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ABSTRACT

Expansion property of a graph refers to its strong connectivity as well as sparse-
ness. It has been reported that deep neural networks can be pruned to a high
degree of sparsity while maintaining their performance. We prune recurrent net-
works such as RNNs and LSTMs, maintaining a large spectral gap of the underly-
ing graphs and ensuring their layer-wise expansion properties. We also study the
time unfolded recurrent network graphs in terms of the properties of their bipar-
tite layers. Experimental results for the benchmark sequence MNIST, and Google
speech command data with noise show that expander graph properties are key to
preserving classification accuracy of RNN and LSTM.

1 INTRODUCTION

Neural networks can often be pruned to very high sparsity while maintaining the performance. This
phenomenon has been stated as the lottery ticket hypothesis (Frankle & Carbin, 2018). It has been
observed that the winning lottery tickets follow certain desirable graph theoretic properties. The
relation between the lottery ticket hypothesis and expander and Ramanujan graph properties for fully
connected and convolutional neural networks has been previously explored in (Pal et al., 2022).

Expander properties of feed-forward networks in general have been well studied in the literature
(Prabhu et al., 2018; Hoang et al., 2023; Stewart et al., 2023; Esguerra et al., 2023). However, there
is no work which studies the performance of recurrent networks like RNNs and LSTMs with respect
to their expansion properties. In this paper we study the expansion properties of recurrent neural
networks (RNN) and LSTM, and observe that performance of such networks is strongly correlated
with the spectral bounds characterizing the properties. We adopt a method for time unrolling the
recurrent structures to obtain bipartite graphs on which spectral bounds are computed.

2 RAMANUJAN BOUNDS AND NETWORK STRUCTURES OF RNN AND LSTM

Let Γ = (V,E) be a d-regular (d ≥ 3) bipartite graph. Let the eigenvalues of its adjacency matrix
be λn ≤ λn−1 ≤ . . . ≤ λ2 ≤ λ1. Then Γ is said to be Ramanujan iff |λi| ≤ 2

√
d− 1, for

i = 2, . . . , (n − 1) (Lubotzky et al., 1988). The quantity davg is the average degree of all vertices.

Using this, we consider the following expressions ∆R =
2
√

davg−1−λ2

λ2
and ∆S = 2

√
λ1−1−λ2

λ2
. The

pruning process is depicted in 1. For details see Appendix.

Recurrent networks and LSTMs are cyclic structures which can be made acyclic by folding over
time. In the unrolled network the weights are copied over the time steps, and only the hidden state
and the input values change. Given a RNN or a LSTM, we consider the complete bipartite network
through which the input data passes during inference. The graph structures are shown in Figure 2.

Figure 1: Pruning Process
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(a) Classic RNN (b) Unfolded RNN (c) Classic LSTM (d) Unfolded LSTM

Figure 2: Bipartite representation of RNN and LSTM by unfolding over the time steps

3 DATA SETS AND EXPERIMENTAL RESULTS

We provide results for RNN trained on the sequential MNIST dataset (Le et al., 2015) and LSTM
trained on the Speech Commands dataset (Warden, 2018). Classification accuracy on the test split
of the dataset (20%) is used as the performance measure of the network. We also add a Gaussian
noise with zero mean and σ variance to p fraction of the pixels of MNIST. We considered p = 0.20
and σ = 0.15, 0.30, 0.45, 0.60, respectively to study the effect of varying degree of noise.

Table 1: Hyperparameters for the experiments

Learning Rate Training Epochs Pruning Epochs Batch Size Optimizer Initialization Loss Function
0.001 20 20 128 Adam Kaiming Uniform Cross Entropy

The goal of our experiments is to study the effect of preserving expander graph properties on the
performance of sparse RNN and LSTM. One shot pruning is used to sparsify the network. The
weights between input to hidden layers, feedback layers, and hidden to output layers are represented
as Wxh, Whh, and Why . We only prune the Wxh and Whh layers, leaving out the dense Why

layer unchanged. Figure 3 shows the variation considering the unweighted adjacency matrix for
the MNIST (k = 28) and Speech Command (k = 400) datasets where k is the sequence length.
For MNIST dataset, the Wxh and Whh weights lose the Ramanujan property at a remaining edge
percentage of 50.0% and 12.0% respectively. For the speech command dataset, which has a longer
sequence length, we observe that the zero crossing is at remaining edge percentage of 50% and 35%
for Wxh and 35% for Whh. We observe from Figure 3 that the degradation in performance with
loss of expander graph property becomes even more prominent as noise increases. This reinstates
the fact that ramanujan property is crucial for noise robustness of the networks. We observe in most
of our experiments with RNN that the Wxh layer lose the expander graph property before the Whh

layer. This points to the fact that Wxh edges play more significant role as compared to the Whh.

(a) Wxh layer of RNN (MNIST) (b) Whh layer of RNN (MNIST)

(c) Wxh layer of LSTM (Speech) (d) Whh layer of LSTM (Speech)

Figure 3: Variation in test set accuracy and spectral gap (∆S , ∆R) considering unweighted graph
representation. In (a), (b) and (d), the single vertical line shows the crossing point of both ∆S , ∆R

whereas in (c) the crossing point is shown with vertical blue and green lines for ∆S , ∆R. In (a) and
(b), plots for varying variance of zero mean gaussian noise along with clean data have been plotted.
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4 CONCLUSION

We empirically observe that as long as the expander graph property holds for the networks the test
set classification accuracy, both for clean and noisy data, is almost preserved as compared to the
unpruned network, whereas the accuracy starts dropping when the expansion property is lost.

URM DECLARATION

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.
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A APPENDIX

A.1 EXPANDER GRAPHS AND RAMANUJAN GRAPHS

In this section, we discuss various properties of expanders which will be pertinent for the rest of
the article. An expander graph is a sparse graph that has strong connectivity properties. The con-
nectivity can be quantified in different ways giving rise to different notions of expanders such as
vertex expanders, edge expanders and spectral expanders. These notions are interrelated. Recall that
a graph Γ = (V,E) is a tuple consisting of a vertex set V and an edge set E which is a subset of
V × V .

A.1.1 COMBINATORIAL EXPANSION

Definition 1 (Expander and Cheeger constant) A graph Γ = (V,E) is said to be an ϵ-vertex ex-
pander if for every non-empty subset X ⊂ V with |X| ≤ |V |

2 , we have |δ(X)|
|X| ≥ ϵ, where δ(X)

denotes the outer vertex boundary of X i.e., the set of vertices in Γ which are connected to a vertex
in X but do not lie in X . The infimum as X runs over all subsets of V satisfying the conditions
above is known as the vertex Cheeger constant and is denoted by h(Γ).

Edge expanders and the edge Cheeger constant h(Γ) are defined similarly, where in place of the
vertex boundary, we consider the edge boundary i.e., the set of edges which have one vertex in X
and the other outside of X . The vertex Cheeger constant h(Γ) and the edge Cheeger constant h(Γ)
are related by the following equivalence

h(Γ)

D
⩽ h(Γ) ⩽ h(Γ),

where D denotes the maximum degree of the graph (the degree of each vertex is the number of edges
going out from the vertex). The equivalence allows us to speak about vertex expansion and edge
expansion interchangeably. Intuitively, given a graph with high vertex (or edge) Cheeger constant, it
is more difficult to separate any subset of the vertices from the rest of the graph. This allows for free
flow of information throughout the network which the graph modelises. In the literature, having a
high Cheeger constant is also known as having high combinatorial expansion.

A.1.2 SPECTRAL EXPANSION

The notion of spectral expansion is a bit different from combinatorial expansion. Given a finite
undirected graph Γ the eigenvalues λn ⩽ · · · ⩽ λ1 of its adjacency matrix are all real and λ1 ⩽ D
with equality iff the graph is D-regular. Recall that a graph is said to be d-regular if there are exactly
d edges attached to a vertex. Thus, a d-regular bipartite graph is a graph which has the same number
of vertices in each partition and every vertex of each partition has exactly d edges attached to it. A
graph Γ = (V,E) is said to be a spectral expander if the quantities {|λ1| − |λ2|, |λ1| − |λk|} are
both bounded away from zero, where k = n− 1 if the graph is bipartite and k = n otherwise.
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A.2 DISCRETE CHEEGER–BUSER INEQUALITY

Ideally, to ensure free flow information within the network, our goal is to ensure that the graphs
which modelise the networks have high combinatorial expansion. This is achieved via the discrete
Cheeger–Buser inequality discovered independently by (Dodziuk, 1984) and by (Alon & Milman,
1985). The inequality states that

h(Γ)2

2
⩽ α2 ⩽ 2h(Γ),

where α2 denotes the second smallest eigenvalue of the normalised Laplacian matrix of Γ and is
related to the eigenvalues of the adjacency matrix via

λi

D
⩽ 1− αi ⩽

λi

d
∀i = 1, 2, . . . , n.

See (Chung, 2016) for details. From the above, it is easy to check that a high |λ1| − |λ2| ensures a
high h(Γ) and vice-versa. Thus, the two notions of expansion are inter-connected and every spectral
expander remains a combinatorial expander. They are actually equivalent for some classes of graphs,
for instance bipartite graphs (as the adjacency spectrum is symmetric about the origin), variants of
algebraic graphs (Breuillard et al., 2015; Biswas, 2019; Biswas & Saha, 2021; 2022; 2023; Biswas
& Saha, 2021) etc.

A.2.1 RAMANUJAN GRAPH BOUNDS

A d-regular graph is said to be a Ramanujan graph if max{|λ2|, |λk|} ⩽ 2
√
d− 1. In the case of

bipartite graphs, λk = λ2, hence the previous expression reduces to |λ2| ⩽ 2
√
d− 1. For fixed

degree, with the sizes of the graphs growing larger and larger, these are the best possible expanders,
as given by the Alon-Bopanna bound. We refer to Hoory–Linial–Wigderson (Hoory et al., 2006) for
the details.

When the graphs modelising the network are irregular (and possibly weighted), to guarantee large
expansion, we use two closely related quantities for d. The combinatorial quantity davg which is
the average degree taking into account all vertices and the spectral quantity λ1 which is the largest
eigenvalue of the adjacency operator. The use of these quantities is justified by the work of Hoory
(Hoory, 2005) and result in extremal families. Further, they have the added advantage of being easy
to compute. Using them, we consider the following expressions ∆R,∆S with

∆R =
2
√
davg − 1− λ2

λ2
(1)

∆S =
2
√
λ1 − 1− λ2

λ2
(2)

We recall that these bounds were also considered in (Pal et al., 2022).

A.3 TABULAR REPRESENTATION OF THE RESULTS FROM FIGURE 3

In the table 2, k denotes the sequence length and the percentages reported are those at which the
spectral bounds ∆S and ∆R become negative for the first time for the unweighted graph represen-
tation (the pruning mask).

Table 2: Representation of results from Figure 3

RNN LSTM
Dataset k Wxh (∆S and ∆R) Whh (∆S and ∆R) Dataset k Wxh (∆S) Wxh (∆R) Whh (∆S and ∆R)
MNIST 28 50% 12% Speech Commands 400 50% 35% 35%
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A.4 PLOTS FOR THE WEIGHTED GRAPH REPRESENTATION

(a) Wxh layer of RNN (MNIST) (b) Whh layer of RNN (MNIST)

(c) Wxh layer of LSTM (Speech) (d) Whh layer of LSTM (Speech)

Figure 4: Variation in test set accuracy and spectral gap (∆S) considering weighted graph represen-
tation. The single vertical line shows the crossing point of both ∆S with respect to the horizontal
0 line. In (a) and (b), plots for varying variance of zero mean gaussian noise along with clean data
have been plotted.
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