrew Nicole was 
adapted from Nicole’s 1997 novel of the same name. The film tells the story of 
Truman Burbank, a man who is unwittingly placed in a televised reality show that 
broadcasts every aspect of his life without his knowledge.  

A user watched Jaws, Saving Private Ryan, The Good, the Bad, and the Ugly, Run Lola 
Run, Goldfinger. Now the user may want to watch something funny and light-hearted 
comfort him after having seen some horrors.
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A user watched Jaws, Saving Private Ryan, The Good, the Bad, and the Ugly, Run Lola Run, Goldfinger. 
Now the user may want to watch __ __ __
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Figure 1: Motivation (top): large pre-trained language models possess both knowledge of items
(generate the movie synopsis given the movie title) and reasoning capability (infer user interests based
on the context); these are key factors to build a successful recommender system. Method (bottom):
traditional sequential recommender operates on the item level, whereas our model use prompts to
reformulate the recommendation task to a multi-token cloze task and operates on the token level; our
method aims to enable zero-shot recommendation and improve data efficiency.

Zero-shot Recommendations: Generating personalized recommendations when no interaction
data is available for training is an important business scenario, especially for startup companies. We
refer to recommendation tasks in this setting as zero-shot recommendation [5]. Many recent works
have demonstrated that PLMs acquire and store extensive knowledge into their parameters during the
pre-training stage [2, 13]. They find that PLMs can even correctly answer more factoid questions than
the models that explicitly use external knowledge bases [15]. We believe such knowledge could be
beneficial to the zero-shot recommendation problem. As shown in Figure 1, we find that a large PLM
can generate the correct movie description based on the given movie name and predict reasonable
recommendations based on the movies watched by the user.

Data Efficiency: The general representations learned during the pre-training stage enable language
models to easily adapt to a variety of downstream tasks. Moreover, recently-proposed prompt-based
tuning approaches further improve the data efficiency [17] — PLMs can be 100x more data efficient
when converting various natural language processing tasks such as text classification, question
answering, natural language inference to cloze task with a prompt (in our example, A user watched...
Now the user wants to watch... is a prompt) [11]. Similarly, we believe PLMs could also be used as
data-efficient recommender systems.

We evaluate our method on movie recommendation tasks in zero-shot and fine-tuned settings. In
the zero-shot setting, we find that LMRecSys outperforms random recommendations but has strong
linguistic biases in its recommendations. By fine-tuning LMRecSys with prompt-tuning techniques,
we improve the recommendation performance by a large margin and reduce the linguistic biases.
However, the fine-tuned LMRecSys under-performs traditional state-of-the-art recommender system
GRU4Rec [9]. Our attempts and observations shed light on the potential opportunities as well as
current challenges in this novel direction.

2 Method

In recommendation, given a user with viewed item sequence [x1, x2, ..., xt−1], we want to predict
the probability distribution of the next item p(xt|x1, ..., xt−1). For traditional methods, each xi is
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embedded into a vector (item embedding), and sequence modeling techniques such as recurrent
neural networks or self-attention is applied to model the item sequence (user embedding).

In language model recommender systems (LMRecSys), we first map each item to its tokenized word
description (e.g., movie name) d(xi) = [wi1 , wi2 , ..., wiL ] and use a prompt f(·) to convert the item
sequence into the text sequence c = f([d(x1), d(x2), ..., d(xt−1)]) as the context. We then use the
language model to estimate the probability distribution of the next item by multi-token inference, i.e.,
aggregating the probability of each token in the item description p(d(xt)|c) = p(wt1 , wt2 , ..., wtL |c).
Note that with this model, we assume a one-to-one correspondence between x and d(x).

The key challenge of our proposed method is multi-token inference. As language models are designed
to predict a single token distribution at each time step, estimating the probability distribution of the
next item that corresponds to multiple tokens (e.g., "Star Wars" in movie recommendations) remains
an open problem in natural language processing research.

First, different items have text descriptions of different lengths. We can pad each item description
to the same fixed length (e.g., the maximum length of all the item names) and compute the average
probability of each token. Moreover, another critical choice is whether to estimate the probability
distribution of each token in the item description independently or dependently. That is, whether we
want to model p(wt1 , wt2 , ..., wtL |c) =

∏
j p(wtj |c)or

∏
j p(wtj |wt<j

, c). Technically, it is achieved
by whether to use the language model to fill in all the masks at a time or in an auto-regressive fashion.
We refer to the independent estimation as O(1) inference as we only need a single forward pass for
the language model1 and the dependent estimation as O(LN) inference as we need L forward passes
for each item and LN passes for N items. While the second estimation is intuitively more accurate, it
is computationally inefficient when we have a large collection of items.

When fine-tuning the PLMs for recommendation, we maximize the probability of the ground-truth
item p(d(xt)|c) via the cross-entropy loss. For evaluation, we use MRR@K and Recall@K (R@K)
metrics based on top K predicted items.

3 Experiments

Research Questions: We are hereby to answer the following questions:

Q1 Can we use pre-trained language models for zero-shot recommendation? (Section 3.1)
Q2 Can we fine-tune pre-trained language models to improve recommendations? (Section 3.2)

Dataset: We train and evaluate the model on a widely-used movie recommendation dataset
MovieLens-1M (ML1M) [8], which consists of 6040 users, N=3883 movies, and 1M interactions.

3.1 Zero-shot Recommendations

We start with zero-shot (i.e., no interaction data is available for training) language model recommender
systems (LMRecSys). For each user, we provide the model with their first 5 watched movies and use
the model to predict their 6th watched movie. We use the movie title as the item description and pad
or truncate all the titles to L=10 tokens. We use the prompt A user watched A, B, C, D, E. Now the
user may want to watch [F]., where each letter represents a full movie title. We compare different
inference methods, model sizes, and prompts.

We compare our LMRecSys with two zero-shot baselines Random and BERT-Base ItemKNN
(Using BERT to generate item embeddings and computing nearest neighbors) and two supervised
baselines POP (Popularity-based model) and GRU4Rec [9] (GRU over item embeddings generated
based on item ID). Table 1 shows zero-shot model performances on the MovieLens-1M dataset, while
Table 2 shows the case study of different inference methods (full results see Supplementary Table 4).

3.1.1 Results & Analysis

Multi-token inference methods significantly influence the results. For O(1) inference, we pad
or truncate all the titles to L=10 tokens, leave 10 masks, and use the language model to fill all the
masks by one pass. BERT O(1) shows even worse performance than the random recommendation.

1Since the context c is the same for all the N candidate items, we only need 1 forward pass instead of N.
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We find that this is because not all the movie names are exactly 10 tokens, always adding a period after
10 masks makes the text ungrammatical, and language models can hardly fill these ungrammatical
texts that are unseen during pre-training. We use a simple solution by leaving 1-L masks, feeding
them into the model for L times, and selecting the output for each movie based on its length [10]. We
name this method as O(L) inference, which achieves 2x more R@20 than O(1) inference and 1x more
R@20 than random. Inputs are guaranteed to be grammatically correct for O(L)/O(LN) inference as
we only add a period after the exact name. GPT2 O(LN) shows much better performances than other
inferences because of the more accurate probability estimation but much more computational cost.

Method # Params R@20

Zero-shot

Random 0 0.0052
BERT-Base ItemKNN 110M 0.0599
BERT-Base O(1) 110M 0.0030
BERT-Base O(L) 110M 0.0094
BERT-Base (DAPT) O(L) 110M 0.0137
GPT2-Small O(LN) 117M 0.0667
GPT2-Medium O(LN) 345M 0.0617
GPT2-Large O(LN) 762M 0.0587
GPT2-XL O(LN) 1542M 0.0739
GPT2-Small O(LN) Weak Prompt 117M 0.0627
GPT2-Small O(LN) Strong Prompt 117M 0.0653
GPT2-Small O(LN, sum) 117M 0.0320
GPT2-Small O(LN) Calibrated 117M 0.0733

Supervised

POP 0 0.1507
GRU4Rec - 0.1664

Table 1: Zero-shot model performances on ML-1M.

Model size and prompt have small in-
fluences on the results. Model size and
prompt have a significant impact on perfor-
mances for many NLP tasks [3]. However,
for our task, the R@20 only improves by
0.72% from GPT2-Small (117M parame-
ters) to GPT-XL (1542M parameters). We
also design a weaker prompt (A, B, C, D,
E, [F].) and a stronger prompt (A user
watched movies A, B, C, D, E. Now the
user may want to watch the movie [F].)
for comparison. However, for our task, us-
ing different prompts achieves very close
performances.

3.1.2 Case Study

Language models show clear linguistic
biases for recommendations. Despite
higher performances achieved by LMRec-
Sys compared to random predictions, we
observe that models have strong linguistic
biases for their top predictions and bottom predictions. Different biases are associated with different
inference methods because of different probabilities modeled. O(1) inference favors generic and
grammatical sequences, O(LN) inference favors uniquely long and grammatical sequences, and
O(LN, sum) inference (the version of O(LN) without length normalization) favors short and gram-
matical sequences. All the inference methods penalize ungrammatical sequences. In other words,
language models are more "language modeling" (predicting fluent and grammatically correct text)
than "collaborate filtering" (recommending similar items based on user preferences). Please refer
Table 2 and Supplementary Table 4 for more details.

Calibration slightly reduces linguistic biases. As language models show clear linguistic biases
for recommendations, here we use a simple calibration method by subtracting the base probability pre-
dicted by the language model from the original probability p′(d(xt)|c) = p(d(xt)|c)−αp(d(xt)) [23].
Technically, the base probability is computed by feeding the model with a null context instead of the
user-viewed context. By only considering the changing amount in predicted scores, movies with rare
words in titles will be less penalized. The coefficient α is tuned on a small set of 50 randomly selected
examples. We find that the calibration improves the R@20 by 0.66% when choosing α = 0.40.
However, linguistic bias is only slightly mitigated as shown in the Supplementary Table 4.

3.2 Fine-tuned Recommendations

We explore fine-tuning LMRecSys to improve recommendations. After obtaining the item probability
distribution using different multi-token inference methods, we use the cross-entropy loss to maximize
the probability of the ground-truth item. Due to computational limits, here we only use inference
methods that have constant complexity. We compare different models and different amounts of
training data (by controlling the session length K). Table 3 shows fine-tuned model performances
(full results see Supplementary Table 5).2

2Here we use a different data processing method by only keeping the last K movies that a user watched and
rated as 5 stars to reduce the popularity bias in the dataset. We name this dataset as ML-1M-5Star.
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Method Probability Top 3 Predictions Top Prediction Bias

BERT-Base
O(1)

∏
i

L
√
p(wi|c)

(1) If....
(2) Them!
(3) The Show

Generic and grammatical
word sequences

GPT2-Small
O(LN)

∏
i

L
√
p(wi|c, w<i)

(1) Dr. Strangelove or: How I Learned to
Stop Worrying and Love the Bomb

(2) Star Wars: Episode VI - Return of the Jedi
(3) Star Wars: Episode V - The Empire Strikes Back

Uniquely long and
grammatical word
sequences

GPT2-Small
O(LN, sum)

∏
i p(wi|c, w<i)

(1) Raiders of the Lost Ark
(2) Jurassic Park
(3) Ghostbusters I

Short and grammatical
word sequences

Table 2: Case study of different inference methods. Input: A user watched Raiders of the Lost Ark, Star Wars:
Ep VI-Return of the Jedi, Ran, Ghostbusters II, Gandhi. Now the user may want to watch _. Answer: Indochine

3.2.1 Results & Analysis

Method MRR@20 R@20

Random - 0.0052
POP 0.0202 0.0817
GRU4Rec 0.0302 0.0986
BERT O(1) 0.0177 0.0843
RoBERTa O(1) 0.0204 0.0843
BERT O(L) 0.0181 0.0852
BERT (DAPT) O(L) 0.0187 0.0872

Table 3: Fine-tuned model performances
on ML-1M-5Star.

LMRecSys under-performs GRU4Rec. LMRecSys
with different PLMs and inference methods achieve
slightly worse performances than baseline GRU4Rec
after fine-tuning, probably because learning to predict
the next item as multiple tokens is intrinsically more
challenging than predicting the next item as a whole.
RoBERTa achieves slightly better performances than
BERT probably because of 10x more pre-training data.

Domain-adaptive pre-training (DAPT) [7] shows
small improvements. To inject domain-specific
knowledge, we continue pre-training the BERT on 520K
movie synopses crawled from the web. We concatenate each synopsis with its title (i.e., [synopsis].
This is the movie [Title].), mask 30% random words or only the entire title for 1:1 ratio, and train
the model to predict the masked words. We find that this hybrid masking strategy is better than a
purely random masking strategy and leads to small improvements for both zero-shot and fine-tuned
recommendations. The limited improvements may be due to the small data size compared to the
general pre-training data.

Fine-tuned LMRecSys learn how to recommend but linguistic biases still exist for bottom pre-
dictions. From Supplementary Table 4, no clear bias is observed for the top predictions, but models
still penalize movies with ungrammatical names (e.g., non-English words).

4 Discussion

In this work, we leverage PLMs as recommender systems and transform the recommendation task to
the multi-token cloze task in order to enable zero-shot recommendation and improve data efficiency.
Based on our observations, there are several open research questions along this new direction:

• Multi-token inference: Language models can accurately predict a single token distribution, but
inferring the probability distribution of a span corresponding to multiple tokens remains a challenge.
We find that performances vary significantly using different inference methods.

• Linguistic biases disentanglement: Language models tend to predict generic tokens to make the
sentence fluent. How to disentangle this linguistic bias with the true probability is important for
various downstream tasks using prompt-based methods.

• Domain-knowledge evaluation and injection: Understanding how much domain knowledge lan-
guage models have and how to inject domain knowledge are both open questions. The simple
approach to inject knowledge, domain-adaptive pre-training, only leads to small improvements.

• Scales of language models: Model size has a significant impact on the zero-shot/few-shot capa-
bility [3]. We find that J1-Jumbo (178B parameters) understands movie contents much better than
J1-Large (7.5B) or GPT-2 XL (1.5B) through qualitative studies. However, we cannot evaluate these
large models since token distribution is not available from APIs.
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A Appendix

Method Probability Top 3 Predictions Top Predic-
tion Bias

Bottom 3 Predictions Bottom
Prediction
Bias

BERT-
Base
O(1)

∏
i

L
√
p(wi|c) 1. If.... 2. Them! 3. The

Show
Generic
and gram-
matical
word
sequences

3. Shaft 2. Trois 1.
Nowhere

Ungrammatical
sequences

GPT2-
Small
O(LN)

∏
i

L
√
p(wi|c, w<i) 1. Dr. Strangelove or: How

I Learned to Stop Worrying
and Love the Bomb 2. Star
Wars: Episode VI - Return
of the Jedi 3. Star Wars:
Episode V - The Empire
Strikes Back

Uniquely
long and
grammat-
ical word
sequences

3. Children Are Watch-
ing us, The (Bambini ci
guardano, I) 2. Under the
Domin Tree (Etz Hadomim
Tafus) 1. Goodbye, 20th
Century (Zbogum na dvade-
setiot vek)

Ungrammatical
sequences

GPT2-
Small
O(LN,
sum)

∏
i p(wi|c, w<i) 1. Raiders of the Lost Ark

2. Jurassic Park 3. Ghost-
busters II

Short and
grammat-
ical word
sequences

3. Garden of Finzi-Contini,
The (Giardio dei Finzi-
Contini, Il) 2. Old Lady
Who Walked in the Sea, The
(Vieille qui marchait dans la
mer, La) 1. Goodbye, 20th
Century (Zbogum na dvade-
setiot vek)

Ungrammatical
sequences

GPT2-
Small
O(LN)
Calibrated

∏
i

L
√
p(wi|c, w<i)−

α
∏

i
L
√
p(wi|w<i)

1. Star Wars: Episode
VI - Return of the Jedi 2.
Star Wars: Episode V -
The Empire Strikes Back
3. Close Encounters of the
Third Kind

Uniquely
long and
grammat-
ical word
sequences

3. Children Are Watch-
ing us, The (Bambini ci
guardano, I) 2. Under the
Domin Tree (Etz Hadomim
Tafus) 1. Goodbye, 20th
Century (Zbogum na dvade-
setiot vek)

Ungrammatical
sequences

BERT-
Base
O(1)Fine-
tuned

∏
i

L
√
p(wi|c) 1. The Insider 2. Saving

Private Ryan 3. Boys Don’t
Cry

No clear
bias
observed

3. Black Tights (Les
Collants Noirs) 2. Half-
moon (Paul Bowles - Halb-
mond) 1. Beloved/Friend
(Amigo/Amado)

Ungrammatical
sequences

Table 4: Case study of different inference methods. Input: A user watched Raiders of the Lost Ark,
Star Wars: Episode VI - Return of the Jedi, Ran, Ghostbusters II, Gandhi. Now the user may want to
watch ___. Answer: Indochine

Method K=4 K=5 K=6 K=7
MRR@20 R@20 MRR@20 R@20 MRR@20 R@20 MRR@20 R@20

Random - 0.0052 - 0.0052 - 0.0052 - 0.0052
POP 0.0202 0.0817 0.0196 0.0828 0.0199 0.0793 0.0198 0.0763
GRU4Rec 0.0302 0.0986 0.0325 0.1210 0.0370 0.1505 0.0410 0.1542
BERT-Base O(1) 0.0177 0.0843 0.0223 0.0959 0.0257 0.1051 0.0319 0.1210
BERT-Base O(L) 0.0181 0.0852 - - - - -
RoBERTa-Base O(1) 0.0204 0.0843 0.0209 0.1012 0.0265 0.1087 0.0289 0.1250
RoBERTa-Base (DAPT) O(L) 0.0187 0.0872 - - - - -

Table 5: Fine-tuned model performances on ML-1M-5Star with different session lengths K.
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