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ABSTRACT

State-of-the-art vision-language models (VLMs) suffer from a critical failure in
understanding negation, often referred to as affirmative bias. This limitation is
particularly severe in described object detection (DOD) tasks. To address this,
we propose two primary contributions: (1) a new dataset pipeline and (2) a
novel, lightweight adaptation recipe. First, we introduce COVAND, a dataset
constructed with a systematic chain-of-thought (CoT) and VQA-based pipeline
to generate high-quality, instance-grounded negation data. Second, we propose
NEGTOME, a novel text token merging module that directly tackles the architec-
tural cause of affirmative bias. NEGTOME fundamentally addresses the structural
loss of negation cues in tokenization, grouping them with attributes into coherent
semantic phrases. It maintains correct polarity at the input level, enabling robust
negation understanding even with limited data. For instance, to prevent a model
from treating the fragmented tokens not and girl as simply girl, NEGTOME
binds them into a single token whose meaning is correctly distinguished from that
of girl alone. This module is integrated with a parameter-efficient and strate-
gic LoRA fine-tuning approach. Our method significantly improves performance
on challenging negation benchmarks with a lowered false positive rate, boosting
NMS-AP by up to +10.8 points on OVDEval and demonstrating generalization
to SoTA VLMs. This work marks a crucial step forward in addressing negation
understanding for real-world detection applications.

1 INTRODUCTION

Even state-of-the-art Vision-Language Models (VLMs) exhibit a critical failure in understanding
negation due to an affirmative bias ( , ). This bias reflects a model’s tendency
to prioritize nouns while ignoring crucial negation cues. The issue is partlcularly pronounced in
described object detection (DOD) ( s ; ;

, ), a task requiring fine-grained composmonal reasoning. As in Flgure la, thls bias causes
models to treat phrases like “person with skateboard” and “person without skateboard” as semanti-
cally equivalent, leading to identical and incorrect detections. This failure extends to more complex
logical structures, such as double negatives (e.g., “not” + “un-"). Since humans naturally use nega-
tion in natural communication (

; , ), failing to handle negatlon poses a serious bamer to real- world
scenarios. This shortcormng can be particularly dangerous in safety -critical domains. For example,
in medical imaging, misinterpreting the distinction between “a tumor that is not malignant” and
“a tumor that is malignant” can lead to critical misdiagnoses. Therefore, bridging and improving
negation understanding is an important step toward building robust VLM-based detection systems.

One key reason for the limited negation capability of VLMs is the lack of negated expressions in
existing pre-training datasets. For example, large-scale datasets such as LAION-400M (

, ) contain about 0.08% negation words ( , ). Likewise, Flickr30k (

, ), a widely used captioning dataset, exhibits only 0.04% negation words (Figure 1b). In
contrast, negation is much more prevalent in real-world language. For instance, 13.76% of words
in scientific papers ( , ) and 22.23% of words in Conan Doyle’s stories involve
negation ( , ). This imbalance results in VLMs that are poorly equipped
to learn or attend to negation semantics.
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Figure 1: Challenges with Negation Expressions. (a) Standard VLMs exhibit an affirmative bias,
failing to distinguish contradictory negation queries. This issue stems from two causes: (b) the
scarcity of negation words in standard datasets and (c) the model’s tendency to assign low attention
to negation cues. Our solutions, COVAND and the NEGTOME, directly address both problems.

To mitigate this limitation, we introduce a chain-of-thought with VQA alignment for negation
detection dataset (COVAND). It is a negation-focused training dataset constructed via chain-of-
thought (CoT) reasoning and VQA-based caption alignment. To construct COVAND, we first ex-
tract both present and absent attributes from object regions. For each region, we then generate
matched positive and negative captions using a CoT approach, followed by semantic verification
using a VQA module. This process ensures each caption precisely reflects the presence or absence
of key attributes, resulting in high-quality negation data pairs. As a result, our dataset provides a
rich resource with 9.29% of negation words, a frequency 100x higher than that of typical datasets.

In addition to data-related factors, we observe that negation tokens receive notably lower attention
weights, suggesting that current VLM detectors architecturally ignore or undervalue negation cues,
as shown in Figure 1c. To counteract the low attention given to negation cues, the core of our method
is NEGTOME, our novel text token merging module. It is designed to solve a key problem where
standard tokenization often fragments phrases, separating negation cues (e.g., “not”) from the at-
tributes they modify (e.g., “1ying”). NEGTOME addresses this by first merging these fragmented
tokens into a single, coherent phrase. Through this binding, the negated concept of “not lying”
can be learned as semantically distinct from “1ying”. This step strengthens the role of the attribute
by ensuring it is always interpreted within its negated context. Crucially, this merged representa-
tion is enhanced with a negation-aware boost, explicitly amplifying the negated signal to ensure its
polarity is preserved for downstream fusion. To our knowledge, this is the first work to employ a
boosted token merging strategy for preserving semantic polarity in VLM-based detection.

To ensure the model effectively uses this enhanced text representation, we combine NEGTOME
with a highly targeted application of Low-Rank Adaptation (LoRA). Our layer-wise attention anal-
ysis revealed that the negation signal dissipates before reaching the final decision-making blocks.
Therefore, we apply LoRA to the deep cross-attention layers, the core of multimodal compositional
understanding ( , , ). Together, this strategy modifies less than
0.1% of the model’s parameters yet achleves a significant improvement in negation comprehension.

Our approach achieves state-of-the-art performance with 6.6 mAP on D? dataset, with 7.2 mAP
improvement specifically on the challenging absence subset. In particular, our method not only in-
creases the NMS-AP metric by 10.8 mAP but also reduces the false positive rate by 19.1%, demon-
strating its enhanced ability to distinguish between contradictory queries. Importantly, these re-
sults are consistently observed across multiple distinct evaluation datasets, despite the model being
trained solely on COVAND. This highlights the strength of our approach and its superior general-
ization capability to unseen data and negation patterns.
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Figure 2: Dataset Generation Pipeline of the COVAND. Our method first generates negation-
focused captions for visually prompted regions using a three-step CoT process, then aligns each
caption with the correct bounding box via VQA-based reasoning to ensure semantic correspondence.

Our work represents an initial yet substantial step toward robust negation understanding with the
following key contributions:

* Our work presents COVAND, a systematically generated dataset focusing on negation, to
bridge a critical gap within existing multimodal benchmarks.

* We propose a novel adaptation recipe with NEGTOME, our text token merging module that
introduces a negation-aware boost to preserve semantic polarity.

* We achieve consistent gains across benchmarks, including +7.2 mAP on D? absence sub-
set and +10.8 mAP on the NMS-AP metric in OVDEval’s negation subset, demonstrating
effective generalization to real-world negation scenarios.

2 COVAND: DATASET GENERATION

To address the scarcity of negation data, we present COVAND, a region-grounded negation dataset
constructed through a multi-stage pipeline. As shown in Figure 2, the curation process consists
of CoT caption generation followed by VQA-based alignment. This pipeline generates new high-
quality captions that cover not only existence but also diverse attribute-based negations. In this way,
CoOVAND provides fine-grained, compositional supervision that trains detectors more robustly than
only injecting templated or caption-level negations ( , ; , ).

2.1 VISUAL PROMPTING WITH BOUNDING BOXES

Before caption generation, we apply visual prompting ( , ) to overlay a marker on the
image. The marker specifies the region to describe and directs the CoT model’s attention to that area.
We apply this technique to bounding boxes in the Flickr30k Entities dataset ( , ).
For each image, we randomly choose two boxes linked to meaningful objects and exclude any box
that spans a large background area to avoid ambiguity. Each selected region is then highlighted with
a red bounding box and serves as an input image for region-grounded caption generation.

2.2 THREE-STEP CHAIN-OF-THOUGHT CAPTION GENERATION

We generate region-grounded paired negation captions through a three-step CoT process using GPT-
4o ( , ). We provide an explicit sequence that ensures consistent quality, rather
than leaving it to the model’s decision. The design follows the multi-step reasoning strategy of
LLMs, where a complex visual query is split into ordered subtasks that improve factual accuracy and
transparency. The input prompt for caption generation shows the image with a red bounding box,
a target phrase such as “a boy” in “person” type. These cues fix the subject within the highlighted
area and guide each reasoning step. The three steps are detailed below.

Step 1: Present and Absent Attribute Extraction. For each visually prompted region, we extract
two sets of attributes: (1) Present Attributes (Apres), consisting of attributes visibly present within
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the bounding box (e.g., colors, actions, relationships, actions, etc.), and (2) Absent Attributes (Agps),
representing relevant but missing attributes that could reasonably be expected. This rich attribute
pool is the key novelty that lets our pipeline create attribute-level negations, which are far beyond
the object-level attributes used in prior approaches ( , ).

Step 2: Negative and Positive Caption Generation. We generate two types of paired captions
using the extracted attributes:

* Negative Caption (Cyq): Incorrectly describes an attribute in A,,.s as absent (e.g., “A
man without a hat” when “hat” € A,;.5).

* Positive Caption (Cp,s): Correctly describes an attribute in A, as absent (e.g., “A woman
without a red hoodie” when “red hoodie” € Agps).

93 < CLIY3 CLINT3

Each caption includes negation cues such as “no”, “not”, “never”, “without”, the prefix “un-", or the
contraction “n’

n’t”. The cue list is open to keep language natural and diverse.

Step 3: Verification. To ensure semantic consistency, we verify that C,,s accurately describes
the region while ()., contradicts it by asking GPT-40. We also check whether generated captions
contain negation words and attributes from step 1. If the pair fails on the test, it discards invalid
captions and repeats caption generation until a valid pair appears or the retry limit is reached. This
iterative guard preserves semantic integrity and keeps the quality of the overall dataset.

2.3 VQA-BASED CAPTION ALIGNMENT

The CoT stage produces a positive caption Cpos and a negative caption Cye, for each randomly
chosen target box. However, label noise may still occur since another object of the same phrase type
can also fit the captions. In Figure 2, for example, a person marked with “A” in the image could
satisfy Cj,q, even though it is not the designated target, which causes label noise. To eliminate this
ambiguity, we add a dedicated region-level VQA alignment step.

First, we draw alphabetical labels on every box that shares the phrase type of the target. The tar-
get box stays unlabelled because it has already passed the in-context verification step. To deter-
mine the final alignment, we ask a VQA model two separate questions: “Which labelled box
aligns with Cyos/Cheq?”. Then, the VQA model simply answers with overlayed letters on
the input images. While prior work used VQA for coarse, image-level validation ( , ),
their approach fails to resolve which specific instance a caption refers to. Our region-level align-
ment stage solves this ambiguity by requiring the VQA model to match each caption to a specific,
visually-labeled bounding box, thereby delivering a more region-level ground truth.

Through this multi-stage process combining CoT reasoning and VQA alignment, COVAND pro-
vides rich training signals for negation understanding. We generate 91,110 captions with 23,876
images. In particular, our dataset exhibits approximately 9.29% negation word frequency, signifi-
cantly higher than existing datasets like Flickr30k (0.04%). Detailed examples in Appendix A.

3  FINE-TUNING WITH NEGATION-SENSITIVE TEXT TOKEN MERGING

Our method addresses the two root causes of negation blindness: token fragmentation and low
attention on negation cues. We propose a lightweight adaptation recipe that integrates our novel text
token merging module, NEGTOME, with a targeted application of LoRA as in Figure 3.

3.1 NEGATION LORA ADAPTER

We apply LoRA following ( , ) with two key enhancements for vision-language fusion.
Given frozen base weights W, W,, € R%*4 in cross-attention layers, we inject parallel adapters with
an activation layer. Let o(-) denote ReLU ( , ) and let A,, A, € R"*4 and By, B, €
R?X" be the trainable low-rank matrices. For an input z € R% we obtain

g =Wy + aByo(A4x), v=W,z+ aB,o(Ax), (1)

where W,, W, € R%*4 are the frozen base weights and « scales the LoRA update.
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Figure 3: Overview of Training Pipeline. The input image and captions of COVAND are encoded
by frozen backbones. NEGTOME assigns higher importance to negation cues in the text, and the
LoRA adapter enables accurate localization of objects described by negated queries.

3.2 NEGTOME: SEMANTIC TEXT TOKEN MERGING FOR NEGATION UNDERSTANDING

Motivation. While fine-tuning with negation-rich data can partially alleviate affirmative bias, it
does not address a more fundamental flaw embedded in the model’s tokenization process. Standard
tokenizers inherently fragment phrases, separating negation cues (e.g., “not”) from the words they
modify (e.g., “1ying”). This structural separation effectively causes the model to treat the phrase
“not lying” assemantically equivalent to “1ying”, as the attention weight of the isolated nega-
tion tends to be ignored. To rectify this intrinsic information loss, we introduce NEGTOME. It moves
beyond data-level fixes to structurally ensure that a negated concept like “cat not lying”is

EE T3

represented as a single semantic unit, fundamentally distinct from {“cat”, “not”, “lying”}.

Text Token Merging. The caption is first split into sub-tokens 7 = {t1,...,t,} by a standard
tokenizer. To merge the tokens, an off-the-shelf parser then groups these tokens into disjoint phrase
sets P = {P1,..., Pm} where m < n. For every phrase P; C T, we compute one representative
embedding by taking the normalized weighted average using fixed importance weights «y; of the
sub-token vectors inside the phrase and replacing the original vectors with this average.

Negation-aware Boost. After merging, let Py, be the phrase containing a cue (not, no, without,
un-, etc.), and Zpeg = {7l t; € Pneg} its index set. We assign a larger weight to the negation cue:

P ZjEIneg Vit ~_ [ B ift; is the negation cue, B>1 @)
M Yena i I 1 otherwise, '

The negation boosting factor 5 amplifies the cue so that the merged embedding explicitly retains the
negated meaning, improving polarity reasoning without increasing sequence length.

Effect of Negation Boost on Representations. Suppose the encoder maps a caption of n sub-tokens
to vectors A1, ..., h, € R% We write k. for the vector of the negation cue (e.g. “not”) and h,, for
the vector of the predicate it modifies (e.g. “moving”). With vanilla mean pooling, the sentence
embedding is h = %Z?:l h;, so the cue contributes only sgngle = (v, hc)/n to any linear probe
v € RY. After applying NEGTOME, the merged representation of the negated phrase becomes

Pneg = B '/”Bflhp and the pooled vector gives Smerge > % (v, he)/m, Hence
Smerge 2 L ﬁa 1 S m<n, (3)
Ssingle 5 +1 m

so the cue’s influence is amplified by at least the factor % - . This gain aligns with the larger

attention weights observed in Figure |c and Figure S18, and experimentally show higher mAP.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets. DOD requires resolving compositional descriptions as in Figure 4a. To rigorously assess
our model’s ability to overcome the affirmative bias inherent in VLMs, we select two benchmarks
specifically designed to challenge negation understanding. We evaluate our method on two challeng-
ing DOD benchmarks for negation detection in VLMs. Described Object Detection (D?) ( ,
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Figure 4: Definition of Task and Metric.

) introduces three evaluation protocols. Pres is a subset of 316 presence descriptions, ABS is
106 absence descriptions, and Full is an evaluation across all 422 descriptions. For OVDEval Nega-
tion Subset ( s ), we report both standard AP and the NMS-AP. The standard AP score
can be misleadingly inflated when a model, confused by fragmented tokens, predicts overlapping
boxes for contradictory pairs like “black dog” and “dog that is not black”. In contrast, NMS-
AP ( , ) applies stricter filtering by removing overlapping predictions on contradictory
pairs with IoU>0.5, effectively penalizing affirmative bias and accurately measuring negation under-
standing (Figure 4b). Additionally, we employ a practical yet challenging evaluation by performing
class-ignored NMS separately after predicting each caption individually. (see the Appendix F.1.)

Implementation Details. We implement parameter-efficient fine-tuning through LoRA ( ,

) applied to the deep cross-attention layers in the vision-language fusion module with r = 4.
VLM-based detectors are trained for 5,000 iterations with a batch size of 24 for the Grounding
DINO model, and 6, 000 iterations with a batch size of 4 for the APE-Ti model. Training is con-
ducted on two NVIDIA A6000 GPUs with mixed precision with a learning rate of 5 x 10~%. Qwen-

2.5-VL ( , ) is trained for 1 epoch batch size of 32 with a learning rate of 5 x 1075,
All models are only trained with the COVAND dataset using the AdamW optimizer (
, ), freezing all backbone parameters except the LoRA layers. For NEGTOME, we use

spaCy for the parser and set the negation boost factor 3 = 2.0. More details in the Appendix B.

4.2 EXPERIMENTAL RESULTS

Quantitative Results. As shown in Table 1, even powerful Multimodal Large Language Models
(MLLMs) struggle with the D* benchmark. SoTA models like SPHINX-7B ( , ) and
Qwen-2.5-VL-3B ( R ) achieve low performance on the full set (10.6 and 18.6 mAP,
respectively), and their slow inference makes them impractical for many detection scenarios. In
contrast, our lightweight adaptation recipe significantly boosts the performance of strong detector
baselines. When applied to Grounding-DINO, our method improves the overall mAP by +6.6 points,
with a notable gain of +7.2 mAP on the challenging absence subset. This performance gain is di-
rect evidence of a more robust understanding of semantic polarity. Baseline models often generate

Table 1: Evaluation on the D benchmarks. Descriptions categorized by length; S for 1-3, M for
4-6, L for 7-9, and XL for 10+ words. Pres refers to present and Abs refers to absence subset.

Method Architecture D? (default) D? (by length of texts)
etho Backbone Text Encoder  Detection Head | Full Pres Abs S M L XL
OFA-L ResNet-101+ViT BART Seq2Seq 4.2 4.1 4.6 4.9 54 3.0 2.1
OWL-ViT-L ViT-L CLIP OWL-ViT 9.6 10.7 6.4 20.7 9.4 6.0 53
SPHINX-7B CLIP,DINO-v2, Q-Former LLaMA-2 - 10.6 11.4 79 16.8 13.8 5.6 3.1
OFA-DOD ResNet-101+ViT BART Seq2Seq 21.6 23.7 154 23.6 22.6 20.5 18.4
GLIP-T 19.1 183 215 22.4 22.0 16.6 10.6
+GEN Swin-T BERT DyHead 214 20.6 23.7 28.1 245 17.4 11.5
+W2S 26.0 25.6 27.1 - - - -
FIBER-B 22.7 21.5 26.0 30.1 25.9 17.9 13.1
+GEN Swin-B RoBERTa-B DyHead 26.0 252 28.1 355 29.7 20.5 14.2
+ W28 26.5 26.0 27.7 - - - -
G-DINO-B 20.7 20.1 225 22,6 22.5 189 16.5
+ Ours Swin-B BERT DINO 27.3 26.4 29.7 29.9 29.5 252 213
1 A) (+6.6) (+6.3) (+7.2) (+7.3) (+7.0) (+6.3) (+4.8)
APE-Ti 29.1 29.9 26.9 31.1 31.9 274 214
+ Ours ViT-Ti CLIP DETA 325 329 315 332 353 313 254
T4 (+3.4) +3.0) (+4.6) (+2.1) (+3.4) (+3.9) (+4.0)
Qwen-2.5-VL-3B 18.6 185 19.2 18.2 20.7 17.0 16.0
+ Ours ViT-H Qwen-2.5 - 222 22.8 20.6 19.8 25.8 20.2 17.8
tA) (+3.6 (+4.3) (+1.4) (+1.6) (+5.1) 3.2) (+1.8)
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false positives because they fail to distinguish between conceptually opposite phrases like “with a
hat” and “without a hat”. As a specific absence scenario, when prompted with “a person without
a hat” in an image where everyone is wearing one, they would incorrectly detect a person. Our to-
kenizer modification, NEGTOME, resolves this by forcing the model to process the negated phrase
as a single semantic unit with distinct polarity, enabling it to correctly reject such invalid instances.
Similarly, on APE-Ti, we achieve a +4.6 mAP improvement on the absence subset, demonstrating
an enhanced ab111ty to reject non-existent objects. Notably, these galns are comparable to compu-
tationally expensive, large-scale fine-tuning methods ( , , ) while
updating less than 0.1% of the model’s parameters only with our COVAN D dataset. The improve-
ments are also consistent across all description lengths, validating the robustness of our approach.
Furthermore, preliminary experiments demonstrate the generalizability of our method to MLLMs,
with an improvement of +3.6 mAP on Qwen-2.5-VL-3B. Table 2: Results on OVDEval-

Even powerful SOTA MLLMs struggle on the challenging Negation. " means reproduced AP.

OVDEval-Negation subset, demonstrating that simply apply- | AP  NMS-AP
ing a large-scale model is not a sufficient solution for negation. G-DINO-B' 54.0 36.8
Notably, as shown in Table 2, the powerful Qwen-2.5-VL- (JTrg)urS '§72 ' ff7§
7B underperforms the much smaller Grounding-DINO base- . —
. . . . . APE-Ti 50.5 323
line, highlighting the difficulty of the task. In contrast, our +Ours 54.1 335
lightweight adaptation recipe yields significant performance s ee s
; ; ; : Qwen-2.5-VL-7B | 37.8 359
gains across all tested architectures, particularly on the stricter Owen23.VL3B | 346 33
NMS-AP metric. Our method boosts the Grounding-DINO by +Ours 41.9 35.1
(T 4A) (+7.3) (+3.8)

a substantial +10.8 mAP in NMS-AP and improves the Qwen-

2.5-VL-3B by +7.3 in mAP and +3.8 in NMS-AP. For the MLLM, the substantial AP gain is signif-
icant because it enhances both negation reasoning and foundational localization, a typical weakness
of such models. Further results, including a detailed comparison with two-stage post-hoc VQA with
MLLM and a full evaluation across all OVDEval subsets, are available in Appendix E and F.
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Figure 5: Dataset Statistics and Performance Scaling. (a) Statistics for our three COVAND splits.
(b) Bar plots with refer to NMS-AP and refer to FPR (lower is better).

Dataset Scalability. Figure 5 presents our scalability analysis of the dataset on the OVDEval-
Negation subset. We observe a consistent improvement as we scale the COVAND dataset from small
to large. Specifically, NMS-AP improves from 44.5 to 47.6, while the FPR decreases from 48.5%
to 44.1%, which is a total reduction of 19.1 points from the baseline. This trend of simultaneously
improving NMS-AP, a metric that penalizes contradictory predictions, while lowering FPR, which
measures the failure to reject absent objects, shows the effectiveness of our approach.

Qualitative Results. Figure 6 presents qualitative results from the OVDEval dataset comparing our
fine-tuned Grounding DINO model against the baseline. The baseline model often exhibits a strong
affirmative bias, frequently collapsing contradictory captions into the same prediction. Our model,
however, successfully handles these complexities across various patterns. For instance, it accurately
identifies the “cow without looking at the camera” and the “horse that is not urinating”, proving
it can ground negation in complex contexts. Moreover, for “banana that is not unpeeled”, it cor-
rectly identifies the peeled banana by resolving the “not” + “un-" double negative as in Figure 1a.
Our model sometimes fails to detect every target instance, for example “pizza that is not complete”,
its predictions are a marked improvement over the baseline, which provides completely unreliable
detections for both queries. Together, these examples show that our method achieves a more com-
positional understanding of negation. Further qualitative results on OVDEval and D? are presented
in Figure S23—-S24 and Figure S25-S27, respectively.
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horse with white fur cow looking at the camera complete pizza doll with a bow horse urinating
vs. horse without white fur vs. cow without looking at the camera vs. pizza that is not complete vs. doll without a bow vs. horse that is not urinating
" pletsgp .

Flgure 6: Qualltatlve Comparison on the OVDEval Negatlon Subset. Our model correctly dlS-
tinguishes the polarity of contradictory caption pairs, overcoming the baseline’s affirmative bias.

Table 3: Ablation Study. Best in blue and worst in red . LoRA adapters are inserted at three
fusion-block depths: shallow (blocks 0-2), strided (1, 3,5), and deep (3-5).

Settings D?

Training Data LoRA Placement NEGTOME [
Pretrained Weight

OVDEval (Negation Subset)
AP NMS-AP AR NMS-AR |FPR | Full Pres Abs |FPR

54.0 36.8 20.5 14.7 632 | 207 20.1 225 672

Flickr30k shallow X - | 559 385 21.7 15.2 613 | 184 182 230 665
Flickr30k strided X - | 548 36.5 20.5 14.1 62.6 | 209 199 240 682
Flickr30k deep X - | 537 31.8 20.7 12.8 599 | 220 210 248 678
COVAND-S shallow X - | 46.8 315 21.9 14.8 56.0 | 185 17.6 21.0 639
COVAND-S strided X - | 528 439 20.0 17.1 490 | 201 192 229 634
COVAND-S deep X - | 554 41.8 214 18.0 486 | 242 230 270 640
COVAND-S deep v 1.0 | 57.8 43.8 24.0 19.6 50.8 | 25.7 251 273 637
COVAND-S deep v 2.0 | 587 44.5 24.1 19.2 485 | 262 254 282 633

4.3 ABLATION STUDY

Our ablation study, summarized in Table 3, reveals the impact of each component, with attention
diagnostics in Figure S18 in the Appendix providing a clear mechanism for the improvements. Plac-
ing LoRA adapters in the deep fusion blocks consistently outperforms shallow. This is because
deep placement maintains elevated attention on negation tokens in the later blocks where decisions
are formed, whereas the effect of shallow placement dissipates too early. Furthermore, training
with COVAND dataset yields substantial gains over generic captions, demonstrating its value for
both accuracy and generalization. Finally, adding NEGTOME with its negation boost factor pro-
vides large gains, such as a +2.7 improvement in NMS-AP. This trend is mirrored on the D? bench-
mark. While using our COVAND dataset alone yields a +2.2 mAP improvement over the baseline,
NEGTOME adds a further +2.0 mAP on top. This near-equal contribution highlights that our token
merging strategy is as impactful as the dataset itself. The attention analysis further confirms that
NEGTOME directly causes this improvement by increasing attention to the negated phrase.

4.4 ZERO-SHOT DOWNSTREAM EVALUATION OF SEMANTIC COMPREHENSION.

To verify our method achieves a semantic understand-  Table 4: Results on the NegBench Multi-
ing of negation that generalizes beyond detection, we ple Choice Question (MCQ) benchmark.

evaluate it on the NegBenCh COCO subset of Multlple Model | Overall Acc. | Positive Negative Hybrid
CLIP-OpenAl 16.27 % — — —
Choice Question (MCQ) benchmark ( Sy 1027% ‘ - -
2736% 13.37% 2371 %

). This task requ1res the model to select the most GDINOE 1.69%
accurate caption for an image from four options. These ~ *Qurs ‘ 3255 %
options include three subsets: ‘Positive’ correctly af-

firming present objects (e.g., “A and B”), ‘Negative’ correctly negating absent ones (e.g., “not B”),
and ‘Hybrid’ that combine both types (e.g., “A but not B”). In a zero-shot setting, we select the
caption that produces the highest max-logit score when grounded in the image. As shown in Ta-
ble 4, our method improves accuracy over the baseline with a +10.86% improvement. This result
provides strong evidence that our approach enhances a robust understanding of negation. We present
qualitative examples in Figure 7 and in Appendix H.

46.85% 2337% 26.64%

(+19.49) (+10.00) (+2.93
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— — £ (1) This image features a person

4 (1) This image depicts a banana and a bowl. (1) A bottle is not included in this image. with no truck in sight. '

(2) This image features a dining table,
but no banana is visible.

(3) A dining table is present in this image. (3) A bottle is present in this image.

(2) This image contains a bottle, without a fork. (2) A truck is present in this image,
but there is no person.

(3) This image shows a truck.

(1) No banana appears in this image. (4) A fork is not present in this image (4) This image does not have a person in it.

Figure 7: Qualitative Comparison on the NegBench MCQ Benchmark. Captions with green
checkmark & is GT, pink refer to Baseline, and blue refer to Ours.
5 RELATED WORK

5.1 OBIJECT DETECTION

OVD extends classical detectors to arbitrary text labels ( , ;

R ). Methods such as GLIP ( s ), and APE ( , ) fuse language
either in the detection head, in the backbone, or in a task-general prompt module, and achieve strong
zero-shot performance. REC adds compositional phrases. Grounding DINO ( , ) pro-

poses DETR-style decoders that localize the described object without category supervision. Despite
this progress, REC models still assume the target exists and therefore struggle to reject absent or
negated descriptions. DOD ( , ) generalizes OVD and REC by requiring the detector
to decide both existence and location. Benchmarks such as D® and OVDEval ( , ) re-
veal a low in accuracy on absence or negation subsets. It confirms that current VLMs often have an
affirmative bias on negation cues. MLLM ( s ; s ) have recently been ap-
plied to DOD, but their accuracy fails to surpass that of VLM based detectors, their performance on
negation remains low, and their inference speed is incompatible with real-time detection scenarios.

5.2 NEGATION UNDERSTANDING IN VISION-LANGUAGE MODELS

CLIP-based studies such as NegBench ( , ) reveal the affirmative bais that
state-of-the-art VLMs often treat “dog” and “not dog” identically; subsequent fixes like Negation-
CLIP ( , ) simply augment pre-training with template-level negation pairs and thus
miss context-dependent or region-grounded cases. We instead build a fine-grained dataset with CoT
reasoning and VQA alignment, producing positive and negative caption pairs that are grounded to
target boxes, and show that this richer supervision transfers to multiple architectures beyond CLIP.

5.3 TEXT TOKEN-LEVEL MERGING

Token Merging (ToMe) ( , ) merges similar image tokens to accelerate inference
without sacrificing accuracy. ToMe is extended to diffusion and grounding models, where token
merging based on semantic phrase is introduced to mitigate the loss of modifier information (

; , ). In the context of OVD, there have been attempts to merge image

tokens ( , ; , ), but the merging of text tokens has been unexplored.
Previous studies on text token merging have primarily focused on diffusion models, partlcularly in
text-to-image generation ( , ). In this work, we are the first to explore text token merging

in detection models and empirically demonstrate its feasibility and effectiveness.

6 CONCLUSION

This work presents a comprehensive solution to the affirmative bias that hinders negation under-
standing in VLMs by addressing its two root causes. To resolve data scarcity, we introduce CO-
VAND, a systematic pipeline using CoT reasoning and VQA-based alignment to generate high-
quality, instance-grounded negation data. To counteract the model’s architectural tendency to ignore
negation cues, we propose NEGTOME, a novel module that, to our knowledge, is the first to use a
negation-aware boost to preserve semantic polarity in detection tasks. Our parameter-efficient recipe
integrates these contributions to achieve substantial gains on challenging negation benchmarks and
demonstrate strong generalization across VLM-based detectors and MLLMs, marking a significant
step towards VLMs that can understand not only what is present, but also what is absent.
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SUPPLEMENTARY MATERIALS

We provide supplementary materials in the following order:

* Section A: COVAND Details describing our negation-focused dataset construction
pipeline, including the three-step Chain-of-Thought prompt design, VQA-based caption
alignment, negation cue distribution, and a human-in-the-loop data error analysis.

* Section B: Implementation Details of all backbone architectures and our LoRA placement
strategy, together with additional attention visualizations.

e Section C: Extended Related Work covering CoT-based dataset construction, visual
grounding and region-level alignment, parameter-efficient fine-tuning for VLMs, composi-
tional reasoning, and bias mitigation.

 Section D: Additional Ablations: Negation- and Noun-Only Boosting, which compare
simple token-level boosting and attention-bias variants against our NEGTOME.

* Section E: Comparison with Post-hoc VQA Methods analyzing two-stage detector+VQA
pipelines and their accuracy—latency trade-offs.

* Section F: Evaluation on Full OVDEval Subsets reporting results on all OVDEval subset.

* Section G: Analysis on RPN-based Detectors contrasting RPN-based and DETR-style
architectures under negation.

* Section H: Zero-shot Downstream NegBench MCQ presenting a detailed breakdown of
the multiple-choice subsets and characteristic error patterns.

* Section I: Zero-shot Generalization on the Biomedical Domain evaluating our method
on the FG-CXR chest X-ray dataset and analyzing cross-domain.

* Section J: Qualitative Results displaying additional examples on OVDEval and D3, as
well as representative failure cases on complex negation and event-level reasoning.

* Section K: Declarations summarizing LLM usage, ethics, and reproducibility.

A DETAILS ON COVAND

A.1 PROMPT FOR THREE-STEP COT CAPTION GENERATION

We employ a systematic three-step CoT reasoning approach using GPT-40 ( , ) to
generate high-quality negation-focused captions. As shown in Figure S11, the prompt structure is
carefully designed to elicit temporally coherent reasoning that produces semantically valid negation
captions grounded in the visual content.

Our prompt begins by informing the model that it will be provided with an image containing a
highlighted bounding box, along with a target phrase describing the main subject in the region. The
model is then guided through three distinct reasoning steps:

A.1.1 STEP 1: ATTRIBUTE EXTRACTION
The model first generates two comprehensive lists of attributes:

* Present Attribute (4,,.,): At least three attributes or keyword items clearly visible within
the bounded region.

* Absent Attribute (A,;s): At least three attributes or keyword items that are contextually
relevant but clearly not present in the bounded region.

A.1.2 STEP 2: CAPTION GENERATION
Using the attributes from Step 1, the model produces two types of captions:

* Negative Caption (C),.,): Creates a factually incorrect statement by falsely claiming an
existing attribute is absent. This caption must contain a negation expression (e.g., “no”,
“not”, “without”) coupled with an attribute from the existing contents list.
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* Positive Caption (C),,): Creates a factually correct statement by accurately describing an
absent attribute as absent. This caption pairs a negation expression with an attribute from
the absent contents list.

This approach yields contrastive pairs where the negative caption contradicts the visual evidence
while the positive caption aligns with it, creating training data that specifically targets negation
understanding.

A.1.3 STEP 3: SEMANTIC VERIFICATION
For quality assurance, each generated caption undergoes verification:

* Negative Verification: Confirms the caption (1) contains a negation expression, (2) refer-
ences an existing attribute from Step 1, and (3) factually mismatches the actual content of
the bounded region.

* Positive Verification: Confirms the caption (1) contains a negation expression, (2) refer-
ences an absent attribute from Step 1, and (3) correctly describes the absence of the attribute
in a way relevant to the context.

This verification step ensures semantic integrity and prevents generation artifacts by applying ex-
plicit logical checks. If either caption fails verification, the process iteratively regenerates captions
until valid pairs are produced or the retry limit is reached.

The prompt enforces concise, natural language expressions with a single-sentence structure. As
examples in Figure S12 and Figure S13, it requires the model to focus exclusively on the bounded
region, preventing semantic drift to other parts of the image. The entire process outputs a structured
JSON format containing the attribute lists, caption pairs, and verification rationales, facilitating
downstream dataset creation and quality control processes.

A.2 VQA-BASED CAPTION ALIGNMENT

To address a critical challenge in negation-aware detection, ensuring generated captions reference
exclusively the intended bounding box rather than other visually similar regions, we implement a
structured verification pipeline with VQA alignment.

First, we apply alphabetical region labeling to all bounding boxes that share the target phrase type
(e.g., “person”) by assigning distinct markers (A, B, C, ...) toeach instance. The originally
prompted region remains unlabeled to avoid biasing the verification process. As shown in Fig-
ure S14, our visual prompting approach carefully considers label placement to maintain visual clar-
ity. When labeling multiple instances of the same type (e.g., multiple “person” boxes), we position
alphabetical markers outside the top-left corner of each bounding box to avoid occluding the object
itself. This placement strategy preserves the visual integrity of the object while providing clear refer-
ence points for the VQA model. In cases where objects appear near image boundaries, we adaptively
place labels inside the top-left corner of the bounding box to ensure they remain visible within the
frame. This adaptive positioning is crucial for maintaining consistent label visibility across diverse
image compositions.

Then, for each caption pair (Cpos, Cneg), We query a multimodal VQA model with two precisely
formulated questions as in Figure S15. The VQA model analyzes the image and captions to produce
structured JSON responses specifying matching box labels. A valid alignment requires that Cyos
matches exactly the original unlabeled region, while Cy, either matches no regions (* *None’ ")
or incorrectly matches another box. This process effectively eliminates label noises: false nega-
tives, where C', accidentally describes another instance, and ambiguous groundings, where cap-
tions generically describe multiple regions.

Figure S16 showcases several successful examples from our complete caption generation pipeline.
In these examples, we can observe how the three-step CoT process first generates attribute-based
negative and positive captions for the target region, followed by the VQA alignment step that verifies
caption-region correspondence. Despite the effectiveness of our approach, we encountered certain
limitations in complex scenes, as illustrated in Figure S17. When multiple instances of the same
type are densely clustered, the visual prompting can become ambiguous, making it difficult for the
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VQA model to determine precise correspondences. To maintain dataset quality, we implemented
a filtering mechanism that excludes images containing more than five instances of the same type
from the caption generation process. This threshold was empirically determined to balance the
diversity of the dataset with the precision of the annotation, ensuring that our training data provides
unambiguous supervision signals for understanding the meaning of negations.

A.3 DATASET DISTRIBUTION
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Figure S8: Distributions of Negation Type. Analyzing all 48,761 captions in COVAND and identi-
fied 57,874 negation instances. Following standard linguistic taxonomies, we categorized them into
Regularized (explicit syntactic markers) and Flexible (lexical/morphological) cues. Regularized
Cues means high-frequency surface markers, including not, no, without, never, and contractions like
n’t. Flexible Cues means a diverse long-tail of expressions including lack, un-, in-/im-/ir-, dis-, non-,
and -less.

We separate surface regularized cues versus flexible cues as below:

* Regularized cues are short, high-frequency surface markers: not, without, no,
never, and clitic contractions n” t.

* Flexible cues cover lexical and morphological forms that naturally occur in open text: lack-
family (lack, lacks, lacking, lack of), devoid of, absence of/absent,
coordinations (neither/nor, but not, rather than, instead of), and pro-
ductive morphology such as negative prefixes/suffixes (in—-/im-/il-/ir—, un—, dis-,
non-), and —less, as well as X—-free/free of.

We analyze all 48,761 captions (24,381 positive vs. 24,380 negative). Across all captions, we detect
57,874 negation cues in total: 48,275 regularized (83.41%) and 9,599 flexible (16.59%).

Prior analyses of negation in natural language understanding corpora show that explicit markers such
as not, no, and n’ t account for the large majority of negation instances. Hossain et al. (2022)
found that syntactic negation (regularized cues) constitutes 88.6% in CommonsenseQA (

, ) and 71.9% in SST-2 ( , ), compared to morphological negation (11.4%
and 28.1%, respectively) as in ( s ). While these figures come from specific NLU
datasets rather than unrestricted natural language, they suggest that regularized forms are prevalent
in realistic language tasks. Thus, our dataset’s 83.41% regularized distribution is not solely an
artifact of GPT-40’s generation bias, but rather aligns with patterns observed in existing negation-
annotated corpora for downstream applications.

Flexible forms provide meaningful diversity. While regularized cues dominate, the presence of
9,599 flexible cues (16.59%) ensures the dataset includes a non-trivial variety of negation expres-
sions. This diversity is essential for evaluating whether models generalize beyond high-frequency
patterns. Flexible negations, though less common, are critical in compositional reasoning tasks such
as DOD, where attribute-level and relational negations often require nuanced understanding. By
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including both regularized and flexible forms, COVAND provides a more comprehensive training
signal than datasets relying solely on template-based augmentation.

Future work: Mitigating prompt bias for richer flexibility. We acknowledge that the current
distribution may still reflect prompt-design bias inherent to GPT-40’s training data. To further en-
hance the diversity of flexible negation forms, future iterations of COVAND could employ targeted
prompt engineering strategies—such as explicitly requesting diverse negation structures (e.g., “de-
scribe the absence using lexical negation such as lack or devoid of”)—or post-hoc augmentation
techniques to rewrite regularized negations into their flexible counterparts. Such refinements could
yield a more balanced distribution while preserving the semantic integrity established by our CoT
and VQA pipeline.

A.4 DATA ERROR CASE ANALYSIS

To quantify residual annotation errors in COVAND, we perform a two—stage human-in-the-loop
audit combining an independent multimodal language model with manual inspection.

Stage 1: Automated cross—model audit. We first randomly sample 1,000 image—caption pairs
from the training split of COVAND. Each sample consists of an image, a target bounding box, and
a pair of captions describing the same region: a negative caption (hard negative, e.g., “a boy without
a helmet”) and a positive caption (true description, e.g., “a boy without a backpack”), together with
the key attribute mentioned in the caption (“helmet”, “backpack”, etc.).

For each sample, we generate a visual prompt by overlaying a red rectangle on the target bounding
box and feed the resulting image, the caption, and the attribute to an off-the-shelf multimodal LLM,
Gemini-2.5 ( , ), that is architecturally and training-wise independent from the
model used in our data generation pipeline. The model is instructed to act as an objective judge and
to return a structured JSON answer indicating whether the attribute is visually present in the red
box:

{
"is_attribute_present": boolean,
"reasoning": "short explanation”

}
We then apply a deterministic decision rule to compare the dataset label with the model’s prediction:

e For a negative caption (intended hard negative of the form “X without Y”), the
example is considered valid if the attribute Y is in fact present in the region
(is_attribute_present = true).

* For a positive caption (intended true caption of the form “X without Y), the example
is considered valid if the attribute Y is indeed absent (is_attribute_present =
false).

For each caption, we log the full record (image path, bounding box, caption type, attribute, model
verdict, and free-form reasoning) in a JSON file for subsequent human analysis.

Over 1,000 sampled pairs, the independent model disagrees with the COVAND label in 78 cases
(7.8%). These disagreements define the pool of potentially erroneous annotations.

Stage 2: Manual verification of disagreements. In the second stage, we load the logged results
and focus on the disagreement set. A lightweight visualization tool displays, for each case, the
original image with the red bounding box plus textual metadata (caption, attribute, model verdict,
and reasoning). Annotators then categorize each disagreement as either:

* Dataset error: the COVAND label is incorrect and the independent model’s judgment is
correct, or

* Model error: the COVAND label is correct and the independent model misinterprets the
visual evidence.
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Cpeg: "The caricature of yéung women is not holding a drink." The jacket is not blue.

’ Gemini does not saw 4, “holding a drink”. ’
The woman in the red bounding box is not holding a
drink. A drink is on the table in front of her, but her
hands are resting on the table and in her lap.

Gemini does not saw A, “blue jacket”.
Person in the bounding box is wearing a yellow life
vest over a grey or light-colored jacket.

Figure S9: Representative dataset errors for negative captions. Each panel shows an image
with the target region highlighted and the corresponding hard-negative caption (“X without Y).
Many mislabels arise in visually subtle cases (e.g. barely visible or skin-colored attributes) where
the “absent” attribute Y is in fact present but difficult to perceive even for humans.

Cpos: "The helmet does not
| have a camouflage pattern."

.4

Gemini saw Agps
“camouflage pattern”.
The helmet inside the
bounding box clearly
displays a military-

style camouflage
pattern with splotches
of different colors.

Cpos: "Amale surgeon per forms surgery without gloves on his hands."

’ Gemini saw Ay, “gloves”.
The surgeon inside the red bounding box is wearing
skin-toned surgical gloves on both of his hands.

Figure S10: Representative dataset errors for positive captions. Examples where the caption
intends to describe a true absence of an attribute, but small objects, occlusions, or cluttered scenes
make the decision borderline. These cases illustrate that the residual annotation noise in COVAND
is dominated by inherently ambiguous instances.

Among the 78 disagreements, 23 are judged as true dataset errors and 55 as model errors. This yields
an estimated annotation error rate of 2.3% on the audited sample, corresponding to 97.7% factual
accuracy for COVAND. Most errors occur in visually ambiguous situations, such as fine-grained
appearance attributes or partially occluded objects, rather than systematic failures of the generation
pipeline.

Qualitative patterns. Fig. SO and Fig. S10 illustrate typical error cases discovered by this audit.
For negative captions, errors often arise when the “absent’ attribute is present only in a subtle or non-
prototypical form (e.g., skin-toned medical gloves that are hard to distinguish from bare hands), or
when the bounding box tightly crops out context that would disambiguate the attribute. For positive
captions, errors typically involve borderline cases where small accessories, distant objects, or strong
reflections make it difficult to determine whether the attribute is truly absent in the marked region.

Overall, this analysis indicates that the remaining noise in COVAND is both quantitatively small
and qualitatively concentrated in genuinely ambiguous instances, rather than reflecting a systematic
self-consistency bias of the underlying generation procedure.
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You are provided with an image in which the target object “<TARGET_PHRASE>” is highlighted using a red contoured
bounding box. You are a vision-language model with advanced chain-of-thought reasoning. You must produce both
negative and positive captions referencing the same main subject, “<TARGET_PHRASE>”.

Step 1) Summarize the highlighted bbox existing/missing contents (color, action, location, relationship, shape,

texture, etc.):

Existing Contents] Provide at least 3 short attribute or keyword items that describe SHOWN within the red

boundlng box

- All contents should be CLEARLY CHECKED in image.

- Example: If the region corresponds to 'woman', you could include items like ['running at left lane', 'brown
hair', 'blue shirt’, 'jumping', 'holding a bat’].

[Absent Contents] Provide at least 3 short attribute or keyword items that describe NOT in the red bounding box.

- All contents should be CLEARLY MISSING in image, but somewhat relvant to the situation.

- Example: If the region corresponds to 'A woman in a blue shirt rides a bicycle', you could include items like
['helmet', 'glasses’, 'red hoodie'], if all items are not in the image.

Step 2) For selected content items from step 1, produce exactly ONE negative caption and ONE positive caption with
negation expressions (e.g. 'no', 'not', ‘never', ‘without', 'un-', ...). Each caption should be about the bounding
box's main subject (“<TARGET_PHRASE>” in the red bbox) as the focus.

legative caption]: Caption that mismatched with the target region by combining negation expression and existing
content item.
(1) Must contain a negation expression with Existing Contents.
(2) Keep it a single sentence or phrase, but it can be descriptive on target region.
(3) Example: If existing contents are ['man', 'blue shirt', 'hat'] -> select 'hat’
=> 'A man without hat on his head.' ('hat' with 'without’)
If existing contents are ['plate’, 'on the top', 'black', 'near the woman’]
=> select 'near the woman' => 'A black plate is not located near the woman.’

]: Caption that match with target region containing absent concepts with negation expressions.
(1) Must contain a negation expression with Absent Contents.
(2) Keep it a single sentence or phrase, which is actually present or relevant.
(3) Example: If absent contents are ['helmet', ‘glasses', 'red hoodie'] => select 'red hoodie’,
you could say 'A woman without a red hoodie rides a bicycle.’

Step 3) Provide verification for each caption:

- After each negative or positive caption, include a short 'verification' string that clarifies why it is truly
negative or positive, focusing on the use of the negation.

- Negative check: (1) Does it contain a negation expression? (2) Does it contain the existing item from Step 1? (3)
Does it mismatch with the bounding box contents?

- Positive check: (1) Does it contain a negation expression? (2) Does it contain the absent item from Step 1? (3)
Is that negation absent from the bounding box, but thematically relevant?

IMPORTANT:

- Keep each caption to one sentence. Natural, fluent English with a bit of descriptive detail is encouraged.

- Your bbox_contents and subsequent captions should provide unique or distinguishing details specifically about the
object in the target region, ensuring that they do not unintentionally refer to objects or attributes that lie
outside of this indicated region.

- Return your final answer in a JSON structure with the following schema:

{
"steps": [ { "explanation": "...", "output": "..." }, ... 1,
"bbox_contents": { "existing": [ ... ], "absent": [ ooc 1| Do
"pairs": [
“content_item": {
"existing": "<one existing item>",
“absent": "<one absent item>"
1
"negative_caption": "..."
"negative_verification" 5
"positive_caption": "..
"positive_verification": “
}
]
}

You should reveal your chain-of-thought in steps[1,2,3], but keep it concise and do not mention about visual prompt
in the final output sentences. Please identify at least 3 existing/missing items (other than the main subject) in
that region, then select one for generating negative/positive caption pairs with verification. Use the JSON schema
described above.

Figure S11: Prompt for Three-step CoT Negation Caption Generation. Our prompt guides the
model to systematically (1) extract present and absent attributes from visually highlighted regions,
(2) generate complementary negative and positive captions with explicit negation markers, and (3)
verify semantic alignment through logical validation.
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STEP 1 Summarize the highlighted bbox existing/missing contents
Input Image:
Apr,_,s: [“dark silhouette”, “still water reflection”, “multiple antennas”]

Agps ¢ [“bright decorations”, “p activity”, “painted details”]
STEP 2 For selected content items from step 1,
Target phrase: produce negative and positive caption with negation expressions

“The boat”

Cneg: “The boat does not appear as a dark silhouette against the sunrise.”
Cpos : “The boat is shown without any bright decorations along its structure.”

STEP 3 Provide verification for each caption

Vneg ¢ “This caption uses 'not' with 'dark silhouette,' misrepresenting the
boat's visual attribute.”

Vpos ¢ “This caption uses 'without' with 'bright decorations,’ confirming its
absence in the bounding box.”

STEP 1 Summarize the highlighted bbox existing/missing contents

Lot Apres: [“white beard”, “blue cap”, “standing”
| IR Ay [1aite bea, “hlue car, “sandiog’]
Target phrase: ‘ i abs © [“gloves”, “glasses”, “apron”]
=i | USED
b ( STEP 2 For selected content items from step 1,
i E‘_ produce negative and positive caption with negation expressions

Cpeg: “A man without a blue cap on his head.”
Cpos © “A man without glasses is standing in the doorway.”

Input Image:

| =

STEP 3 Provide verification for each caption

Vneg © “It contains a negation ('without') and the existing item ('blue cap'),

which mismatches because the man clearly wears a blue cap.”
Vpos ¢ “It contains a negation ('without') and the absent item ('glasses’),
which is absent from the image and relevant to the setting.”

STEP 1 Summarize the highlighted bbox existing/missing contents

Aprest [“round”, “black and white”, “logo”]
Agps : [“net”, “grass”, “foot touching”]

STEP 2 For selected content items from step 1,
produce negative and positive caption with negation expressions

Creg: “The ball has no visible logo on it.”
Cpos ¢ “The ball shows no foot touching by any player on the field.”

ST

EP3 Provide verification for each caption

Vneg ¢ “Negative Verification: (1) Yes, it contains a negation. (2) Yes, it
contains 'logo'. (3) Yes, it mismatches because the ball does have a logo.”
Vpos ¢ “Positive Verification: (1) Yes, it contains a negation. (2) Yes, it
contains ‘foot touching'. (3) Yes, it is absent but relevant to a ball.”

AR sUmk

STEP1 Summarize the highlighted bbox existing/missing contents

Apres: [“beige hat”, “pattern”, “wide brim”]
Agps ¢ [“letters”, “passenger activity”, “painted details”]

STEP 2 For selected content items from step 1,
produce negative and positive caption with negation expressions

Cpeg: “The woman is not wearing a beige hat atop her head.”
Cpos ¢ “The hat on her head is without a letters.”

Provide verification for each caption

Vneg © “(1) Contains 'not' for negation. (2) Refers to ‘beige hat'. (3)
Contradicts the visual content, making it negative.”

Vpos ¢ “(1) Contains ‘without' for negation. (2) Refers to ‘letters’ as
absent. (3) The absence of a logo is true and contextually relevant.”

Figure S12: Examples of COVAND with 3-step CoT Caption Generation (1). Example im-
ages and corresponding captions. Text with blue is present attribute(Ay,.s) and pink is absent

attribute(Aqps). In detail, <negation word>+<Ap..s> can generate negative caption(C,.4) and
<negation word>+<Ags> can generate positive caption(Cpos).
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STEP 1 Summarize the highlighted bbox existing/missing contents
Input Image:
- 5 Apres: [“wet fur”, “wearing a collar”, “looking upward”]
Agps ¢ [“clothing accessories”, “a leash”, “an obstacle”]
STEP2 For selected content items from step 1,
produce negative and positive caption with negation expressions
Cpeg: “A dog that is not looking upward.”
Cpos ¢ “A dog without a leash is standing in the water.”
STEP 3 Provide verification for each caption
Vneg ¢ “This caption is negative as it uses a negation expression with an

existing attribute, mismatching the observed orientation of the dog.”
Vpos ¢ “This caption is positive as it uses a negation expression for an absent
attribute where no leash is visible, matching the lack of such an item.”

STEP 1 Summarize the highlighted bbox existing/missing contents

Aprest [“blond hair”, “blue clog sandals”, “orange traffic cone”]
Agps : [“hat”, “glasses”, “red hoodie”]

Target phrase' STEP 2 For selected content items from step 1,
e Yy produce negative and positive caption with negation expressions
Infant Boy

Cneg? “The infant boy is not wearing blue clog sandals.”
Cpos ¢ “The infant boy without a hat play with a traffic cone.”

Provide verification for each caption

Vyeg ¢ “Contains negation 'not' and the existing item 'blue clog sandals',
which is present, making this factually incorrect.”

Vpos ¢ “Contains negation 'without' and the absent item 'hat', which is
indeed absent in the image.”

Figure S13: Examples of COVAND with 3-step CoT Caption Generation (2). Example im-
ages and corresponding captions. Text with blue is present attribute(A,,.s) and pink is absent

attribute(Aqps). In detail, <negation word>+<Ay..,> can generate negative caption(Clcq) and
<negation word>+<Ags> can generate positive caption(Cpos).

Figure S14: Examples of Visual Prompt on VQA Alignments. We apply alphabetical region
labeling to all bounding boxes that share the target phrase type by assigning distinct markers (2,
B, C, ...) toeach instance with red bounding boxes.
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You are provided with an image where each bounding box is labeled with a letter, ['A', 'B’, ..].
{'A': '<PHRASE>', 'B': '<PHRASE>'}

Additionally, the following captions are given:
- Caption 1: <POSITIVE_CAPTION>
- Caption 2: <NEGATIVE_CAPTION>

Your task is to determine which bounding box aligns with Caption 1 and which one aligns with Caption 2,
based on the context of the image.

For each caption, please provide the label(s) of the bounding box or boxes that match its description.
If a caption does not align with any bounding box, respond with 'None’.

Example:

Suppose we have bounding boxes labeled A, B, C and D.

Let bbox 'A' and 'C' show a black dog with a red collar,

bbox 'B' shows a 'small white dog' WITH a red collar,and bbox 'D' shows a 'cat' without a collor.
- Caption 1: 'A black dog wearing a red collar’

- Caption 2: 'A small white dog without a collar’

Caption 1 -> Semantically align with bbox 'A' and 'C'.
Caption 2 -> None of bboxes are perfectly aligned since small white dog 'B' WEARING red collor and CAT 'D'
is not a dog.

Hence, the final answer would look like:
{ ‘'captionl': ['A', 'C'], ‘'caption2': ['None']l}
Now, please return your final answer in a JSON structure with the following format:

{ ‘captioni': [...], # A, B, C, ..., or 'None' ‘caption2': [...], # A, B, C, ..., or 'None'}

Figure S15: Prompt for VQA Alignment. Our alignment process with (1) labeling all candidate
bounding boxes with alphabetical markers, and (2) querying the VQA model to determine precise
correspondences between generated captions and visually annotated regions.
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rget phrase: 3-step CoT Negation Caption Generation
“formal costume”

Cpeg: “The formal costume lacks a red dupatta.”
Cpos ¢ “The formal costume without a hat.”

VQA-based Caption Alignment

Q: Which bbox aligns with given captions?

Cpeg: None
Cpos : A

3-step CoT Negation Caption Generation

= = ——f—— Cneg: “A light brown dog is not wearing a
red collar while playing.”

Cpos ¢ “A 1light brown dog is playing
without a ball in sight.”

VQA-based Caption Alignment

Q: Which bbox aligns with given captions?

Cpeg: None
Cpos ¢ A

3-step CoT Negation Caption Generation

Creg: “The dog is not in a jumping pose.”
Cpos ¢ “The dog is playing without
a leash.”

VQA-based Caption Alignment
Q: Which bbox aligns with given captions?

Cpos : A

3-step CoT Negation Caption Generation
Cneg ¢ “A kid not wearing a green shirt
runs along the sidewalk.”

Cpos ¢ “A kid runs without a jacket along
the sidewalk.”

VQA-based Caption Alignment
Q: Which bbox aligns with given captions?

Coeg? A, B
Cpos : A, B

3-step CoT Negation Caption Generation
Cneg: “The young boys are not playing any
guitars.”
Cpos ¢ “The young boys perform without any
visible music sheets.”

VQA-based Caption Alignment

Q: Which bbox aligns with given captions?

Cpeg: None
G b By By ©

Figure S16: Examples of COVAND. Example images for the 3-step CoT Negation Caption Gener-
ation and the VQA alignment are needed. The VQA alignment step is only executed when there are
multiple instances with the same phrase type.

10
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Target phrase: 3-step CoT Negation Caption Generation
“A group-of children”

Cpeg © “A group of children not engaging
with an adult on the beach.”
Cpos © “A group of children without beach
balls on the sand.”

VQA-based Caption Alignment

Q: Which bbox aligns with given captions?

3-step CoT Negation Caption Generation

Creg ¢ “The entertainers are not wearing .
Roman-style outfits.”

Cpos © “The entertainers are without
modern attire, instead showcasing Roman-
oM style outfits.”

Taxget phrase:
“Entertainers”
i

s

VQA-based Caption Alignment
Q: Which bbox aligns with given captions?

Figure S17: Error on COVAND. VQA alignment occasionally fails when instances are densely
clustered, making it difficult to determine which instance each visual prompt references.

11
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B IMPLEMENTATION DETAILS

B.1 GROUNDING DINO MODEL

Our implementation is built upon the Grounding DINO architecture ( , ;

), which employs a dual-encoder-single-decoder design for vision-language understanding. For
efficient fine-tuning towards negation understanding, we apply LoRA ( , ) to specific
layers of the cross-modality decoder. The Grounding DINO consists of several key components:

* An image backbone (Swin Transformer ( , )) for visual feature extraction
¢ A text backbone (BERT ( s )) for textual feature encoding

A feature enhancer with self-attention and cross-attention mechanisms

* A language-guided query selection module that initializes query embeddings

* A cross-modality decoder that refines object detection based on both visual and text

We implement parameter-efficient fine-tuning by applying LoRA to deep layers (the final three
cross-attention layers in the cross-modality decoder). This strategic placement allows us to modify
how the model integrates negation cues from text with visual features while preserving pre-trained
knowledge in earlier layers. Specifically, we insert LoRA only into the query (Q)) and value (V)
projections of the text cross-attention; the image deformable cross-attention and the self-attention
blocks remain unchanged. The addition of ReLU activation between the down-projection and up-
projection matrices, similar to ( , ), enhances the model’s ability to capture non-linear
relationships between negation cues and visual features. In Grounding DINO’s cross-attention, the
interactions operate as follows:

* Image Cross-Attention:

— Query (Q): the updated cross-modality query from the preceding self-attention layer
— Key (K) and Value (V): the image features processed through the feature enhancer

¢ Text Cross-Attention:

— Query (Q): the output from the image cross-attention layer
— Key (K) and Value (V'): text features encoding language information

Figure S18 reveals critical insights into the optimal placement of LoRA modules ( ,

) for negation understanding. The baseline model (Figure S18a) shows a strong bias toward
Special tokens across all decoder blocks, with negation cues receiving minimal attention. When
we apply LoRA to shallow blocks (Figure S18b), negation tokens initially receive higher atten-
tion weights in blocks 0-2, but this effect rapidly diminishes in the later blocks where attention to
negation drops.

In contrast, when we apply LoRA to deep blocks (Figure S18c), the model maintains consistent
attention to negatlon tokens through blocks. This pattern persists through the final detection heads
explaining the superior negation-aware detection performance. Some works ( ,

, ) further validate our approach by demonstrating that allocation of adaptatlon
capacity to mid-to-late transformer layers yields optimal results for complex semantic tasks.

With the addition of NEGTOME (Figure S18d), attention to negation tokens increases consistently
across all blocks, with particular amplification in the final blocks where detection decisions are
made. This confirms that our token merging strategy effectively preserves negation signals through-
out the entire network, even in early blocks that did not receive LoRA adaptation. The combined
effect creates a consistent processing path for negation cues from text encoding through to final
detection, explaining the significant performance improvements observed in the OVDEval and D3
benchmarks.

Together, these adaptations enable our model to effectively capture the semantics of negation by
enhancing the cross-modal integration of negation cues with their corresponding visual attributes,
resulting in more accurate detection under negation scenarios.

Compared with the tiny model of Grounding DINO baseline, we need merely 0.005% trainable
parameters to capture negation cues effectively, as in Table S6. To keep the tiny model within the

12
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Block 0 Block 1 Block 2 Block 3 Block 4 Block 5

(a) Baseline Model

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5

Ave. Attention Weight

005

(b) Baseline Model + COVAND Fine-tuning (LoRA on shallow layers)

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5

ight

Ave. Attention Wei

005

(c) Baseline Model + COVAND Fine-tuning (LoRA on deep layers)

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5

020

015

ve. Attention Weight

(d) Baseline Model + COVAND Fine-tuning (LoRA on deep layers) + NEGTOME

Figure S18: Average Attention Weights by Decoder Blocks. We only update the LoRA modules
while freezing other layers for fine-tuning. Placement of LoRA, shallow means LoRA located on
early decoder blocks (0-2) and deep means LoRA located on latter decoder blocks (3-5).

Table S5: OVDEval-Negation Evaluation. Performance on Grounding DINO tiny model.

| AP NMS-AP( , 2020 | FPR

G-DINO-T ( , ) | 485 2.8 54.0

+0urs 51.1 233 4255
(+2.6) (+0.5) (=11.5)

same 0.005% budget, we attach LoRA adapters to the 4 and 5 text cross-attention blocks of the
decoder. Our lightweight adaptation yields a consistent performance gain: +2.6 AP and +0.5 NMS-
AP, while slashing the False-Positive Rate (FPR) by 11.5% as in Table S5. Although AP and NMS-
AP improvements are moderate, they are achieved without sacrificing any metric; in fact, every
reported score is on par with, or better than, the baseline, indicating that our negation-centric tuning
does not degrade the detector’s general ability.

13
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Table S6: Trainable Parameter Ratio. The table compares the total model size with the number
of LoRA-tuned parameters for each detector and backbone pair. During fine-tuning on COVAND,
only the LoRA layers are trainable, with all other layers kept frozen with their pretrained weights.

‘ Image Backbone Total Param. LoRA Param. ‘ Ratio (%)

G-DINO-T ( , ) Swin-T (28.8M) 173M 8.2k 0.005
G-DINO-B ( , ) Swin-B (88M) 233M 12.3k 0.005
APE-Ti ( ,2024) VIT-Ti (5.8M) 771M 129k 0.017
APE-L ( , 20040 ViT-L (307M) 1B 129k 0.012
Qwen-2.5-VL-3B ( ,2025) | VIT-H (632M) 3.8B 77k 0.002

B.2 APE MODEL

Our implementation builds upon the APE framework ( s ), a universal visual per-
ception model that unifies detection, segmentation, and grounding through instance-level region-
sentence alignment. The architecture features several key innovations:

¢ A vision backbone (ViT-L ( s )) pretrained with EVA-CLIP ( s
) for visual feature extraction

* A text encoder (EVA02-CLIP ( s )) processing both categorical vocabularies
and free-form descriptions

* A gated cross-modality interaction module that fuses visual and text features

* A transformer decoder with deformable attention ( , ) for joint reasoning

APE introduces a novel gated fusion mechanism that efficiently handles thousands of prompts per
forward pass. Unlike previous approaches that directly fuse all text features ( , ), APE
implements conditional interaction paths:

- {V + Attn(V, Py,.) for vocabulary prompts @

Attn(V, Pyey) for sentence descriptions

where V' denotes visual features and P represents text embeddings. This gating strategy reduces

FLOPs compared to GLIP-style fusion ( , ). The model processes inputs at 1,024 pixel
resolution using AdamW optimization ( , ) with learning rate 0.0005 and
weight decay 0.05. We employ large-scale jittering augmentation ( ) with random

scales from 0.1 to 2.0. We train APE-Ti models with four A6000 GPUs with a batch size of 4.

We apply LoRA exclusively to the encoder’s cross-attention layers where visual and text features
interact. This targeted adaptation modifies only 0.017% of APE’s parameters as in Table S6. Despite
APE-L’s strong theoretical performance, its 1B parameters exceed the 48GB memory capacity of
NVIDIA A6000 GPUs during training. We therefore focus on APE-Ti, which achieves 32.5 AP on
D? while maintaining practical deployability.

B.3 QWEN-2.5-VL MODEL

In addition to dedicated detectors, we test our method’s generalizability on a powerful Multimodal
Large Language Model (MLLM), Qwen-2.5-VL ( , ). Unlike dual-encoder architec-
tures, Qwen-2.5-VL is an end-to-end model that directly processes interleaved image and text data.
As detailed in its technical report, the architecture consists of three main components:

* A Vision Transformer (ViT-H) that is redesigned and trained from scratch to handle na-
tive resolution inputs. For efficiency, it incorporates windowed attention in most layers,
with full self-attention only in specific blocks. The ViT architecture is also updated with
RMSNorm and SwiGLU activations to align with modern LLM design principles.

* An MLP-based Vision-Language Merger that compresses spatially adjacent patch features
before feeding them into the language model, enhancing computational efficiency.

14
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* A Large Language Model decoder based on the Qwen2.5 architecture, which performs
unified reasoning over the combined multimodal input and generates responses, including
object coordinates for detection tasks.

For parameter-efficient fine-tuning, we again employ LoRA, strategically targeting the deep layers
of the LLM decoder to enhance its negation reasoning without disturbing its foundational knowl-
edge. Based on our experimental setup, LoRA adapters are specifically injected into the query
(g-proj) and value (v_pro j) projections of the self-attention modules within layers (15, 24, 30).
This targeted placement is designed to modulate how the model integrates visual information with
textual negation cues in its higher-level semantic reasoning stages. We configure the LoRA adapters
with a rank 7 of 4 and a dropout probability of 0.05.

Following the execution script, the Qwen-2.5-VL-3B model is fine-tuned for 1 epoch on our
COVAND dataset on H200 GPU. We use a learning rate of 5e — 5 with the AdamW opti-
mizer ( s ) and a per-device batch size of 32, with 2 gradient accumulation
steps, totaling an effective batch size of 64. The model is trained using bfloat16 mixed-precision.
During this process, all original model parameters-including the ViT, MLP merger, and LLM back-
bone—are kept frozen; only the injected LoRA adapter weights are updated.

C EXTENDED RELATED WORK

C.1 DATASET CONSTRUCTION WITH CHAIN-OF-THOUGHT REASONING

Chain-of-Thought (CoT) based data generation has emerged as a critical methodology for construct-
ing high-quality datasets, particularly for tasks requiring multi-step reasoning. Early work in this
domain relied heavily on manual annotation or rule-based generation, but recent advances have au-
tomated and scaled CoT-based dataset construction through Large Language Models (LLMs).

Systematic CoT Pipeline Design The construction of CoT datasets requires careful consideration

of quality and scale trade-offs. VideoEspresso ( , ) demonstrates a systematic approach
to automatic CoT dataset generation, employing a three-stage pipeline: (1) semantic-aware key
information extraction using frame-level captioning ( , ), (2) multi-frame question-

answer pair construction guided by carefully designed prompts, and (3) multimodal CoT annotation
with spatial and temporal grounding ( ,

This pipeline bridges the gap between manual annotation and fully automated generation by leverag-
ing LLMs to produce reasoning chains ( ; , ) while maintaining consis-
tency and factual accuracy through iterative quahty filtering with an auxiliary LLLM validator (

, ). The approach implements a redundancy removal mechanism using
semantlc snmlarlty ( , ) to filter out low-quality data, achieving 203,546 high-quality
QA pairs with fine-grained CoT annotations. Furthermore, external validation tools ( ,

) are employed to ground generated annotations in visual evidence, ensuring both consistency
across temporal boundaries and factual accuracy of intermediate reasoning steps.

Information-Theoretic Framework for CoT Evaluation Understanding the quality of interme-
diate reasoning steps in CoT chains is essential for constructing reliable datasets. Recent works (

, ) propose an information-theoretic framework that formalizes CoT reasoning through the
lens of information theory ( , ), enabling the identification of failure modes without an-
notated CoT data. This theoretical foundation is grounded in process supervision paradigms (

) ; , )-

Their key contribution is the concept of information-gain at each reasoning step: a correct step
should provide meaningful information toward predicting the final answer. By training a supervisor
model to estimate conditional mutual information between intermediate steps and the final answer,
they can quantify the contribution of each step without expensive human annotation. This approach
outperforms outcome-based reward models ( , ) and Math-Shepherd on detecting
erroneous reasoning steps ( , ).

The framework extends toward mechanistic interpretability through sparse autoencoders and activa-
tion patching ( , ). These techniques reveal that CoT induces interpretable compu-
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tational structures in larger models, with domain-specific causal patterns ( , ). This
mechanistic analysis validates that intermediate steps reflect genuine internal computation ( ,

).

The framework extends beyond simple accuracy metrics to provide step-wise interpretability (

, ) and identifies unidentifiable sub-tasks—those which the model has not learned from
training data ( , ). By combining information-theoretic analysis with causal
structure verification, the framework creates a comprehensive evaluation pipeline grounded in both
statistical and mechanistic principles.

Synthesis for COVAND Dataset Construction Drawing from these insights, our COVAND
dataset construction pipeline incorporates: (1) systematic 3-step CoT prompts guided by
information-theoretic principles to ensure each step contributes meaningful information, (2) multi-
level quality verification using both LLM-based filtering and human review to ensure faithfulness,
(3) validation through external VQA models to confirm region-level alignment accuracy, and (4)
careful consideration of model scale effects by selecting sufficiently large models for CoT genera-
tion. This comprehensive approach ensures that COVAND provides high-quality, instance-grounded
negation data where the reasoning process genuinely reflects the model’s internal understanding.

C.2  VISUAL GROUNDING AND REGION-LEVEL ALIGNMENT IN VQA

Visual grounding, which is the task of localizing image regions corresponding to textual descrip-
tions, plays a crucial role in connecting language-based reasoning to visual content. This capability
is particularly important for our NEGTOME module, which grounds text tokens to image regions to
implement negation-aware token merging.

Visual Grounding Methods and Evaluation Visual grounding has evolved from CNN-based
two-stage pipelines to unified transformer-based end-to-end frameworks. TransVG (

) ploneered transformer-based visual grounding by performing intra- and inter-modality rela—
tion reasoning homogeneously. Recent advances further improved this by moving toward multi-
task grounding architectures that jointly perform localization and segmentation ( , )
and leveraging coarse-to-fine consistency constraints. A comprehensive survey on visual ground-
ing ( , ) systematizes this evolution and identifies critical research directions, includ-
ing grounding multimodal LLMs and generalized visual grounding.

A key insight is that visual grounding can be performed efficiently without fine-tuning. Contrastive
Region Guidance (CRG) ( , ) introduces a training-free guidance method that enables
open-source VLMs to respond to visual prompts by contrasting model outputs with and without
region masking. CRG achieves up to 11.1% absolute accuracy improvements across diverse region-
based tasks, demonstrating that pre-trained VLM representations already encode spatial informa-
tion. This aligns with our design choice of using lightweight region guidance rather than expensive
fine-tuning, and CRG complements our token-merging approach by providing model-driven region
importance weighting.

VQA-Based Visual Grounding Visual Question Answering (VQA) provides a natural framework

for generating region-level annotations. Some works ( , ;b) show that visual
grounding mechanisms are essential for explaining VQA predictions, bridging the gap between
model confidence and spatial localization. More recent work ( s ) uncovers

the full potential of visual grounding methods in VQA, revealing that region-level understanding
significantly improves multi-hop reasoning capabilities. Learning visual grounding from generative
VLMs ( , ) demonstrates that modern generative models can implicitly learn spatial
correspondences, which our approach leverages by using model-generated region descriptions.

Spatial vs. Semantic Matching A fundamental distinction in visual grounding exists between
spatial matching (geometrlc alignment) and semantic matching (concept alignment). Recent
works ( s , ) demonstrate that semantic alignment based on
visual-linguistic correspondence often outperforms purely spatial approaches. Our VQA-based val-
idation mechanism employs semantic matching by querying the model about object presence and

16



Under review as a conference paper at ICLR 2026

roles in specific regions, effectively combining spatial information (bounding boxes) with semantic
understanding (question-answer consistency).

Grounding for Instance-Level Negation For instance-grounded negation understanding, precise
visual grounding is critical. The COVAND dataset construction process uses region-level VQA
to ensure that when we assert “not X,” the region boundaries are accurately localized and the ab-
sence claim is semantically verified. This region-centric approach differs from image-level negation
understanding, which cannot distinguish between objects appearing in different spatial contexts.

C.3 PARAMETER-EFFICIENT FINE-TUNING FOR VISION-LANGUAGE MODELS

Large vision-language models contain billions of parameters, making full fine-tuning computation-
ally prohibitive. Parameter-efficient fine-tuning (PEFT) techniques enable adaptation with minimal
additional parameters, a critical requirement for our NEGTOME adapter design.

Low-Rank Adaptation (LoRA) and Variants LoRA ( , ) introduced a breakthrough
approach decomposing weight updates into low-rank matrices W = Wy + AB T, where A € R4X"
and B € R™*? with rank r < d. This reduces trainable parameters from O(d?) to O(dr). For CLIP-
like models, LoRA has proven highly effective in few-shot scenarios. Low-rank few-shot adaptation
of vision-language models ( , ) empirically demonstrates that CLIP-LoRA
achieves substantial improvements over prompt-learning and adapter-based approaches across 11
datasets while maintaining consistent hyperparameters across all tasks, effectively democratizing
few-shot VLM adaptation without task-specific tuning.

A comprehensive PEFT survey ( , ) provides systematic evaluation of PEFT algorithms
and their computational overhead, revealing that LoORA remains competitive against more complex
PEFT variants (prefix tuning, adapters, prompt tuning) for vision-language adaptation, particularly
when strategically applied to specific layer types. However, the low-rank constraint limits expres-
sivity on complex tasks. DoRA ( , ), a weight-decomposed variant, decouples weight
matrices into independent magnitude and direction components, emulating full fine-tuning dynam-
ics more faithfully. DoRA consistently outperforms LoRA on vision-language tasks including visual
instruction tuning ( s ).

Strategic Layer-Wise Adaptation Not all layers benefit equally from fine-tuning. Analysis of
vision-language architectures reveals that cross-modal attention layers are critical for semantic align-
ment. Full-rank parameter-efficient fine-tuning ( , ) proposes RandLoRA, which
performs full-rank updates via learned linear combinations of low-rank random matrices. Rand-
LoRA significantly reduces the performance gap between LoRA and standard fine-tuning, particu-
larly on vision-language tasks, demonstrating that when higher ranks are required, full-rank updates
substantially outperform low-rank approximations.

Layer-wise learning strategies further refine adaptation. Layer-wise auto-weighting ( ,

) employs Fisher Information Matrix (FIM) to autonomously identify which layers require
preservation or concentrated adaptation, enabling more efficient non-stationary test-time adapta-
tion. For our approach, we strategically apply LoRA to deep cross-attention layers where negation-
specific reasoning is encoded, achieving a balance between expressiveness and efficiency. Addi-
tionally, data-efficient instruction tuning ( , ) proves that examples with similar
cross-modal attention matrices have similar gradients, informing our layer selection strategy: layers
exhibiting high cross-modal attention variance are most critical for negation grounding.

Fine-Grained Semantic Alignment Task-specific semantic alignment requires minimal parame-
ters but careful design. A parameter-efficient prompt learning method ( , ) achieves
fine-grained semantic alignment using only a few additional parameters. Their key insight is that
semantic-level objectives require less parameter capacity than low-level pixel matching, particularly
when combined with well-designed prompt templates and explicit semantic constraints.

For semantic gating in transformers, Value-State Gated Attention ( , ) introduces learn-
able, data-dependent gates computed from value vectors to modulate token contributions based on
semantic importance. This mechanism directly informs NEGTOME’s token importance weighting:
by learning task-specific gates that suppress irrelevant tokens and amplify negation-bearing tokens,

17



Under review as a conference paper at ICLR 2026

we achieve semantic spemahzatlon with minimal overhead. Dynamic Mask Attention (

) extends this by using soft-gating masks and content-aware mask generation based on value
representations, enabling fine-grained token importance capture without binary keep-or-drop deci-
sions.

Negation-Specific Adapter Design While most PEFT work addresses general-purpose adapta-
tion, negation understanding requires specialized reasoning. Our NEGTOME module combines
LoRA’s parameter efficiency with negation-aware token merging, creating a compact yet semanti-
cally rich adaptation.

The negation-boost mechanism in token merging acts as a learned semantic gating function, allo-
cating more computational resources to tokens representing negated concepts. This semantic spe-
cialization follows principles from hierarchical inductive transfer for continual learning ( ,

), which demonstrates that separating base adapters (capturing general knowledge) from task-
specific adapters (capturing task-specialized reasoning) prevents interference and improves perfor-
mance on specialized tasks. By analogy, NEGTOME’s selective token enhancement prevents general
cross-modal attention from suppressing negation signals.

Synthesis: Efficient Negation-Aware Adaptation Our PEFT strategy for NEGTOME combines:
(1) LoRA efficiency: strategic application to cross-modal attention layers, (2) full-rank expressivity:
capturing complex negation-direction mappings, (3) semantic gating: value-state aware token im-
portance weighting, and (4) hierarchical structure: base cross-modal adaptation and task-specific
negation enhancement. This integrated approach ensures parameter efficiency while providing suf-
ficient expressivity for negation-aware semantic reasoning, critical for learning instance-grounded
negation in vision-language tasks.

C.4 COMPOSITIONAL REASONING IN VISION-LANGUAGE TASKS

Compositional reasoning—understanding how simple concepts combine to form complex mean-
ings—is fundamental to negation understanding. Negation is inherently compositional: “not red”
requires first identifying “red” then applying the negation operator.

Compositional Visual Reasoning Fundamentals A comprehensive survey on compositional vi-
sual reasoning ( , ), establishing core definitions and theoretical foundations. The sur-
vey identifies key requirements for compositionality: (1) primality—identifying atomic concepts,
(2) compositionality—systematically combining concepts, and (3) systematicity—applying compo-
sitional rules consistently across novel scenarios. The survey emphasizes that compositional reason-
ing provides advantages in cognitive alignment, semantic fidelity, robustness, interpretability, and
data efficiency. Notably, it highlights that vision-language models struggle with compositionality
due to training data bias toward positive instances and the parallel feature processing architecture, a
challenge directly addressed by COVAND.

Recent analysis reveals that VLMs exhibit the “binding problem” ( , )—funda-
mental failures in reliably associating perceptual features with correct visual referents, particularly
in multi-object scenarios. This limitation mirrors cognitive science findings on rapid feedforward
processing in human brains. Addressing this binding problem through structured spatial reasoning
(e.g., horizontal lines and sequential scanning prompts) yields substantial improvements across vi-
sual reasoning tasks ( , ), demonstrating that explicit compositional structure enhances
multi-object understanding.

Compositional Generalization in Vision-Language Models A critical gap exists between train-
ing and test distributions: models trained on one compositional split often fail on others, reveal-
ing weak compositional generalization. An empirical study on compositional generalization in
VLMs ( , ) shows that current models rely primarily on linguistic priors rather than
visual information, causing benchmarks to favor pure language models. To overcome this limita-
tion, researchers propose evaluation frameworks without linguistic priors, forcing models to ground
compositional reasoning in actual visual content.

Systematic compositional probing studies ( , ) evaluate whether RL-trained VLMs in-
herit compositional capabilities from LLMs. Key findings reveal: (1) RL-trained models outperform
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SFT-only models on compositional generalization, (2) VLMs struggle to generalize compositionally
under cross-modal and cross-task scenarios despite strong individual-task performance, and (3) en-
forcing models to explicitly ground visual content before reasoning (e.g., caption-before-thinking
with visual grounding) yields notable gains. These findings directly motivate our explicit chain-
of-thought (CoT) dataset construction: by forcing models to describe what negation means in spe-
cific regions before making predictions, we encourage true compositional understanding rather than
shortcut learning.

Out-of-distribution generalization in LLMs is fundamentally tied to compositional structures inter-
nally achieved through aligned principal subspaces in self-attention layers ( , ). This
analysis suggests that models composing two self-attention layers can learn rules and generalize
to novel tasks—a principle we leverage by designing NEGTOME to operate at intermediate layers
where compositional negation reasoning naturally emerges.

From Objects to Events: Temporal Compositional Reasoning Event-level reasoning extends
compositional understanding beyond static attributes to temporal dynamics. Compositional event
reasoning requires understanding object interactions and temporal sequences. Recent work on
diffusion-driven video scene graph generation ( , ) demonstrates that detecting com-
plex temporal relations requires compositional reasoning about object trajectories and inter-frame
dependencies, achieved through iterative refinement of spatial-temporal embeddings. Video refer-
ring object segmentation ( , ) decomposes referring expressions into structured event
graphs with objects, relations, and temporal constraints, revealing that video-level negation requires
reasoning about event-level compositional patterns.

Our 3-step CoT generation aligns with this event decomposition: each step performs a primitive
operation (object detection — region analysis — negation verification), mirroring the hierarchical
event reasoning paradigm. By explicitly grounding each reasoning step in concrete regions, CO-
VAND teaches models to compose negation patterns systematically rather than relying on spurious
correlations.

Attribute Binding and Multi-Object Reasoning A central compositional challenge is correctly
bmdmg attributes to objects (the binding problem). Scene graph generation literature ( ,

, ), identifies systematic failures in relational understanding. Video scene graph
generatlon with unbiased training ( , ) addresses these failures through visual-semantic
dual supervision, explicitly enforcing consistency between visual features and semantic relations.
For negation, this principle translates to enforcing consistency between negated object descriptions
and their spatial absence in images.

Multimodal Compositional Generalization Retrieving semantically equivalent primitives across
modalities enhances compositional generalization. Multi-sourced compositional generalization in
VQA ( , ) proposes retrieval-augmented training where equivalent primitives from dif-
ferent modalities are aggregated to refine representations, improving generalization to novel compo-
sitions. For negation, this principle suggests that enforcing consistency between linguistic negation
descriptions and visual absence patterns (via VQA-based validation) teaches models to reason about
negation as a unified cross-modal compositional operator.

Systematic Generalization in Visual Reasoning A benchmark for systematic generalization in
visual world models ( , ) evaluates whether models perform visual imagination and
measure compositional generalization systematically. The benchmark reveals that even state-of-the-
art models fail on out-of-distribution compositional scenarios. Our approach mirrors this systematic
evaluation: by constructing COVAND with systematic variations across objects, attributes, and
negation types, we provide training data that encourages systematic rather than accidental general-
ization.

Synthesis: Compositional Negation as Structured Visual Reasoning Our approach positions
negation as a compositional operator within a broader framework of structured visual reasoning.
By combining: (1) explicit event decomposition through 3-step CoT reasoning, (2) visual-semantic
binding enforcement via VQA validation, (3) spurious correlation mitigation through systematic
data variation, and (4) out-of-distribution generalization via consistent cross-modal mappings, CO-
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VAND enables models to learn compositional negation patterns grounded in both visual evidence
and semantic structure. This compositional foundation, combined with NEGTOME’s semantic-
aware token merging that respects the hierarchical structure of compositional reasoning, creates a
framework where negation understanding emerges from systematic compositional principles rather
than shallow surface-level negation cues.

C.5 BIAS MITIGATION IN VISION-LANGUAGE MODELS

Affirmative bias—the tendency to misinterpret negations as affirmations—represents a systematic
bias in VLM training data and architecture. Understanding and mitigating this bias is central to our
work.

Understanding Affirmative Bias in VLMs The fundamental source of affirmative bias lies in
training data distribution. Most visual-linguistic corpora contain predominantly positive image-text
pairs: “dog in park,” “person running,” etc. Negative examples are rare, creating class imbalance
that models exploit through shortcut learning. DeAR ( , ) demonstrates that VLM bias
can be partially mitigated by learning additive residual corrections to visual representations without
retraining. However, their approach targets shallow social biases; negation bias requires deeper
structural understanding.

Recent work reveals that VLMs exhibit social biases including gender and racial stereotypes in
their generative responses ( , ). More critically, fair-response reliability differs from
accuracy: models may achieve high accuracy while exhibiting significantly lower fairness scores.
This decoupling between performance and fairness motivates our multi-level debiasing strategy,
where data-level, method-level, and evaluation-level components collectively address negation bias.

Architectural Sources of Affirmative Bias Bias is not merely a data problem but deeply embed-
ded in architectural choices. Bias analysis in transformer attention heads ( , ) reveals
that specific attention heads are responsible for encoding stereotypical biases; by identifying and
masking high-bias heads, models achieve significant bias reduction without affecting language un-
derstanding. This attention-head level analysis directly informs NEGTOME’s design: our selective
token merging operates at the semantic level, effectively masking attention patterns that suppress
negation signals.

Shortcut Learning and Spurious Correlation Models exploit spurious correlations—features
coincidentally correlated with labels in training data—to achieve high training accuracy while gen-
eralizing poorly to test data. Shortcut learning in LLMs ( , ) identifies that models learn
to associate demographic attributes with spurious features rather than learning genuine causal rela-
tionships. For negation, this manifests as: models may learn that “absence of red” correlates with
“dark backgrounds” rather than learning true negation semantics.

ShortcutProbe ( , ) introduces a post-hoc framework for identifying and mitigating
spurious biases via prediction shortcuts in the model’s latent space, without requiring group labels.
The key insight is that spurious correlations create non-generalizable prediction shortcuts that fail
under distribution shift. Our COVAND addresses this by systematically varying objects, attributes,
and spatial configurations, forcing models to learn generalizable negation patterns rather than spuri-
ous shortcuts. Furthermore, generative classifiers naturally avoid shortcut learning ( , )
by modeling all features rather than mainly spurious ones, suggesting an alternative avenue for ro-
bust negation understanding.

Synthetic Data Augmentation and Its Pitfalls While data augmentation seems a natural solution,
naive approaches can inherit and amplify existing biases. Decoupling augmentation bias in prompt
learning for VLM ( , ) demonstrates that random negation (e.g., “not red” gener-
ated from “red”) can create inconsistent training signals due to augmentation distribution mismatch.
COVAND addresses this by employing LLMs to generate semantically coherent negation examples
with multi-step chain-of-thought reasoning verification, ensuring both linguistic consistency and
visual grounding.

Handling imbalanced pseudolabels in VLMs ( , ) reveals that models exhibit class-
preference biases when generating pseudolabels for unlabeled data. Their proposed solution com-
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bines concept alignment with confusion-aware calibrated margins. Our COVAND-derived dataset
similarly enforces consistency through VQA validation and avoids concept confusion via systematic
negation type variation.

Bias Inheritance in LLM-Based Data Augmentation LLM-based augmentation introduces new
challenges: models inherit biases from their training distribution even when generating synthetic
data ( , ). When an LLM generates “not sitting,” it may unconsciously preserve biases
about typical sitting scenarios and demographic associations. Our solution combines LLM genera-
tion with human review and VQA validation, creating a hybrid pipeline resistant to bias inheritance.
This multi-stage validation mirrors fairness-aware domain adaptation for VLMs ( s ),
which uses attribute-aware strategies to dynamically adapt to diverse demographics for equitable
outcomes.

Negation-Aware Test-Time Adaptation Beyond training-time mitigation, test-time debiasing of-
fers complementary benefits. BEND-VLM ( , ) proposes nonlinear, fine-tuning-
free debiasing that tailors debiasing to each unique input without prior knowledge of the test set.
While their approach targets social biases, the principle of input-specific bias correction directly ap-
plies to negation: negation scopes and interpretations vary contextually, so adaptive, query-specific
debiasing enhances robustness.

Debiasing VLMs using backdoor learning ( , ) proposes learning backdoor patterns
that trigger debiased representations, enabling inference-time debiasing without model modifica-
tion. This technique complements our approach: while NEGTOME merges tokens based on learned
negation patterns, backdoor triggers could provide additional control signals for negation-aware in-
ference.

Synthesis: Multi-Level Affirmative Bias Mitigation Our comprehensive approach targets affir-
mative bias across multiple levels:

1. Data-level: Systematic COVAND dataset construction with multi-modal chain-of-thought
reasoning and VQA validation, explicitly addressing spunous correlations and shortcut
learning through systematic data variation ( , ; , ).

2. Architecture-level: NEGTOME’s negation-aware token merging acts as a selective
attention-head debiaser, amplifying negation-bearing tokens while suppressing spurious
features. This semantic gating follows attention-head masking principles, but operates at
the token level with learned importance weighting.

3. Method-level: Strategic LoRA application to cross-modal attention layers (Sections C.3)
provides fine-grained control over negation reasoning without full model retraining, miti-
gating catastrophic forgetting associated with fine-tuning-based debiasing.

4. Evaluation-level: Instance-grounded metrics that measure negation understanding sepa-
rately from general object detection, preventing bias amplification in evaluation and en-
abling fair assessment of minority negation patterns.

By combining these complementary strategies, we provide stronger affirmative bias mitigation than
any single technique, addressing shortcut learning, spurious correlations, and architectural bias si-
multaneously. Furthermore, this multi-level approach generalizes beyond negation to other linguistic
phenomena requiring fine-grained compositional understanding.

D ADDITIONAL ABLATIONS: NEGATION- AND NOUN-ONLY BOOSTING

This section provides implementation details and empirical analysis of negation- and noun-only
boosting variants that test whether simply increasing the emphasis on certain tokens (without struc-
tural merging) is sufficient to improve negation understanding in VLM-based detectors.

Implementation details. Given a caption string x, we first run a spaCy parser to obtain a token
sequence d = (wq, ... ,stpa) and phrase-level groupings Py, ..., Pys as described in the main
paper. We then tokenize the same string with the model’s text tokenizer (BERT/CLIP) to obtain
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subword tokens (u1,...,ur, ) and use the alignment procedure to map each spaCy token to its set
of subword indices.

For each phrase P; we obtain an index set Z; € {1,..., Ly} of subword positions and compute a

merged embedding ¢; using the normalized weighted-average merging operator:

o Yjen Vit

P = =~ &)
Zj E€T; Vi

where t; is the original text embedding at subword index j and y; > 0 is an importance weight that

depends on the phrase type.

~

In all variants, the phrase replacement is applied once per phrase: the original subword embed-
dings {t;},cz, are removed and replaced by a single merged embedding ¢; at that position. The
different ablations differ only in how we choose the weights -y; and which tokens are boosted by a
multiplicative factor 5 > 1:

* Noun-only Boost. We identify head nouns inside each phrase P; using spaCy dependency
tags (see collect _noun_spacy_indices and spacy_indices_to_hf _indices
in the code), map them to subword indices, and form a set Byoy, of boosted positions. For
all phrases we use the merging operator in Eq. equation 5, with

o B if j € Buouns
Vi 1 otherwise.

This variant is agnostic to negation cues and only amplifies nouns/heads.

CLINNT3 EEINNT3

* Neg-only Boost. We first collect spaCy indices of negation cues (“not”, “no”, “without”,
“never”, “n’t”, etc.) using collect_negation_cue_spacy-indices, then map them

to subword indices to obtain a set 3,c,. We again use Eq. equation 5 with

B if j € Bheg,
'Vj:{ J ¢

1 otherwise.

Importantly, we do not structurally bind the negation token to the attribute; the cue re-
mains an isolated token (or part of a short phrase) that competes with other tokens in cross-
attention.

* Merge Head Boost. For this variant we apply phrase merging to all phrases as in Eq. equa-
tion 5, but we treat negation cues and non-negation phrases uniformly. Inside each phrase,
only the head noun is boosted:

- 6 lf.] € Bheada
K 1 otherwise,

where Bipe,q contains subword indices of phrase heads. This tests whether phrase-level
structural unification alone (without explicit negation-aware weighting) is sufficient.

» Attn Bias. Instead of modifying the text embeddings, this variant inserts a per-token bias
into the cross-attention logits. For each negation cue index j € By, we add a fixed bias
0 > 0 to the attention score for that token, leaving the tokenization structure unchanged.
Concretely, if A € RP*In is the query—key dot product matrix in a decoder block, we
replace it by A’ = A + By, Where By, is a matrix whose j-th column is shifted by ¢ for
negation indices and zero elsewhere. This variant corresponds to the Attn Bias row in
Table S7.

* Ours (NEGTOME). For non-negated phrases P; we use Eq. equation 5 with uniform
weights v; = 1, i.e., a simple average. For negated phrases P, that contain a negation
cue and a modified attribute (e.g., “not lying”, “without hat”) we set

~_ [ B if j corresponds to the negation cue,
W= 1 for the other tokens in Feg.

Thus, Eq. equation 5 simultaneously performs phrase merging and negation-aware boost:

all subwords in the negated phrase are collapsed into a single merged token #,e,, whose

representation is dominated by the cue contribution but remains conditioned on the attribute
it negates.
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Method AP7T FPR|
Noun-only Boost 50.5  66.1
Neg-only Boost 49.7 62.0
Merge Head Boost 562 624
Attn Bias 46.2  59.6

Ours (NEGTOME) 573 477

Table S7: Negation- vs. noun-only boosting ablations on OVDEval-Negation. All models are
fine-tuned on COVAND-L for 1 epoch with identical LoRA configuration. NEGTOME is the only
variant that simultaneously improves AP and substantially reduces FPR.

All variants share the same training and evaluation protocol: we fine-tune Grounding DINO-B with
LoRA on the COVAND-L split for one epoch and evaluate on OVDEval-Negation, using COCO-
style AP and the False Positive Rate (FPR) computed after NMS.

Quantitative results. Table S7 summarizes the results.

We observe three key trends:

1. Negation-only boosting is insufficient. The Neg-only Boost variant (boosting only nega-
tion cue embeddings without changing structure) yields AP = 49.7 and FPR = 62.0.
Similarly, the A#tn Bias variant, which adds attention bias toward negation tokens while
preserving the original tokenization, collapses to the lowest AP (46.2) despite a small FPR
reduction (59.6). This confirms that simply increasing the magnitude or attention weight of
negation tokens does not translate into reliable negation understanding; it can even disrupt
compositional semantics.

2. Phrase merging alone is necessary but not sufficient. The Merge Head Boost variant
leverages the same phrase-merging operator as NEGTOME but boosts only the head noun
in each phrase and does not treat negation cues specially. This already improves AP to
56.2, suggesting that structurally unifying multi-token phrases into single semantic units
helps detection. However, FPR remains high (62.4), indicating that the model still tends to
fire on both “with” and “without” queries (i.e., it detects the object but fails to respect the
polarity).

3. NEGTOME (merging + negation-aware boost) is required. Only the full NEGTOME
module, which both merges negation phrases and assigns a higher weight to the negation
cue inside the merged representation, achieves the desired behavior: AP = 57.3 (best
among all variants) and FPR = 47.7 (a reduction of 14.3-18.4 absolute points compared
to the other ablations). These results support the view that the main bottleneck is not
merely low attention on negation tokens, but the structural separation between cues and the
attributes they modify.

Taken together, these controlled ablations provide converging evidence that (i) boosting the nega-
tion cue in isolation is not enough, and (ii) negation-aware phrase merging, as implemented by
NEGTOME, is crucial for improving both localization (AP) and negation discrimination (FPR) on
OVDEval-Negation.

E COMPARISON WITH POST-HOC VQA METHODS

Motivation. An alternative to enhancing a detector’s internal negation understanding is a two-
stage pipeline, where a standard detector generates initial proposals and a powerful Multimodal
Large Language Model (MLLM) then acts as a post-hoc filter to remove erroneous detections. To
investigate the viability and trade-offs of this common alternative, we implemented two post-hoc
VQA variants. We built these on top of the same baseline detector used in our main experiments and
report results on the OVDEval Negation subset using both AP and class-ignored NMS-AP.

Two post-hoc settings. (A) Crop & Verify. For each image, we take the detector’s top-k boxes,
crop each region, and query an MLLM with a yes/no question about whether the crop satisfies the
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Table S8: Post-hoc VQA on OVDEval Negation. Numbers are AP / NMS-AP (1). “Ours” is the
single-stage detector fine-tuned with deep-layer LoRA + NEGTOME. Crop & Verify improves the
baseline but requires ¥ MLLM calls per image; Coordinate Prompting is faster but brittle. Stacking
the expensive verifier on top of our improved detector yields the best overall numbers.

Detector | Post-hoc Verifier | AP NMS-AP
(A) Crop & Verify (top-k crops = k MLLM calls)
G-DINO-B 54.0 36.8
G-DINO-B + Qwen-2.5-VL-3B | 59.2 54.4
G-DINO-B + Ours 58.7 44.5

G-DINO-B + Ours | + Qwen-2.5-VL-3B | 63.8 58.4
(B) Coordinate Prompting (single MLLM call with all boxes)

G-DINO-B 54.0 36.8
G-DINO-B + Qwen-2.5-VL-3B | 48.6 34.1
G-DINO-B + Qwen-2.5-VL-7B | 54.0 36.9
G-DINO-B + Ours 58.7 44.5

G-DINO-B + Ours | + Qwen-2.5-VL-3B | 49.6 37.0
G-DINO-B + Ours | + Qwen-2.5-VL-7B | 58.6 44 4

input description. This yields k separate MLLM calls per image. (B) Coordinate Prompting. We
avoid cropping and instead pass all top-k box coordinates and the description to the MLLM at once,
asking it to indicate which boxes are inconsistent.

Results. As shown in Table S8, the Crop & Verify method substantially increases the baseline de-
tector’s NMS-AP from 36.8 to 54.4, confirming that a strong VQA filter can reduce contradictory
detections. However, this accuracy gain comes with a heavy latency cost due to the O(k) MLLM
calls required per image. In contrast, the faster Coordinate Prompting method is unreliable for fine-
grained reasoning and often degrades performance; for instance, the baseline’s NMS-AP drops from
36.8 to 34.1 when paired with the 3B verifier. Notably, our single-stage method already achieves an
NMS-AP of 44.5, closing much of this performance gap without any added latency. When the ac-
curate but slow Crop & Verify filter is applied on top of our already-improved model, it achieves the
highest NMS-AP of 58.4, indicating that our method and post-hoc verification are complementary
rather than redundant.

Conclusion. These experiments demonstrate that while a two-stage VQA pipeline can be effective,
it presents a clear trade-off between accuracy and speed. The crop-based verifier is accurate but slow,
whereas coordinate prompting is fast but brittle. Our single-stage approach, by contrast, instills
negation sensitivity directly within the detector, improving the stricter NMS-AP and reducing false
positives in a single, efficient pass. This confirms that post-hoc filtering does not obviate the need for
a negation-aware detector. For practical, real-time settings, integrating negation reasoning directly
into the model’s fusion layers remains the most effective path. If latency is not a concern, our work
also shows that a costly verifier can be used to further refine the outputs of our model.

F EVALUATION ON FULL OVDEVAL SUBSETS

OVDEval ( , ) is a comprehensive benchmark designed to evaluate the generalization
capability of open-vocabulary detection (OVD) models across diverse linguistic aspects. The dataset
includes 9 sub-datasets that test 6 distinct aspects: object, proper noun (landmark, logo, celebrity),
attribute (color, material), position, relationship, and negation. Each subset features meticulously
curated hard negative samples that challenge models to demonstrate true understanding of fine-
grained linguistic descriptions rather than exploiting dataset biases. For instance, the color subset
includes negative labels with the same object category but different colors, while relationship subsets
maintain identical subjects and objects but alter the connecting verbs.
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Orig. Pred

“standing kangaroo.” vs. “kangaroo not standing”

Figure S19: Failure Cases of Prior Models on Negation Descriptions

F.1 THE INFLATED AP PROBLEM AND NMS-AP METRIC

Standard Average Precision (AP) metrics face limitations when evaluating fine-grained described
object detection due to what OVDEval terms the Inflated AP Problem. This issue occurs when a
model predicts multiple bounding boxes for the same object with different labels, including mutu-
ally exclusive ones as in Figure S19. For example, a model might predict both “outdoor dog led
by rope” and “dog not led by ropes outside” for the same dog, artificially inflating its AP score.
Mathematically, this manifests as:

TP 1 TP 1

= = U. R 11: :7:1' 6
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Precision =

Where a model with no actual understanding of attributes can still achieve a mAP of 0.50. To address
this, we follow OVDEval’s Non-Maximum Suppression Average Precision (NMS-AP) metric (

, ), which applies class-ignored NMS to remove redundant predictions for the same object
before AP calculation. This provides a more accurate assessment of a model’s ability to understand
fine-grained descriptions of contradictory pairs.

F.2 GENERALIZATION TO NON-NEGATION SUBSETS

Table S9 demonstrates that our model maintains robust performance across all OVDEval subsets
despite being trained exclusively on the negation-focused COVAND dataset. Notably, our approach
shows improved NMS-AP scores for Logo (+0.2), Landmark (+4.8), Color (+0.7), and Relation-
ship (+3.8) subsets compared to the baseline. This broad generalization suggests that our negation-
sensitive adaptations enhance the model’s overall reasoning capabilities for complex descriptions.
These results confirm that our LoRA-based parameter-efficient fine-tuning and NEGTOME token
merging strategy provide benefits beyond negation understanding, enhancing the model’s capability
to process compositional descriptions across multiple semantic aspects.

Table S9: Evaluation Results on Full OVDEval. Performance on OVDEval subsets, except for the
Negation. Even though we only trained with negation-focused COVAND dataset, our models show
robust results for other subsets.

Logo Landmark Celebrity Color Material Position Relationship ‘ Average
‘ AP NMS-AP AP NMS-AP AP NMS-AP AP NMS-AP AP NMS-AP AP NMS-AP AP NMS-AP ‘ AP NMS-AP
G-DINO | 11.7 7.6 20.5 16.5 6.7 0.8 7.9 5.6 152 5.5 74.7 60.6 413 183 254 16.4
+Ours 11.5 7.8 224 21.3 6.6 0.3 79 6.3 15.8 53 70.5 54.6 423 22.1 252 16.8

G ANALYSIS ON RPN-BASED DETECTOR

G.1 LIMITATIONS OF RPN-BASED DETECTORS UNDER NEGATION

Marginal or negative gains with LoRA. Two-stage region—proposal detectors such as GLIP (

, ) and FIBER ( , ) obtain slight improvement on negation—focused bench-
marks after attaching LoRA adapters as in Table S 10. For GLIP, whose backbone consists of stacked
multi-head attention blocks, we inject LoORA only into the FFN layers of the last two transformer
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blocks, leaving all attention projections frozen. Even with this targeted fine-tuning, the gains re-
main marginal. These findings indicate that low-rank fine-tuning brings far smaller gains to GLIP
than to DETR-style detectors. The gap can be traced to their attention layouts: GLIP employs
self-MHA over a mixed token pool, whereas Grounding-DINO uses two modality-specific cross-
attention blocks driven by a compact query set, a design that lets LORA and NEGTOME act directly
on phrase-level cues and thus respond much more strongly to negation.

Affirmative bias and context insensitivity. Recent negation benchmarks reveal a sharp drop in
detection accuracy whenever a query expresses absence or negation ( , ). GLIP
and FIBER often treat a negated phrase (“not X”) as if it were “X”, triggering on object names
while ignoring context qualifiers. Consequently, GLIP still localizes a “microphone” when the
description states “a person with no microphone”, producing hallucinated objects. LoRA-adapted
RPN detectors exhibit diminishing returns on negation-centric tasks because their proposal stage
detects any region matching a noun, leaving little capacity to encode absence semantics.

Performance gap between AP and NMS-AP on the Negation subset. Table S10 further shows
that model capacity alone does not resolve the issue: even the larger GLIP-L still exhibits a gap
between AP and class-ignored NMS-AP, substantially wider than the gap of smaller DETR coun-
terparts. The gap quantifies how many redundant, mutually exclusive boxes each model produces.
A large drop after class-ignored NMS indicates that the detector continues to fire on the noun even
when the query contains a negation cue, confirming the affirmative bias analyzed in the main paper.

Effect of NEGTOME. DETR keeps token granularity throughout the vision—-language stack, al-
lowing a merged phrase embedding to dominate (g, k;) for its specific key k; while leaving other
keys unaltered. By contrast, GLIP or FIBER fuse language either by (a) global pooling of the entire
caption ([cls]), or (b) class-name pooling plus a separate visual prompt. Both strategies erase
intra-sentence polarity (dog vs. not dog) before the detector sees it. Token merging cannot recover
that lost contrast; at best it shortens a sequence that will be pooled anyway.

Table S10: OVDEval-Negation Evaluation on Additional Architectures. RPN-based detectors
show a large gap between AP and NMS-AP. FT denotes fine-tuning of LoORA parameters only, with
all other pretrained weights kept frozen as in the main paper. Results marked with T are reproduced.

| Image Backbone Total Param. | AP NMS-AP ( N )
Non RPN-based Detector
MDETR ( s ) ResNet-101 185M 41.1 28.3
OmbDet ( ) ConvNext-B 242M 559 35.1
Grounding DINO' ( s ) Swin-B 233M 54.0 36.8
RPN-based Detector
FIBER ( R ) Swin-B 252M 57.2 28.7
GLIP-L ( s ) Swin-L 430M 51.8 29.3
GLIP-T ( ,2022) 47.7 254
+FT w.COVAND Swin-T 232M 47.8 26.1
+FT w. COVAND + NEGTOME 48.3 26.0

G.2 ADVANTAGES OF DETR-STYLE DETECTORS WITH LORA

Compositional reasonmg DETR-style detectors with transformer decoders ( R ;

; , ) perform joint text-image reasoning through
Cross- attentlon in decoder blocks This design enables natural handling of relations such as “X but
notY”.

Effectiveness of LoRA. Injecting LoRA adapters into the decoder cross-attention layers of
Grounding DINO and fine-tuning on a negation-focused dataset improves mAP by +2.6 and cuts
the false positive rate by 11.5%. The same lightweight adaptation reduces spurious detections on
the Negation subset of OVDEval by nearly half, while preserving general detection accuracy.

Why the architecture helps. Each decoder layer attends to textual tokens; negation words there-
fore, modulate visual attention directly. In RPN pipelines, language supervision is applied only after
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proposals are fixed, limiting early rejection of forbidden objects. A fully fused DETR decoder yields
a contextual representation of “what not to detect,” which a small LoRA module can efficiently re-
fine.

Advantage of NEGTOME. Both Grounding DINO and APE inherit the sub-token fragmentation
of their text backbones with BERT and BPE in CLIP. NEGTOME merges those fragments into one
polarity—aware phrase embedding and re-weights it by a boost factor 8. In Grounding DINO, this
merged vector is fed intact through token-level cross-attention, so every decoder layer receives a
sharper gradient signal for the absence condition; the result is a +10.8 rise in NMS-AP and a 19.1%
drop in false positives on OVDEval-Negation. APE employs CLIP, whose text encoder pools all
tokens into a single sentence vector before fusion. Here NEGTOME acts pre-pooling: by assigning
larger softmax weights to the merged negation phrase it skews the sentence representation toward
the correct polarity, yet does not increase sequence length. Consequently, the lightweight merger
lifts APE-Ti by +1.2 in NMS-AP and reduces absent-object errors by 8.3%, despite updating only
0.017% of parameters. NEGTOME aligns with the inductive bias of both encoders: it supplies
BERT-based decoders with an explicit token for cross-modal attention, and it biases CLIP’s global
pooling toward the correct semantic polarity. The mechanism is encoder-agnostic and therefore
complements LoRA across heterogeneous DETR frameworks.

DETR-based detectors fine-tuned with LoRA and NEGTOME achieve larger and more reliable gains
on negation and other compositional queries than RPN counterparts. Their set-prediction decoder
offers a single, expressive locus for parameter-efficient language adaptation.

H ZERO-SHOT DOWNSTREAM TASKS: MULTIPLE CHOICE QUESTIONS

To further analyze our model’s semantic comprehension of negation, we evaluate it on the NegBench
Multiple Choice Question (MCQ) benchmark ( , ). This benchmark is specif-
ically designed to diagnose a VLM’s ability to handle negation by requiring it to select the most
accurate caption for an image from four options. These options are structured into three challenging
categories as detailed below, providing a fine-grained analysis of a model’s capabilities.

H.1 STRUCTURE OF THE NEGBENCH MCQ

The NegBench MCQ task ( , ) generates multiple-choice questions where one
answer is correct and the other three serve as hard negatives, designed to mislead models that do not
properly understand negation. The questions are categorized into three distinct types based on the
linguistic structure of the correct answer:

* Positive Subset: The correct caption is a simple affirmation that accurately describes ob-
jects present in the image (e.g., “This image shows a baseball bat and baseball glove”).
This subset tests the model’s fundamental visual grounding capabilities, as shown in Fig-
ure S20. Incorrect options often involve falsely negating a present object.

* Negative Subset: The correct caption accurately negates the presence of an object that is
contextually relevant but absent from the image (e.g., “A bowl is not present in this image”).
This directly tests the model’s ability to comprehend explicit negation, as illustrated in
Figure S21.

* Hybrid Subset: The correct caption combines both an affirmation and a negation within a
single sentence (e.g., “This image features a person, with no truck in sight”). As shown in
Figure S22, this is the most challenging subset as it requires compositional reasoning and
an understanding of complex sentence structures that assign different polarities to different
objects.

H.2 ERROR PATTERN ANALYSIS OF BASELINE MODELS

Our qualitative analysis reveals that baseline models exhibit consistent and fundamental error pat-
terns on the NegBench MCQ task, primarily stemming from a severe affirmative bias as below:
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1. Blatant Contradiction of Visual Facts: The most common failure is choosing a caption
that directly contradicts the visual evidence. For example, in Figure S21, the baseline
model selects “There is no horse in this image” for an image clearly depicting a horse. This
indicates that the model heavily weighs the noun (“horse”) while effectively ignoring the
negation cue, treating both affirmative and negative statements as semantically similar.

2. Polarity Confusion in Hybrid Sentences: In the Hybrid subset (Figure S22), baseline
models systematically fail to parse sentences containing both positive and negative clauses.
For instance, given the ground truth “This image features a refrigerator, but lack of a bottle,”
the baseline chooses “This image features a bottle, but does not include a refrigerator.”
This shows a critical failure in compositional reasoning, where the model cannot correctly
assign presence and absence to different objects within the same logical construct.

3. Selection of Suboptimal Negatives: In some cases on the Negative subset, the baseline
avoids direct contradiction but fails to select the most accurate description. As seen in
Figure S21, when the ground truth is “A bowl is not present,” the baseline chooses “no
cake is present” While factually correct, this choice suggests the model lacks a deeper
contextual understanding to identify the most salient absent object among multiple true
negative options.

These error patterns underscore that many state-of-the-art VLMs do not understand negation. In-
stead, they rely on shortcut strategies that collapse the semantic meaning of affirmative and negative
statements. This motivates the need for methods that can fundamentally address this architectural
limitation.

2 (1) This image shows a baseball bat and baseball glove

(2) This image features a dining table,
but does not include a baseball bat.

(3) A dining table is present in this image.

(4) This image doesn’t feature a baseball bat

2 (1) This image features both a zebra and a giraffe.

(2) A cow is present in this image,
but there is no zebra.

(3)A cow is present in this image.

(4) No zebra is present in this image.

2(1) This image features a knife and a dining table.
(2) This image contains a bowl, with no knife in sight.

(3) This image shows a bowl.

(4) Noticeably absent from this image is a knife.

Figure S20: Qualitative Results on the Positive subset of the Multiple Choice Question bench-
mark. Captions with green checkmark ¢ is GT, pink refer to Baseline, and blue refer to Ours.
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2(1) A bowl is not present in this image.
(2) This image features a bowl, but no cake is present.

(3) A bowl is shown in this image.

(4) No cake is included in this image.

(2(1)This image contains no car.
(2)This image shows a car, but no horse is present.

(3)This image features a car.

(4) There is no horse in this image.

(2(1) There is no chair in this image.
(2)This image features a chair, but there’s no cat.

(3)A chair is present in this image.

(4) There is no cat in this image.

® (2(1) There is no traffic light in this image.

(2) This image features a traffic light,
but no car is present.

(3) A traffic light is included in this image.

(4) No car is present in this image.

Figure S21: Qualitative Results on the Negative subset of the Multiple Choice Question bench-
mark. Captions with green checkmark @ is GT, pink refer to Baseline, and blue refer to Ours.
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(D(l)This image features a refrigerator, but lack of a bottle.
(2)This image features a bottle, but does not include a refrigerator.

(3)A bottle is included in this image.

(4)A refrigerator is not present in this image.

€2(1)This image includes a sheep but no truck.
(2)This image shows a truck, but there is no sheep.

(3)This image shows a truck.

(4) There is no sheep in this image.

(2 (1) This image features a dining table,
but no car is present.

(2) This image features a car,
but does not include a dining table.

(3) A car is included in this image.

(4) A dining table is not included in this image.

€2(1) This image features a frisbee,
but there’s no bench in sight.

(2) This image features a bench,
but no frisbee is visible.

(3) This image shows a bench.

(4) A frisbee is not included in this image.

Figure S22: Qualitative Results on the Hybrid subset of the Multiple Choice Question bench-
mark. Captions with green checkmark @ is GT, pink refer to Baseline, and blue refer to Ours.
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I ZERO-SHOT GENERALIZATION ON BIOMEDICAL DOMAIN

To validate that our method learns a robust mechanism of negation processing rather than merely
memorizing specific object-negation pairs from the COVAND dataset, we conducted a zero-shot
evaluation on the Biomedical Domain. We utilized the FG-CXR dataset ( , ), a fine-
grained chest X-ray dataset that aligns radiologist gaze with diagnostic reports. This domain poses
a severe generalization challenge due to the drastic shift in visual features (grayscale X-rays) and a

LEINT3

distinct linguistic taxonomy of negation (e.g., “normal”, “clear”, “no findings”).

1.1 EXPERIMENTAL SETUP

Unlike standard captioning benchmarks, FG-CXR maps diagnostic sentences to 7 specific anatom-
ical regions (e.g., heart, upper left lung). We formulated the evaluation as a Zero-shot Binary
Discrimination Task:

» Data Processing: We flattened the dataset to evaluate every valid anatomical region indi-
vidually. For each region in an image, we extracted the ground truth (GT) diagnosis.

* Hard Negative Generation: To strictly test negation understanding, we generated a con-
tradiction for every GT sentence by syntactically flipping its polarity using a rule-based
approach.

— State Negation: “The left lung is possibly normal” — “The left lung is possibly ab-
normal”.

— Absence of Findings: “No pleural effusion” — “Pleural effusion is present”.
— Disease Assertion: “Opacity in the right lung” — “No opacity in the right lung”.

e Metric: We report Accuracy. The model is considered correct if it assigns a higher match-
ing score (max logit) to the GT caption than to the Hard Negative caption given the visual
region.

1.2 RESULTS AND ANALYSIS

The results of this cross-domain evaluation are presented in Table S11.

Table S11: Zero-shot Generalization Results on FG-CXR.

Method Domain Accuracy

Baseline (G-DINO-B)  Biomedical (Zero-shot) 54.86%
+ Ours (NEGTOME) Biomedical (Zero-shot) 62.55%

Analysis: The baseline model achieves an accuracy of 54.86%, which is only marginally above
random chance (50%). This confirms that standard VLMs struggle deeply with medical negation,
often failing to distinguish “normal” from “abnormal” even when visual features are distinct.

In contrast, our method achieves 62.55% (+7.69%), a substantial improvement. Since our model
was never exposed to medical images or jargon during fine-tuning, this gain cannot be attributed
to memorizing in-domain data. Instead, it demonstrates that NEGTOME effectively structuralizes

the binding between negation cues (e.g., “no”, “normal”) and their targets, allowing the model to
generalize this reasoning mechanism to entirely new domains.

J  QUALITATIVE RESULTS

We present additional qualitative examples from the OVDEval and D? datasets to further demon-
strate the effectiveness of our negation understanding approach. Figure S23 and Figure S24 show
our model’s ability to distinguish between contradictory attribute pairs such as “horse urinating”
versus “horse that is not urinating” and “complete pizza” versus “pizza that is not complete”. The
baseline model often detects identical regions for both negative and positive descriptions, demon-
strating significant affirmative bias. In contrast, our method successfully differentiates between these
contradictory descriptions by correctly emphasizing negation cues.
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Figures S25 to S27 illustrate our model’s performance on the D? dataset. For descriptions such
as “hanger without clothes” and “a bed without patterns”, our model correctly identifies only the
objects that satisfy these negated constraints. The baseline frequently exhibits false positives by
detecting objects regardless of negation markers. Our approach demonstrates particular effectiveness
for simple negation cases involving physical attributes and object presence.

Despite these improvements, our method still exhibits limitations in scenarios requiring highly com-
plex reasoning, as shown in Figure S28. These challenges often involve multi-step relational logic
combined with negation, such as in the query “a woman in white wedding dress not beside any men
in suits”, or understanding negated states, as in “a volley ball in the middle of the air untouched”.
Furthermore, resolving ambiguous or implicit negation cues like “unlike” in “origami unlike bird”
remains a difficult problem. A common failure pattern in these cases is that when a complex event
or state is entirely absent from the image (e.g., “the person who was proposed to on one knee”),
the model defaults to its affirmative bias, detecting the main subject of the query (“person”) rather
than correctly identifying that no object matches the full description. Crucially, the baseline model
faces identical challenges in these cases, demonstrating that these are open problems for the current
generation of VLM detectors. This confirms that our method, while not a complete solution for
such intricate reasoning, does not degrade performance on these hardest examples. These limita-
tions highlight important areas for future research in handling complex linguistic constructions and
multi-step negation scope resolution.

K DECLARATIONS

LLM usage. A large language model (LLM) was used during the preparation of this paper to
proofread and refine the writing, including correcting grammar and improving sentence structure.

Ethics Statement. Our work adheres to the ICLR Code of Ethics. The primary goal of this re-
search is to improve the reliability and safety of vision-language models by addressing a fundamen-
tal flaw in their reasoning—the failure to understand negation. By reducing “affirmative bias,” we
aim to create models that align more closely with human language and intent, which can prevent
critical errors in real-world applications (e.g., medical imaging or autonomous systems). Our new
dataset, COVAND, is built upon the public Flickr30k Entities benchmark. The new captions are
generated using a large language model (GPT-40) with a systematic, multi-step pipeline designed to
ensure high-quality, relevant, and grounded annotations. While our method improves a model’s lin-
guistic comprehension, it does not inherently address or remove societal biases that may be present
in the underlying web-scale pre-training data or the baseline models themselves. We believe the
contribution is a net positive, leading to more robust and predictable Al systems.

Reproducibility Statement. We are committed to ensuring the reproducibility of our research. To
this end, we will make our source code, including the implementation of the NEGTOME module,
and the complete COVAND dataset publicly available upon publication.

32



Under review as a conference paper at ICLR 2026

aseline

“orange without leaves vs. orange with leaves”

3

“pizza without green peppers vs. pizza with green peppers”’

complete pizza vs. pizza that is not complete”

“cow looking at the camera vs. cow without looking at the camera”

Figure S23: Qualitative Results on OVDEval Datasets (1). Prediction results on contradictory
caption pairs ( vs. green box) from the negation subset of OVDEval dataset. Each row
displays (left) ground-truth boxes, (middle) baseline predictions, and (right) our predictions. Our
model effectively reduces affirmative bias, no longer returning identical bounding boxes for captions
that express opposite meanings.
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GT Baseline Ours

“horse with white fur vs. horse without white fur”’

hairdryer that is not pure white

cu wzth handle Vs. cup thhout handle

Figure S24: Qualitative Results on OVDEval Datasets (2). Prediction results on contradictory
caption pairs ( vs. green box) from the negation subset of OVDEval dataset. Each row
displays (left) ground-truth boxes, (middle) baseline predictions, and (right) our predictions. Our
model effectively reduces affirmative bias, no longer returning identical bounding boxes for captions
that express opposite meanings.
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“a bed without patterns on it”
PP e T P

e

swan not in the water

Figure S25: Qualitative Results on D? Datasets (1). Absence of a bounding box shows the model
has determined that no instance in the image matches the input description. By filtering out such
invalid predictions, our approach reduces affirmative bias and lowers the false-positive rate.
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Figure S26: Qualitative Results on D3 Datasets (2). Absence of a bounding box means the model
has determined that no instance in the image matches the input description. Our model effectively
reduces the affirmative bias while keeping the correct predictions.
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Baseline
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“otter not in the water”

Figure S27: Qualitative Results on D3 Datasets (3). Absence of a bounding box means the model
has determined that no instance in the image matches the input description. Our model effectively
reduces the affirmative bias while keeping the correct predictions.
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Baseline

i i‘
knee”
Figure S28: Qualitative Analysis of Limitations on Complex Negation. Despite overall improve-
ments, our method, like the baseline, still struggles with highly complex linguistic constructions
involving negation. The examples show failures in: (i) multi-step relational reasoning (“not beside
any men in suits”), (i) abstract or implicit negation (“unlike bird”), (iii) understanding negated states
(“untouched”), and (iv) recognizing the absence of a complex event (“proposed to on one knee”).
In these challenging cases, both models tend to default to their affirmative bias, detecting the main
subject of the query rather than correctly concluding that nothing in the image matches the full de-
scription. These limitations highlight the need for more sophisticated compositional reasoning to
ground complex negative constraints.

“the person who was proposed to on one
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