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Abstract
Outdoor 3D semantic scene generation produces realistic and semantically rich
environments for applications such as urban simulation and autonomous driving.
However, advances in this direction are constrained by the absence of publicly
available, well-annotated datasets. We introduce SketchSem3D, the first large-scale
benchmark for generating 3D outdoor semantic scenes from abstract freehand
sketches and pseudo-labeled annotations of satellite images. SketchSem3D in-
cludes two subsets, Sketch-based SemanticKITTI and Sketch-based KITTI-360
(containing LiDAR voxels along with their corresponding sketches and annotated
satellite images), to enable standardized, rigorous, and diverse evaluations. We also
propose Cylinder Mamba Diffusion (CymbaDiff) that significantly enhances spatial
coherence in outdoor 3D scene generation. CymbaDiff imposes structured spa-
tial ordering, explicitly captures cylindrical continuity and vertical hierarchy, and
preserves both physical neighborhood relationships and global context within the
generated scenes. Extensive experiments on SketchSem3D demonstrate that Cym-
baDiff achieves superior semantic consistency, spatial realism, and cross-dataset
generalization. The code and dataset will be available at https://github.com/Lillian-
research-hub/CymbaDiff.

1 Introduction
Generative modeling has demonstrated remarkable progress in the 2D and 3D domains, largely
fueled by the rapid development of diffusion models [1, 2, 3, 4]. In 3D, diffusion approaches have
significantly advanced 3D object synthesis [5, 6] and indoor scene generation [7, 8]. However,
generating large-scale 3D outdoor environments remains widely underexplored [9, 10, 11], as outdoor
urban scenes pose greater challenges due to their higher semantic diversity, complex spatial structures,
and dynamic contextual dependencies. Despite these challenges, synthesizing realistic and scalable
3D urban scenes is increasingly critical, as it underpins a wide range of emerging applications,
including city-scale simulation [12, 13] and autonomous driving [14, 15, 16, 17].

A few methods have recently surfaced for 3D outdoor scene generation [9, 10, 11, 18, 19], often
relying on bird’s-eye view (BEV) with only road data or multi-scale scene hierarchies to guide
generation. BEV-based approaches suffer from insufficient 3D structural information, limiting both
semantic richness and geometric fidelity. Meanwhile, modeling multi-scale scene hierarchies typically
requires generative models to repeatedly synthesize scenes at multiple spatial resolutions, increasing
both computational and structural complexity. Moreover, due to the lack of a public large-scale
benchmark, current approaches typically use self-curated and heavily preprocessed datasets for
evaluation [9], which fundamentally constrains rigorous benchmarking. Sketch-based methods [20,
21, 22, 23] have recently emerged as a promising paradigm for user-guided 3D generation, enabling
intuitive control through freehand drawings. However, their applicability remains confined to the
synthesis of isolated 3D objects or simple indoor scenes. Expanding sketch-based 3D reconstruction
to outdoor scenes is currently widely open. Challenges in this novel pursuit arise from complex
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scene layouts, diverse object geometries, and the need to preserve spatio-semantic coherence across
large-scale scenes.

This work takes a significant step towards extending sketch-based generation to outdoor environments.
To that end, we build upon the growth of State Space Models (SSMs) [24], which have gained
increased attention across image segmentation [25, 26] and point cloud processing [27, 28] for their
ability to capture long-range dependencies while remaining efficient through selective computa-
tion.However, to enhance global contextual understanding, SSMs typically aggregate information
from multiple scan directions, leading to substantial memory overhead. Moreover, the scanning order
imposed by the Cartesian coordinate system can distort local neighborhood relationships, especially
in scenes with limited spatial coherence.

To address the above-noted challenges for sketch-based 3D outdoor scene generation, we first present
‘SketchSem3D’, a large-scale dataset tailored for the task. SketchSem3D enables the synthesis of
semantically rich outdoor 3D environments from freehand sketches and pseudo-labeled satellite image
annotations. The annotation pipeline properly integrates CLIP-based textual guidance [29] with
image embeddings from the Segment Anything Model (SAM) [30], enabling robust and automated
semantic labeling. SketchSem3D comprises two subsets, Sketch-based SemanticKITTI and Sketch-
based KITTI-360, designed to support standardized benchmarking and fair comparison. Building
upon this dataset, we define the novel ‘sketch-based 3D outdoor scene generation’ research task.
We also propose Cylinder Mamba Diffusion, the first approach to handle this task. As adjacent
Cartesian-based voxel sequences may misrepresent spatial proximity in outdoor scenes, CymbaDiff
is particularly tailored to handle voxel discrepancies. Our underlying model is a denoising network,
combining an SSM architecture with generative diffusion in the latent space. We design cylinder
mamba blocks to enhance spatial coherence during the generative process, imposing a structured
spatial ordering to explicitly encode cylindrical continuity and vertical hierarchy, preserving spatial
neighborhood relationships within scenes.

Our key contributions are summarized below:

• We introduce the novel task of ‘sketch-based 3D outdoor scene generation’, which enables
intuitive and flexible user interaction through freehand sketches and pseudo-labeled satellite image
annotations. By reducing the need for manual semantic annotation, this task offers an efficient
solution to generate training data for applications such as urban-scale simulation and autonomous
driving.

• We present SketchSem3D, the first public large-scale sketch-based benchmark for 3D outdoor
semantic scene generation. It includes two subsets, Sketch-based SemanticKITTI and Sketch-
based KITTI-360, and enables standardized benchmarking for the development and evaluation of
generative models in complex outdoor settings.

• We propose CymbaDiff, a generative model that incorporates the proposed cylinder mamba
blocks to enhance spatial coherence during the generation process. We also conduct extensive
experiments on the Sketch-based SemanticKITTI and Sketch-based KITTI-360 benchmarks,
demonstrating state-of-the-art performance in 3D semantic scene generation and completion.

2 Related Work
2.1 State Space Models

Recent studies have demonstrated the strong capability of State-Space Models (SSMs) in capturing
long-range dependencies across sequential data [31, 32]. These models have been successfully
applied in a variety of domains, including medical image segmentation [25, 33], image restoration
[34, 35], natural language processing (NLP) [36, 37], and point cloud processing [38, 28]. Many of
these approaches build upon foundational architectures such as VisionMamba [39], S4ND [40], and
Mamba-ND [41]. Specifically, VisionMamba [39] integrates bidirectional SSMs for data-dependent
global context modeling and employs positional embeddings to enhance location-aware visual
recognition. S4ND [40] extends the SSM framework by incorporating local convolution operations,
thereby enabling processing beyond one-dimensional inputs. Mamba-ND [41] further addresses multi-
dimensional data by utilizing various scan patterns within a single block to enhance performance in
discriminative tasks. Despite their strengths, these methods primarily focus on maximizing contextual
information through multiple scanning directions, often neglecting structured spatial coherence across
horizontal and vertical hierarchies, particularly under memory-constrained settings.
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2.2 3D Semantic Scene Generation
Diffusion models have evolved from generating 2D images to addressing increasingly complex 3D
data modeling tasks [2]. Compared to traditional generative models such as Generative Adversarial
Networks (GANs) [42] and Variational Autoencoders [43], diffusion models follow a progressive
denoising process [44], which enhances training stability and improves the capacity to capture
complex data distributions. These advantages render diffusion models particularly suitable for 3D
data generation tasks. While much of the existing research has focused on object-level synthesis
[45, 46, 47, 48, 49, 50, 51, 52] and indoor scene generation [53, 54, 55, 56], there is a growing body
of work exploring 3D outdoor semantic scene generation [57, 11, 10, 58, 47, 9] as it underpins a
wide range of emerging applications, including autonomous driving [14, 15, 16, 17] and city-scale
simulation [12, 13]. For instance, UrbanDiff [9] conditions generation on BEV maps to produce urban
scenes in the form of semantic occupancy grids, integrating both geometry and semantic information.
P-DiscreteDif [10] proposes a progressive multi-scale strategy that synthesizes large-scale 3D scenes
by conditioning each stage on the output from the preceding resolution level, with the initial model
conditioned solely on noise. Despite these advancements, the absence of standardized datasets for 3D
outdoor semantic scene generation has led to the use of heterogeneous benchmarks with inconsistent
scene conditions, thereby limiting fair comparison and hindering systematic progress in the field.

2.3 3D Semantic Scene Completion
3D semantic scene completion methods can be broadly categorized into four categories: image-based
approaches [59, 60, 61], point cloud-based methods [62, 63], voxel-based techniques [64, 65], and
multi-modality-based frameworks [66, 67]. Most existing methods are built upon convolutional
neural networks (CNNs) or Transformer-based architectures. For instance, Xia et al. [65] propose
a CNN network (SCPNet), which enhances single-frame scene completion by incorporating dense
relational semantic knowledge distillation along with a label rectification strategy to mitigate artifacts
introduced by dynamic objects. CGFormer [59] enhances semantic scene completion by introducing
a context- and geometry-aware voxel transformer, which initializes queries based on the contextual
information from individual input images and extends deformable cross-attention mechanisms from
2D image space to 3D voxel space. While CNNs are computationally efficient, they are inherently
limited by their receptive field size. Transformers address this limitation by enabling global context
modeling but come with high memory costs. Recently, Segmamba [25] has emerged as a promising
alternative, offering a favorable trade-off by supporting large receptive fields with improved memory
efficiency, making it suitable for 3D semantic scene completion.

3 SketchSem3D Dataset
Sketch-based methods have recently gained increasing attention as a promising paradigm for user-
guided 3D modeling, offering intuitive and flexible interaction through freehand drawing. While these
approaches show great potential, they are constrained to generating isolated 3D objects and lack the
capacity to model complex, semantically rich scenes. In a related direction, UrbanDiff [9] introduced
BEV representations as conditional inputs for 3D semantic scene generation. By leveraging the
spatial alignment between 2D projections and 3D structures, this approach promotes 2D-to-3D
consistency. However, BEV-based supervision inherently constrains the diversity of the generated
scenes. Moreover, acquiring BEV images that accurately reflect the semantic layout of complex 3D
environments is particularly challenging in outdoor settings.

We propose a sketch-based framework for 3D outdoor semantic scene generation. It enables users to
define scene layouts using coarse freehand sketches combined with pseudo-labeled satellite image
annotations, facilitating a more natural and accessible interaction modality. By circumventing the
need for labor-intensive annotations and large-scale sensor-based data collection, the framework
significantly enhances scalability. We leverage this framework in the design of our SketchSem3D
benchmark dataset.

3.1 Benchmark Construction
The benchmark comprises two distinct datasets, Sketch-based SemanticKITTI and Sketch-based
KITTI-360, each constructed through a systematic three-stage pipeline discussed below.

Data Sourcing. We construct the two datasets using the 3D ground truth (GT) from Se-
manticKITTI [68] and SSCBench-KITTI-360 [69], respectively. Each scene is enriched with freehand
sketches and pseudo-labeled satellite image annotations to enable conditioned 3D scene generation.
Both datasets comprise five components: freehand (like) sketches, satellite images, pseudo-labeled
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Figure 1: Pipeline for SketchSem3D construction. SAM and PSA denote Segment Anything Model
and Pseudo-labeled Satellite Image Annotations, respectively.

Table 1: Comparing SketchSem3D (last two rows) with BEV-based NuScenes.

Dataset Pairs Condition 3D Geospatial Semantics Classes 3D GT Voxels

BEV-based NuScenes [9] 34149 BEV % 17 192× 192× 16

Sketch-based SemanticKITTI 58987 Sketch / PSA ! 20 256× 256× 32

Sketch-based KITTI-360 36057 Sketch / PSA ! 19 256× 256× 32

annotations, semantic label keywords, and 3D GT (output). Figure 1 shows the dataset construction
pipeline. The 3D GT is extended from the respective source datasets. Sketches are generated by
applying the Canny edge detector [70] to BEV projections of 3D GT. These sketches closely resemble
freehand drawings, which can be more easily produced at test time compared to BEV projections,
providing abstract representations of scene geometry.

Semantic categories (e.g., road, tree, vehicle) are also available as GT and recorded as label keywords
without spatial encoding. To enrich the semantic context, GPT-4 [71] is used to generate descriptive
texts for each category, supporting alignment with visual features. We leverage the GPS information
provided in KITTI [72] and KITTI-360 [73] to retrieve the corresponding satellite images. We then
apply CLIP [29] to encode the enriched contextual descriptions and SAM [30] to obtain mask-level
embeddings from the satellite images. By computing the cosine similarity between text and image
embeddings, we infer the semantic composition of each scene from the satellite perspective, producing
the pseudo-labeled annotations used in our SketchSem3D dataset.

Data Filtering and Formatting. To address any semantic labeling errors or inconsistencies in the
automated alignment between CLIP [29] text embeddings and SAM [30] image mask embeddings, we
perform a manual review of the resulting class distributions to ensure annotation accuracy and dataset
reliability. Each sketch-based dataset consists of five components: (i) the sketch, (ii) satellite image,
(iii) pseudo-labeled satellite image annotations, (iv) label keywords, and (v) 3D GT. The sketch is
stored as a binary edge map in image format, capturing the structural outline of the scene. The satellite
image is a geo-referenced RGB image of the same size, spatially aligned with the GPS coordinates of
the corresponding scene. The pseudo-labeled satellite image annotations are single-channel semantic
maps, where each pixel represents a semantic class ID. Although two-dimensional, these annotations
provide coarse semantic cues that serve as important conditional guidance for reconstructing 3D
voxel scenes. The label keywords for each scene are saved in a .txt file indexed by scene ID, listing
the semantic class keywords present in the scene. Finally, 3D GT is provided as a volumetric label
map, where each voxel is assigned a semantic class encoded as a 16-bit unsigned integer, following
the format of SemanticKITTI [68].

3.2 Data Statistics Comparison and Evaluation Metrics
Table 1 compares our SketchSem3D dataset with the BEV-based NuScenes dataset [9]. We can see
that our dataset is better in every aspect offering higher resolution, more classes, additional geospatial
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Figure 2: Architecture of our CymbaDiff generation network. The Scene Structure Estimation
Network (SSEN) extracts abstract structural information from Pseudo-labeled Satellite Image Anno-
tations (PSA) and the Sketch. The Latent Mapping Network (LMN) compresses the input conditions
into a latent representation, which is then processed by the CymbaDiff denoiser, which utilizes the
proposed cylinder mamba blocks (CylMa) to perform latent denoising.

semantics, two conditions instead of one and contains a much larger number of 3D scenes (total
95,044 compared to 34,149 in [9]). Notably, each subset of SketchSem3D contains more frames
than [9]. Moreover, our conditions (sketch and PSA) are easier to obtain at test time, enhancing the
practicality. Sketch-based SemanticKITTI includes 58,172 training and 815 validation frames, while
Sketch-based KITTI-360 consists of 33,892 training and 2,165 validation frames. In SketchSem3D,
all satellite images, sketches, and pseudo-labeled annotations are standardized to a resolution of
256× 256 pixels, with corresponding 3D GT of 256× 256× 32 voxels. In comparison, BEV-based
NuScenes [9] contains 3D GT of 192× 192× 16 voxels and lacks explicit geospatial structure as
well as detailed 3D semantic distribution.

To evaluate the quality and diversity of the generated 3D semantic scenes, we adopt two widely
used metrics: Fréchet Inception Distance (FID) [74] and Maximum Mean Discrepancy (MMD) [9].
Together, these metrics capture statistical similarity and feature-level realism, providing a comprehen-
sive assessment of generative performance. Further details on the evaluation metrics are supplied in
the Appendix.

4 Method
We propose a 3D semantic scene generation method that captures both geometric structure and
semantic information, based on a given sketch and its corresponding pseudo-labeled satellite image
annotations. Formally, let the sketch image be denoted as I ∈ RL×W×1, and the associated pseudo-
labeled satellite image annotations as PSA ∈ RL×W×1. These two modalities are jointly projected
into a structured 3D voxel grid RL×W×H×1, which encodes the spatial structure of the semantic scene,
where L, W , H represent the length, width, and height of the 3D space, respectively. The goal is to
generate a semantically complete 3D scene by predicting each voxel’s occupancy state and semantic
label. Each voxel in the generated grid is assigned a semantic class label c ∈ 0, 1, 2, . . . , C − 1,
where C is the total number of semantic categories. By convention, c = 0 corresponds to empty or
unoccupied space, while the remaining values represent distinct semantic classes.

4.1 Scene Structure Estimation Network

To facilitate efficient convergence of CymbaDiff, we introduce a scene structure estimation network
(SSEN) that produces a coarse structural representation of the target 3D scene, as shown in Figure 2.
This structural prior guides the diffusion model towards geometrically plausible outputs during
early generation steps. Inspired by recent advances in structural scene modeling [65, 75], the SSEN
architecture incorporates multi-scale feature extraction modules with Dimensional Decomposition
Residual (DDR) blocks. Specifically, multi-scale feature extraction modules capture hierarchical
contextual information by aggregating features across multiple receptive fields. It employs parallel
branches of 3 × 3 × 3 convolutions to replace 5 × 5 × 5 and 7 × 7 × 7 convolutions, which are
progressively stacked and merged at multiple levels, as shown in Figure 3 (b). The DDR structure
decomposes a standard k×k×k 3D convolution into a sequence of three separable layers: 1× 1×k,
1×k×1, and k×1×1, as illustrated in Figure 3 (d). The multi-scale modules capture spatial context
and semantically-rich features across different receptive fields, while the DDR blocks enhance the
network’s representational capacity with limited computational cost. Through joint use of these
components, SSEN generates a voxel-based structural representation that accelerates convergence
during the diffusion-driven 3D generation while improving geometric fidelity.
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Figure 3: Architecture of the CymbaDiff denoising network. CylMamba denotes cylinder mamba
block. Refer to the text for details.

4.2 Variational Autoencoder (VAE) / Latent Mapping Network
As illustrated in Figure 2, CymbaDiff operates in the latent space of a VAE, which provides a compact
and informative representation for 3D semantic scenes. The VAE is trained with a combination of
cross-entropy loss [76] and Lovász-Softmax loss [77]. This joint objective encourages alignment with
the voxel grid manifold while mitigating the blurriness often introduced by conventional voxel-wise
losses (like L2 [78]). Given a voxelized input scene V ∈ L×W ×H , the encoder E maps it to a
latent representation z = E(V ), the decoder D then reconstructs the scene as Ṽ = D(z) = D(E(V )).
In our implementation, E(·) reduces the spatial resolution of the input voxel grid by a factor of f = 4,
effectively compressing the scene while preserving key structural features. The VAE encoder consists
of two down-sampling blocks, each comprising four consecutive convolutional layers. Every pair
of convolutional layers is followed by a Batch Normalization layer and a ReLU activation function.
Following these operations, a downsampling convolutional layer is applied, which is also followed
by Batch Normalization and ReLU. To align with the VAE’s latent distribution, the latent mapping
network is designed to share the same architecture as the encoder.

4.3 Cross-Scale Contextual Block / Dilated Decomposed Convolution Block
We introduce the Cross-Scale Contextual Block (CSCB), inspired by hierarchical receptive fields
in VGG [79] and multi-path processing in SCPNet [65]. CSCB efficiently captures local-to-global
context from conditioning inputs with minimal memory overhead. Starting with a 3 × 3 × 3
convolution, it has cascaded multi-covolution blocks (see Figure 3 (b)) with skip connections, and
ends with another 3× 3× 3 convolution before adding the residual output. Moreover, the Dilated
Decomposed Convolution Block (DDCB) employs DDR blocks [75] with varying dilation rates
of 1, 2 and 3 to capture diverse contextual features. The DDR structure is shown in Figure 3(d).
The DDR block reduces computational cost of Cin × Cout × k3 in traditional 3D convolutions to
Cin × Cout × 3k by breaking down the operations into 1× 1× k, 1× k × 1, and k × 1× 1 layers,
which decreases the parameter count three times while maintaining detailed spatial layout. Therefore,
this decomposition significantly reduces the number of parameters while preserving fine-grained
spatial layout information.

4.4 CymbaDiff Denoising Network
As shown in Figure 2 (a), CymbaDiff generates scenes from conditional inputs and latent noise,
drawing on the Mamba framework [80] to model sequences through a state-space formulation. A
continuous input x(t) ∈ R is transformed into an output y(t) ∈ R via an intermediate hidden state
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h(t) ∈ RN , before being discretized. The SSMs model [81] is typically formulated using linear
ordinary differential equations (ODEs), defined as:

h
′
(t) = Ah (t) +Bx (t) , y (t) = Ch (t) , (1)

where A ∈ RN×N and B ∈ RN×1, C ∈ R1×N denote the state matrix, input matrix, and output
matrix, respectively. Since deriving the analytical solution for h (t) is often intractable and real-world
data is typically discrete, the system is discretized as follows:

h (t) = Ah (t− 1) +Bx (t) , y (t) = Ch (t) , (2)

where A = exp (△A) and B = (△A)−1
(exp (△A)− I) · △B, C = C are the discretized state

parameters and △ is the discretization step size. The final output is obtained by applying a global
convolution over a structured kernel. The downsampling and upsampling operations follow the design
proposed in [25].

Cylinder Mamba Block. A core component of the CymbaDiff denoiser is the cylinder mamba block,
illustrated in Figure 3 (c). This block integrates the Triple Mamba module [82] with our proposed
cylinder mamba layer design to jointly leverage the advantages of both Cartesian and cylindrical
coordinate representations. The Triple Mamba module, based on Cartesian grids, effectively preserves
precise geometric distances, critical for modeling local physical neighborhoods. However, adjacent el-
ements in Cartesian voxel sequences may misrepresent spatial relationships, limiting the effectiveness
of sequential modeling. In contrast, the cylinder mamba layer (θ, r, z) imposes a structured spatial
ordering that explicitly captures cylindrical continuity and vertical hierarchy. This ordering provides
a vehicle-centric, geometrically coherent view, enabling angular-radial semantic tokenisation and
supporting long-range context modelling with Mamba, for example, capturing structural information
about sidewalks and buildings flanking the road.

The detailed structure of Triple Mamba layer is illustrated in Figure 3(e), and the cylinder mamba
(C-Mamba) layer adopts the same architecture. Before entering the Mamba layers, input features
undergo residual Layer Normalization (LN ) on respective coordinate-based feature representation
i.e, zTMB (t) = (LN(fTMB (t))) + fTMB (t) and zCMB (t) = (LN(fCMB (t))) + fCMB (t).
fTMB (t) and zTMB (t) are the input and output features before the Triple Mamba layer, while
fCMB (t) and zCMB (t) denote the corresponding features before cylinder mamba layer. The
temporal dynamics of the Triple Mamba and C-Mamba layer input are thus governed by:

h (t) = Ah (t− 1) +BzTMB (t) , y (t) = Ch (t) , (3)

h (t) = Ah (t− 1) +BzCMB (t) , y (t) = Ch (t) . (4)

The Triple Mamba layer and C-mamba layer apply three separate Mamba modules, each operating on
the same input zTMB (t) and zCMB (t) but with distinct ordering strategies: forward (ψf

i ), backward
(ψb

i ), and random inter-slice (ψu
i ) directions. The output of the ith Triple Mamba layer and C-mamba

layer are computed as:

ψi (zTMB (t)) = ψf
i (zTMB (t)) + ψb

i (zTMB (t)) + ψu
i (zTMB (t)), (5)

ωi (zCMB (t)) = ωf
i zCMB (t)) + ψb

i (zCMB (t)) + ψu
i (zCMB (t)), (6)

where ψi (zTMB (t)) and ωi (zCMB (t)) represent the outputs of the ith triple Mamba
and C-mamba layer. Fused 3D features from triple Mamba and C-mamba layers are
formulated as ψall

i = ϕalli (zTMB (t)) + ωall
i (zCMB (t)), where ϕalli (zTMB (t)) =

MLP (LN (ψi (zTMB (t)))) + ψi (zTMB (t)) and ωall
i (zCMB (t)) = MLP (LN (ωi (zCMB (t)))) +

ωi (zCMB (t)). ϕalli (zTMB (t)) and ωall
i (zCMB (t)) denote the output feature from the triple

Mamba and the C-mamba layer. MLP corresponds to stacked linear layers. Note that the in-
put features in the C-Mamba layer are sorted by angular, radial, and vertical indices ((θ, r, z)), and the
output features are mapped back to Cartesian spatial ordering (x, y, z) (the same ordering in the Triple
Mamba layer) and fused with those from the Triple Mamba layer, allowing the model to jointly exploit
radial and axis-aligned spatial cues. This joint representation enhances the model’s ability to learn
both local and global 3D spatial structures, capturing both Cartesian and cylindrical representations.
Unlike the original Mamba [41, 83], which emphasizes directional context aggregation along scan
lines with higher memory usage, our cylinder mamba block is specifically designed to efficiently
capture spatially-structured 3D information.
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Table 5: Quatitative results on SemanticKITT validation set. The best results are highlighted in bold.

■ road ■ sidewalk ■ parking ■ other-grnd. ■ building ■ car ■ truck ■ bicycle ■ motorcycle ■ other-veh.
■ vegetation ■ trunk ■ terrain ■ person ■ bicyclist ■ motorcyclist ■ fence ■ pole ■ traf.-sign
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Figure 4: Qualitative results on the Sketch-based SemanticKITTI validation set. The 1st and 2nd
rows show generated scenes conditioned on the corresponding freehand sketch and pseudo-labeled
satellite images. The 3rd and 4th rows demonstrate the model’s capability to generate moderately
diverse 3D scenes (with different details) under identical input conditions.

5 Experiments
Implementation Details. Our model is trained on the Sketch-based SemanticKITTI training split
from the SketchSem3D dataset. For evaluation, we use the validation splits of both the Sketch-
based SemanticKITTI and Sketch-based KITTI-360 subsets, also from SketchSem3D. Following
UrbanDiff [9], we train a dedicated network to extract latent features that encode both geometric
and semantic information. These features are used to compute 3D FID and MMD, providing a joint
assessment of generation quality and distributional similarity to ground-truth scenes. Additional
implementation details are presented in the Appendix.

5.1 3D Semantic Scene Generation and Ablation Study
3D Semantic Scene Generation. As shown in Table 2, we compare our approach with two recent
state-of-the-art baselines, SSD [57] and Semcity [11]. Across all evaluation metrics, our method
consistently achieves superior performance. Notably, on the Sketch-based SemanticKITTI subset,
it improves the FID score by approximately 16 points compared to Semcity [11], highlighting its
effectiveness in interpreting sparse and abstract conditional inputs, such as freehand sketches and
pseudo-labeled satellite image annotations.

SSD [57] and Semcity [11] both adopt 2D FID for evaluation. In contrast, we adopt more compre-
hensive 3D evaluation metrics, 3D FID and MMD, that more accurately assess geometric fidelity
and semantic consistency in voxel space. To evaluate the effectiveness of our approach, we replace
the CymbaDiff denoising network with two baselines: a 3D extension of the Latent Diffusion net-
work [1] and the 3D DiT model [84], and conduct experiments on the SketchSem3D benchmark.
Results in Table 2 show that our method consistently outperforms both baselines, demonstrating
its superior performance in 3D semantic scene generation. For additional context, UrbanDiff [9]
reports competitive performance, with a 3D FID of 291.4 and a 3D MMD of 0.11 on the NuScenes
dataset. However, their experimental setting is less challenging, as the voxel resolution of NuScenes
is 192× 192× 16 and with only 17 semantic classes. In comparison, our benchmark dataset has a
resolution of 256×256×256 and with 20 classes for the Sketch-based SemanticKITTI subset and 16
classes for the Sketch-based KITTI-360 subset. The primary factor underlying this is that UrbanDiff
operates solely within the Cartesian coordinate system, leading to the loss of important volumetric
structural information. Furthermore, UrbanDiff does not release its source code or preprocessed data,
which prevents direct comparison with our proposed task.
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Table 2: Semantic scene generation results. SK: sketch,
PSA: pseudo-labeled satellite image annotations. SSD and
Semcity: 2D FID.

Datasets Method Condition FID ↓ MMD ↓

SemanticKITTI

SSD [57] - 112.82 -
Semcity [11] - 56.55 -
3D Latent Diffusion [1] SK+PSA 165.65 0.09
3D DIT [84] SK+PSA 138.86 0.08
CymbaDiff (ours) SK+PSA 40.67 0.04

KITTI-360
3D Latent Diffusion [1] SK+PSA 330.86 0.12
3D DIT [84] SK+PSA 272.83 0.11
CymbaDiff (ours) SK+PSA 107.53 0.08

Table 3: Ablation study on Sketch-
based SemanticKITTI test set. w/o:
"without", C-Mamba: cylinder
mamba.

Method FID ↓ MMD ↓
w/o CSCB 90.53 0.06
w/o DDCB 76.57 0.06
w/o C-Mamba 74.09 0.05
CymbaDiff 40.67 0.04

In Table 2, to evaluate robustness and generalization, we directly applied our model, trained only
on Sketch-based SemanticKITTI, to Sketch-based KITTI-360 without any fine-tuning. During this
evaluation, only the overlapping class labels (16 classes) between the two subsets are used. Our model
maintains top-tier performance, producing structurally coherent and semantically meaningful 3D
scenes. This cross-dataset evaluation highlights the strong generalization capability of our approach.

We present qualitative results on the Sketch-based SemanticKITTI validation set in Figure 4. Rows
1 and 2 illustrate the generated semantic scenes conditioned on the input sketches and their corre-
sponding PSAs. Rows 3 and 4 present additional generation results using the same input conditions
to demonstrate both consistency and moderate diversity in scene synthesis. We see that our model
effectively produces structurally accurate, and semantically meaningful 3D scenes that align well
with inputs. These visualizations further demonstrate the model’s ability to integrate abstract freehand
sketches and pseudo-labeled satellite cues to generate high-quality semantic reconstructions. Some
sketch-PSA pairs may have differences because the 3D ground truth annotations in SemanticKITTI
were collected around 2013 and the satellite images used for PSA were captured around 2025. PSA
generation, being automatic, is also prone to errors. In contrast, sketches originate directly from the
2013 ground-truth data, maintaining temporal consistency and serving as a stable spatial reference to
mitigate the domain gap.

Observing the results of CymbaDiff on the proposed SketchSem3D dataset, it is apparent that it
demonstrates strong performance, effectively handling challenges such as semantic misalignment
caused by noisy pseudo-labels, e.g., due to confusion between vegetation and buildings. Nevertheless,
this method does occasionally fail to accurately reconstruct small or occluded objects that are
underrepresented in the training data or sparsely encoded in the sketch and PSA inputs. Although
CymbaDiff mitigates this issue to some extent through the use of the Cross-Scale Contextual Block
and Cylinder Mamba Block, which capture multi-scale contextual information, its performance could
be further enhanced by increasing the representation of small objects in the dataset.

Ablation Study. We conducted systematic experiments to evaluate the impact of different components
in our model and to quantify their individual contributions to the overall performance. As presented in
Table 3, the ablation study offers valuable insights into the role and effectiveness of each component.
These results allow us to isolate and identify the elements that most significantly enhance the model’s
performance in the 3D semantic scene generation task. Notably, the CSCB, DDCB, and cylinder
mamba blocks play a critical role, as they enable the model to capture complex spatial and semantic
relationships within 3D scenes more effectively. "w/o C-Mamba" refers to a variant that retains only
the triple Mamba layers.

5.2 3D Semantic Scene Completion.

Since our work explores a new research direction and, currently, there are no directly comparable
methods using the same input modalities, we compare CymbaDiff with existing state-of-the-art se-
mantic scene completion methods that use monocular or stereo RGB inputs. However, we emphasize
that our main contribution lies in 3D scene generation. Table 4 compares our method to 3D scene
completion methods on the IoU and mIoU metrics reported in their respective publications. All
methods are evaluated for 3D semantic scene completion on the SemanticKITTI validation set. The
compared methods either use monocular or stereo (image) inputs. Remarkably, despite relying only
on input SK and PSA, our method achieves highly competitive performance, matching or exceeding
several leading methods that utilize richer input modalities. This demonstrates that SK and PSA offer
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Table 4: Quantitative results on the SemanticKITTI validation set. The best results are indicated in
bold. Mono and Stereo refer to methods using monocular and stereo inputs, respectively, while SK
and PSA denote sketch and pseudo-labeled satellite annotations. Note that we demonstrate strong
performance using SK+PSA, which are much easier to obtain than images.
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MonoScene [85] Mono 36.9 11.1 56.5 26.7 14.3 0.5 14.1 23.03 7.0 0.6 0.5 1.5 17.9 2.8 29.6 1.9 1.2 0.0 5.8 4.1 2.3
TPVFormer [86] Mono 35.6 11.3 56.5 25.9 20.6 0.9 13.9 23.8 8.1 0.4 0.1 4.4 16.9 2.3 30.4 0.5 0.9 0.0 5.9 3.1 1.5
NDC-Scene [87] Mono 37.2 12.7 59.2 28.2 21.4 1.7 14.9 26.3 14.8 1.7 2.4 7.7 19.1 3.5 31.0 3.6 2.7 0.0 6.7 4.5 2.7
OccFormer [88] Mono 36.5 13.5 58.9 26.9 19.6 0.3 14.4 25.1 25.5 0.8 1.2 8.5 19.6 3.9 32.6 2.8 2.8 0.0 5.6 4.3 2.9
SparseOcc [89] Mono 36.5 13.1 59.6 29.7 20.4 0.5 15.4 24.0 18.1 0.8 0.9 8.9 18.9 3.5 31.1 3.7 0.6 0.0 6.7 3.9 2.6
IAMSSC [60] Mono 44.3 12.5 54.6 25.9 16.0 0.7 17.4 26.3 8.7 0.6 0.2 5.1 24.6 5.0 30.1 1.3 3.5 0.0 6.9 6.4 3.6
VoxFormer [90] Stereo 44.2 13.4 53.6 26.5 19.7 0.4 19.5 26.5 7.3 1.3 0.6 7.8 26.1 6.1 33.1 1.9 2.0 0.0 7.3 9.2 4.9
DepthSSC [91] Stereo 45.8 13.3 55.4 27.0 18.8 0.9 19.2 25.9 6.0 0.4 1.2 7.5 26.4 4.5 30.2 2.6 6.3 0.0 8.5 7.4 4.1
HASSC-S [92] Stereo 44.8 13.5 57.1 28.3 15.9 1.1 19.1 27.2 9.9 0.9 0.9 5.6 25.5 6.2 32.9 2.8 4.7 0.0 6.6 7.7 4.1
H2GFormer-S [62] Stereo 44.6 13.7 56.1 29.1 17.8 0.5 19.7 28.2 10.0 0.5 0.5 7.4 26.3 6.8 34.4 1.5 2.9 0.0 7.2 7.9 4.7
CymbaDiff SK+PSA 43.2 14.6 52.4 33.3 13.1 10.9 32.4 32.1 0.8 1.0 0.0 3.2 28.0 8.7 22.2 4.6 4.9 0.0 11.2 12.7 5.2

a flexible alternative, especially when RGB data are unavailable or impractical, such as in remote
sensing.

For semantic scene completion, our method achieves 43.2% IoU and 14.6% mIoU on the Se-
manticKITTI validation set, outperforming the leading monocular baseline by 1.1% mIoU and the
best stereo-based method by 0.9%. This performance gain underscores the strong representational
and generative capabilities of CymbaDiff, particularly in reconstructing large-scale structures such as
sidewalks, buildings, vegetation, other-ground, and fences. In addition, our method maintains com-
petitive accuracy for smaller objects like people, poles, traffic signs, and tree trunks, demonstrating
robustness across a wide range of object sizes and semantic categories. These results collectively
highlight the effectiveness and versatility of our approach in diverse urban scene contexts. We present
further qualitative examples, including results on underrepresented classes in the Appendix.

6 Conclusion
We introduced a novel and scalable task: 3D outdoor semantic scene generation from sketches and
pseudo-labeled satellite image annotations. This task offers a low-cost and flexible alternative to
traditional annotation-intensive methods, particularly beneficial for applications such as autonomous
driving, urban planning. To achieve this, we proposed SketchSem3D, the first publicly available
dataset specifically designed for multi-conditioned scene generation in outdoor environments. We
proposed CymbaDiff, a diffusion-based generative model designed to enforce structured spatial
coherence by explicitly modeling angular continuity and vertical hierarchies, while preserving
physical local and global spatial relationships within 3D scenes. CymbaDiff achieves top-tier
performance for 3D scene generation and completion using only sparse and abstract input modalities,
establishing a solid baseline for future advancements in this field. We hope our new task, dataset, and
approach (including code) would foster advancements in related areas.

Broader Impacts. CymbaDiff model inherently neutral and designed for positive human-centric
applications such as urban simulation and autonomous driving, may pose potential societal risks if
misused, particularly in scenarios involving unauthorized mass surveillance.

Limitations. While CymbaDiff generates high-quality 3D semantic scenes from freehand (like)
sketches and pseudo-labeled satellite image annotations (PSA), obtaining authentic human-drawn
sketches could further improve its generalizability and effectiveness in practical human–AI interaction
tasks. Future work could focus on using authentic human-drawn sketches for 3D semantic scene
generation.
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• It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Sec. 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the creators or original papers of all the related code, data, and models
used in this paper. All the assets are free for research studies and widely used in previous
related works. We also provide the licenses of the used datasets in the Appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We report the dataset, model, and training details in Sec. 3, Sec. 4, Sec. 5, and
the Appendix. The introduced dataset and code are publicly available.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not use crowdsourcing or conduct research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not use crowdsourcing or conduct research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A. Appendix

A.1 Training Objective

Due to the complexity of the task, our training objective combines multiple loss terms. For the 3D
VAE, the objective is:

L = LCE + γLLovasz − βDKL (qϕ (z|x) || p (z)) , (7)

where γ = 1.0 and β = 0.001 balance the contributions of each loss component, LCE and LLovasz

denote the standard cross-entropy and Lovasz-Softmax losses, respectively, following SCPNet [64].
DKL denotes the Kullback–Leibler Divergence between the approximate posterior qϕ (z|x) and
the prior p (z), similar to the Latent Diffusion Model (LDM) [1]. The objective function for the
CymbaDiff denoising network follows the LDM [1], minimizing the expected squared error between
the predicted noise and true noise:

LLDM = Ex,ϵ∼N(0,1),t

[
∥ϵ− ϵθ (xt, t)∥22

]
, (8)

where ϵθ(xt, t) denotes a uniformly-weighted denoising autoencoder applied across time steps
t = 1, . . . , T . At each step t, the model predicts a denoised estimate of the input xt, which is a
noise-corrupted version of the original input x.

A.2 Evaluation Metrics

To evaluate the quality and diversity of the generated 3D semantic scenes, we use two widely
used metrics: Fréchet Inception Distance (FID)[74] and Maximum Mean Discrepancy (MMD)[9].
Together, these metrics capture both the statistical similarity and feature-level fidelity between
the generated and real data, providing a comprehensive assessment of generative performance.
Specifically, FID measures the similarity between the distributions of generated and real samples in a
latent feature space. Formally, FID is defined as:

FID = ∥Mt −Mg∥22 + Tr
(
Ct + Cg − 2(CtCg)

1
2

)
, (9)

where (Mt,Mg) and (Ct, Cg) are the mean and covariance of the real and generated feature distri-
butions. MMD is a non-parametric, kernel-based metric that quantifies the distance between two
probability distributions. Unlike FID, MMD does not rely on the assumption that features follow
a Gaussian distribution, making it suitable for evaluating generative models under more flexible
conditions. In our case, MMD is computed using a Gaussian kernel applied to features extracted
from the same latent space as used for FID. The formal definition of MMD is:

MMD2 (X,Y ) = Ex,x′

[
k
(
x, x

′
)]

+ Ey,y′

[
k
(
y, y

′
)]

− 2Ex,y [k (x, y)] (10)

where X = {x1, x2, ..., xm} and Y = {y1, y2, ..., ym} denote the sets of latent features extracted
from real and generated 3D scenes, respectively.

A.3 Additional Implementation Details

All experiments were conducted on a single NVIDIA GeForce RTX 4090 GPU with 24 GB of RAM.
The Variational Autoencoder (VAE) was trained for 22 epochs using the AdamW optimizer with an
initial learning rate of 3e-4. The VAE and the CymbaDiff denoising network were trained with a batch
size of 2 and 4, each occupying approximately 20 GB of GPU memory. The CymbaDiff denoiser was
trained for 31 epochs using the AdamW optimizer with a learning rate of 1e-3 and a weight decay of
1e-4. The number of denoising steps in CymbaDiff was set to 100. A WarmupCosineLR scheduler
was used in all training stages to gradually decrease the learning rate, which helped ensure stable
convergence.

A.4 VAE Results

Our CymbaDiff denosing network operates in the latent space of a VAE. To ensure high-quality
semantic scene generation, this VAE needs to be accurate. We report the performance of the proposed
VAE on the SemanticKITTI validation set in Table 5.
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Table 5: VAE reconstruction performance on SemanticKITTI validation set. IoU and mIoU denote
Intersection over Union and mean Intersection over Union, respectively.

Model Original Spatial Size Latent Spatial Size Latent Channel training epoch batch size IoU mIoU

VAE 256× 256× 32 64× 64× 8 8 22 2 92.1 92.0

VoxFormerOccFormerMonoSceneGround Truth CymbaDiff

Table 5: Quatitative results on SemanticKITT validation set. The best results are highlighted in bold.

■ road ■ sidewalk ■ parking ■ other-grnd. ■ building ■ car ■ truck ■ bicycle ■ motorcycle ■ other-veh.
■ vegetation ■ trunk ■ terrain ■ person ■ bicyclist ■ motorcyclist ■ fence ■ pole ■ traf.-sign
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Figure 5: Qualitative results on the SemanticKITTI validation set. Columns from the left represent
ground truth, and outputs of CymbaDiff (our method), MonoScene, OccFormer, and VoxFormer.

A.5 Effieicency Comparison

we provide quantitative comparisons in the Table 6 across methods in terms of parameter count
and runtime performance. These results demonstrate that CymbaDiff achieves a favorable trade-off
between model efficiency and computational cost, offering competitive performance with significantly
fewer parameters compared to these two generative models.

A.6 Cross-domain Test

We have now trained SemCity[11] and CityDreamer[93]on the SketchSem3D dataset to compare
with our CymbaDiff. To ensure compatibility with our 3D voxel-based setup, we integrated their
denoisers into our framework. We also attempted to train the full SemCity pipeline directly, but it
resulted in unstable training, with the VAE loss diverging to NaN, an issue also reported by other
users on SemCity’s official GitHub page. Please note, CityDreamer is designed for 2D generation
and cannot be directly applied to 3D voxel scenes. As shown in the Table 7, CymbaDiff consistently
outperforms both baselines across all evaluation metrics strongly.

The reason why Semcity and CityDreamer do not perform well in our experiments is their denoisers
(provided in their official GitHub repositories). The denoiser in SemCity only has convolutional and
linear layers, whereas that in CityDreamer relies on a simple stacking of transformer layers. Although
transformer layers can model long-range dependencies, such simplified designs may be suboptimal
for large-scale 3D voxel scene generation, where sparse and irregular data demand specialized
mechanisms to effectively capture both local geometry and relevant global context.

A.7 Qualitative results on 3D Semantic Scene Completion

To demonstrate the effectiveness of our proposed framework for 3D semantic scene completion,
we present additional qualitative results in Figures 5. The figure displays representative examples
randomly selected from the SemanticKITTI validation set [68]. CymbaDiff accurately delineates
fine-grained boundaries of 3D scenes and objects by incorporating the cylinder Mamba blocks, which
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Table 6: Efficiency comparison. M: Million, and S: seconds.

Input Modality Parameters (M) Inference Times (S)

3D DIT 195 4.5
3D Latent Diffusion 1265 11.4
CymbaDiff 23 7.2

Table 7: Cross-domain Comparison

Method Sketch-based
SemanticKITTI FID ↓

Sketch-based
SemanticKITTI MMD ↓

Sketch-based
KITTI-360 FID ↓

Sketch-based
KITTI-360 MMD ↓

3D SemCity[11] 987.91 0.26 740.09 0.25
3D CityDreamer[93] 950.16 0.26 754.47 0.25
CymbaDiff 40.67 0.04 107.53 0.08

promotes structured spatial coherence through explicit modeling of angular continuity and vertical
hierarchies.

A.8 Licenses

Licenses of SemanticKITTI and SSCBench KITTI-360. The SemanticKITTI dataset is licensed
under the CC BY-NC-SA 4.0, while the SSCBench KITTI-360 dataset is released under CC BY-NC-
SA 3.0 license.

Terms of Use and License of SketchSem3D. The SketchSem3D dataset is licensed under CC
BY-NC-SA 4.0.
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