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ABSTRACT

For the creation of new drugs, understanding how genes interact with one an-
other is crucial. Researchers can find new potential drugs that could be utilised
to treat diseases by looking at gene-gene interactions. Scale-based research on
gene-gene interactions proved challenging in the past. It was necessary to mea-
sure the expression of thousands or even millions of genes in each individual cell.
Recently, high-throughput sequencing technology has made it possible to detect
gene expression at this level. These advances have led to the development of new
methods for inferring causal gene-gene interactions. These methods use single-
cell gene expression data to identify genes that are statistically associated with
each other. However, it is difficult to ensure that these associations are causal,
rather than simply correlated. So, the CausalBench Challenge seeks to improve
our ability to understand the causal relationships between genes by advancing the
state-of-the-art in inferring gene–gene networks from large-scale real-world per-
turbational single-cell datasets. This information can be used to develop new drugs
and treatments for diseases. The main goal of this challenge is to improve one
of two existing methods for inferring gene-gene networks from large-scale real-
world perturbational single-cell datasets: GRNBoost or Causal Discovery from
Interventional Data (DCDI). This paper will describe three small improvements
to the DCDI baseline.

1 INTRODUCTION

Causal inference is a fundamental problem in science. Experiments are conducted in all fields of
research to understand the underlying causal dynamics of systems. This is motivated by the desire
to take actions that induce a controlled change in a system. However, studying causality in real-
world environments is often difficult because it generally requires either the ability to intervene
and observe outcomes under both interventional and control conditions, or the use of strong and
untestable assumptions that cannot be verified from observational data alone.

To address these problem, CaualBench Chevalley et al. (2022) was introduced. CausalBench is a
comprehensive benchmark suite for evaluating network inference methods on perturbational single-
cell RNA sequencing data. It includes two curated, openly available datasets with over 200,000
interventional samples each, a set of meaningful benchmark metrics, and baseline implementations
of relevant state-of-the-art methods. The CausalBench challenge also provides two different base-
line methods for inferring causal relationship: the GRNBoost Aibar et al. (2017) and the DCDI
Brouillard et al. (2020), and proposed changing one of the algorithms to improve its performance.
The GRNBoost is a method for inferring gene regulatory networks from observational data. It can
be improved by using interventional data, and the DCDI is a method for inferring gene regulatory
networks from interventional data. It can be improved by tuning its parameters and by using more
data. In this work, I chose to modify the DCDI baseline and apply three small modifications to the
algorithm that are introduced in section 2.
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2 METHODOLOGY

2.1 GREEDY PARTITIONING ALGORITHM

In the baseline implementation of the DCDI, the genes were partitioned into random independent
sub-graphs, since DCDI can’t handle the full graph as it does not scale well in terms of number
of nodes. This partitioning scheme sacrifices possible causal links between genes in different sub-
graphs to make the DCDI algorithm more tractable. So, to minimize the loss of any valid causal
links, we need the partitioning algorithm to group the genes such that the genes in each sub-graph
are related to each other as much as possible. The basic idea of the developed partitioning algorithm
is to develop a measure of relationship between every pair of genes (adj in the algorithm below),
then after initializing the sub-graphs with random genes, we divide the genes into partitions using
a greedy algorithm, i.e. a gene is assigned to a sub-graph where it has the maximum possible
relationship with all other genes.

The Greedy p a r t i t i o n i n g a l g o r i t h m :
# i n i t i a l i z e t h e a l g o r i t h m p a r a m e t e r s
p a r t i t i o n l e n g t h = i n t ( l e n ( i n d i c e s ) / s e l f . g e n e p a r t i t i o n s i z e s )
i n d i c e s = l i s t ( r a n g e ( l e n ( gene names ) ) )
used = [ F a l s e f o r i i n r a n g e ( l e n ( i n d i c e s ) ) ]
random . s h u f f l e ( i n d i c e s )
# i n i t i a l i z e t h e a d j a c e n c y m a t r i x
a d j = ( e x p r e s s i o n m a t r i x >0) . a s t y p e ( i n t )
a d j = n o r m a l i z e ( ad j , norm = ’ l2 ’ , a x i s =0)
a d j = np . matmul ( np . t r a n s p o s e ( a d j ) , a d j )
# i n i t i a l i z e p a r t i t i o n s wi th random genes
p a r t i t i o n s = [ ]
f o r i i n r a n g e ( p a r t i t i o n l e n g t h ) :

p a r t i t i o n s = p a r t i t i o n s + [ [ i n d i c e s [ i ] ] ]
used [ i n d i c e s [ i ] ] = True

# d i v i d e t h e genes i n t o p a r t i t i o n s
w h i l e n o t a l l ( used ) :

f o r i i n r a n g e ( p a r t i t i o n l e n g t h ) :
i f a l l ( used ) :

b r e a k
m a x d i s t , max ind = −1 , −1
f o r j i n r a n g e ( l e n ( i n d i c e s ) ) :

i f n o t used [ i n d i c e s [ j ] ] :
d i s t = 0
f o r k i n p a r t i t i o n s [ i ] :

d i s t = d i s t + a d j [ k , j ]
i f d i s t > m a x d i s t :

m a x d i s t = d i s t
max ind = i n d i c e s [ j ]

p a r t i t i o n s [ i ] = p a r t i t i o n s [ i ] + [ max ind ]
used [ max ind ] = True

# r e t u r n t h e p a r t i t i o n s
r e t u r n p a r t i t i o n s

2.2 AUGMENTING THE DATA

In this work, the data is augmented to be the double of its original size. The augmentation algorithm
is simple, you randomly select two samples with the same intervention, and average these two
samples and add it as a new sample.

2.3 THE DEEP SIGMOIDAL FLOW MODEL PARAMETER TUNING

In the baseline model, the sigmoidal flow has two conditional layers with 15 dimensions each, and
two flow layers with 10 dimensions each. However, it is a rule of thumb that each variable in a neural
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network needs 25 examples to be trained well and to produce similar results across multiple runs, so
the dimensions of the conditional and flow layers are set according to a simple heuristic with upper
and lower bounds. The heuristic: X =

√
len(intervention)/25/3/2/2/1.5, and the dimension of

the conditional layer is set to be min(18,max(5, round(1.5 ∗X))), and the dimension of the flow
layer is set to be min(12,max(3, round(X)))

3 CONCLUSION AND FUTURE WORK

In this work, three minor improvements to the DCDI baseline were introduced: new partitioning
algorithm for the genes, data augmentation scheme and parameter selection formulas for the deep
sigmoidal flow model. These modifications improved the performance of the DCDI baseline on the
public test set. For future work, different measure of relationships between genes can be explored in
the partitioning algorithm, also, a tractable more optimal partitioning algorithm can also be derived
other than the proposed greedy algorithm.
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