
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

COMPACT-A∗: SPACE-EFFICIENT
FIXED-LENGTH PATH OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Several optimization problems seek a path in a state space to minimize a cost
function under a length constraint. Traditionally, these are solved by A∗ search or
dynamic programming (DP), as in Viterbi decoding for Hidden Markov Models. In
all cases, solutions require memory commensurate with a search space that grows
linearly in both state space size and path length. In this paper, we propose compact-
A∗, a framework that limits the growth of the A∗ priority queue to determine the
minimum cost for a path of predetermined length in a space-efficient manner
and then constructs such a path by a divide-and-conquer strategy that eliminates
the memory overhead. We apply compact-A∗ to Viterbi decoding and further
highlight its generality with an application to V-optimal histogram construction.
Our experimental results demonstrate significant improvements over state-of-the-art
solutions in runtime and memory consumption.

1 INTRODUCTION

Several problems call for finding a sequence of given length L over a state space of size n that
optimizes a cost function; they are conventionally solved by A∗ search or dynamic programming
(DP). Prominent examples are Viterbi decoding, i.e., finding a most likely sequence of hidden
states—a Viterbi path—in a Hidden Markov Model (HMM) to explain an observed event sequence of
length L (Viterbi, 1967; 2006); finding a sequence of L−1 boundaries—a V-optimal histogram (‘V’
for variance)—that partitions a numeric sequence minimizing the total squared error of representing
each partition by a constant value (Jagadish et al., 1998); and identifying the most probable syntactic
structure—a Viterbi parse tree—that generates a length-L input sequence of tokens or words under a
probabilistic context-free grammar (PCFG) (Klein & Manning, 2003; Huang et al., 2012).

Such algorithms iteratively derive solutions to a subproblem of length k+1 from solutions to subprob-
lems of length k in O(n2L) time. A∗ prioritizes subproblems in a best-first manner using a priority
queue with an O(nL log nL) overhead, while DP prioritizes them in a breadth-first manner by length.
In terms of space, we may address the problem as a shortest path problem over a graph of n vertices
and m edges replicated over L layers, one for each step, memoize partial solutions, and backtrack
over steps to build the optimal path after finding the optimal cost. Still, this strategy uses O(nL+m)
space. We may instead work in-place in O(n+m) space, without replication, discarding processed
subproblem solutions. Still, in that case we need to recursively rerun the algorithm from scratch L− 1
times to build the optimal path after finding the optimal cost, incurring a O(n2L2) time complexity
overhead instead. A recently proposed reformulation of the DP solution (Ciaperoni et al., 2022;
2024) constrains space to O(n + m) and runs in O(n2L logL) time, but evaluates subproblems
exhaustively by breadth-first search, harming scalability. In practicality, only a few subproblems
aid the solution. A∗-based algorithms exploit this fact, yet need to (i) maintain a priority queue and
(ii) memoize optimal choices per step to enable backtracking. These needs take only O(n) space
for the shortest-path problem, in which path length is arbitrary (Russell & Norvig, 2010), yet grow
to O(nL) space when path length L is predetermined (Klein & Manning, 2003; Huang et al., 2012).

In this paper, we introduce compact-A∗, a framework for space- and time-efficient optimization of
fixed-length sequences. Compact-A∗ controls the priority queue size by novel search strategies we
propose, and avoids memoization through divide-and-conquer, yielding O(n) space use. We apply
compact-A∗ to Viterbi decoding and V-optimal segmentation and test it on real and synthetic data,
showing gains in memory use and runtime vs. prior work, especially under skewed cost distributions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

2 BACKGROUND AND RELATED WORK

Dynamic programming (DP) (Bellman, 1966) explores the problem space exploiting an optimal
substructure property, by which a globally optimal solution can be assembled from locally optimal
solutions, to solve a problem by recursively expanding partial solutions in a breadth-first manner.
Best-first-search algorithms (Pearl, 1984) may also exploit optimal substructures, as dynamic
programming does (Sniedovich, 2006), to find a minimum-cost path from a start to an end node
by repetitively expanding, i.e., visiting the neighbors of, the most promising unexpanded visited
node. The A∗ algorithm (Russell & Norvig, 2010; Foead et al., 2021), an instance of best-first-search,
prioritizes paths by a path cost estimation heuristic that is admissible (i.e., never overestimates the
cost of a path) and consistent (i.e., never estimates the cost of a path as greater than the cost via an
intermediary node) (Russell & Norvig, 2010); the search may proceed from both start and end by
bidirectional search (Pohl, 1969). A∗ generalizes Dijkstra’s algorithm (1959), by which the heuristic
cost estimate of any unexplored path is 0. We stress that finding a minimum-cost path of fixed length
requires tracking both length and cost, while for arbitrary length, tracking cost suffices.

Hidden Markov Models (HMMs) explain observation sequences. An HMM comprises a set of K
hidden states, each with probabilities to be an initial state, transition to other states, and emit an
observation. Decoding seeks a sequence of states most likely to generate a sequence of observations:
Problem 1 (Decoding). Given an HMM and a sequence of T observations Y = {y1, y2, . . . , yT },
find the sequence of hidden states Q = {s∗1, s∗2, . . . , s∗T } that maximizes the likelihood P (Q,Y).

The Viterbi algorithm (1967; 2006) solves Problem 1 optimally by DP; it finds application from
networking and telecommunications (Viterbi, 2006) to speech recognition (Gales & Young, 2007;
Braun et al., 2020), where it serves to find the most probable transcription for an input acoustic
signal, or for forced alignment, the task of aligning orthographic transcriptions to audio recordings.
In modern speech-recognition systems, the Viterbi algorithm runs on the composition of several
small HMMs in which states represent words and their phonemes, to find the best transcription of a
spoken utterance. However, this algorithm raises high memory and runtime requirements. A recent
work (Jo et al., 2019) on HMM-based isolated word recognition employed a search heuristic, without
proving its correctness. Another recent work (Ciaperoni et al., 2022) enhances the space efficiency
of decoding at the cost of a runtime overhead. Other works reduce the state space representation
for particular classes of HMMs (Siddiqi & Moore, 2005; Felzenszwalb et al., 2003). Still, time
complexity remains high for problem instances with large state space and long observation sequences,
while improving on it is a difficult undertaking, as indicated by derived lower bounds (Backurs &
Tzamos, 2017). Klein & Manning (2003) and Huang et al. (2012) apply A∗-like policies to enhance
Viterbi’s time efficiency in the context of PCFG parsing, yet neglect space efficiency. Compact-A∗
offers a formulation of Viterbi decoding that is both time-efficient and parsimonious.

Histogram construction calls to segment a data series to a predetermined number of buckets, each
with one representative, to minimize the overall representation error:
Problem 2 (Histogram Construction). Given I = {x1, . . . xn}, xi ∈ R, and B ∈ Z+, find a
segmentation (or histogram) HB of I into B non-overlapping subsequences (or buckets) Ib with
associated bucket representatives x̂b, b ∈ {1, . . . , B}, that minimizes error function EI (HB).

Problem 2 is central in data summarization (Halim et al., 2009). We focus on V-optimal his-
togram construction (Jagadish et al., 1998), i.e., Problem 2 with EI (HB) =

∑B
b=1 Eb, where

Eb =
∑

xi∈Ib(xi − x̂b)
2, and x̂b is the mean of values in bucket Ib. This extensively studied prob-

lem (Guha et al., 2006) is solved optimally by a DP algorithm (Jagadish et al., 1998) with quadratic
dependence on n. Compact-A∗ offers significant gains in histogram construction and is extensible to
any monotonic and distributive error measure EI (HB) (Karras & Mamoulis, 2008).

Semirings and Dioids (Gondran & Minoux, 2008) A semiring is a 5-tuple (D,⊕,⊗, ,), where D is
a non-empty set, ⊕ is a binary, associative, and commutative operator, ⊗ is a binary and associative
operator, is a neutral element for ⊕ (i.e., x⊕ = x, for all x ∈ D), is a neutral element for ⊗
(i.e., x⊗ = ⊗x = x, for all x ∈ D), the operator ⊗ distributes over ⊕ and is absorbing for ⊗
(i.e., x⊗ = ⊗x =, for all x ∈ D). A selective dioid is a semiring in which ⊕ is also selective
(i.e., (x⊕ y = x) ∨ (x⊕ y = y), for all x, y ∈ D). Selective dioids provide an abstract expressive
framework for shortest-path and DP problems (Mohri, 2002; Huang, 2008; Tziavelis et al., 2020).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3 THE COMPACT-A∗ FRAMEWORK

We define compact-A∗ and apply it to Viterbi decoding (§ 3.1) and histogram construction (§ 3.2).
Compact-A∗ finds a given-length sequence that optimizes a cost measure. Contrariwise to dynamic
programming, which visits subproblems in a fixed order even if several of them do not contribute to
the final solution, compact-A∗ solves subproblems in a best-first fashion. Figure 1 shows an example.

0 ∞ ∞ ∞
18 18 ∞ ∞
24 18 18 ∞
27 27 26 26

51 51 50 50

0

18 18

24 18 18

26 26

50

Figure 1: Each cell records the cost of a sub-problem; classic DP solves all sub-problems; compact-A∗
finds the same solution, but avoids considering sub-problems in green.

Compact-A∗ starts out with the following components:

1. A data space X of n elements endowed with a concept of eligible sequence (xj), xj ∈ X ,
j ∈ {1, . . . , ℓ}, where ℓ is the length of (xj); a sequence is eligible if i− 1 ∈ N (i) for all
i ∈ {2, . . . , ℓ} and a given neighborhood function N (·).

2. The set X of all eligible sequences in X .
3. A gap function G(j, i) associating a value with the transition from item j to item i.
4. A selective dioid D = (D,⊕,⊗, ,), which is used to express the value function for a

sequence: f(x) =
⊗j=L−1

j=1 G(j, j + 1).
5. A problem that seeks an eligible sequence x∗ ∈ X of length L and optimal value f(x∗);

sequences are compared via the ⊕ operator.
6. A recursive function Opt(i, ℓ) that stores the optimal value for an eligible sequence of

length ℓ ending at item xi ∈ X .
7. A solution to the problem in Item 5 by DP over sequences of increasing length from X .

The solution in Item 7 finds an eligible sequence of L data items x∗ = {x∗1, x∗2, . . . , x∗L} that
optimizes Opt(·, L); the selective dioid properties, in particular distributivity, guarantee correctness.
The DP computation takes the form:

Opt(i, ℓ) =
⊕

j∈N (i)

{Opt(j, ℓ− 1)⊗G(j, i)} . (1)

The recursion of Equation (1) requires Θ(n2L) time and Θ(nL) space, iterating over items i and
lengths ℓ and storing, for each (i, ℓ) pair, a predecessor needed to backtrack the optimal sequence.
The entailed solution may be implemented by either DP or token passing (Young et al., 1989); both
calculate all solutions of length ℓ, Opt(·, ℓ), before those of length ℓ+1, Opt(·, ℓ+1), by breadth-first
search. While DP draws from solutions of length ℓ to build each solution of length ℓ + 1, token
passing broadcasts a token for each solution of length ℓ to its continuations of length ℓ+ 1. In both
cases, solutions solidify at length ℓ before moving to length ℓ+ 1.

Compact-A∗ abolishes this breadth-first orientation in favor of a best-first one; it organizes sub-
problem solutions (represented by tokens) in a priority queue Q in which it initially inserts all
tokens (·, 1). Thereafter, in each step, it selects the most promising token (j, ℓ) from Q and, for
each eligible successor (i, ℓ+ 1) not already extracted from Q, it computes Opt(j, ℓ) +G(j, i) and
updates the priority of (i, ℓ+ 1) in Q accordingly. compact-A∗ resembles Dijkstra’s shortest-path
algorithm (1959); however, whereas Dijkstra minimizes a cost objective regardless of length (i.e.,
number of steps), compact-A∗ optimizes the objective under a fixed-length constraint. In the worst case,
it examines all sequence continuations for each length, hence takes O(nL(n+ log nL)) time, where
the log nL term expresses the overhead of maintaining the priority queue, more compactly O(nL(n+
logL)). However, in practice, it gains performance as it quickly derives tokens corresponding to DP
table cells without considering all possible paths and does not produce some tokens at all. As we
will see in Section 4, this pruning capacity results in significant savings, particularly in real problem
instances. In problem-tailored compact-A∗ variants, we anticipate the cost a sequence may obtain as
it expands and prioritize tokens accordingly. We also derive bidirectional-search variants that produce
both prefixes and suffixes of sequences until they reach the target length.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

In the best case, compact-A∗ may produce only L tokens. Nevertheless, the priority queue Q may
reach size Θ(nL), holding one token for each state-length pair. Additionally, we need to memoize
the subproblem solution each token represents even after we pop it from Q, to enable backtracking
the solution sequence. To guarantee O(n) space complexity, we employ the following measures.

Controlling the priority queue size. First, to keep the size of Q in O(n), when the best-first-search
queue Q exceeds a predefined size threshold θ (or memory budget) upon inserting a token (sj , t), we
invoke a containment mechanism, which is either a tailored depth-first-search (DFS) mechanism, or a
mechanism that we propose, earliest-first search (EFS).

DFS. By the DFS mechanism, we pick the lowest-cost token (sj , t
∗) from the set of tokens for sj ,

Sj = {(sj , ·)}, and generate all its derivative tokens via a DFS traversal of the HMM graph G
starting at sj . Each DFS branch terminates upon reaching the last frame or upon injecting into the
token set of a state sj′ a token that either displaces or yields to a pre-existing one, without increasing
memory usage in either case. This DFS mechanism identifies and propagates middle pairs along
explored paths as usual and ensures space complexity O(n) by constraining the size of Q within θ.

EFS. Small θ values in the DFS mechanism may cause excessive DFS calls, reprocessing the same
tokens multiple times and slowing runtime, even compared to that of regular dynamic programming
which processes all nL tokens. To address this predicament, we propose an alternative search
mechanism that processes each token at most once, Earliest-First Search (EFS). EFS processes
tokens in increasing time frame order, starting form the earliest frame represented in the priority
queue, until the gap between the earliest and latest time frames in the queue falls below a user-
specified constant ∆Q. In effect, the queue size is bounded by ∆Qn and best-first search resumes.
While the EFS mechanism generates and must store additional tokens, at most 2n − 1 additional
tokens will co-exist in the queue, occupying the earliest time frame and its successor. In effect, EFS
ensures an overall queue size of O(n).

Reconstructing the optimal path. Second, instead of memoizing subproblem solutions for back-
tracking the final solution path, we construct that path by a divide-and-conquer strategy in O(n)
space and O(n2L logL) time, as in (Binder et al., 1997; Ciaperoni et al., 2022; 2024). Upon reaching
the middle frame of a solution path, we record, with each subsequent token, the edge at that middle
frame (or middle pair). After establishing the best solution at the last frame, we recursively rerun
the algorithm on the L/2-hop predecessors and successors of that token’s middle pair to construct the
entire sequence. We retrieve middle pairs in orderly fashion, as in an in-order tree traversal (Ciaperoni
et al., 2022) in O(n2L logL) time and O(n) space, given that the size of Q is also bounded by O(n).

3.1 THE MINT ALGORITHM

The Viterbi algorithm selects a sequence of T states Q = {s∗1, s∗2, . . . , s∗T } from a universe of K
HMM states S = {s1, s2, . . . , sK} that is most likely to have generated a sequence of T observa-
tions Y = {y1, y2, . . . , yT }. Q is called Viterbi path. By the Markov property, the likelihood to be in
a state depends only on the previous state. Therefore, the Viterbi algorithm uses the DP recursion:

T[si, 1] = πsi ·Bsi,y1
,

T[si, t] = max
sh∈Nin(si)

{T[sh, t− 1] ·Ash,si} ·Bsi,yt
(2)

where T[si, t] stores the probability of the most likely path ending at state si in t steps, or time frames,
Nin(si) is the set of in-neighbors of si, πi is the initial probability of si, Ash,si is the probability of
transiting from state sh to state si on a directed graph G capturing eligible transitions in the HMM,
and Bsi,yt

is the probability of observing yt at state si. This setting suits compact-A∗ as follows:

1. The data space X is the universe of K hidden states S = {s1, s2, . . . , sK} and an eligible
sequence (xj), xj ∈ X , j ∈ {1, . . . , ℓ} is a path of consecutive states in G.

2. The set X of all eligible sequences in X is the set of all possible paths in the given HMM.
3. The gap function G(j, i) is Asj ,siBsiyi , or, in log-probabilities, as logAsj ,si + logBsiyi .
4. The selective dioid is ([0, 1],max, ·, 0, 1), or, in the domain of log-probabilities,

([−∞, 0],max,+,−∞, 0). Thus, the value function f assigns probabilities to paths, given
the sequence of observations Y = {y1, y2, . . . , yT }; the probability that Y is generated by a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

sequence of hidden states Q = {s1, s2, . . . , sT } is P (Q,Y) = πs1 ·Bs1y1

∏T
i=2 Asi−1si ·

Bsiyi
, where π(s1), Asi−1si , and Bsiyi

are defined as above.
5. The problem seeks an eligible sequence of states Q of length T that best explains the given

sequence of observations Y , i.e., maximizes probability (⊕ = max).
6. The recursive function Opt(i, ℓ) that stores the optimal value for an eligible sequence of

length ℓ that ends at data item xi ∈ X is the function T[si, t = ℓ].
7. The solution by DP over sequences of increasing length from X is given by Equation (2).

The recursion of Equation (2) requires O(K2T) time and O(KT) space, as it iterates over states si
and time frames t. For the sake of efficiency and accuracy, we replace products of likelihoods by
sums of log-likelihoods. In case the structure of G is known, we iterate only over states sh that link to
state si, hence visit each HMM graph edge only once; then time complexity becomes O((K+ |E|)T).
The Viterbi algorithm and its token passing variant (Young et al., 1989) operate by breadth-first
search. MINT (Time Efficient Viterbi) replaces this strategy with best-first search. It organizes partial
solutions in a priority queue Q and expands the most promising one in each step, as in (Klein &
Manning, 2003). Like Viterbi, it derives T[si, t+ 1] entries from T[sh, t] entries. Still, while Viterbi
calculates all T[·, t] entries before T[·, t+ 1] entries, MINT first inserts all tokens (sh, 1) in Q and
then iteratively pops the most promising token (sh, t) from Q and, for each outgoing neighbor si ∈
Nout(sh) such that (si, t+ 1) has not been extracted from Q, it computes T[sh, t] ·Ash,si ·Bsi,yt+1

as a provisional T[si, t+ 1] value and updates the priority of (si, t+ 1) accordingly. Thanks to the
monotonicity of T[·, ·] along a path, T[si, t] satisfies Equation (2) when (si, t) is popped from Q. In
the worst case, MINT visits each HMM edge once per time frame, hence takes O((K logKT+|E|)T)
time, where logKT expresses the priority queue overhead (Fredman & Tarjan, 1987). In practicality,
it never considers some HMM edges. In the following, we illustrate four MINT variants.

Standard MINT. In more detail, to achieve the maxsi T[si, T] objective, we minimize the positive
path log-likelihood, − logP (Q,Y) ≥ 0, defined as cost of a path. For a given path Q ending at
state i at frame t, we define its priority as p(si, t) = − logP (Q,Y), with Q = {s1, s2, . . . , st},
such that st = si and Y = {y1, y2, . . . , yt}. Algorithm 1 in Appendix D gives the pseudocode
of the plain MINT variant. First we insert in Q a token for each state in the first frame with
priority −πsi − logBsi,y1 . If a start state s is given, we only enqueue a token for s at t = 0. The main
loop iterates until reaching the last frame. In each iteration, we dequeue from Q the top token (sh, t),
add it to a set V of visited tokens, compute the cost of reaching (si, t + 1) via (sh, t) for each
out-neighbor si of sh that has no such token in V, and insert or update (si, t+ 1) in Q to the lowest
known cost. When a pair (s, T) is dequeued, no path spanning T frames at lower cost exists, hence
we return its cost as the Viterbi path log-likelihood maxsi T[si, T]. All proofs are in Appendix A.
Proposition 1. Standard MINT is correct.

To return the optimal path, MINT by defaults appends a path to each token and, when updating the
priority of (sj , t + 1), also updates the corresponding path to sj . An alternative implementation,
MINT-Backtracking, stores only the predecessor of each token, retains all explored tokens, and at
the end constructs the optimal path by backtracking. Next, we present three extensions to MINT.

MINT Bound. We propose a variant of MINT that orders tokens by lower-bounding the path cost
from each token (si, t) until the final frame T using a lower bound ĉ1 on the cost for moving from
one frame to another for the remaining T − t frames. We call the ensuing algorithm MINT Bound.

We first insert all states (or the source state, if given) in Q with p (s, 1) = T ·ĉ1. As the search proceeds,
we replace lower bounds with exact costs. The priority of (si, t) is p (si, t) = − logP (Q,Y)+(T−t)·
ĉ1, Q being the current optimal path ending at si in t frames; we compute the priority of a neighbour sj
for insertion or update in Q as p (si, t)−ĉ1− logAsi,sj − logBsj ,yt+1

. Upon reaching the last frame,
all lower bounds capture exact costs. Setting ĉ1 as the lowest value of − logAsi,sj − logBsj ,yt+1

over all edges (si, sj) at any t, found by pre-processing, ensures correctness.
Proposition 2. MINT Bound is correct.

MINT Bound encases information from unexamined time frames in the BestFS criterion and further
explores already well-explored paths without compromising correctness.

Bidirectional MINT obtains more efficiency by bidirectional search (Pohl, 1969), explore solutions
both forward from the start and backward from the end time frame. We denote the graph in which

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

all edges are reversed in direction as Grev. In each direction, the search proceeds as in Standard
MINT, yet with two priority queues, Qf for forward search and Qb for backward search. If an initial
state is given and a final state is not given, we find, in pre-processing, all states S(T) reachable
from the initial state in T frames, and initiate Qb with those. Algorithm 2 in Appendix D shows
the pseudocode, which assumes that both an initial and final state are given. In each iteration, we
expand both1 searches, handling queues as in Standard MINT. Upon extracting (sfi , t

f) from Qf

and (sbi , t
b) from Qb, we update the associated visited-token sets, Vf and Vb, and store associated

costs in arrays df and db. We then consider tokens (sfj , t
f + 1) for all neighbors sfj of sfi in G and

tokens (sbj , t
b − 1) for all neighbors sbj of sbi in the graph Grev. In Lines 10 and 15 we omit the

details, which are found in Algorithm 1, Lines 30–39. When the two sides meet generating a path
of length T , we update the hitherto best path cost µ, if the newly found path improves on it. Such a
path is provably optimal, hence the algorithm terminates, when the sum of costs of tokens dequeued
from Qf and Qf exceeds µ. To avoid double-counting emission probabilities, we add the emission
probability of the last vertex visited while building a path only in the priority of Qf , thus the cost of
any path through (w, t) is df [(w, t)] + db[(w, t)].
Proposition 3. Bidirectional MINT is correct.

Bidirectional MINT Bound combines Bidirectional MINT and MINT Bound in one algorithm that
searches in both directions and lower-bounds the total T -frames-long path costs used as priority
values in both queues. The search in both directions follows the order determined by the cost of
arriving to a state in a given number of steps (frames) plus a lower bound on the cost of arriving from
there to the the end of the path. The single-frame lower bound for the forward search is as in MINT
Bound. For backward search, it is the lowest cost of moving from a frame to the next one in the
reverse HMM graph Grev, i.e., the lowest value of − logAsj ,si − logBsj ,yt

over all edges (sj , si)
in Grev. We obtain both bounds by pre-processing with a single graph traversal. The correctness of
Bidirectional MINT Bound follows from the correctness of MINT Bound and Bidirectional MINT.

Linear-space MINT (MINT-LS) Here, we propose a compact-A∗ space-efficient variant, MINT-LS,
which guarantees O(K) space by keeping the size of Q in O(K) by a containment strategy and
reconstructs the solution by a divide-and-conquer strategy. Algorithm 5 in Appendix D presents
MINT-LS, which invokes the DFS subroutine of Algorithm 4, while storing, with each token (si, t), its
predecessor state and the running middle pair for its path. These details help identify the subproblems
to be solved recursively. Upon reaching the final frame (and the final state, if specified), it extracts
the middle pair associated with the solution path and reruns recursively among Np-hop predecessors
of the middle pair in as many preceding frames and among Ns-hop successors in as many following
frames, identified through breadth-first search (Lines 21 and 27). MINT-LS avoids storing tokens
when the queue size reaches a threshold θ. Instead, it invokes the DFS subroutine, which only stores
tokens either as replacements of others or at the last frame. Algorithm 6 in Appendix D presents
MINT-LS+, which applies our EFS strategy using an auxiliary queue Qt to prioritize tokens by time
frame; it keeps track of the earliest and latest time frame in Qt and toggles between BestFS and EFS
as required (Lines 41–47). As results in Section 4.1 and Appendix C show, these strategies ensure
low space consumption. When θ is large enough, the DFS strategy is preferable; otherwise, EFS is
preferred. MINT-LS naturally combines with bidirectional search.

3.2 THE TECH ALGORITHM

We apply compact-A∗ to V-Optimal histogram construction (Jagadish et al., 1998), outlined in
Section 2. A V-Optimal histogram uses the mean value x̂ = 1

i−j+1

∑i
k=j xk as a representative to

minimize the Euclidean error in a bucket Ib extending from the jth to the ith value in the sequence,
E(j, i) =

∑i
k=j(xk − x̂)2. The total error is aggregated over all buckets. V-Optimal algorithms use

incremental sums and sums of squares, S and SS, respectively, to obtain any E(i, j) as:

E(j, i) = (SS[i]− SS[j − 1])− (S[i]− S[j − 1])2

(i− j + 1)
. (3)

The algorithm finds, for each combination (i, b) of a value index and number of buckets, the cost of
the optimal b-bucket histogram covering the first i values in the sequence, as:

1A more refined strategy would choose which side to expand, representing an opportunity for future work.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

E∗(i, b) = min
1≤j<i

E∗(j, b− 1) + E(j + 1, i), (4)

E∗(i, b)=0 for i ≤ b and E∗(i, 1)=E(1, i). After finding the optimal cost E∗(n,B) for a length-n
sequence and B buckets, we backtrack the histogram. The problem maps to compact-A∗ as follows:

1. The data space X is the data series I = {x1, . . . xn} and an eligible sequence (xj), xj ∈ X ,
j ∈ {1, . . . , ℓ} comprises ordered segment boundaries (xi1 , xi2 , . . . , xik).

2. The set X of eligible sequences in X includes all ordered sequences ending at xn.
3. The gap function G(j, i) is the bucket error E(j, i).
4. The selective dioid is (R ∪ {+∞},min,+,+∞, 0). Thus, the value function f : X → R

assigns an approximation error
∑B

b=1 Eb to a histogram.
5. The problem seeks an error-minimizing eligible histogram of B boundaries (⊕ = min).
6. The recursive function Opt(i, ℓ) that stores the optimal value for an eligible sequence of

length ℓ ending at item xi ∈ X is the function E∗(i, b = ℓ).
7. The solution by DP over sequences of increasing length from X is given by Equation (4).

V-OPT histogram construction by DP (Jagadish et al., 1998) requires O(n2B) time and O(nB) space.
We discuss compact-A∗ variants, TECH (Time-Efficient Histogram), aligned to the variants of MINT.

Standard TECH. Algorithm 3 presents Standard TECH, which, like MINT, employs a priority
queue Q to prune computations, where the priority of entry (i, b) is the cost of the b-bucket histogram
for the first i values, p(i, b) = E∗(i, b). After computing the S and SS arrays, used to compute the
error measure by Equation (3), in each iteration, TECH dequeues the pair (i, b) of lowest error, adds it
to a set V of visited tokens, and, provided b < B, computes via (i, b) the error for each pair (j, b+1)
with j > i that is not in V and inserts or updates (j, b + 1) in Q accordingly; thereby, it explores
possible next buckets. We do not iterate over (j, b+1) pairs for all j > i, but stop at j = n−B+b+1
since there must be at least B − b − 1 values after j to make B buckets in total. The algorithm
terminates after it dequeues (n,B). Correctness follows as in Proposition 1: after (n,B) is dequeued,
there can be no lower-cost histogram of the same series and B. For further pruning, we use an upper
bound UB[i, b] on the cost of a (B − b)-bucket histogram for the series {i + 1, . . . n}, derived in
Proposition 4 below. If, after visiting (i, b), we find j∗ > i such that E(i, j∗) ≥ UB[i, b], we eschew
computing E(i, j) for j ≥ j∗, as we have already exceeded the upper bound on the error therefrom.

TECH Bound. This variant uses bounds on the cost of a B-bucket histogram instead of the cost of a
partial histogram with b ≤ B buckets. Given (i, b), we partition the series {i + 1, . . . n} in B − b
equal-width buckets. The minimum error among such buckets is a lower bound to the V-optimal
histogram cost, while the sum of those errors is an upper bound, which we may use for pruning.
Proposition 4. The minimum error minb Eb among b buckets of an equal-width partitioning a
sequence I is a lower bound to the V-optimal histogram cost and

∑
b Eb is an upper bound.

TECH Bound adds the lower bound LB[i, b] to the priority of each pair (i, b). Upon arrival at the
end of the series, it outputs the same cost as Standard TECH. We find these bounds by building
equal-width histograms in a pre-processing step. Correctness follows as in the case of MINT Bound.

Other TECH variants work by analogy to MINT variants. Bidirectional TECH applies forward and
backward search. When we pop a pair (i, b) from Qf , we consider entries (j, b+ 1) with j > i, and,
if the backward search has already visited (j, B − b − 1), we check whether the cost df [(i, b)] +
E(i, j) + db[(j, B − b− 1)] improves upon the current best cost µ, and likewise in backward search.
The search terminates when the sum of the costs of pairs from both queues exceeds the current best
cost µ. Bidirectional TECH Bound combines Bidirectional TECH with TECH Bound, with reversed
lower bounds to consider sequences of the form {1, . . . i} rather than {i + 1, . . . n}. TECH-LS
variants limit space needs; in place of a middle pair of states, they detect a middle bucket that splits
the data series in halves. Guha (2005) applied such a space-saving solution on DP.

4 EXPERIMENTS

We experimented2 on a 2×12 core Xeon E5 2680 v3 2.50 GHz machine with 128 GB RAM. For
Viterbi decoding, we use as baselines the edge-aware Viterbi algorithm (§3.1), a recomputation-based

2Implementation and data available at https://anonymous.4open.science/r/BestFirst.

7

https://anonymous.4open.science/r/BestFirst

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

space-efficient variant (Ciaperoni et al., 2022), checkpoint Viterbi (Tarnas & Hughey, 1998), which
segments the sequence into

√
T parts, and SIEVE variants (Ciaperoni et al., 2022), including SIEVE-

Middlepath, Standard SIEVE (partitioning the state space recursively), and SIEVE-Hyperloglog
(using approximate predecessor/successor counts (Flajolet et al., 2007). For histogram construction,
the baseline is the DP algorithm of Jagadish et al. (1998) (§ 3.2). Appendix B details data, measures,
and parameter choices. Appendix C presents further experiments.

4.1 RESULTS ON VITERBI DECODING

Real data, runtime vs. T and K. Figure 2 plots results on forced-alignment and standard decoding
with real data. Here, MINT achieves savings of up to three orders of magnitude over Viterbi by
focusing on promising paths. Enlarging the state space via larger snowball samples of the HMM
does not affect MINT, but heavily impacts Viterbi. MINT-LS variants also gain up to three orders of
magnitude lower runtime than Viterbi even while controlling memory.

Viterbi Standard MINT MINT Bound Bidirectional MINT
Bidirectional MINT Bound Standard MINT-LS Bidirectional MINT-LS

5 10 22 47 100
Path Length

10
4

10
3

10
2

10
1

10
0

R
un

ni
ng

 T
im

e
(s

)

1000 2190 4796
State Space Size

10
3

10
2

10
1

10
0

R
un

ni
ng

 T
im

e
(s

)

5 10 22 47 100
Path Length

10
3

10
1

10
1

R
un

ni
ng

 T
im

e
(s

)
1900 6859 24760
State Space Size

10
310
210
110
0

R
un

ni
ng

 T
im

e
(s

)

Figure 2: Decoding, real data; forced alignment (L), standard decoding (R); runtime vs. T and K.

Real data, runtime and memory vs. T . Figure 3 plots runtime and the min, max, and median
memory usage across recursion levels, including SIEVE variants. While DP baselines require static
memory, MINT-LS’s needs are dynamic, hence we consider its peak memory per level. The median
memory needs of MINT-LS using DFS grow modestly with T ; the maximum rises with T , yet
remains under that of SIEVE-Middlepath, the most memory-thrifty SIEVE variant. We show results
vs. T , as subsampling the state space on real data barely affects MINT-LS, as Figure 2 established.

Naive Space Efficient Viterbi Vanilla Viterbi Checkpoint Viterbi SIEVE
SIEVE-HyperLogLog SIEVE-Middlepath Standard MINT-LS Bidirectional MINT-LS MINT-LS+

10
1

10
2

Path Length

10
2

10
0

10
2

10
4

R
un

ni
ng

 T
im

e
(s

)

10
1

10
2

Path Length

10
2

10
4

10
6

10
8

M
em

or
y

(B
)

Figure 3: Decoding, real forced alignment data; runtime (L) and memory consumption (R) vs T .
Shaded regions indicate the range of memory consumed over recursive calls; axes on log scale.

Viterbi Standard MINT-LS Standard MINT-LS+

350 400 450 500 550
Queue Size Threshold

10
1

10
0

10
1

10
2

R
un

ni
ng

 T
im

e
(s

)

5 35 65 95 125
Queue Size Threshold

10
2

10
1

R
un

ni
ng

 T
im

e
(s

)

5 35 65 95 125
Queue Size Threshold

10
2

10
1

R
un

ni
ng

 T
im

e
(s

)

475 525 575 625 675
Queue Size Threshold

10
2

10
1

10
0

10
1

10
2

R
un

ni
ng

 T
im

e
(s

)

Erdős–Rényi Skewed WSJ RM

Figure 4: Decoding: synthetic data (Erdős–Rényi) with uniform and skewed path likelihood distri-
bution (Skewed), and real data on forced alignment (WSJ) and standard decoding (RM). Runtime
vs. queue size threshold θ; y-axis in log scale.

Effect of θ on linear-space algorithms. Figure 4 presents runtimes vs. the queue size threshold θ,
focusing on ranges of the θ domain where MINT-LS may process tokens more than once, as explained
in Section 3.1. MINT-LS+, on the other hand, never processes the same token more than once.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

SIEVE (Ciaperoni et al., 2022), a DP-based rather than A∗-based algorithm, ensures O(K) space
complexity too, as it always stores K active tokens. However, SIEVE incurs a practical runtime
overhead (not time-complexity overhead) compared to Viterbi; we thus compare runtime to the
latter as a baseline. MINT-LS consistently performs the fastest on synthetic data with skewed path
likelihood distribution, where only a few paths are explored, yet becomes inefficient for small θ
with uniform path likelihood distribution, where more paths are explored. On real data with forced
alignment, the runtime of MINT-LS grows modestly as θ falls; with larger decoding data, runtime
grows beyond that of Viterbi. Overall, MINT-LS is preferable for large enough θ, while MINT-LS+
maintains runtime within the same order of magnitude as, and typically lower than, that of Viterbi.

Viterbi Standard MINT-LS Standard MINT-LS+

7 16 25 34 43
Path Length

10
0

10
1

10
2

R
un

ni
ng

 T
im

e
(s

)

7 16 25 34 43
Path Length

10
2

10
1

10
0

10
1

10
2

R
un

ni
ng

 T
im

e
(s

)

7 16 25 34 43
Path Length

10
3

10
2

10
1

R
un

ni
ng

 T
im

e
(s

)

7 16 25 34 43
Path Length

10
3

10
1

10
1

10
3

R
un

ni
ng

 T
im

e
(s

)

Erdős–Rényi Skewed WSJ RM

Figure 5: Decoding: synthetic data (Erdős–Rényi) with uniform and skewed path likelihood distri-
bution (Skewed), and real data on forced alignment (WSJ) and standard decoding (RM). Runtime
vs. path length T ; y-axis in log scale.

Effect of T on linear-space algorithms. Figure 5 plots the runtimes vs. path length T for fixed
values of the queue size threshold θ sufficiently small to reveal the challenges MINT-LS faces. The
results reconfirm that MINT-LS becomes inefficient as more paths are explored. As in Figure 4,
this effect is evident in synthetic data with Erdős–Rényi transitions and uniform path likelihood
distribution and in the real decoding data. MINT-LS+ emerges as the algorithm of choice, achieving
competitive runtime even while maintaining memory usage under a small θ threshold.

4.2 RESULTS ON HISTOGRAM CONSTRUCTION

Figure 6 shows the histogram construction runtime on synthetic data vs. B for input sequence
length n = 1010, and that of Standard TECH and the standard V-OPT algorithm vs. n for different
values of λ = B

n . Standard TECH often suffices, as its variants do not bring significant gains.
Linear-space TECH incurs a manageable runtime overhead for the sake of space efficiency. All
compact-A∗ variants gain in time efficiency as B grows, delimiting the search space for each bucket.
Contrariwise, standard DP cannot contain the search space, hence its runtime surges for large B.
Figure 6 also shows results on real data. The gains of TECH solutions are more emphatic here, as
TECH exploits data patterns that facilitate summarization, whereas standard DP lacks such capacity.

DP Standard TECH TECH Bound
Bidirectional TECH Bidirectional TECH Bound Standard TECH-LSBidirectional TECH Bidirectional TECH Bound Standard TECH-LS

200 600 1000
Number of Buckets

0
100
200
300
400

R
un

ni
ng

 T
im

e
(s

)

200 600 1000
Sequence Length

0

100

200

R
un

ni
ng

 T
im

e
(s

) 1
5
2
5

3
5
4
5

200 600 1000
Number of Buckets

0

100

200

R
un

ni
ng

 T
im

e
(s

)

200 600 1000
Sequence Length

0

100

200

R
un

ni
ng

 T
im

e
(s

) 1
5
2
5

3
5
4
5

Figure 6: Histogram construction, synthetic (L) and real (R) data; runtime vs. B, n varying λ = B
n .

5 CONCLUSION

We introduced compact-A∗, a framework that efficiently solves problems of fixed-length path opti-
mization by best-first search, while delimiting space complexity. We designed compact-A∗-based
algorithms for Viterbi decoding and histogram construction. In Appendix E, we apply compact-A∗ to
another problem, temporal-graph community search. Our experiments evince that compact-A∗ gains
up to four orders of magnitude in time and space efficiency, the advantage being more pronounced on
real data with nonuniform path cost distributions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Arturs Backurs and Christos Tzamos. Improving Viterbi is hard: Better runtimes imply faster clique
algorithms. In ICML, pp. 311–321, 2017.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

John Binder, Kevin P. Murphy, and Stuart Russell. Space-efficient inference in dynamic probabilistic
networks. In IJCAI, pp. 1292–1296, 1997.

Hugo Braun, Justin Luitjens, Ryan Leary, Tim Kaldewey, and Daniel Povey. Gpu-accelerated viterbi
exact lattice decoder for batched online and offline speech recognition. In ICASSP, pp. 7874–7878,
2020.

Martino Ciaperoni, Aristides Gionis, Athanasios Katsamanis, and Panagiotis Karras. SIEVE: A
space-efficient algorithm for Viterbi decoding. In ACM SIGMOD, pp. 1136–1145, 2022.

Martino Ciaperoni, Athanasios Katsamanis, Aristides Gionis, and Panagiotis Karras. Beam-search
SIEVE for low-memory speech recognition. In Interspeech 2024, pp. 272–276, 2024.

Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269–271, 1959.

Pedro F. Felzenszwalb, Daniel P. Huttenlocher, and Jon M. Kleinberg. Fast algorithms for large-state-
space HMMs with applications to web usage analysis. In NeurIPS, pp. 409–416, 2003.

Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. HyperLogLog: the analysis of
a near-optimal cardinality estimation algorithm. In Conference on Analysis of Algorithms (AofA),
pp. 137–156, 2007.

Daniel Foead, Alifio Ghifari, Marchel Budi Kusuma, Novita Hanafiah, and Eric Gunawan. A
systematic literature review of A* pathfinding. Procedia Computer Science, 179:507–514, 2021.

Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34(3):596–615, 1987.

Mark J. F. Gales and Steve J. Young. The application of hidden markov models in speech recognition.
Foundations and Trends in Signal Processing, 1(3):195–304, 2007.

Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro Cattuto, and Francesco
Gullo. Span-core decomposition for temporal networks: Algorithms and applications. ACM Trans.
Knowl. Discov. Data, 15(1):2:1–2:44, 2021.

John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, and
Nancy L. Dahlgren. DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST
speech disc 1-1.1. National Institute of Standards and Technology, 1993.

Michel Gondran and Michel Minoux. Graphs, Dioids and Semirings: New Models and Algorithms
(Operations Research/Computer Science Interfaces Series). Springer, 2008. ISBN 0387754490,
9780387754499.

Sudipto Guha. Space efficiency in synopsis construction algorithms. In VLDB, pp. 409–420, 2005.

Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and streaming algorithms for
histogram construction problems. ACM Trans. Database Syst., 31(1):396–438, 2006.

Felix Halim, Panagiotis Karras, and Roland HC Yap. Fast and effective histogram construction. In
CIKM, pp. 1167–1176, 2009.

Liang Huang. Advanced dynamic programming in semiring and hypergraph frameworks. In Coling
2008: Advanced Dynamic Programming in Computational Linguistics: Theory, Algorithms and
Applications - Tutorial notes, pp. 1–18, 2008.

Zhiheng Huang, Yi Chang, Bo Long, Jean-François Crespo, Anlei Dong, S. Sathiya Keerthi, and
Su-Lin Wu. Iterative Viterbi A* algorithm for k-best sequential decoding. In ACL, pp. 611–619,
2012.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Hosagrahar Visvesvaraya Jagadish, Nick Koudas, Shanmugavelayutham Muthukrishnan, Viswanath
Poosala, Kenneth Clem Sevcik, and Torsten Suel. Optimal histograms with quality guarantees. In
VLDB, pp. 275–286, 1998.

Jihyuk Jo, Han-Gyu Kim, In-Cheol Park, Bang Chul Jung, and Hoyoung Yoo. Modified viterbi
scoring for hmm-based speech recognition. Intelligent Automation & Soft Computing, 25(2):
351–358, 2019.

Panagiotis Karras and Nikos Mamoulis. Hierarchical synopses with optimal error guarantees. ACM
Transacation on Database Systems, 33(3):18:1–18:53, 2008.

Dan Klein and Christopher D. Manning. A* parsing: Fast exact Viterbi parse selection. In HLT-
NAACL, pp. 119–126, 2003.

Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in a high school: a comparison
between data collected using wearable sensors, contact diaries and friendship surveys. PloS one,
10(9):e0136497, 2015.

Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance problems. J. Autom. Lang.
Comb., 7(3):321–350, 2002. ISSN 1430-189X.

Douglas B. Paul and Janet M. Baker. The design for the wall street journal-based CSR corpus. In
The 2nd International Conference on Spoken Language Processing (ICSLP), 1992.

Judea Pearl. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley
Longman Publishing Co., Inc., 1984.

Ira Pohl. Bi-directional and heuristic search in path problems. Technical report, Stanford Linear
Accelerator Center, Calif., 1969.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel,
Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg Stemmer,
and Karel Vesely. The kaldi speech recognition toolkit. In IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), 2011.

P Price, W Fisher, J Bernstein, and D Pallett. Resource management rm2 2.0. DVD. Philadelphia:
Linguistic Data Consortium, 1993.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3 edition,
2010.

Sajid M. Siddiqi and Andrew W. Moore. Fast inference and learning in large-state-space HMMs.
In Proceedings of the 22nd International Conference on Machine learning (ICML), pp. 800–807,
2005.

Moshe Sniedovich. Dijkstra’s algorithm revisited: the dynamic programming connexion. Control
and cybernetics, 35(3):599–620, 2006.

Christopher Tarnas and Richard Hughey. Reduced space hidden Markov model training. Bioinfor-
matics, 14(5):401–406, 1998.

Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang.
Optimal algorithms for ranked enumeration of answers to full conjunctive queries. Proc. VLDB
Endow., 13(9):1582–1597, 2020.

Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 1967.

Andrew J. Viterbi. A personal history of the viterbi algorithm. IEEE Signal Processing Magazine, 23
(4):120–142, 2006.

Steve J. Young, N.H. Russell, and J.H.S. Thornton. Token passing: a simple conceptual model for
connected speech recognition systems. University of Cambridge, Department of Engineering,
1989.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Steve J. Young, Gunnar Evermann, Mark J. F. Gales, Thomas Hain, Dan Kershaw, Xunying Liu,
Gareth Moore, Julian Odell, Dave Ollason, Dan Povey, et al. The HTK Book. University of
Cambridge, Department of Engineering, 2002.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A PROOFS

Proposition 1. Standard MINT is correct.

Proof. Let T be the set of all tokens (i.e., state-frame pairs) and V the set of visited tokens, for which
optimal cost has been computed. Initially V includes the source s with optimal cost ps = − logBs,y1 ,
and −ps is its log-likelihood. In each iteration, we add to V a token (si, t) from T \V with cost pi.
To complete the induction, we must show that pi is optimal for its length t. First, if the true t-
length-optimal path goes only through tokens in V, for which, by the inductive hypothesis, the
optimal cost is known, then pi must be t-length-optimal. Assume that the t-length-optimal path goes
through a token (sj , t

′) not in V; this token necessarily has cost pj ≥ pi, hence any path through it is
suboptimal. Therefore, −pi is the maximum Viterbi path log-likelihood maxsi T[si, t].

Proposition 2. MINT Bound is correct.

Proof. We prove the statement by contradiction. Assume the algorithm returns a token (s∗, T) with
cost c∗ > maxsi T[si, T]. Then there must be an unvisited token (s′, t′), which, if propagated to
the last frame, produces a path of likelihood maxsi T[si, T]. Such a token would have priority c′ +
(T − t′) · ĉ1 where c′ is the real cost of arriving to s′ in t′ frames. Since ĉ1 lower-bounds the cost
of moving from frame to frame, it follows that c′ + (T − t′) · ĉ1 ≤ maxsi T[si, T] < c∗ at any
time t′ ≤ T . Therefore (s∗, T) cannot be dequeued before (s′, t′), ergo the proof is completed.

Proposition 3. Bidirectional MINT is correct.

Proof. The algorithm alternates between a forward and backward step and maintains the best-so-far
path of T steps. Correctness rests on the stopping condition. The algorithm terminates when either (i)
both queues are empty or (ii) the elements (sfi , t

f) and (sbi , t
b) popped from the queues have joint

cost df [(s
f
i , t

f)] + db[(s
b
i , t

b)] that is larger than the current best path cost µ. Regarding condition
(i), when both queues are empty, all possible paths have been generated, so the algorithm returns the
optimal. Regarding condition (ii), assume that the optimal path is not yet found when the algorithm
terminates returning −µ. Then there must be a path Q∗ of cost µ∗ < µ containing at least one not
yet visited token in Vf ∪Vb. Such a token would have cost at least df [(s

f
i , t

f)] on the forward side
and db[(s

b
i , t

b)] on the backward side, hence path Q∗ would have cost µ∗ ≥ µ, a contradiction.

Proposition 4. The minimum error minb Eb among b buckets of an equal-width partitioning a
sequence I is a lower bound to the V-optimal histogram cost and

∑
b Eb is an upper bound.

Proof. Let HB be the V-optimal histogram of size B on sequence I and H ′B be the histogram of
the same number of buckets on the same sequence, where all buckets have the same size, except
possibly the last. Let [sj , ej] be the boundary positions and Ej the error of the jth bucket in HB , and
let [s′j , e

′
j] and E′j be the corresponding boundary positions and error of the jth bucket in H ′B . Then at

least one bucket of HB , say the jth, has aj ≤ a′j and bj ≥ b′j , i.e., it fully contains the corresponding
bucket in H ′B . Then, as E is monotonically non-decreasing with bucket width, Ej ≥ E′j ; besides,
Ej ≤

∑
h∈HB

Eh, ergo minh E
′
h ≤ E′j ≤ Ej ≤

∑
h∈HB

Eh, hence minh E
′
h is a lower bound to

the V-optimal histogram cost. Furthermore,
∑

h E
′
h is an upper bound on the V-OPT histogram cost,

since, by definition of the V-OPT histogram HB ,
∑

h Eh ≤
∑

h E
′
h.

B DATA, MEASURES, AND PARAMETERS

Data. We experiment on both synthetic and real-world datasets.

We evaluate MINT and TECH variants on synthetic data generated according to the following models:

• Erdős–Rényi model where each hidden state is emitting and connected with any other state with
probability p = 0.01; transition and emission probabilities are generated uniformly at random, thus
arbitrary cycles may be present. All states are emitting.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

• Skewed path likelihood model, where we generate a fixed number Npath (100, by default) of paths
of length T starting from initial state s, and composed of emitting states. To each such path we
assign a probability drawn from a power law distribution p(x, α) = αxα−1, which we distribute
evenly across transition and emission probabilities of all states in the path. As in the previous
case, all states are emitting. We use this model to investigate how skew in the distribution of path
likelihoods affects the advantage granted by compact-A∗-based solutions.

We also assess MINT on real speech data:

• Wall Street Journal (WSJ) corpus data: we use a real-world composite HMM for speech-text
forced alignment, the process of aligning text to audio recordings, which is also tackled by the
Viterbi algorithm. The model is built using the HTK software toolkit Young et al. (2002) and
contains 5529 states (including initial states), out of which 3204 are emitting; it was trained
on the WSJ corpus Paul & Baker (1992) aiming to align speech recordings from the TIMIT
corpus Garofolo et al. (1993).

• Resource Management (RM) corpus data: we use a real-world composite HMM for decoding,
trained on the RM speech corpus Price et al. (1993) and built using the Kaldi software toolkit Povey
et al. (2011), The graph comprises 25 333 states (including initial state) and 175 428 edges, out of
which 162 255 also carry emission probabilities. We decode subsets of a simple recorded utterance
of up to 100 frames.

The observation sequence Y consists of feature vectors of Mel-Cepstrum cepstral coefficients and
their derivatives and emission probabilities are given by multivariate Gaussian mixture models.

Similarly, we evaluate TECH in (i) synthetic sequences of integers in the range [0, 50] and
(ii) Dow-Jones Industrial Average (DJIA) closing values real data.

Metrics. We measure runtime in seconds (s) and memory in bytes (B). In all cases, we report averages
over 5 runs.

Parameters. Regarding decoding in HMMs, in experiments with synthetic data, we vary T in
geometric progression of 9 values from 5 to 30 with K = 7500; in experiments with real data,
we vary T in geometric progression of 9 values from 5 to 100 with K fixed to the size of the
original state space. Furthermore, in synthetic data we vary K in a geometric progression of 5 values
from 1000 to 16000 with T = 10; in real data, we vary K over 5 values in geometric progression
from 1000 (forced alignment) or 1900 (decoding) to approximately the size of the original state space,
with T = 30. To vary K in real-world HMMs, we sample subsets of the original HMM graph via
snowball sampling from a start state source. To investigate the combined impact of K and T , we also
vary them simultaneously. We also vary K ∈ {25×103, 30×103} and T ∈ {25, 30} to monitor how
MINT variants behave during runtime in terms of memory usage and the evolution of path likelihood.
In the experiment with the skewed path likelihood model, we also vary the power law parameter α
controlling skewness in 17 values from 10−2 to 102 with Npath = 100, T = 10 and K = 1500. In
the space-efficient standard and bidirectional MINT-LS, unless specified otherwise, we set the queue
size threshold θ to 10% of K × T . However, with Erdős–Rényi data, which call for a larger budget
as they reflect a worst-case scenario, we set θ to 90% of K × T . In MINT-LS+, unless specified
otherwise, we set θ = K.

To assess the runtime of MINT-LS to MINT-LS+ as a function of the queue size threshold θ, we
use synthetic data with K = 7500 and T = 10 and real data with K defined by the state space
and T = 30, varying θ in arithmetic progression with step 15 from 5 to 125 on synthetic data with
skewed path likelihood distribution and real forced alignment data, where the amounts of paths to be
explored is limited, from 350 to 550 on Erdős–Rényi data, and from 475 to 675 on real decoding data.
We set the ∆Q in MINT-LS+ to 2. To assess the runtime of MINT-LS to MINT-LS+ as a function
of path length T , we use synthetic data with K = 16000 and real data with K defined by the state
space, varying T in arithmetic progression with step 3 from 7 to 49. We set θ = 2700 on synthetic
Erdős–Rényi data, θ = 10 on synthetic data with skewed path likelihood distribution, θ = 20 on real
forced alignment data, and θ = 800 on real decoding data, and ∆Q in MINT-LS+ to 5.

In histogram construction experiments, we vary B from 100 to 1000, while holding n fixed to 1010.
We also consider sequences of length n increasing from 100 to 1000 for the different values of λ = B

n
indicated in the results. With TECH-LS, we set the queue size threshold to 10% of n×B.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Viterbi Standard MINT MINT Bound Bidirectional MINT
Bidirectional MINT Bound Standard MINT-LS Bidirectional MINT-LS

5 8 12 19 30
Path Length

10
2

10
0

R
un

ni
ng

 T
im

e
(s

)
1000 4000 16000

State Space Size

10
2

10
1

10
0

10
1

Figure 7: Decoding, synthetic data. Runtime vs. path length (left) and state space size (right).

Viterbi Standard MINT MINT Bound Bidirectional MINT
Bidirectional MINT Bound Standard MINT-LS Bidirectional MINT-LS

10
2

10
1

10
0

10
1

10
2

Power Law

10
3

10
2

10
1

R
un

ni
ng

 T
im

e
(s

)

(10, 10x10
3)

(15, 20x10
3)

(20, 40x10
3)

(25, 80x10
3)

(30, 160x10
3)

Path Length & State Space Size

10
0

10
2

10
4

(10, 10x10
3)

(15, 20x10
3)

(20, 40x10
3)

(25, 80x10
3)

(30, 160x10
3)

Path Length & State Space Size

10
4

10
2

10
0

Figure 8: Decoding; synthetic data with skewed path likelihoods; runtime vs. skew α (left);
synthetic Erdős–Rényi data (center) and synthetic data with skewed path likelihoods (right): runtime
vs. both linearly growing path length T and exponentially growing state space size K, indicated
as (T,K); shaded regions indicate the minimum and maximum runtime due to randomness in data
generation; both axes on log scale (left) and y-axis in log scale (center and right).

C ADDITIONAL EXPERIMENTS

Synthetic data, runtime vs. T and K. Figure 7 plots runtime vs. path length T and state space
size K on Erdős–Rényi data. MINT accelerates decoding significantly, thanks to visiting only a few
tokens. MINT-LS incurs marginal runtime overhead compared to MINT. Still, processing a single
token is faster in Viterbi, as MINT’s queue management incurs overhead, causing savings to drop
as T grows. This result stems from the data model, which reflects a worst-case scenario whereby
path likelihoods converge for large enough T , leading MINT to visit too many tokens. Conversely, in
real-world speech data with probabilities concentrated over a limited subset of paths, MINT yields
higher savings by focusing on the most promising paths.

Runtime vs. α. To demonstrate the effect of path likelihood skew using synthetic data, Figure 8
plots runtime as a function of the parameter α of the power law distribution over the path likelihoods.
Notably, the highest savings are obtained for α close to 1. This is due to the fact that, for remarkably
smaller or larger α, all paths tend to be equally likely, so MINT cannot focus on a small subset of
paths. Nevertheless, even in the case where the path likelihood distribution approaches the worst
case, as in the Erdős–Rényi model, we still have high savings for small T , which is a popular
setting in modern speech recognition. Regarding different implementations of MINT, we observe
that the use of lower bounds is not always crucial for runtime; however, as α increases, MINT
Bound vastly outperforms Standard MINT by virtue of its capacity to prune paths from consideration
more aggressively. Furthermore, bidirectional-search variants accomplish the highest efficiency
on synthetic data, both those generated by the Erdős–Rényi model and those with skewed path
likelihoods; these results vindicate our development of those enhanced solutions.

Runtime vs. T and K tuned in unison. We also measure runtime as a function of both T and K on
Erdős–Rényi model data and on those with skewed path likelihood distribution with α = 1. Figure 8
shows the results. Shaded regions indicate the minimum and the maximum over runs, which convey
the extent of random variation; as the figure shows, that extent is quite limited. The savings observed
as we increase both T and K are consistent with our previous findings and most pronounced in the
skewed likelihoods scenario. In the Erdős–Rényi model, as most paths of a given length have similar
likelihoods, the savings are more modest and decrease with the growth of both T and K.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Real-time memory monitoring. Figure 9 shows memory requirements at run time for four parameter
configurations on synthetic data with skewed path likelihood distribution using α = 1; for reference,
we also provide the constant memory used by standard Viterbi. Notably, MINT variants reduce the
memory requirements of Viterbi by several orders of magnitude. Unsurprisingly, the two bidirectional-
search variants consume slightly more memory, yet need fewer iterations till termination, as they
apply both a forward and a backward search with two queues. With MINT-LS, we show memory
consumption vs. iterations or DFS calls. While by the chosen budget, MINT-LS variants use as little
as 25% of the memory used by MINT variants; this advantage may grow on demand by reducing the
queue size threshold θ.

Viterbi Standard MINT MINT Bound Bidirectional MINT
Bidirectional MINT Bound Standard MINT-LS Bidirectional MINT-LS

Iteration
10

7

10
0

10
1

10
2

10
310

310
4

M
em

or
y

(B
) Iteration

10
7

10
0

10
1

10
2

10
310

310
4

(K = 25000, T = 25) (K = 30000, T = 30)

Figure 9: Synthetic data with skewed path likelihood distribution; memory requirements on the fly.

Standard MINT Backtracking MINT

(10, 10x10
3)

(15, 15x10
3)

(20, 20x10
3)

(25, 25x10
3)

(30, 30x10
3)

Path Length & State Space Size

1x10
4

2x10
4

3x10
4

Pe
ak

 M
em

or
y

(B
)

Figure 10: Decoding, synthetic data with skewed path likelihood distribution. Memory requirements
of default MINT and memory-efficient MINT-Backtracking. Maximum (peak) memory vs. path
length T and state space size K, indicated as (T,K); K

T is fixed.
Effect of backtracking. As explained in Section 3.1, by default MINT variants store paths explicitly;
however, we may reduce memory usage by only storing the predecessor of each token (si, t) and
eventually reconstructing the optimal path by backtracking over such links, with a small runtime
overhead and savings in memory consumption. We refer to the resulting implementation as MINT-
Backtracking. To illustrate this effect, Figure 10 presents the maximum memory usage of the two
implementations of standard MINT under the HMM graph model with skewed path likelihood
distribution (α = 1) as a function of both K and T . While the difference in memory requirement is
evident, we measured the corresponding runtime difference to be negligible. MINT-LS employs the
backtracking implementation for the sake of space efficiency. Besides, MINT-Backtracking extends
seamlessly to all variants of MINT. In the case of bidirectional-search-based variants, backtracking
proceeds in both directions after the optimal path is found.

Viterbi Standard MINT MINT Bound Bidirectional MINT Bidirectional MINT Bound

10
0

10
1

10
2

10
3

Iteration

10
1

10
2

10
3

10
4

Lo
g-

Li
ke

lih
oo

d

10
0

10
1

10
2

10
3

Iteration

10
1

10
2

10
3

10
4

Lo
g-

Li
ke

lih
oo

d

(K = 25000, T = 25) (K = 30000, T = 30)

Figure 11: Synthetic data, skewed path likelihood distribution; path log-likelihood (in absolute value)
on the fly; axes on log-scale.

Real-time log-likelihood monitoring. We also monitor the optimal path log-likelihood absolute
value across iterations. This absolute value grows, as longer paths have lower likelihood than shorter

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

ones. Figure 11 presents our results, using the same four parameter configurations as in Figure 9. In
all algorithms the likelihood approaches the optimal value swiftly and monotonically. In the case
of standard Viterbi, we plot the highest likelihood found at the end of each frame (i.e., path length
considered), hence Viterbi appears to undergo fewer iterations. For the two bidirectional MINT
variants, we plot the sum of likelihoods associated with the last tokens de-queued from the forward
queue Qf and the backward queue Qb in each iteration. For other algorithms, we plot the likelihood
associated with the token dequed from Q in each iteration. We found that MINT-LS variants exhibit
the same progression of path likelihood as the corresponding MINT variants.

Algorithm 1: Standard MINT
Data: HMM graph G, transition and emission probabilities A and B, observations Y , and initial state s.
Result: Viterbi Path Log-Likelihood maxsi

T[si, T].
1 Q← Queue((s, 1), p (s, 1) = − logBs,y1

);
2 V ← {};
3 while Q ̸= ∅ do
4 (si, t), pi ← Q.pop(); // (state, frame), priority
5 if t = T then break;
6 V.add((si, t));
7 for sj in G[si] do
8 if (sj , t + 1) /∈ V then
9 d← pi − logAsi,sj

− logBsj,yt+1
;

10 if (sj , t + 1) /∈ Q then Q.insert((sj , t + 1), p (sj , t + 1) = d) ;
11 if Q[(sj , t + 1)] > d then Q.update((sj , t + 1), p (sj , t + 1) = d) ;
12 return−pi;

Algorithm 2: Bidirectional MINT
Data: HMM graph G, transition and emission probabilities A and B, observations Y , and initial and final states source and target.
Result: Viterbi Path Log-Likelihood maxsi

T[si, T].
1 Qf ← Queue((source, 1), p (source, 1) = − logBsource,y1);
2 Qb ← Queue((target, T), p (target, T) = 0);
3 Vf ← {};Vb ← {}; µ←∞;
4 while Qb ̸= ∅ ∧Qf ̸= ∅ do
5 (sfi , t

f), pf
i ← Qf .pop(); (sbi , t

b), pb
i ← Qb.pop();

6 df [s
f
i]← pf

i ; db[s
b
i]← pb

i ;
7 Vf .add((sfi , t

f)); Vb.add((sbi , t
b));

8 if tf < T then
9 for sj in G[sfi] do

10 Update Qf for (sj , t + 1);
11 if (sj , t + 1) ∈ Vb ∧ df [(s

f
i , t

f)]− logA
s
f
i
,sj
− logBsj,yt+1

+ db[(sj , t + 1)] < µ then

12 µ = df [(s
f
i , t

f)]− logA
s
f
i
,sj
− logBsj,yt+1

+ db[(sj , t + 1)];

13 if tb > 1 then
14 for sj in Grev[s

b
i] do

15 Update Qb for (sj , t− 1);
16 if (sj , t− 1) ∈ Vf ∧ db[(s

b
i , t

b)]− logA
sj,s

b
i
− logB

sb
i
,yt

+ df [(sj , t− 1)] < µ then

17 µ = db[(s
b
i , t

b)]− logA
sj,s

b
i
− logB

sb
i
,yt

+ df [(sj , t− 1)];

18 if df [(s
f
i , t

f)] + db[(s
b
i , t

b)] ≥ µ then break;
19 return−µ;

D PSEUDOCODES

Here we collect pseudocodes for the presented algorithms.

Algorithm 1 presents MINT. Algorithm 2 presents Bidirectional MINT, assuming that both an initial
and final state are given. Algorithm 3 illustrates TECH. Algorithm 5 provides the pseudocode of
MINT-LS, which uses Algorithm 4 as a subroutine. Lastly, Algorithm 6 presents MINT-LS+.

E CASE STUDY

As a case study, we apply compact-A∗ to the problem of temporal community search Galimberti et al.
(2021). Given a temporal graph GT over a temporal domain T = [0, 1, . . . tmax], an integer h, and a
set of query nodes q, the problem seeks a partitioning P of the temporal domain into h segments and a
subgraph Gh that contains the query nodes q within each bucket and maximizes the sum of minimum
degrees of subgraphs in P . This problem is pertinent as the growing availability of timestamped

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Algorithm 3: Standard TECH
Data: Input sequence I , integer B.
Result: V-Optimal Histogram Error E∗(n,B).

1 Q← Queue((1, 1), p(1, 1) = 0);
2 S ← []; SS ← []; V ← {}; n← I.length;
3 S[1]← I[1];SS[1]← I[1]2;
4 for i ∈ {2, . . . , n} do
5 S[i]← S[i− 1] + I[i]; SS[i]← SS[i− 1] + I[i]2;
6 for j ∈ {2, . . . , n− (B − 1)} do
7 Q.insert((j, 1), p(j, 1) = E(1, j));
8 while Q ̸= ∅ do
9 (i, b), p← Q.pop(); // (values,buckets),priority

10 V.add((i, b));
11 if b = B ∧ i = n then break;
12 if b < B then
13 for j ∈ {i + 1, . . . , n− B + b + 1} do
14 if (j, b + 1) /∈ V then
15 d← p + E(i, j);
16 if (j, b + 1) /∈ Q then
17 Q.insert((j, b + 1), p(j, b + 1) = p + E(i + 1, j))
18 if Q[(j, b + 1)] ≥ p + E(i + 1, j) then
19 Q.update((j, b + 1), p(j, b + 1) = p + E(i + 1, j))

20 return p;

Algorithm 4: DFS
Data: HMM graph G, transition and emission probabilities A and B, states S, observations Y , initial state si, predecessor pred, initial

frame t, initial path priority pi, middle pair, queue Q, middle frame.
Result: updated queue Q.

1 if t = middle_frame then
2 middle_pair← (pred, si); // update middle pair
3 if t < T then
4 for sj in G[si] do
5 if sj ∈ S then
6 d← pi − logAsi,sj

− logBsj,yt+1
;

7 if (sj , t + 1) ∈ Q then
8 if Q[(sj , t + 1)] > d then
9 Q.update((sj , t + 1), p (sj , t + 1) = d, pred = si, middle_pair = middle_pair);

10 else
11 Q← DFS(G, A, B, S, Y , sj , si, t + 1, d, middle_pair, Q, middle_frame); // continue DFS

12 else
13 if (si, t) /∈ Q then Q.insert((si, t), p (si, t) = pi, pred = pred, middle_pair = middle_pair) ;
14 else Q.update((si, t), p (si, t)=pi, pred, middle_pair);
15 return Q;

data generates interest in temporal graph management. Real-world temporal graphs typically align
themselves in evolving communities, which one may study by focusing on a set of query nodes.

The problem is solved by the DP recursion:

p∗(i, b) = max
0≤j<tmax

p∗(j, b− 1) + v∗q (j + 1, i), (5)

where p∗(i, b) denotes the optimal objective value for a partition of the first i timestamps in b
segments and v∗q (j + 1, i) is the maximum minimum degree of a subgraph containing query nodes q
and enduring from the (j + 1)th to the ith timestamp. A cross-examination of Equations (5) and (4)
reveals their analogy, with the main difference lying in the value associated with each segment, i.e.,
in the terminology of Section 3, the gap function. Thus, the dynamic-programming algorithm for
histogram construction also solves temporal community search with the necessary modifications.

Nevertheless, to compute the gap function v∗q (j, i) we need to identify a subgraph containing the
query nodes q of maximum minimum degree, for each query and each of the O(t2max) possible
(j, i)-buckets. The solution in Galimberti et al. (2021) precomputes all gap function values through
span-core decomposition and uses them in the dynamic-programming recursion of Equation (5).

We apply compact-A∗ to obtain an advantage over the DP solution to temporal community search on
a real-world temporal network that captures interactions between students and teachers of nine high
school classes in France over five days (Mastrandrea et al., 2015). The temporal graph has 47.590
edges (interactions) and 327 nodes (students and teachers). These parameters only affect the offline

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Algorithm 5: MINT-LS
Data: HMM graph G, transition and emission probabilities A and B, states S, observations Y , queue size threshold θ, initial and final

state startSt and lastSt, initial and final frame startFr and lastFr.
1 middle_frame← ⌈(startFr + lastFr)/2⌉, V ← {} // initialization
2 Q← Queue((startSt, startFr), p (startSt, startFr) = d, pred = −1, middle_pair = (−1,−1));
3 while Q ̸= ∅ do
4 (si, t), pi, pred, middle_pair← Q.pop();
5 V.add((si, t));
6 if t = middle_frame ∧ middle_pair = (−1,−1) then
7 middle_pair← (pred, si); // update middle pair
8 if (t = lastFr ∧ lastSt = −1) ∨ (t = lastFr ∧ lastSt = si) // lastSt = −1 if not input
9 then

10 sm− , sm+ ← middle_pair; // extract middle pair
11 Np ← middle_frame; // number of frames before the middle pair
12 if Np > 1 // continue recursion in predecessors
13 then
14 Sp ← FIND-T-HOPPRED(sm− , Np); // find predecessors of sm−
15 MINT-LS(G,A,B, Sp, Y, F, θ, startSt, sm− , startFr, Np) ;
16 Ns ← startFr + Np; // number of frames after the middle pair
17 print (sm− , sm+); // in-order print of middle pairs
18 if Ns > 1 // continue recursion in successors
19 then
20 Ss ← FIND-T-HOPSUCC(sm+ , Ns);// find successors of sm+

21 MINT-LS(G,A,B, Ss, Y, F, θ, sm+ , lastSt, Ns, lastFr);
22 for sj in G[si] do
23 if (sj , t + 1) /∈ V ∧ sj ∈ S then
24 d← pi − logAsi,sj

− logBsj,yt+1
;

25 if Q[(sj , t + 1)] > d ∨ (sj , t + 1) /∈ Q then
26 if Q.size() > θ ∧ (sj , t + 1) /∈ Q then
27 DFS(G, A,B,S, Y , sj , pred, t + 1, d, middle_pair, Q, middle_frame);
28 else
29 if (sj , t + 1) /∈ Q then

Q.insert((sj , t + 1), p (sj , t + 1) = d, pred = si, middle_pair = middle_pair) ;
30 else Q.update((sj , t + 1), p (sj , t + 1) = d, pred = si, middle_pair = middle_pair) ;

TCS TECH-TCS

10
1

10
2

Number of Buckets

0
20
40
60
80

R
un

ni
ng

 T
im

e
(s

)

Figure 12: Temporal community search; runtime by number of buckets partitioning the domain.

pre-computation of gap function values and not the query processing phase. The length of the
sequence to be partitioned is tmax = 1212. We apply the standard DP algorithm (TCS) and an
algorithm based on Standard TECH (TECH-TCS) on the problem with a query comprising the node
labelled 1. Figure 12 plots runtime vs. the number of buckets that partition the temporal domain,
varied in geometric progression with ratio 1.5, from 10 to 608. Notably, TECH-TCS outpaces TCS,
even for a few buckets. We obtained similar results with different query nodes and larger query node
sets, as the query does not affect the search space of the DP solution and its compact-A∗ counterpart.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Algorithm 6: MINT-LS+
Data: HMM graph G, transition and emission probabilities A and B, states S, observations Y , queue size threshold θ, initial and final

state startSt and lastSt, initial and final frame startFr and lastFr, maximum number of frames in the queue ∆Q.
1 middle_frame← ⌈(startFr + lastFr)/2⌉, V ← {};
// initialization

2 Q← Queue((startSt, startFr), p (startSt, startFr) = 0, pred = −1, middle_pair = (−1,−1));
3 Qt ← Queue((startSt, startFr), p (startSt, startFr) = startFr, cost = 0, pred = −1, middle_pair = (−1,−1));
4 current_max_frame← startFr, EFS_flag← False;
5 while Q ̸= ∅ do
6 if EFS_flag = True then
7 (si, t), t, pi, pred, middle_pair← Qt.pop();
8 Q.delete(((si, t));
9 else

10 (si, t), pi, pred, middle_pair← Q.pop();
11 Qt.delete((si, t));
12 V.add((si, t));
13 if t = middle_frame ∧ middle_pair = (−1,−1) then
14 middle_pair← (pred, si); // update middle pair
15 if (t = lastFr ∧ lastSt = −1) ∨ (t = lastFr ∧ lastSt = si) // lastSt = −1 if not input
16 then
17 sm− , sm+ ← middle_pair; // extract middle pair
18 Np ← middle_frame; // # frames before middle
19 if Np > 1 // continue recursion in predecessors
20 then
21 Sp ← FIND-T-HOPPRED(sm− , Np); // find predecessors of sm−
22 MINT-LS+(G,A,B, Sp, Y, F, θ, startSt, sm− , startFr, Np, ∆Q) ;
23 Ns ← startFr + Np; // number of frames after the middle pair
24 print (sm− , sm+); // in-order print of middle pairs
25 if Ns > 1 // continue recursion in successors
26 then
27 Ss ← FIND-T-HOPSUCC(sm+ , Ns);// find successors of sm+

28 MINT-LS+(G,A,B, Ss, Y, F, θ, sm+ , lastSt, Ns, lastFr, ∆Q);
29 for sj in G[si] do
30 if (sj , t + 1) /∈ V ∧ sj ∈ S then
31 d← pi − logAsi,sj

− logBsj,yt+1
;

32 if Q[(sj , t + 1)] > d ∨ (sj , t + 1) /∈ Q then
33 if (sj , t + 1) /∈ Q then
34 Q.insert((sj , t + 1), p (sj , t + 1) = d, pred = si, middle_pair = middle_pair);
35 Qt.insert((sj , t + 1), p (sj , t + 1) = t + 1, cost = d, pred = si, middle_pair = middle_pair);
36 if t + 1 > current_max_frame then
37 current_max_frame← t + 1;// update maximum frame in the queue
38 else
39 Q.update((sj , t + 1), p (sj , t + 1) = d, pred = si, middle_pair = middle_pair);
40 Qt.update((sj , t + 1), p (sj , t + 1) = t + 1, cost = p, pred = si, middle_pair = middle_pair);

41 if EFS_flag = False then
42 if Q.size() > θ then
43 EFS_flag ← True; // activate EFS
44 else
45 (current_min_state, current_min_frame)← Qt.top();// access minimum frame in the queue
46 if Q.size() < θ ∨ current_max_frame− current_min_frame < ∆Q then
47 EFS_flag ← False;// deactivate EFS

20

	Introduction
	Background and Related Work
	The Compact-A* Framework
	The MINT algorithm
	The TECH algorithm

	Experiments
	Results on Viterbi decoding
	Results on histogram construction

	Conclusion
	Proofs
	Data, Measures, and Parameters
	Additional Experiments
	Pseudocodes
	Case Study

