COMPACT-A": SPACE-EFFICIENT
FIXED-LENGTH PATH OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Several optimization problems seek a path in a state space to minimize a cost
function under a length constraint. Traditionally, these are solved by A" search or
dynamic programming (DP), as in Viterbi decoding for Hidden Markov Models. In
all cases, solutions require memory commensurate with a search space that grows
linearly in both state space size and path length. In this paper, we propose compact-
A*, a framework that limits the growth of the A* priority queue to determine the
minimum cost for a path of predetermined length in a space-efficient manner
and then constructs such a path by a divide-and-conquer strategy that eliminates
the memory overhead. We apply compact-A* to Viterbi decoding and further
highlight its generality with an application to V-optimal histogram construction.
Our experimental results demonstrate significant improvements over state-of-the-art
solutions in runtime and memory consumption.

1 INTRODUCTION

Several problems call for finding a sequence of given length L over a state space of size n that
optimizes a cost function; they are conventionally solved by A* search or dynamic programming
(DP). Prominent examples are Viterbi decoding, i.e., finding a most likely sequence of hidden
states—a Viterbi path—in a Hidden Markov Model (HMM) to explain an observed event sequence of
length L (Viterbi, 1967; 2006); finding a sequence of L —1 boundaries—a V-optimal histogram (‘V’
for variance)—that partitions a numeric sequence minimizing the total squared error of representing
each partition by a constant value (Jagadish et al., 1998); and identifying the most probable syntactic
structure—a Viterbi parse tree—that generates a length-L input sequence of tokens or words under a
probabilistic context-free grammar (PCFG) (Klein & Manning, 2003; Huang et al., 2012).

Such algorithms iteratively derive solutions to a subproblem of length k+1 from solutions to subprob-
lems of length k in O(n?L) time. A* prioritizes subproblems in a best-first manner using a priority
queue with an O(nL log nL) overhead, while DP prioritizes them in a breadth-first manner by length.
In terms of space, we may address the problem as a shortest path problem over a graph of n vertices
and m edges replicated over L layers, one for each step, memoize partial solutions, and backtrack
over steps to build the optimal path after finding the optimal cost. Still, this strategy uses O(nL + m)
space. We may instead work in-place in O(n + m) space, without replication, discarding processed
subproblem solutions. Still, in that case we need to recursively rerun the algorithm from scratch L — 1
times to build the optimal path after finding the optimal cost, incurring a O(n2L?) time complexity
overhead instead. A recently proposed reformulation of the DP solution (Ciaperoni et al., 2022;
2024) constrains space to O(n + m) and runs in O(n?Llog L) time, but evaluates subproblems
exhaustively by breadth-first search, harming scalability. In practicality, only a few subproblems
aid the solution. A*-based algorithms exploit this fact, yet need to (i) maintain a priority queue and
(ii) memoize optimal choices per step to enable backtracking. These needs take only O(n) space
for the shortest-path problem, in which path length is arbitrary (Russell & Norvig, 2010), yet grow
to O(nL) space when path length L is predetermined (Klein & Manning, 2003; Huang et al., 2012).

In this paper, we introduce compact-A*, a framework for space- and time-efficient optimization of
fixed-length sequences. Compact-A*" controls the priority queue size by novel search strategies we
propose, and avoids memoization through divide-and-conquer, yielding O(n) space use. We apply
compact-A* to Viterbi decoding and V-optimal segmentation and test it on real and synthetic data,
showing gains in memory use and runtime vs. prior work, especially under skewed cost distributions.

2 BACKGROUND AND RELATED WORK

Dynamic programming (DP) (Bellman, 1966) explores the problem space exploiting an optimal
substructure property, by which a globally optimal solution can be assembled from locally optimal
solutions, to solve a problem by recursively expanding partial solutions in a breadth-first manner.
Best-first-search algorithms (Pearl, 1984) may also exploit optimal substructures, as dynamic
programming does (Sniedovich, 2006), to find a minimum-cost path from a start to an end node
by repetitively expanding, i.e., visiting the neighbors of, the most promising unexpanded visited
node. The A" algorithm (Russell & Norvig, 2010; Foead et al., 2021), an instance of best-first-search,
prioritizes paths by a path cost estimation heuristic that is admissible (i.e., never overestimates the
cost of a path) and consistent (i.e., never estimates the cost of a path as greater than the cost via an
intermediary node) (Russell & Norvig, 2010); the search may proceed from both start and end by
bidirectional search (Pohl, 1969). A* generalizes Dijkstra’s algorithm (1959), by which the heuristic
cost estimate of any unexplored path is 0. We stress that finding a minimum-cost path of fixed length
requires tracking both length and cost, while for arbitrary length, tracking cost suffices.

Hidden Markov Models (HMMs) explain observation sequences. An HMM comprises a set of K
hidden states, each with probabilities to be an initial state, transition to other states, and emit an
observation. Decoding seeks a sequence of states most likely to generate a sequence of observations:

Problem 1 (Decoding). Given an HMM and a sequence of T observations Y = {y1,y2,...,yr}
find the sequence of hidden states Q = {s3, s, ..., sk} that maximizes the likelihood P(Q,Y).

The Viterbi algorithm (1967; 2006) solves Problem 1 optimally by DP; it finds application from
networking and telecommunications (Viterbi, 2006) to speech recognition (Gales & Young, 2007;
Braun et al., 2020), where it serves to find the most probable transcription for an input acoustic
signal, or for forced alignment, the task of aligning orthographic transcriptions to audio recordings.
In modern speech-recognition systems, the Viterbi algorithm runs on the composition of several
small HMMs in which states represent words and their phonemes, to find the best transcription of a
spoken utterance. However, this algorithm raises high memory and runtime requirements. A recent
work (Jo et al., 2019) on HMM-based isolated word recognition employed a search heuristic, without
proving its correctness. Another recent work (Ciaperoni et al., 2022) enhances the space efficiency
of decoding at the cost of a runtime overhead. Other works reduce the state space representation
for particular classes of HMMs (Siddiqi & Moore, 2005; Felzenszwalb et al., 2003). Still, time
complexity remains high for problem instances with large state space and long observation sequences,
while improving on it is a difficult undertaking, as indicated by derived lower bounds (Backurs &
Tzamos, 2017). Klein & Manning (2003) and Huang et al. (2012) apply A*-like policies to enhance
Viterbi’s time efficiency in the context of PCFG parsing, yet neglect space efficiency. Compact-A*
offers a formulation of Viterbi decoding that is both time-efficient and parsimonious.

Histogram construction calls to segment a data series to a predetermined number of buckets, each
with one representative, to minimize the overall representation error:

Problem 2 (Histogram Construction). Given I = {z1,...z,}, ©; € R, and B € 7%, find a
segmentation (or histogram) Hp of I into B non-overlapping subsequences (or buckets) I, with
associated bucket representatives &y, b € {1, ..., B}, that minimizes error function E; (Hp).

Problem 2 is central in data summarization (Halim et al., 2009). We focus on V-optimal his-
togram construction (Jagadish et al., 1998), i.e., Problem 2 with E; (Hg) = 25:1 FEy, where
By, = ZM e, (x; — 2p)?, and Z} is the mean of values in bucket I,. This extensively studied prob-
lem (Guha et al., 20006) is solved optimally by a DP algorithm (Jagadish et al., 1998) with quadratic
dependence on n. Compact-A* offers significant gains in histogram construction and is extensible to
any monotonic and distributive error measure E; (Hpg) (Karras & Mamoulis, 2008).

Semirings and Dioids (Gondran & Minoux, 2008) A semiring is a 5-tuple (D, @, ®, ,), where D is
a non-empty set, & is a binary, associative, and commutative operator, ® is a binary and associative
operator, is a neutral element for & (i.e., z® = =z, for all z € D), is a neutral element for ®
(i.e., x® = ®x = z, for all z € D), the operator ® distributes over & and is absorbing for ®
(i.e., z® = ®x =, for all x € D). A selective dioid is a semiring in which & is also selective
(e.(zdy=2)V(z®y=y), forall z,y € D). Selective dioids provide an abstract expressive
framework for shortest-path and DP problems (Mohri, 2002; Huang, 2008; Tziavelis et al., 2020).

3 THE COMPACT-A* FRAMEWORK

We define compact-A" and apply it to Viterbi decoding (§ 3.1) and histogram construction (§ 3.2).
Compact-A* finds a given-length sequence that optimizes a cost measure. Contrariwise to dynamic
programming, which visits subproblems in a fixed order even if several of them do not contribute to
the final solution, compact-A* solves subproblems in a best-first fashion. Figure 1 shows an example.

0 [oo|oo|oo 0

18[18] 0000 1818
24{18[1800 24[18/18
2727[26]26 26/26
51/51 5(

Figure 1: Each cell records the cost of a sub-problem; classic DP solves all sub-problems; compact-A*
finds the same solution, but avoids considering sub-problems in green.

Compact-A” starts out with the following components:

1. A data space X of n elements endowed with a concept of eligible sequence (x;), x; € X,
j€A{1,...,£}, where { is the length of (z;); a sequence is eligible if i — 1 € N(¢) for all
i € {2,...,(} and a given neighborhood function N(-).

2. The set X of all eligible sequences in X.

. A gap function G(j,1) associating a value with the transition from item j to item 3.

4. A selective dioid D = (D,®,®,,), which is used to express the value function for a
sequence: f(x) = ®;;L*1 G(j,5 +1).

5. A problem that seeks an eligible sequence x* € X of length L and optimal value f(x*);
sequences are compared via the @ operator.

6. A recursive function Opt(i, ¢) that stores the optimal value for an eligible sequence of
length ¢ ending at item z; € X.

7. A solution to the problem in Item 5 by DP over sequences of increasing length from X'.

w

The solution in Item 7 finds an eligible sequence of L data items x* = {z},z5,..., 27} that
optimizes Opt(-, L); the selective dioid properties, in particular distributivity, guarantee correctness.
The DP computation takes the form:

Opt(i,.0) = @ {Opt(j,t —1)® G(j.i)}. 1)
JEN(3)

The recursion of Equation (1) requires ©(n?L) time and ©(nL) space, iterating over items i and
lengths ¢ and storing, for each (i, ¢) pair, a predecessor needed to backtrack the optimal sequence.
The entailed solution may be implemented by either DP or roken passing (Young et al., 1989); both
calculate all solutions of length ¢, Opt(-, £), before those of length £+ 1, Opt(-, £+ 1), by breadth-first
search. While DP draws from solutions of length ¢ to build each solution of length ¢ + 1, token
passing broadcasts a foken for each solution of length £ to its continuations of length ¢ + 1. In both
cases, solutions solidify at length ¢ before moving to length £ + 1.

Compact-A*" abolishes this breadth-first orientation in favor of a best-first one; it organizes sub-
problem solutions (represented by tokens) in a priority queue Q in which it initially inserts all
tokens (-, 1). Thereafter, in each step, it selects the most promising token (4, ¢) from Q and, for
each eligible successor (%, £ + 1) not already extracted from Q, it computes Opt(j, ¢) + G(j, %) and
updates the priority of (¢, ¢ + 1) in Q accordingly. compact-A* resembles Dijkstra’s shortest-path
algorithm (1959); however, whereas Dijkstra minimizes a cost objective regardless of length (i.e.,
number of steps), compact-A* optimizes the objective under a fixed-length constraint. In the worst case,
it examines all sequence continuations for each length, hence takes O(nL(n + lognL)) time, where
the log nL term expresses the overhead of maintaining the priority queue, more compactly O(nL(n +
log L)). However, in practice, it gains performance as it quickly derives tokens corresponding to DP
table cells without considering all possible paths and does not produce some tokens at all. As we
will see in Section 4, this pruning capacity results in significant savings, particularly in real problem
instances. In problem-tailored compact-A* variants, we anticipate the cost a sequence may obtain as
it expands and prioritize tokens accordingly. We also derive bidirectional-search variants that produce
both prefixes and suffixes of sequences until they reach the target length.

In the best case, compact-A" may produce only L tokens. Nevertheless, the priority queue Q may
reach size ©(nL), holding one token for each state-length pair. Additionally, we need to memoize
the subproblem solution each token represents even after we pop it from Q, to enable backtracking
the solution sequence. To guarantee O(n) space complexity, we employ the following measures.

Controlling the priority queue size. First, to keep the size of Q in O(n), when the best-first-search
queue Q exceeds a predefined size threshold 6 (or memory budget) upon inserting a token (s, t), we
invoke a containment mechanism, which is either a tailored depth-first-search (DFS) mechanism, or a
mechanism that we propose, earliest-first search (EFS).

DFS. By the DFS mechanism, we pick the lowest-cost token (s;,t*) from the set of tokens for s,
87 = {(s;,-)}, and generate all its derivative tokens via a DFS traversal of the HMM graph G
starting at s;. Each DFS branch terminates upon reaching the last frame or upon injecting into the
token set of a state s, a token that either displaces or yields to a pre-existing one, without increasing
memory usage in either case. This DFS mechanism identifies and propagates middle pairs along
explored paths as usual and ensures space complexity O(n) by constraining the size of Q within 6.

EFS. Small € values in the DFS mechanism may cause excessive DFS calls, reprocessing the same
tokens multiple times and slowing runtime, even compared to that of regular dynamic programming
which processes all nL tokens. To address this predicament, we propose an alternative search
mechanism that processes each token at most once, Earliest-First Search (EFS). EFS processes
tokens in increasing time frame order, starting form the earliest frame represented in the priority
queue, until the gap between the earliest and latest time frames in the queue falls below a user-
specified constant Aq. In effect, the queue size is bounded by Agn and best-first search resumes.
While the EFS mechanism generates and must store additional tokens, at most 2n — 1 additional
tokens will co-exist in the queue, occupying the earliest time frame and its successor. In effect, EFS
ensures an overall queue size of O(n).

Reconstructing the optimal path. Second, instead of memoizing subproblem solutions for back-
tracking the final solution path, we construct that path by a divide-and-conquer strategy in O(n)
space and O(n? L log L) time, as in (Binder et al., 1997; Ciaperoni et al., 2022; 2024). Upon reaching
the middle frame of a solution path, we record, with each subsequent token, the edge at that middle
frame (or middle pair). After establishing the best solution at the last frame, we recursively rerun
the algorithm on the L/2-hop predecessors and successors of that token’s middle pair to construct the
entire sequence. We retrieve middle pairs in orderly fashion, as in an in-order tree traversal (Ciaperoni
etal., 2022) in O(n?Llog L) time and O(n) space, given that the size of Q is also bounded by O(n).

3.1 THE MINT ALGORITHM

The Viterbi algorithm selects a sequence of T states Q = {s7, s5,..., sk} from a universe of K
HMM states S = {s1, Sa,..., Sk} that is most likely to have generated a sequence of T" observa-
tions Y = {y1,y2,...,yr}. Q is called Viterbi path. By the Markov property, the likelihood to be in
a state depends only on the previous state. Therefore, the Viterbi algorithm uses the DP recursion:

T[s;, 1] = 75, - B, 41

T[Si7 t} = sheHJ\lfif((s,-) {T[sfH [1] ’ ASh,Si} : Bshyt @)
where T[s;, t] stores the probability of the most likely path ending at state s, in ¢ steps, or time frames,
Nin(s;) is the set of in-neighbors of s;, 7; is the initial probability of s;, A n,s; 18 the probability of
transiting from state sy, to state s; on a directed graph G capturing eligible transitions in the HMM,
and B, ,, is the probability of observing y, at state s;. This setting suits compact-A* as follows:

1. The data space X is the universe of K hidden states S = {s1, s2,..., Sk } and an eligible
sequence (x;), x; € X, j € {1,...,£} is a path of consecutive states in G.

2. The set X of all eligible sequences in &’ is the set of all possible paths in the given HMM.

W

. The gap function G(j,1) is A, s, Bs,y,» or, in log-probabilities, as log A 5, + log Bs,y,.

4. The selective dioid is ([0,1],max,-,0,1), or, in the domain of log-probabilities,
([-o0, 0], max, 4+, —00, 0). Thus, the value function f assigns probabilities to paths, given
the sequence of observations Y = {y1,y2, ..., yr}; the probability that Y is generated by a

sequence of hidden states Q = {s1, s2,...,s7} 18 P(Q,Y) = 75, - Bs,y, HiTZQ As, s -
Bs,y,;» where 7(s1), As, ,s;, and B, are defined as above.

5. The problem seeks an eligible sequence of states () of length 7" that best explains the given
sequence of observations Y, i.e., maximizes probability (6 = max).

6. The recursive function Opt(i, £) that stores the oprimal value for an eligible sequence of
length ¢ that ends at data item z; € X is the function T[s;, t = £].

7. The solution by DP over sequences of increasing length from X’ is given by Equation (2).

The recursion of Equation (2) requires O(K>T') time and O(KT) space, as it iterates over states s;
and time frames ¢. For the sake of efficiency and accuracy, we replace products of likelihoods by
sums of log-likelihoods. In case the structure of GG is known, we iterate only over states sy, that link to
state s;, hence visit each HMM graph edge only once; then time complexity becomes O((K +|E|)T).

The Viterbi algorithm and its foken passing variant (Young et al., 1989) operate by breadth-first
search. MINT (Time Efficient Viterbi) replaces this strategy with best-first search. It organizes partial
solutions in a priority queue QQ and expands the most promising one in each step, as in (Klein &
Manning, 2003). Like Viterbi, it derives T|[s;, t + 1] entries from T[s},, ¢] entries. Still, while Viterbi
calculates all T|-, t] entries before T|-, ¢ + 1] entries, MINT first inserts all tokens (sp, 1) in Q and
then iteratively pops the most promising token (s, t) from Q and, for each ourgoing neighbor s; €
Nout(s5) such that (s;, ¢ + 1) has not been extracted from Q, it computes T[sy,, t] - As, s, - Bs, y,11
as a provisional T[s;, t + 1] value and updates the priority of (s;,¢ + 1) accordingly. Thanks to the
monotonicity of T|[-, -] along a path, Ts;, t] satisfies Equation (2) when (s;, t) is popped from Q. In
the worst case, MINT visits each HMM edge once per time frame, hence takes O((K log KT +|E|)T)
time, where log K'T" expresses the priority queue overhead (Fredman & Tarjan, 1987). In practicality,
it never considers some HMM edges. In the following, we illustrate four MINT variants.

Standard MINT. In more detail, to achieve the max;, T[s;, 7| objective, we minimize the positive
path log-likelihood, —log P(Q,Y") > 0, defined as cost of a path. For a given path @) ending at
state 7 at frame ¢, we define its priority as p(s;,t) = —log P(Q,Y), with Q = {s*,s%,...,s'},
such that s* = s; and Y = {y1,%92,...,y:}. Algorithm 1 in Appendix D gives the pseudocode
of the plain MINT variant. First we insert in Q a token for each state in the first frame with
priority —m,, —log Bs, . If a start state s is given, we only enqueue a token for s at ¢ = 0. The main
loop iterates until reaching the last frame. In each iteration, we dequeue from Q the top token (s, t),
add it to a set V of visited tokens, compute the cost of reaching (s;,t + 1) via (sp,t) for each
out-neighbor s; of sj, that has no such token in V, and insert or update (s;,¢+ 1) in Q to the lowest
known cost. When a pair (s, T") is dequeued, no path spanning 7" frames at lower cost exists, hence
we return its cost as the Viterbi path log-likelihood max;, T[s;, T]. All proofs are in Appendix A.

Proposition 1. Standard MINT is correct.

To return the optimal path, MINT by defaults appends a path to each token and, when updating the
priority of (s;j,t + 1), also updates the corresponding path to s;. An alternative implementation,
MINT-Backtracking, stores only the predecessor of each token, retains all explored tokens, and at
the end constructs the optimal path by backtracking. Next, we present three extensions to MINT.

MINT Bound. We propose a variant of MINT that orders tokens by lower-bounding the path cost
from each token (s;,t) until the final frame 7" using a lower bound ¢, on the cost for moving from
one frame to another for the remaining 7" — ¢ frames. We call the ensuing algorithm MINT Bound.

We first insert all states (or the source state, if given) in Q with p (s, 1) = T-¢;. As the search proceeds,
we replace lower bounds with exact costs. The priority of (s;,t)isp (s;,t) = —log P(Q,Y)+ (T —t)-
¢1, @ being the current optimal path ending at s; in ¢ frames; we compute the priority of a neighbour s;
for insertion or update in Q as p (s;,t) —¢; —log Asi,sj —log st ,es1- Upon reaching the last frame,
all lower bounds capture exact costs. Setting ¢; as the lowest value of — log AS“SJ, —log B

85sYt+1
over all edges (s;, s;) at any ¢, found by pre-processing, ensures correctness.

Proposition 2. MINT Bound is correct.

MINT Bound encases information from unexamined time frames in the BestFS criterion and further
explores already well-explored paths without compromising correctness.

Bidirectional MINT obtains more efficiency by bidirectional search (Pohl, 1969), explore solutions
both forward from the start and backward from the end time frame. We denote the graph in which

all edges are reversed in direction as G,..,,. In each direction, the search proceeds as in Standard
MINT, yet with two priority queues, Q ¢ for forward search and Q;, for backward search. If an initial
state is given and a final state is not given, we find, in pre-processing, all states S(7T") reachable
from the initial state in 7" frames, and initiate QQ; with those. Algorithm 2 in Appendix D shows
the pseudocode, which assumes that both an initial and final state are given. In each iteration, we
expand both! searches, handling queues as in Standard MINT. Upon extracting (s{ ,tf) from Q ¥
and (sf, tb) from Qp, we update the associated visited-token sets, V; and V3, and store associated
costs in arrays d¢ and d,. We then consider tokens (s{ ,t7 4 1) for all neighbors 5;‘ of 5{ in G and

tokens (s5," — 1) for all neighbors s? of s? in the graph G/,. In Lines 10 and 15 we omit the
details, which are found in Algorithm 1, Lines 30-39. When the two sides meet generating a path
of length 7', we update the hitherto best path cost p, if the newly found path improves on it. Such a
path is provably optimal, hence the algorithm terminates, when the sum of costs of tokens dequeued
from Qy and Qs exceeds p. To avoid double-counting emission probabilities, we add the emission
probability of the last vertex visited while building a path only in the priority of Q ¢, thus the cost of
any path through (w, t) is ds[(w, t)] + dp[(w, t)].

Proposition 3. Bidirectional MINT is correct.

Bidirectional MINT Bound combines Bidirectional MINT and MINT Bound in one algorithm that
searches in both directions and lower-bounds the total T-frames-long path costs used as priority
values in both queues. The search in both directions follows the order determined by the cost of
arriving to a state in a given number of steps (frames) plus a lower bound on the cost of arriving from
there to the the end of the path. The single-frame lower bound for the forward search is as in MINT
Bound. For backward search, it is the lowest cost of moving from a frame to the next one in the
reverse HMM graph G,..,, i.e., the lowest value of — log As]-,si — log Bs, ,, over all edges (sj, Si)
in G, We obtain both bounds by pre-processing with a single graph traversal. The correctness of
Bidirectional MINT Bound follows from the correctness of MINT Bound and Bidirectional MINT.

Linear-space MINT (MINT-LS) Here, we propose a compact-A* space-efficient variant, MINT-LS,
which guarantees O(K) space by keeping the size of Q in O(K) by a containment strategy and
reconstructs the solution by a divide-and-conquer strategy. Algorithm 5 in Appendix D presents
MINT-LS, which invokes the DFS subroutine of Algorithm 4, while storing, with each token (s;, t), its
predecessor state and the running middle pair for its path. These details help identify the subproblems
to be solved recursively. Upon reaching the final frame (and the final state, if specified), it extracts
the middle pair associated with the solution path and reruns recursively among N,-hop predecessors
of the middle pair in as many preceding frames and among N,-hop successors in as many following
frames, identified through breadth-first search (Lines 21 and 27). MINT-LS avoids storing tokens
when the queue size reaches a threshold 6. Instead, it invokes the DFS subroutine, which only stores
tokens either as replacements of others or at the last frame. Algorithm 6 in Appendix D presents
MINT-LS+, which applies our EFS strategy using an auxiliary queue Q; to prioritize tokens by time
frame; it keeps track of the earliest and latest time frame in QQ; and toggles between BestFS and EFS
as required (Lines 41-47). As results in Section 4.1 and Appendix C show, these strategies ensure
low space consumption. When 6 is large enough, the DFS strategy is preferable; otherwise, EFS is
preferred. MINT-LS naturally combines with bidirectional search.

3.2 THE TECH ALGORITHM

We apply compact-A* to V-Optimal histogram construction (Jagadish et al., 1998), outlined in
Section 2. A V-Optimal histogram uses the mean value & = Hﬁ S ; Tk as arepresentative to
minimize the Euclidean error in a bucket I, extending from the j th to the i*? value in the sequence,
E(j,4) =Y (@e — #)2. The total error is aggregated over all buckets. V-Optimal algorithms use
incremental sums and sums of squares, S and S5, respectively, to obtain any E (i, j) as:
(S[i) - 81 — 11>
(t—j+1)

The algorithm finds, for each combination (7, b) of a value index and number of buckets, the cost of
the optimal b-bucket histogram covering the first ¢ values in the sequence, as:

E(j,1) = (SS[i] = SS[j — 1) -

3

'A more refined strategy would choose which side to expand, representing an opportunity for future work.

<7<t
E*(i,b)=0fori < band E*(i,1)=E(1,1). After finding the optimal cost E*(n, B) for a length-n
sequence and B buckets, we backtrack the histogram. The problem maps to compact-A* as follows:

1. The data space X is the data series I = {x1, ...z, } and an eligible sequence (x;), x; € X,
j €{1,..., ¢} comprises ordered segment boundaries (x;,, Tiy, - - ., Tj;)-

2. The set X of eligible sequences in X includes all ordered sequences ending at z,,.

3. The gap function G(j, 1) is the bucket error E(j, 7).

4. The selective dioid is (R U {+oc0}, min, +, +00, 0). Thus, the value function f : X — R
assigns an approximation error Zszl E), to a histogram.

5. The problem seeks an error-minimizing eligible histogram of B boundaries (6 = min).

6. The recursive function Opt(i, £) that stores the oprimal value for an eligible sequence of
length £ ending at item z; € X’ is the function E*(i,b = £).

7. The solution by DP over sequences of increasing length from X is given by Equation (4).

V-OPT histogram construction by DP (Jagadish et al., 1998) requires O(n? B) time and O(n.B) space.
We discuss compact-A* variants, TECH (Time-Efficient Histogram), aligned to the variants of MINT.

Standard TECH. Algorithm 3 presents Standard TECH, which, like MINT, employs a priority
queue Q to prune computations, where the priority of entry (¢, b) is the cost of the b-bucket histogram
for the first ¢ values, p(i,b) = E*(i,b). After computing the S and S.S arrays, used to compute the
error measure by Equation (3), in each iteration, TECH dequeues the pair (i, b) of lowest error, adds it
to a set V of visited tokens, and, provided b < B, computes via (4, b) the error for each pair (j,b+ 1)
with j > i that is not in V and inserts or updates (j,b + 1) in Q accordingly; thereby, it explores
possible next buckets. We do not iterate over (j, b+ 1) pairs forall j > ¢, butstopatj = n—B+b+1
since there must be at least B — b — 1 values after j to make B buckets in total. The algorithm
terminates after it dequeues (n, B). Correctness follows as in Proposition 1: after (n, B) is dequeued,
there can be no lower-cost histogram of the same series and B. For further pruning, we use an upper
bound U BJi, b] on the cost of a (B — b)-bucket histogram for the series {i + 1,...n}, derived in
Proposition 4 below. If, after visiting (¢, b), we find j* > i such that E(i, j*) > UB]Ji, b], we eschew
computing E(i, j) for j > j*, as we have already exceeded the upper bound on the error therefrom.

TECH Bound. This variant uses bounds on the cost of a B-bucket histogram instead of the cost of a
partial histogram with b < B buckets. Given (i, b), we partition the series {¢ + 1,...n}in B —b
equal-width buckets. The minimum error among such buckets is a lower bound to the V-optimal
histogram cost, while the sum of those errors is an upper bound, which we may use for pruning.

Proposition 4. The minimum error ming E}, among b buckets of an equal-width partitioning a
sequence I is a lower bound to the V-optimal histogram cost and)", Ey, is an upper bound.

TECH Bound adds the lower bound LB]i, b] to the priority of each pair (i,b). Upon arrival at the
end of the series, it outputs the same cost as Standard TECH. We find these bounds by building
equal-width histograms in a pre-processing step. Correctness follows as in the case of MINT Bound.

Other TECH variants work by analogy to MINT variants. Bidirectional TECH applies forward and
backward search. When we pop a pair (¢, b) from Q ¢, we consider entries (j, b+ 1) with j > ¢, and,
if the backward search has already visited (j, B — b — 1), we check whether the cost d[(¢,b)] +
E(i,7) + dp[(j, B — b — 1)] improves upon the current best cost (i, and likewise in backward search.
The search terminates when the sum of the costs of pairs from both queues exceeds the current best
cost i. Bidirectional TECH Bound combines Bidirectional TECH with TECH Bound, with reversed
lower bounds to consider sequences of the form {1,...4} rather than {i + 1,...n}. TECH-LS
variants limit space needs; in place of a middle pair of states, they detect a middle bucket that splits
the data series in halves. Guha (2005) applied such a space-saving solution on DP.

4 EXPERIMENTS

We experimented? on a 2 x 12 core Xeon E5 2680 v3 2.50 GHz machine with 128 GB RAM. For
Viterbi decoding, we use as baselines the edge-aware Viterbi algorithm (§3.1), a recomputation-based

2Implernentation and data available at https://anonymous.4open.science/r/BestFirst.

https://anonymous.4open.science/r/BestFirst

space-efficient variant (Ciaperoni et al., 2022), checkpoint Viterbi (Tarnas & Hughey, 1998), which
segments the sequence into /7" parts, and SIEVE variants (Ciaperoni et al., 2022), including SIEVE-
Middlepath, Standard SIEVE (partitioning the state space recursively), and SIEVE-Hyperloglog
(using approximate predecessor/successor counts (Flajolet et al., 2007). For histogram construction,
the baseline is the DP algorithm of Jagadish et al. (1998) (§ 3.2). Appendix B details data, measures,
and parameter choices. Appendix C presents further experiments.

4.1 RESULTS ON VITERBI DECODING

Real data, runtime vs. T" and K. Figure 2 plots results on forced-alignment and standard decoding
with real data. Here, MINT achieves savings of up to three orders of magnitude over Viterbi by
focusing on promising paths. Enlarging the state space via larger snowball samples of the HMM
does not affect MINT, but heavily impacts Viterbi. MINT-LS variants also gain up to three orders of
magnitude lower runtime than Viterbi even while controlling memory.

—¥%— \Viterbi —8— Standard MINT ¥ MINT Bound —&— Bidirectional MINT
—— Bidirectional MINT Bound =p— Standard MINT-LS —<4— Bidirectional MINT-LS

0 0 1
g 10 'Mt" 10_ 10 M 0/“/&
g Hensl) % 10,

” g = 10 10_

£ ;‘,ﬂ"‘d* Voegs 33k 107 102, 3

c -4 v

10 5 10 22 47 100 10 1000 2190 4796 5 10 22 47100 10 1900 6859 24760
Path Length State Space Size Path Length State Space Size

Figure 2: Decoding, real data; forced alignment (L), standard decoding (R); runtime vs. 7" and K.

Real data, runtime and memory vs. T'. Figure 3 plots runtime and the min, max, and median
memory usage across recursion levels, including SIEVE variants. While DP baselines require static
memory, MINT-LS’s needs are dynamic, hence we consider its peak memory per level. The median
memory needs of MINT-LS using DFS grow modestly with T'; the maximum rises with 7, yet
remains under that of SIEVE-Middlepath, the most memory-thrifty SIEVE variant. We show results
vs. T', as subsampling the state space on real data barely affects MINT-LS, as Figure 2 established.

—#— Naive Space Efficient Viterbi ~=%— Vanilla Viterbi <~ Checkpoint Viterbi ©— SIEVE
== SIEVE-HyperLoglLog —#—S|EVE-Middlepath =p— Standard MINT-LS —— Bidirectional MINT-LS —@®— MINT-LS+

10°
10°

Running Time (s)
>

10 10° 10" 10
Path Length Path Length

Figure 3: Decoding, real forced alignment data; runtime (L) and memory consumption (R) vs T'.
Shaded regions indicate the range of memory consumed over recursive calls; axes on log scale.

=%—\Viterbi =p— Standard MINT-LS —&— Standard MINT-LS+

2N 210" DN S e i B 10" ey
Rt

E > 2 g10 2 10’

F 10 X = = =

D je===a===a O 2 L o 10

c 10 ™ g 2 c 10_2 o E -1

S 4 . €10 e 5 > oo £10

Z10 oo oeoow 57 = by 4 > e e 510—2 —
350 400 450 500 550 5 35 65 95 125 5 35 65 95 12 475 525 575 625 675
Queue Size Threshold Queue Size Threshold Queue Size Threshold Queue Size Threshold

Erd6s—-Rényi Skewed WSJ RM

Figure 4: Decoding: synthetic data (Erd6s—Rényi) with uniform and skewed path likelihood distri-
bution (Skewed), and real data on forced alignment (WSJ) and standard decoding (RM). Runtime
vs. queue size threshold #; y-axis in log scale.

Effect of 6 on linear-space algorithms. Figure 4 presents runtimes vs. the queue size threshold 6,
focusing on ranges of the § domain where MINT-LS may process tokens more than once, as explained
in Section 3.1. MINT-LS+, on the other hand, never processes the same token more than once.

SIEVE (Ciaperoni et al., 2022), a DP-based rather than A*-based algorithm, ensures O(K) space
complexity too, as it always stores K active tokens. However, SIEVE incurs a practical runtime
overhead (not time-complexity overhead) compared to Viterbi; we thus compare runtime to the
latter as a baseline. MINT-LS consistently performs the fastest on synthetic data with skewed path
likelihood distribution, where only a few paths are explored, yet becomes inefficient for small ¢
with uniform path likelihood distribution, where more paths are explored. On real data with forced
alignment, the runtime of MINT-LS grows modestly as ¢ falls; with larger decoding data, runtime
grows beyond that of Viterbi. Overall, MINT-LS is preferable for large enough #, while MINT-LS+
maintains runtime within the same order of magnitude as, and typically lower than, that of Viterbi.

—%=—Viterbi =p— Standard MINT-LS @— Standard MINT-LS+

2

z , = 10 r e re
g1 2 10’ Y ., g g
= 101 W E 100 o , E 101 Cnal
o v, g’10,1 210 7»‘_L @ WW
= 2 AR = ® b = o c -
E10° _pewe™” S102 e £ 03 £ 10 pseeessr>
I " & J & 24 @10 ¥

7 16 25 34 43 7 16 25 34 43 7 16 25 34 43 7 16 25 34 43

Path Length Path Length Path Length Path Length
Erd6s—Rényi Skewed WSJ RM

Figure 5: Decoding: synthetic data (Erdés—Rényi) with uniform and skewed path likelihood distri-
bution (Skewed), and real data on forced alignment (WSJ) and standard decoding (RM). Runtime
vs. path length T'; y-axis in log scale.

Effect of T' on linear-space algorithms. Figure 5 plots the runtimes vs. path length T for fixed
values of the queue size threshold 6 sufficiently small to reveal the challenges MINT-LS faces. The
results reconfirm that MINT-LS becomes inefficient as more paths are explored. As in Figure 4,
this effect is evident in synthetic data with Erd6s—Rényi transitions and uniform path likelihood
distribution and in the real decoding data. MINT-LS+ emerges as the algorithm of choice, achieving
competitive runtime even while maintaining memory usage under a small 6 threshold.

4.2 RESULTS ON HISTOGRAM CONSTRUCTION

Figure 6 shows the histogram construction runtime on synthetic data vs. B for input sequence
length n = 1010, and that of Standard TECH and the standard V-OPT algorithm vs. n for different
values of A\ = %. Standard TECH often suffices, as its variants do not bring significant gains.
Linear-space TECH incurs a manageable runtime overhead for the sake of space efficiency. All
compact-A* variants gain in time efficiency as B grows, delimiting the search space for each bucket.
Contrariwise, standard DP cannot contain the search space, hence its runtime surges for large B.
Figure 6 also shows results on real data. The gains of TECH solutions are more emphatic here, as
TECH exploits data patterns that facilitate summarization, whereas standard DP lacks such capacity.

—%— DP —8— Standard TECH ¥ TECH Bound
—&— Bidirectional TECH == Bidirectional TECH Bound =»— Standard TECH-LS

= A O & A
1 3 @ 1 3

% Az vz g % Az vz

£ 200 2 4 £ £ 200 2 4

= » 5 < 5 ; = > 5 < 5

o & o)

£100 2 = £100

c c c

c — 5 c -

S e S e

x O ——— o Z 0 —
200 600 1000 200 600 1000 200 600 1000 200 600 1
Number of Buckets Sequence Length Number of Buckets Sequence Length

Figure 6: Histogram construction, synthetic (L) and real (R) data; runtime vs. B, n varying A = %.

5 CONCLUSION

We introduced compact-A*, a framework that efficiently solves problems of fixed-length path opti-
mization by best-first search, while delimiting space complexity. We designed compact-A®-based
algorithms for Viterbi decoding and histogram construction. In Appendix E, we apply compact-A* to
another problem, temporal-graph community search. Our experiments evince that compact-A* gains
up to four orders of magnitude in time and space efficiency, the advantage being more pronounced on
real data with nonuniform path cost distributions.

REFERENCES

Arturs Backurs and Christos Tzamos. Improving Viterbi is hard: Better runtimes imply faster clique
algorithms. In ICML, pp. 311-321, 2017.

Richard Bellman. Dynamic programming. Science, 153(3731):34-37, 1966.

John Binder, Kevin P. Murphy, and Stuart Russell. Space-efficient inference in dynamic probabilistic
networks. In IJCAIL pp. 1292-1296, 1997.

Hugo Braun, Justin Luitjens, Ryan Leary, Tim Kaldewey, and Daniel Povey. Gpu-accelerated viterbi
exact lattice decoder for batched online and offline speech recognition. In ICASSP, pp. 7874-7878,
2020.

Martino Ciaperoni, Aristides Gionis, Athanasios Katsamanis, and Panagiotis Karras. SIEVE: A
space-efficient algorithm for Viterbi decoding. In ACM SIGMOD, pp. 1136-1145, 2022.

Martino Ciaperoni, Athanasios Katsamanis, Aristides Gionis, and Panagiotis Karras. Beam-search
SIEVE for low-memory speech recognition. In Interspeech 2024, pp. 272-276, 2024.

Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269-271, 1959.

Pedro F. Felzenszwalb, Daniel P. Huttenlocher, and Jon M. Kleinberg. Fast algorithms for large-state-
space HMMs with applications to web usage analysis. In NeurIPS, pp. 409—416, 2003.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. HyperLogLog: the analysis of
a near-optimal cardinality estimation algorithm. In Conference on Analysis of Algorithms (AofA),
pp. 137-156, 2007.

Daniel Foead, Alifio Ghifari, Marchel Budi Kusuma, Novita Hanafiah, and Eric Gunawan. A
systematic literature review of A* pathfinding. Procedia Computer Science, 179:507-514, 2021.

Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34(3):596-615, 1987.

Mark J. F. Gales and Steve J. Young. The application of hidden markov models in speech recognition.
Foundations and Trends in Signal Processing, 1(3):195-304, 2007.

Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro Cattuto, and Francesco
Gullo. Span-core decomposition for temporal networks: Algorithms and applications. ACM Trans.
Knowl. Discov. Data, 15(1):2:1-2:44, 2021.

John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, and
Nancy L. Dahlgren. DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST
speech disc 1-1.1. National Institute of Standards and Technology, 1993.

Michel Gondran and Michel Minoux. Graphs, Dioids and Semirings: New Models and Algorithms
(Operations Research/Computer Science Interfaces Series). Springer, 2008. ISBN 0387754490,
9780387754499.

Sudipto Guha. Space efficiency in synopsis construction algorithms. In VLDB, pp. 409—420, 2005.

Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and streaming algorithms for
histogram construction problems. ACM Trans. Database Syst., 31(1):396—438, 2006.

Felix Halim, Panagiotis Karras, and Roland HC Yap. Fast and effective histogram construction. In
CIKM, pp. 1167-1176, 2009.

Liang Huang. Advanced dynamic programming in semiring and hypergraph frameworks. In Coling
2008: Advanced Dynamic Programming in Computational Linguistics: Theory, Algorithms and
Applications - Tutorial notes, pp. 1-18, 2008.

Zhiheng Huang, Yi Chang, Bo Long, Jean-Frangois Crespo, Anlei Dong, S. Sathiya Keerthi, and
Su-Lin Wu. Iterative Viterbi A* algorithm for k-best sequential decoding. In ACL, pp. 611-619,
2012.

10

Hosagrahar Visvesvaraya Jagadish, Nick Koudas, Shanmugavelayutham Muthukrishnan, Viswanath
Poosala, Kenneth Clem Sevcik, and Torsten Suel. Optimal histograms with quality guarantees. In
VLDB, pp. 275-286, 1998.

Jihyuk Jo, Han-Gyu Kim, In-Cheol Park, Bang Chul Jung, and Hoyoung Yoo. Modified viterbi
scoring for hmm-based speech recognition. Intelligent Automation & Soft Computing, 25(2):
351-358, 2019.

Panagiotis Karras and Nikos Mamoulis. Hierarchical synopses with optimal error guarantees. ACM
Transacation on Database Systems, 33(3):18:1-18:53, 2008.

Dan Klein and Christopher D. Manning. A* parsing: Fast exact Viterbi parse selection. In HLT-
NAACL, pp. 119-126, 2003.

Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in a high school: a comparison
between data collected using wearable sensors, contact diaries and friendship surveys. PloS one,
10(9):e0136497, 2015.

Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance problems. J. Autom. Lang.
Comb., 7(3):321-350, 2002. ISSN 1430-189X.

Douglas B. Paul and Janet M. Baker. The design for the wall street journal-based CSR corpus. In
The 2nd International Conference on Spoken Language Processing (ICSLP), 1992.

Judea Pearl. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley
Longman Publishing Co., Inc., 1984.

Ira Pohl. Bi-directional and heuristic search in path problems. Technical report, Stanford Linear
Accelerator Center, Calif., 1969.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel,
Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg Stemmer,
and Karel Vesely. The kaldi speech recognition toolkit. In IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), 2011.

P Price, W Fisher, J Bernstein, and D Pallett. Resource management rm2 2.0. DVD. Philadelphia:
Linguistic Data Consortium, 1993.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3 edition,
2010.

Sajid M. Siddiqi and Andrew W. Moore. Fast inference and learning in large-state-space HMMs.
In Proceedings of the 22nd International Conference on Machine learning (ICML), pp. 800-807,
2005.

Moshe Sniedovich. Dijkstra’s algorithm revisited: the dynamic programming connexion. Control
and cybernetics, 35(3):599-620, 2006.

Christopher Tarnas and Richard Hughey. Reduced space hidden Markov model training. Bioinfor-
matics, 14(5):401-406, 1998.

Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang.
Optimal algorithms for ranked enumeration of answers to full conjunctive queries. Proc. VLDB
Endow., 13(9):1582-1597, 2020.

Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory, 13(2):260-269, 1967.

Andrew J. Viterbi. A personal history of the viterbi algorithm. IEEE Signal Processing Magazine, 23
(4):120-142, 2006.

Steve J. Young, N.H. Russell, and J.H.S. Thornton. Token passing: a simple conceptual model for
connected speech recognition systems. University of Cambridge, Department of Engineering,
1989.

11

Steve J. Young, Gunnar Evermann, Mark J. F. Gales, Thomas Hain, Dan Kershaw, Xunying Liu,
Gareth Moore, Julian Odell, Dave Ollason, Dan Povey, et al. The HTK Book. University of
Cambridge, Department of Engineering, 2002.

12

A PROOFS

Proposition 1. Standard MINT is correct.

Proof. Let T be the set of all tokens (i.e., state-frame pairs) and V the set of visited tokens, for which
optimal cost has been computed. Initially V includes the source s with optimal cost p; = —log B, ,,,
and —pj is its log-likelihood. In each iteration, we add to 'V a token (s;, t) from 7 \ 'V with cost p;.
To complete the induction, we must show that p; is optimal for its length ¢. First, if the true ¢-
length-optimal path goes only through tokens in V, for which, by the inductive hypothesis, the
optimal cost is known, then p; must be ¢-length-optimal. Assume that the ¢-length-optimal path goes
through a token (s}, ¢") not in V; this token necessarily has cost p; > p;, hence any path through it is
suboptimal. Therefore, —p; is the maximum Viterbi path log-likelihood max,, T/[s;, t]. O

Proposition 2. MINT Bound is correct.

Proof. We prove the statement by contradiction. Assume the algorithm returns a token (s*,7") with
cost ¢* > max;, T[s;, T]. Then there must be an unvisited token (s’,¢’), which, if propagated to
the last frame, produces a path of likelihood max, T|[s;, T]. Such a token would have priority ¢’ +
(T —1') - ¢, where ¢ is the real cost of arriving to s’ in ¢’ frames. Since é; lower-bounds the cost
of moving from frame to frame, it follows that ¢/ + (T' — t') - ¢, < maxg, T[s;, T] < ¢* at any
time ¢’ < T Therefore (s*,T’) cannot be dequeued before (s',¢’), ergo the proof is completed. [

Proposition 3. Bidirectional MINT is correct.

Proof. The algorithm alternates between a forward and backward step and maintains the best-so-far
path of T steps. Correctness rests on the stopping condition. The algorithm terminates when either (i)
both queues are empty or (ii) the elements (sfc ,t) and (s?,t*) popped from the queues have joint
cost dg[(s],)] + dy[(s?, t?)] that is larger than the current best path cost 1. Regarding condition
(i), when both queues are empty, all possible paths have been generated, so the algorithm returns the
optimal. Regarding condition (ii), assume that the optimal path is not yet found when the algorithm
terminates returning —u. Then there must be a path Q* of cost u* < u containing at least one not
yet visited token in Vy U V. Such a token would have cost at least d ¢ [(slf ,t£)] on the forward side
and d,[(s%,)] on the backward side, hence path Q* would have cost y* > y, a contradiction. [

Proposition 4. The minimum error miny, Ey, among b buckets of an equal-width partitioning a
sequence I is a lower bound to the V-optimal histogram cost and), Ey, is an upper bound.

Proof. Let Hp be the V-optimal histogram of size B on sequence I and H; be the histogram of
the same number of buckets on the same sequence, where all buckets have the same size, except
possibly the last. Let [s;, e;] be the boundary positions and E; the error of the 41 bucket in H, and
let [s';, €”] and I’ be the corresponding boundary positions and error of the j th bucket in H';. Then at
least one bucket of Hp, say the jth, has a; < a; and b; > b;, i.e., it fully contains the corresponding
bucket in H jg. Then, as E' is monotonically non-decreasing with bucket width, E; > E'; besides,
E; < ZheHB E},, ergo miny, Ej, < E; <E; < ZheHB E},, hence miny, Ej, is a lower bound to
the V-optimal histogram cost. Furthermore,), E; is an upper bound on the V-OPT histogram cost,
since, by definition of the V-OPT histogram Hg, Y, E, < >, E}. O

B DATA, MEASURES, AND PARAMETERS

Data. We experiment on both synthetic and real-world datasets.
We evaluate MINT and TECH variants on synthetic data generated according to the following models:

* Erdds—Rényi model where each hidden state is emitting and connected with any other state with
probability p = 0.01; transition and emission probabilities are generated uniformly at random, thus
arbitrary cycles may be present. All states are emitting.

13

* Skewed path likelihood model, where we generate a fixed number N4, (100, by default) of paths
of length T starting from initial state s, and composed of emitting states. To each such path we
assign a probability drawn from a power law distribution p(z,) = az®~!, which we distribute
evenly across transition and emission probabilities of all states in the path. As in the previous
case, all states are emitting. We use this model to investigate how skew in the distribution of path
likelihoods affects the advantage granted by compact-A*-based solutions.

We also assess MINT on real speech data:

» Wall Street Journal (WSJ) corpus data: we use a real-world composite HMM for speech-text
forced alignment, the process of aligning text to audio recordings, which is also tackled by the
Viterbi algorithm. The model is built using the HTK software toolkit Young et al. (2002) and
contains 5529 states (including initial states), out of which 3204 are emitting; it was trained
on the WSJ corpus Paul & Baker (1992) aiming to align speech recordings from the TIMIT
corpus Garofolo et al. (1993).

* Resource Management (RM) corpus data: we use a real-world composite HMM for decoding,
trained on the RM speech corpus Price et al. (1993) and built using the Kaldi software toolkit Povey
et al. (2011), The graph comprises 25 333 states (including initial state) and 175 428 edges, out of
which 162 255 also carry emission probabilities. We decode subsets of a simple recorded utterance
of up to 100 frames.

The observation sequence Y consists of feature vectors of Mel-Cepstrum cepstral coefficients and
their derivatives and emission probabilities are given by multivariate Gaussian mixture models.

Similarly, we evaluate TECH in (i) synthetic sequences of integers in the range [0,50] and
(i1) Dow-Jones Industrial Average (DJIA) closing values real data.

Metrics. We measure runtime in seconds (s) and memory in bytes (B). In all cases, we report averages
over 5 runs.

Parameters. Regarding decoding in HMMs, in experiments with synthetic data, we vary T in
geometric progression of 9 values from 5 to 30 with K = 7500; in experiments with real data,
we vary T in geometric progression of 9 values from 5 to 100 with K fixed to the size of the
original state space. Furthermore, in synthetic data we vary K in a geometric progression of 5 values
from 1000 to 16000 with T = 10; in real data, we vary K over 5 values in geometric progression
from 1000 (forced alignment) or 1900 (decoding) to approximately the size of the original state space,
with T' = 30. To vary K in real-world HMMs, we sample subsets of the original HMM graph via
snowball sampling from a start state source. To investigate the combined impact of K and T', we also
vary them simultaneously. We also vary K € {25 x 103,30 x 103} and T' € {25, 30} to monitor how
MINT variants behave during runtime in terms of memory usage and the evolution of path likelihood.
In the experiment with the skewed path likelihood model, we also vary the power law parameter «
controlling skewness in 17 values from 10~2 to 102 with Npatn = 100, T = 10 and K = 1500. In
the space-efficient standard and bidirectional MINT-LS, unless specified otherwise, we set the queue
size threshold 0 to 10% of K x T. However, with Erd6s—Rényi data, which call for a larger budget
as they reflect a worst-case scenario, we set 6 to 90% of K x T. In MINT-LS+, unless specified
otherwise, we set 0 = K.

To assess the runtime of MINT-LS to MINT-LS+ as a function of the queue size threshold 6, we
use synthetic data with K = 7500 and 7" = 10 and real data with K defined by the state space
and 1" = 30, varying 6 in arithmetic progression with step 15 from 5 to 125 on synthetic data with
skewed path likelihood distribution and real forced alignment data, where the amounts of paths to be
explored is limited, from 350 to 550 on Erd6s—Rényi data, and from 475 to 675 on real decoding data.
We set the Ag in MINT-LS+ to 2. To assess the runtime of MINT-LS to MINT-LS+ as a function
of path length 7', we use synthetic data with K = 16000 and real data with K defined by the state
space, varying 71" in arithmetic progression with step 3 from 7 to 49. We set § = 2700 on synthetic
ErdGs—Rényi data, # = 10 on synthetic data with skewed path likelihood distribution, # = 20 on real
forced alignment data, and & = 800 on real decoding data, and Ay in MINT-LS+ to 5.

In histogram construction experiments, we vary B from 100 to 1000, while holding n fixed to 1010.
We also consider sequences of length n increasing from 100 to 1000 for the different values of \ = g
indicated in the results. With TECH-LS, we set the queue size threshold to 10% of n x B.

14

—¥—_Viterbi —8—_Standard MINT = MINT Bound —4— Bidirectional MINT
—4— Bidirectional MINT Bound =»— Standard MINT-LS —— Bidirectional MINT-LS

O 1
g M 10
E 10 & 10°
10 N
£ /;/”‘;?s of 10
c & -2 =
3, 2§ 10 =
x
10 5 8 12 19 30 1000 4000 16000
Path Length State Space Size

Figure 7: Decoding, synthetic data. Runtime vs. path length (left) and state space size (right).

—%—Viterbi —&— Standard MINT = MINT Bound ~— Bidirectional MINT
—4— Bidirectional MINT Bound =»— Standard MINT-LS —— Bidirectional MINT-LS
-1
=10 4
202 = s
£ 10 . D 10 ;:4;—,4;:-:21—-3
o -3 - ¥
£10 —F
: N g ¢ a0
S '\0 AQ ‘\Q A A A
x o) 1 ‘l\ L rL % ‘I~ AQ)
-2 -1 0 1 2) s
1072 10" 10° 10" 10° O° k\E’ @0 (o k \20 (lE’ 0
Power Law a Path Length & State Space Size Path Length & State Space Size

Figure 8: Decoding; synthetic data with skewed path likelihoods; runtime vs. skew « (left);
synthetic Erdés—Rényi data (center) and synthetic data with skewed path likelihoods (right): runtime
vs. both linearly growing path length 7" and exponentially growing state space size K, indicated
as (T, K); shaded regions indicate the minimum and maximum runtime due to randomness in data
generation; both axes on log scale (left) and y-axis in log scale (center and right).

C ADDITIONAL EXPERIMENTS

Synthetic data, runtime vs. 7' and K. Figure 7 plots runtime vs. path length 7" and state space
size K on Erd6s—Rényi data. MINT accelerates decoding significantly, thanks to visiting only a few
tokens. MINT-LS incurs marginal runtime overhead compared to MINT. Still, processing a single
token is faster in Viterbi, as MINT’s queue management incurs overhead, causing savings to drop
as T' grows. This result stems from the data model, which reflects a worst-case scenario whereby
path likelihoods converge for large enough 7', leading MINT to visit too many tokens. Conversely, in
real-world speech data with probabilities concentrated over a limited subset of paths, MINT yields
higher savings by focusing on the most promising paths.

Runtime vs. a. To demonstrate the effect of path likelihood skew using synthetic data, Figure 8
plots runtime as a function of the parameter « of the power law distribution over the path likelihoods.
Notably, the highest savings are obtained for « close to 1. This is due to the fact that, for remarkably
smaller or larger «, all paths tend to be equally likely, so MINT cannot focus on a small subset of
paths. Nevertheless, even in the case where the path likelihood distribution approaches the worst
case, as in the Erd6s—Rényi model, we still have high savings for small 7', which is a popular
setting in modern speech recognition. Regarding different implementations of MINT, we observe
that the use of lower bounds is not always crucial for runtime; however, as « increases, MINT
Bound vastly outperforms Standard MINT by virtue of its capacity to prune paths from consideration
more aggressively. Furthermore, bidirectional-search variants accomplish the highest efficiency
on synthetic data, both those generated by the Erd6s—Rényi model and those with skewed path
likelihoods; these results vindicate our development of those enhanced solutions.

Runtime vs. T' and K tuned in unison. We also measure runtime as a function of both 7" and K on
Erdés—Rényi model data and on those with skewed path likelihood distribution with o« = 1. Figure 8
shows the results. Shaded regions indicate the minimum and the maximum over runs, which convey
the extent of random variation; as the figure shows, that extent is quite limited. The savings observed
as we increase both T and K are consistent with our previous findings and most pronounced in the
skewed likelihoods scenario. In the Erd6s—Rényi model, as most paths of a given length have similar
likelihoods, the savings are more modest and decrease with the growth of both 7" and K.

15

Real-time memory monitoring. Figure 9 shows memory requirements at run time for four parameter
configurations on synthetic data with skewed path likelihood distribution using o« = 1; for reference,
we also provide the constant memory used by standard Viterbi. Notably, MINT variants reduce the
memory requirements of Viterbi by several orders of magnitude. Unsurprisingly, the two bidirectional-
search variants consume slightly more memory, yet need fewer iterations till termination, as they
apply both a forward and a backward search with two queues. With MINT-LS, we show memory
consumption vs. iterations or DFS calls. While by the chosen budget, MINT-LS variants use as little
as 25% of the memory used by MINT variants; this advantage may grow on demand by reducing the
queue size threshold 6.

—— Viterbi —— Standard MINT MINT Bound —— Bidirectional MINT
—— Bidirectional MINT Bound —— Standard MINT-LS —— Bidirectional MINT-LS
10’ - _ 10 _
) Iteration Iteration
g 4— - 4— -
g :]] 83 R E———] 83 e ——t
=" 10" 10 10 10° 10" 10 10 10’
(K = 25000,T = 25) (K = 30000,T = 30)

Figure 9: Synthetic data with skewed path likelihood distribution; memory requirements on the fly.

~@- Standard MINT == Backtracking MINT

)

2 3x10° .
§2x1o: o«
§1x10 —o

¢ A0, A0 0)

3 3
0) A0
o \m\\ 5. \5*@' 7_0*@5' 7_5»«23& 30K

Path Length & State Space Size
Figure 10: Decoding, synthetic data with skewed path likelihood distribution. Memory requirements
of default MINT and memory-efficient MINT-Backtracking. Maximum (peak) memory vs. path
length T" and state space size K, indicated as (T, K); % is fixed.

Effect of backtracking. As explained in Section 3.1, by default MINT variants store paths explicitly;
however, we may reduce memory usage by only storing the predecessor of each token (s;,¢) and
eventually reconstructing the optimal path by backtracking over such links, with a small runtime
overhead and savings in memory consumption. We refer to the resulting implementation as MINT-
Backtracking. To illustrate this effect, Figure 10 presents the maximum memory usage of the two
implementations of standard MINT under the HMM graph model with skewed path likelihood
distribution (o = 1) as a function of both K and 7". While the difference in memory requirement is
evident, we measured the corresponding runtime difference to be negligible. MINT-LS employs the
backtracking implementation for the sake of space efficiency. Besides, MINT-Backtracking extends
seamlessly to all variants of MINT. In the case of bidirectional-search-based variants, backtracking
proceeds in both directions after the optimal path is found.

— Viterbi —— Standard MINT MINT Bound —— Bidirectional MINT —— Bidirectional MINT Bound
ko) 4 4
6 10 10
_8 3 / 3 /
310 - 10 |
S10° = 107
8 1 1
—110 10
100 101 102 ‘|03 100 101 102 103
Iteration Iteration
(K = 25000,T = 25) (K = 30000,T = 30)

Figure 11: Synthetic data, skewed path likelihood distribution; path log-likelihood (in absolute value)
on the fly; axes on log-scale.

Real-time log-likelihood monitoring. We also monitor the optimal path log-likelihood absolute
value across iterations. This absolute value grows, as longer paths have lower likelihood than shorter

16

® N AU AW =

e

=
S

® NN AW =

—-
- e

13
14

16
17

18
19

ones. Figure 11 presents our results, using the same four parameter configurations as in Figure 9. In
all algorithms the likelihood approaches the optimal value swiftly and monotonically. In the case
of standard Viterbi, we plot the highest likelihood found at the end of each frame (i.e., path length
considered), hence Viterbi appears to undergo fewer iterations. For the two bidirectional MINT
variants, we plot the sum of likelihoods associated with the last tokens de-queued from the forward
queue Qy and the backward queue Q; in each iteration. For other algorithms, we plot the likelihood
associated with the token dequed from Q in each iteration. We found that MINT-LS variants exhibit
the same progression of path likelihood as the corresponding MINT variants.

Algorithm 1: Standard MINT

Data: HMM graph G, transition and emission probabilities A and B, observations Y, and initial state s.
Result: Viterbi Path Log-Likelihood maxs, T[s;, T].

Q + Queue((s,1),p(s,1) = —log By,)
V—{}h
while Q # (do
(si, t),pl < Q.pop(); // (state, frame), priority
if ¢t = T then break;
V.add((si,t));
for s; in G[s;] do
if (sj,t + 1) ¢ V then
d <+ pi — logAsi,Sj - longj=yt+1;
if (sj,t + 1) ¢ Qthen Q.insert((s;,t+ 1),p(s;,t+ 1) =4d);
if Q[(s;,t+ 1)] > dthen Q.update((s;,t+1),p(s;,t+1)=4d);
return —p;;

Algorithm 2: Bidirectional MINT

Data: HMM graph G, transition and emission probabilities A and B, observations Y, and initial and final states source and target.
Result: Viterbi Path Log-Likelihood max;, T[s;, T'].

Qy + Queue((source, 1), p (source, 1) = —1log Bsource,y)}

Qp +— Queue((target,T), p (target,T) = 0);

Vi {1 Ve {3 p < oo

while Q;, # 0 A Qf # 0 do

(s],t%),p] < Qs.pop(); (s7, %), p} + Qu.pop();

dsls]] < pls dylsi] ol

Vs.add((s?, ¢)); Vi.add((sY, t%));

if t¥ < T then

for s; in G[sif] do

Update Qs for (s;,t + 1);

if (sj,t+1) € Vo Adg[(s],¢7)] —log A —log By, y +dsl(sj,t+ 1)] < p then

7 J
| m=drlGl) —log A ;| —log Bujyyyy + dollssit+ D

J
if t> > 1 then
for s; in G,-EU[S?] do
Update Qp for (sj,t — 1);
if (s5,t — 1) € Vy Adyp[(s?,t%)] — log Asj,sl‘, —logBy +df[(sj,t —1)] < juthen
‘ p=dp[(s%,%)] — logASj,sg_, —log B v T dg((sj,t — 1))
? 2t
if dy[(s{,t7)]+ dy[(s?,¢")] > pu then break;
return — [u;

D PSEUDOCODES

Here we collect pseudocodes for the presented algorithms.

Algorithm 1 presents MINT. Algorithm 2 presents Bidirectional MINT, assuming that both an initial
and final state are given. Algorithm 3 illustrates TECH. Algorithm 5 provides the pseudocode of
MINT-LS, which uses Algorithm 4 as a subroutine. Lastly, Algorithm 6 presents MINT-LS+.

E CASE STUDY

As a case study, we apply compact-A” to the problem of temporal community search Galimberti et al.
(2021). Given a temporal graph G over a temporal domain 7 = [0, 1, . .. t;nqz], an integer h, and a
set of query nodes ¢, the problem seeks a partitioning P of the temporal domain into & segments and a
subgraph G, that contains the query nodes ¢ within each bucket and maximizes the sum of minimum
degrees of subgraphs in P. This problem is pertinent as the growing availability of timestamped

17

X 9 AW N =

20

Algorithm 3: Standard TECH

Data: Input sequence I, integer B.
Result: V-Optimal Histogram Error E* (n, B).
Q < Queue((1,1),p(1, 1) = 0);
S+ [;SS + [V + {};n «< I.length;
S[1] « I[1]; SS[1] + I[1]%;
fori € {2,...,n}do
| S[i] < S[i — 1] + I[i]; SS[d] « SS[i — 1] + I[i]%;
forje{2,...,n—(B—1)}do
Quinsert((7,1), p(j, 1) = E(1,3));
while Q # (do
(2,b),p < Q.pop(); // (values,buckets),priority
V.add((z,b));
if b = B A i = n then break;
if b < B then
forje{i+1,...,n—B+b+1}do
if (j,b+ 1) ¢ V then
dp+ E(i,)
if (j,b+ 1) ¢ Q then
| Quinsert((j, b+ 1), p(s, b+ 1) = p+ E(i + 1, 7))
ifQ[(j,b+ 1)] > p+ E(i + 1,) then
| Quupdate(7, b+ 1), p(j, b+ 1) = p+ E(i +1,5)

return p;

Algorithm 4: DFS

Data: HMM graph G, transition and emission probabilities A and B, states S, observations Y, initial state s;, predecessor pred, initial
frame ¢, initial path priority p;, middle pair, queue Q, middle frame.
Result: updated queue Q.
if t = middle_frame then
| middle_pair < (pred, s;); // update middle pair
if t < T then
for s; in G[s;] do
if s; € S then
d <+ p; — log Asiysj — log Bs
if (s;,t + 1) € Q then
if Q[(sj,t 4+ 1)] > d then
\ Q.update((sj,t + 1),p (sj,t + 1) = d, pred = s;, middle_pair = middle_pair);

ovte1r

else
\ Q < DFS(G, A, B, S.Y, s;,si,t + 1, d, middle_pair, Q, middle_frame); // continue DFS
else
if (si,t) ¢ Q then Q.insert((s;,t),p (si,t) = p;, pred = pred, middle_pair = middle_pair) ;
else Q.update((s;,t),p (si,t)=pi,pred, middle_pair);
return Q;

data generates interest in temporal graph management. Real-world temporal graphs typically align
themselves in evolving communities, which one may study by focusing on a set of query nodes.

The problem is solved by the DP recursion:

*(i,b) = *(j,b—1 G+ 1,1 5

p*(i,b) o NAX p 2)+ vy (G +1,4), (5)

where p*(i,b) denotes the optimal objective value for a partition of the first 4 timestamps in b
segments and v} (j + 1,4) is the maximum minimum degree of a subgraph containing query nodes q

and enduring from the (j + 1)*® to the i'" timestamp. A cross-examination of Equations (5) and (4)
reveals their analogy, with the main difference lying in the value associated with each segment, i.e.,
in the terminology of Section 3, the gap function. Thus, the dynamic-programming algorithm for
histogram construction also solves temporal community search with the necessary modifications.

Nevertheless, to compute the gap function v} (j, i) we need to identify a subgraph containing the
query nodes ¢ of maximum minimum degree, for each query and each of the O(¢2,,,) possible
(4, 1)-buckets. The solution in Galimberti et al. (2021) precomputes all gap function values through
span-core decomposition and uses them in the dynamic-programming recursion of Equation (5).

We apply compact-A* to obtain an advantage over the DP solution to temporal community search on
a real-world temporal network that captures interactions between students and teachers of nine high
school classes in France over five days (Mastrandrea et al., 2015). The temporal graph has 47.590
edges (interactions) and 327 nodes (students and teachers). These parameters only affect the offline

18

1
2
3

Algorithm 5: MINT-LS

Data: HMM graph G, transition and emission probabilities A and B, states .S, observations Y, queue size threshold 0, initial and final
state startSt and lastSt, initial and final frame startFr and lastFr.
middle_frame <— [(startFr + lastFr) /2], V <— {} // initialization
Q <+ Queue((startSt, startFr), p (startSt, startFr) = d, pred = —1, middle_pair = (—1, —1));
while Q # 0 do
(si,t), pi,pred, middle_pair <— Q.pop();
V.add((s;, t));
if ¢ = middle_frame A middle_pair = (—1, —1) then
‘ middle_pair < (pred, s;); // update middle pair
if (t = lastFr A lastSt = —1) V (¢t = lastFr A lastSt = s;) // lastSt = —1 if not input
then

S,n— 3 S+ < middle_pair; // extract middle pair
N, < middle_frame; // number of frames before the middle pair
if N, > 1// continue recursion in predecessors

then

‘ Sp ¢ FIND-T-HOPPRED(s,, —, Np); // find predecessors of s,

MINT-LS(G, A, B, Sp, Y, F, 0, startSt, s, _, startFr, Np) ;

N, < startFr + Np,; // number of frames after the middle pair
print (s, —,s 1);// in-order print of middle pairs
if Ng > 1// continue recursion in successors

then
Ss < FIND-T-HoPSUCC(s,, 1, Ng);// find successors of s, .4
MINT-LS(G, A, B, Ss, Y, F,0, s, +,lastSt, N, lastFr);
for s; in G[s;] do
if (sj,t+1) ¢ VAs; €S then

d < p; — log Asi,sj- —log BSjTyt+1;

ifQ[(sj,t+1)] >dV (s;,t+1) ¢ Qthen
if Q.size() > 0 A (s;,t+ 1) ¢ Q then
\ DFS(G, A,B,S,Y, s;, pred, t + 1, d, middle_pair, Q, middle_frame);
else

if (sj,t+ 1) ¢ Q then
Q.insert((s;,t + 1),p(s;,t + 1) = d, pred = s;, middle_pair = middle_pair) ;
else Q.update((s;,t+ 1),p(s;j,t+ 1) = d,pred = s;, middle_pair = middle_pair) ;

== TCS —@- TECH-TCS

10" 10°
Number of Buckets

Running Time (s)

Figure 12: Temporal community search; runtime by number of buckets partitioning the domain.

pre-computation of gap function values and not the query processing phase. The length of the
sequence to be partitioned is ¢,,,, = 1212. We apply the standard DP algorithm (TCS) and an
algorithm based on Standard TECH (TECH-TCS) on the problem with a query comprising the node
labelled 1. Figure 12 plots runtime vs. the number of buckets that partition the temporal domain,
varied in geometric progression with ratio 1.5, from 10 to 608. Notably, TECH-TCS outpaces TCS,
even for a few buckets. We obtained similar results with different query nodes and larger query node
sets, as the query does not affect the search space of the DP solution and its compact-A" counterpart.

19

—

Algorithm 6: MINT-LS+

Data: HMM graph G, transition and emission probabilities A and B, states S, observations Y, queue size threshold 6, initial and final

state startSt and lastSt, initial and final frame startFr and lastFr, maximum number of frames in the queue Aq.
middle_frame < [(startFr + lastFr) /2], V < {};
// initialization
Q <+ Queue((startSt, startFr), p (startSt, startFr) = 0, pred = —1, middle_pair = (—1, —1));
Q: < Queue((startSt, startFr), p (startSt, startFr) = startFr, cost = 0, pred = —1, middle_pair = (—1, —1));
current_max_frame <— startFr, EFS_flag <— Flalse;
while Q # 0 do
if EFS_flag = T'rue then
(si,t),t, p;, pred, middle_pair <— Q¢.pop();
Q.delete(((s4,1));

else
(si,t), pi, pred, middle_pair <— Q.pop();
Q) .delete((s;,t));
V.add((si,t));
if ¢ = middle_frame A middle_pair = (—1, —1) then
| middle_pair <— (pred, s;); // update middle pair
if (¢ = lastFr A lastSt = —1) V (¢ = lastFr A lastSt = s;) // lastSt = —1 if not input
then

8, — 3 S,,+ <+ middle_pair; // extract middle pair
N, < middle_frame; // # frames before middle
if N, > 1// continue recursion in predecessors
then
‘ Sp < FIND-T-HOPPRED(s,, —, Np); // find predecessors of s, _
MINT-LS+(G, A, B, Sp, Y, F, 0, startSt, s, startFr, N;,, AqQ) ;
N < startFr + Np; // number of frames after the middle pair
print (sm, 7sm+); // in-order print of middle pairs
if Ng > 1// continue recursion in successors
then
Ss < FIND-T-HoPSuCC(s,, +, Ns);// find successors of s, 4
MINT-LS+(G, A, B, S5, Y, F,0,s, +,lastSt, N, lastFr, Aq);
for s; in G[s;] do
if (sj,t+1) ¢ VAs; €S then
d <+ p; — logASi,Sj — longj,yHrl;
if Q[(sj,t+1)] >dV (s;j,t+ 1) ¢ Q then
if (sj,t + 1) ¢ Q then
Q.insert((s;,t + 1),p(s;,t + 1) = d, pred = s;, middle_pair = middle_pair);

if t + 1 > current_max_frame then
\ current_max_frame <— t + 1;// update maximum frame in the queue
else
Q.update((s;,t + 1), p(s;,t + 1) = d, pred = s;, middle_pair = middle_pair);

if EFS_flag = False then
if Q.size() > 6 then
‘ EFS_flag < True;// activate EFS

else
(current_min_state, current_min_frame) <— Q;.top();// access minimum frame in the queue
if Q.size() < 0 V current_max_frame — current_min_frame < Agq then
‘ EFS_flag < False;// deactivate EFS

Qq.insert((s;,t+1),p(s;,t + 1) =t + 1, cost = d, pred = s;, middle_pair = middle_pair);

Q:.update((s;,t+ 1),p(s;,t + 1) =t + 1, cost = p, pred = s;, middle_pair = middle_pair);

20

	Introduction
	Background and Related Work
	The Compact-A* Framework
	The MINT algorithm
	The TECH algorithm

	Experiments
	Results on Viterbi decoding
	Results on histogram construction

	Conclusion
	Proofs
	Data, Measures, and Parameters
	Additional Experiments
	Pseudocodes
	Case Study

