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Abstract
Multi-view based molecular properties prediction learning has re-
ceived widely attention in recent years in terms of its potential
for the downstream tasks in the field of drug discovery. However,
the consistency of different molecular view representations and
the full utilization of complementary information among them in
existing multi-view molecular property prediction methods remain
to be further explored. Furthermore, most current methods focus
on generating global level representations at the graph level with
information from different molecular views (e.g., 2D and 3D views)
assuming that the information can be corresponded to each other.
In fact it is not unusual that for example the conformation change or
computational errors may lead to discrepancies between views. To
addressing these issues, we propose a new Cross-View contrastive
unification guides Generative Molcular pre-trained model, call Mol-
CVG. We first focus on common and private information extraction
from 2D graph views and 3D geometric views of molecules, Mini-
mizing the impact of noise in private information on subsequent
strategies. To exploit both types of information in a more refined
way, we propose a cross-view contrastive unification strategy to
learn cross-view global information and guide the reconstruction of
masked nodes, thus effectively optimizing global features and local
descriptions. Extensive experiments on real-world molecular data
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sets demonstrate the effectiveness of our approach for molecular
property prediction task.

CCS Concepts
• Computing methodologies→ Learning latent representa-
tions; • Applied computing→ Bioinformatics.
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1 Introduction
In the field of computer-aided drug discovery and development, the
molecular property prediction (MPP) plays a vital role [3]. When
applying deep learning models for MPP, effective learning and in-
tegration of different expression forms of molecules is essential for
constructing accurate and comprehensive molecular characteriza-
tions [4, 11].

Recently, the field of multi-modal and multi-view learning has
had a vast impact [25, 29], and we explore MPP from the perspective
of multi-view learning. MPP can be categorized into two types of ap-
proaches, single-view and multi-view, according to the diversity of
data perspectives. Single-view MPP focuses on a single type of data,
such as fingerprints [10, 24], SMILES [6, 23], or 2D structure graphs
[7, 8, 19, 34] to depict molecular properties. However, single-view
based MPP methods are limited by a single data source and cannot
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Figure 1: Framework comparison of Single-view Generative
SSL, Single-view Contrastive SSL, Multi-view Generative /
Contrastive SSL (G/C SSL), and our MolCVG. [M] denotes
the masking strategy, 𝐺2𝐷/𝐺3𝐷 is obtained after 𝐺2𝐷/𝐺3𝐷 is
applied the masking strategy, and CL denotes Contrastive
Learning. (e) and (f) are the performance comparisons of
concrete implementations of the above four types ofmethods
on BACE and ClinTox.

capture molecular properties in an all-encompassing way, which
can easily lead to incomplete information and insufficient feature
coverage. In comparison, multi-view MPP is aimed at effectively
integrating information from multiple views through clever design
and strategy to capture a broader range of contextual information
[13, 15, 36]. Nevertheless, there may be noise, redundancy or irrele-
vant information among the views, which may interfere with the
learning process of common semantics when they are not properly
addressed.

Therefore, exploring the further enhancement of multi-view
MPP has received extensive attention. One of the main problems
hindering MPP is the fact that obtaining labeled data are often
challenging within the field of molecular biochemistry. Drawing on
successful practices in the utilization of unlabeled data in other do-
mains, especially extracting useful information by self-supervised
learning techniques, provides insights into solving this dilemma
[14, 21, 35, 38]. In this context, the framework of pre-training and
fine-tuning has been applied in many studies. Combined with the
fact that there are multiple view representations of molecules, op-
timization of multi-view MPP is performed. This approach aims

to extract high-quality representations from a large amount of un-
labeled molecular data, and then make them better serve the task
of molecular property prediction through a fine-tuning process.
In the pre-training phase, a crucial step is to explore an effective
proxy task. Since multi-view data naturally contains both positive
and negative pairs, contrastive self-supervised tasks have been
widely adopted in previous GNN-based multi-view approaches for
molecules [34, 37]. For example, Liu et al.[13] creates supervised
signals for contrastive SSL on molecular 2D and 3D views.

However, such contrastive approaches are not always the op-
timal choice. As shown in Figure 1, we summarize the prevailing
self-supervised frameworks based on graph neural networks on
molecular property prediction from single-view and multi-view
perspectives. Figure 1(a) shows a typical graph mask autoencoder
framework utilizing a single view for a rational design, and Graph-
MAE is one of the representatives among this type of methods.
Figure 1(b) is a typical graph contrastive learning framework, for
example, GraphCL. Figure 1(c) is an approach based on combining
contrastive and generative tasks under multi-view learning, and
a specific representative method is GraphMVP. It is worth noting
that the contrastive and generative tasks in Figure 1(b-c) are based
on the alignment at the coarse-grained level under the molecular
global domain or graph-level representation, which may be insuf-
ficient for the learning of some discriminative information such
as discriminative atoms or functional groups. Figure 1(e-f) demon-
strates that the reconstruction of node features under single view
achieves superior results to the contrastive methods. This confirms
to some extent that there is potential for the learning of sufficient
local details for performance improvement in molecular property
prediction tasks.

Further, when exploring the limitations of multi-view molecular
property prediction methods, there are problems shown below: (1)
Ignoring view specificity and information filtering. Fewer studies
have focused on the extraction of common information and view-
specific private information for multiple views of a molecule at the
same time, which may result in failing to fully utilize the comple-
mentarity between views as well as effectively filtering out irrele-
vant noise. Different views may contain their own unique biological
or chemical signals that are critical for property-specific prediction,
and simply merging views may overwhelm these signals, causing
models to suffer from irrelevant or misleading information. (2) Over-
reliance on global contrasts and reconstructions. Current methods
generally focus on implementing contrast learning and mutual re-
construction strategies on graph-level representations, emphasizing
on global-scale feature alignment and consistent matching of cross-
modal information [13, 34, 37]. such methods essentially perform
similarity inference at a high level abstraction, assuming that the
global information under different views can directly correspond
to each other. This is not the case in practice. Local details may be
neglected in such methods.

In this paper, we propose a cross-view contrastive unification
guided generative pre-training method for molecular property pre-
diction, called MolCVG, which utilizes cross-view learning to guide
the graph autoencoder such generative pre-training. Specifically,
the overview of MolCVG is shown in Figure 2, and we consider a 2D
topological view and a 3D geometric view of the molecule. These
two views provide information on the planar chemical structure
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of the molecule and the 3D spatial distribution of the molecule,
respectively. MolCVG encodes these two views through an encoder
after randomly masking the nodes. We then propose Common and
Private Information Separation (CP-Info Separation) strategy to
specifically learn and separate public and private information on
molecular views. Weakening the interdependence between com-
mon and private information among different views to cope with
the problem (1). Moreover, molecular representations are learned
by MolCVG through the strategy like graph autoencoder. Unlike
previous work, we propose cross-view contrastive unification to
guide the reconstruction of the masked nodes to solve the problem
(2). By deeply exploring and fusing the core common features of
views, it not only contributes to a more accurate reconstruction
of node features, but also effectively guards against the potential
misdirection of view-specific information to the cross-view fusion
process.

Our contributions in this work are as follows:
• We propose a new multi-view learning method for molecular

property prediction called MolCVG. It deeply unites molecular 2d
topological views and 3d geometric views to mine effective features.

• To the best of our knowledge, we are the first to propose
molecular cross-view contrastive unification to guide node-level
generative pretraining tasks. While ensuring that overall consis-
tency is fully emphasized, we also focus on learning local detailed
features.

• InMolCVG, we introduce the Common and Private Information
Separation strategy to better capture molecular universality pattern
and differences between molecular views.

• Extensive experiments demonstrate the effectiveness of Mol-
CVG, achieving superior performance on multiple molecular prop-
erty prediction benchmark datasets.

2 RELATEDWORK
2.1 Single-View Molecular Property Prediction
Single-viewmolecular property prediction ismainly based onmolec-
ular representation in one dimension, SMILES strings, molecular
fingerprints, 2D molecular structure graphs or 3D conformations,
and other single data sources. In chemoinformatics, traditional
chemical descriptors such as molecular fingerprints (e.g., ECFP,
MACCS) [18, 28], etc., are utilized to establish quantitative re-
lationships between molecular structures and properties by sta-
tistical learning methods (e.g., support vector machines, random
forests, logistic regression, etc.). In recent years, deep learning
techniques have played an important role in single-view molecu-
lar property prediction. High-level abstract features in molecules
are learned through deep neural networks. Some sequence-based
approaches with Transformer, etc. focus on the contextual informa-
tion contained in the molecular sequences [23]. Some graph neu-
ral network-based methods directly deal with graphical structural
representations of molecules. Hu et al. [8] designed a graph pre-
training model that utilizes advanced graph neural network (GNN)
techniques aimed to extract rich node and graph level representa-
tion information. You et al. [34] performed graph augmentation of
molecular graphs to compare and learn from each other in a con-
trastive learning framework. Hou et al. [7] designed a generative

self-supervised method incorporating masked feature reconstruc-
tion and re-masking strategies. Liu et al. [12] introduced denoising
to realize a pre-training framework for atom-to-distance denoising
on molecular 3D views. Xia et al. [27] optimized the atomic vocab-
ulary to mitigate the negative migration problem by alleviating the
difference in the number of different atoms.

2.2 Multi-View Molecular Property Prediction
Multi-view molecular property prediction integrates multiple repre-
sentations of molecules, including but not limited to 2D structures,
3D conformations, SMILES sequences, chemical descriptors, and
possibly experimental data. It aims to reveal the complex relation-
ship between molecular properties and structures more compre-
hensively by integrating information from multiple views. Chen
et al. [2] combine Algebraic Graph Theory and Transformers to
encode 3D molecular information into graph invariants and fuse
the complementary molecular descriptors generated by the two to
enhance the representation. Guo et al. [5] proposed a pre-training
process by combining the SMILES representation of the molecule
and IUPAC. St ¥𝑎rk et al. [22] optimize the matching degree between
the learned 3D geometric structures and the 2D graphs. Liu et al.
[13] design generative and contrastive interface tasks aimed at in-
jecting information about 3D geometric views into 2D encoders.
Zhu et al. [37] adopt four forms of molecular characterization to
do comparative learning after fusion.

3 METHODOLOGY
3.1 Problem Setting
3.1.1 Notation. Given a molecular graph, we can denote it as 𝐺 =

(𝐴,𝑉 ,𝐶,𝑋, 𝐸). Here 𝐴 ∈ R𝑁×𝑁 is the adjacency matrix of nodes
with values taking only 0 and 1, 𝑉 = [𝑣1, 𝑣2, . . . , 𝑣𝑁 ] is the node
set, 𝐶 = [𝑐1, 𝑐2, . . . , 𝑐𝑁 ] is the nodes’ 3D coordinate matrix with
each 𝑐𝑖 ∈ R1×3, 𝑋 ∈ R𝑁×𝑑 is denoted as a d-dimensional matrix of
atom attributes, and 𝐸 ∈ R𝑁×𝑁×𝑑𝐸 records information about the
properties of chemical bonds in the molecule where 𝑑𝐸 represents
the dimension of the bond attribute. 𝑁 is the number of nodes.

3.1.2 Problem Statement. We aim to obtain effective molecular
representations by training models through self-supervised learn-
ing. Considering the limitations of single-view representation of
molecules, we employ a multi-view approach to enrich the molecu-
lar representation to contribute to more accurate molecular prop-
erty prediction, which has been shown potential. Specifically, we
consider 2D views and 3D geometric views ofmolecules, pre-trained
on a large unlabeled dataset. Cross-view disparity contrasts in
MolCVG drive multi-view fusion to guide the reconstruction of
the masked nodes. For the fine-tuning phase, we finetune the pre-
trained 2D model on the downstream task dataset (2D molecular
maps available). This method compensates for the limitations im-
posed by a single-view, while considering both local and global
information.

3.2 Overview
In MolCVG, we intermingle two basic descriptions, 2D topolog-
ical view and 3D geometric view, in a dual perspective within a
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Figure 2: General overview of MOlCVG. MolCVG encodes molecular 2D and 3D views, implements common and private
Information Separation (Info Separation), and utilizes Cross-View Contrastive Unification Guidance (C-V Contrastive Guidance)
for node feature reconstruction (Feature Recon).

self-supervised learning framework. The framework of MolCVG is
illustrated in Figure 2.

Inspired by GraphMAE [7], node feature reconstruction shows
key influence in node and graph level classification tasks. Masking
node features is achieved by randomly selecting a percentage (e.g.,
0.25) of nodes in the graph data and masking their feature informa-
tion. Operationally, we select a partial subset𝑉 within the node set
𝑉 , and subsequently implement a hiding process for all the features
of each node in the subset, with a predefined [MASK] marking
symbol to accomplish this feature masking action. Its masked node
attribute vector 𝑥𝑖 can be obtained in the following formulation:

𝑥𝑖 =

{
𝑥 [𝑀 ] if 𝑣𝑖 ∈ 𝑉 ,

𝑥𝑖 otherwise.
(1)

Masked node set 𝑉 is determined by random sampling mechanism.
For the node feature updatemechanism, it can be clarified as follows:
the process of feature reconstruction of any node 𝑣𝑖 , is determined
by the information of other nodes in the neighborhood to which
the node belongs, in essence.

In 2D space, a molecular structure can be represented as a graph
where atoms are considered as nodes and chemical bonds are de-
picted as edges connecting these nodes. We can consider the topo-
logical representation of the 2D molecular graph𝐺2𝐷 as a mapping
function 𝑓2𝐷 : 𝐺2𝐷 → R𝑁×𝑑𝑧 , where 𝑑𝑧 is the dimension of the
node latent representation. The function 𝑓2𝐷 receives three param-
eters, i.e., the adjacency matrix 𝐴, atom attributes vectors set 𝑋 ,
and bond attributes vectors that may be integrated in the set 𝐸. For

a known 2D molecular graph, the representations 𝑍2𝐷 are obtained
by processing it through a 2D graph neural network (e.g. graph
isomorphism network [30]):

𝑍2𝐷 = 𝑓2𝐷 (𝐴,𝑋, 𝐸). (2)

In 3D space, molecular characterization involves describing the
spatial arrangement of molecules, etc. Similarly, the mapping func-
tion 𝑓3𝐷 : 𝐺3𝐷 → R𝑁×𝑑𝑧 can be defined as a process of mapping
from a 3D molecular graph 𝐺3𝐷 to a set of embedding vectors in a
continuous vector space. Different from 2D, 𝑓3𝐷 has the ability to
capture information such as the 3D spatial distances between atoms
inside a molecule, which is crucial for understanding and predicting
the physicochemical properties of molecules. 𝑓3𝐷 receives the atom
attributes matrix 𝑋 and the atom 3D coordinates 𝐶 as parameters.
For a given 𝐺3𝐷 , its latent representation can be obtained by 3D
graphical neural networks (e.g., Schnet [20]):

𝑍3𝐷 = 𝑓3𝐷 (𝑋,𝐶). (3)

The pre-training objective of MolCVG is to decode the obtained
latent representations of different molecular views to reconstruct
the masked node features. However, due to the limitations of a
single-view, we advocate utilizing data from multiple views to im-
prove reconstruction performance. To address the situation where
the information from different molecular views cannot actually cor-
respond to each other, we attempt to learn the common and private
information from multiple views. Specifically, effective discrimi-
nation and extraction of information is achieved by weakening
the inter-correlation between common and private information.
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Based on this foundation, we deeply contrast and fuse the common
information of views from different sources, and these common
information resources are utilized to guide the node feature re-
construction work. Such a strategy is effective because by deeply
exploring and fusing the common core features shared by each
view, node attributes can be reproduced more accurately while
preventing private information from misleading cross-view fusion.

3.3 Common and Private Information
Separation

Most molecular multi-view methods normally implement align-
ment operations between views only at the graph level (global)
or at a coarse-grained scale. This alignment approach ignores the
multi-level and complexity of the view’s intrinsic structure and fails
to fully reveal and utilize the fine-grained associations between
views. Analyzing from the level of information extraction, existing
methods tend to focus on mining the common information among
views. Instead, they are not sufficient in mining the private infor-
mation that is unique to a view and different from other views. To
address the limitations faced by previous molecular multi-view ap-
proaches in extracting common information, we propose Common
and Private Information Separation (CP-Info Separation) strategy
to separate common and private information of different molec-
ular views, as shown in CP-Info Separation in Figure 2. Also this
facilitates the subsequent cross-view fusion strategy.

Specifically, we first obtain the latent representations (i.e., 𝑍2𝐷
and 𝑍3𝐷 ) by encoding on 2D and 3D views, respectively. Then, we
map the latent representations to the corresponding common and
private features by the Common Information Learning (CIL) layer
and Private Information Learning (PIL) layer with independent
parameter sets:

𝑍 𝑖
𝑐𝑜𝑚 = 𝜎 (𝑊 𝑐𝑜𝑚

𝑖 𝑍𝑖 + 𝑏𝑐𝑜𝑚𝑖 ), 𝑖 ∈ {2𝐷, 3𝐷}, (4)

𝑍 𝑖
𝑝𝑟𝑖 = 𝜎 (𝑊 𝑝𝑟𝑖

𝑖
𝑍𝑖 + 𝑏𝑝𝑟𝑖𝑖

), 𝑖 ∈ {2𝐷, 3𝐷}, (5)

where 𝑍 𝑖
𝑐𝑜𝑚 represents common features, 𝑍 𝑖

𝑝𝑟𝑖
represents private

features.𝑊 𝑐𝑜𝑚 ,𝑊 𝑝𝑟𝑖 , 𝑏𝑐𝑜𝑚 , and 𝑏𝑝𝑟𝑖 are the learnable parameters.
𝜎 is an activation function.

For molecular 2D and 3D views of common and private infor-
mation, the two parts of the information are intertwined to some
extent. For example, the basic chemical structure in the common
information and the energetics in the private information. Our goal
is to make these two parts of information as unrelated as possi-
ble. Inspired by some previous work [1, 9, 16], the independence
assumption is introduced to force the common information to be
statistically independent or approximately independent from the
private information in the feature space. The inter-correlation loss
is set to weaken the statistical correlation between the common
and private information by minimizing the Pearson’s correlation
coefficient of them:

𝐿𝑖𝑐 = 𝑒𝑥𝑝

(
1
2

[ |𝐶𝑜𝑣 (𝑍 2𝐷
𝑐𝑜𝑚, 𝑍 2𝐷

𝑝𝑟𝑖
) |

𝜎𝑍 2𝐷
𝑐𝑜𝑚

𝜎𝑍 2𝐷
𝑝𝑟𝑖

+
|𝐶𝑜𝑣 (𝑍 3𝐷

𝑐𝑜𝑚, 𝑍 3𝐷
𝑝𝑟𝑖

) |
𝜎𝑍 3𝐷

𝑐𝑜𝑚
𝜎𝑍 3𝐷

𝑝𝑟𝑖

] )
, (6)

where 𝐶𝑜𝑣 (·) denotes covariance and 𝜎 denotes standard devia-
tion. Non-linear amplification of the inter-correlation coefficient

is performed by the exponential function, which exerts stronger
penalties on higher inter-correlation strengths.

3.4 Cross-view contrastive unification
Previous approaches have built on the premise that there are clear
correspondences between views, but intuitive contrast learning or
mindless fusion of views without rigorous filtering tends to confuse
perceptions of inherent consistency within the views. Therefore,
we propose a cross-view contrastive unification fusion strategy
that aims to accurately extract and fuse common information from
both 2D and 3D views. This establishes the essential foundation for
guiding node feature reconstruction.

We first concatenate the common information vectors 𝑍 2𝐷
𝑐𝑜𝑚 and

𝑍 3𝐷
𝑐𝑜𝑚 of the two views to construct the joint information vector

𝐽𝐶 = 𝑍 2𝐷
𝑐𝑜𝑚 | |𝑍 3𝐷

𝑐𝑜𝑚 , where | | is the concatenation operation. 𝐽𝐶 is
processed by a multilayer perceptron (MLP) to obtain the cross-
view fusion representation 𝑍 𝑓 𝑢𝑠𝑒 . It fuses the multi-dimensional
information of 𝑍 2𝐷

𝑐𝑜𝑚 and 𝑍 3𝐷
𝑐𝑜𝑚 , and realizes the knowledge cross-

fertilization between the views through nonlinear mapping:

𝑍 𝑓 𝑢𝑠𝑒 = 𝑀𝜂 (𝑍 2𝐷
𝑐𝑜𝑚 | |𝑍 3𝐷

𝑐𝑜𝑚), (7)

where𝑀𝜂 is a learnable matrix.
We introduce contrastive learning [17] to discover and empha-

size those elements that are consistent. First, we apply the read-
out function to 𝑍 𝑓 𝑢𝑠𝑒 , 𝑍 2𝐷

𝑐𝑜𝑚 , 𝑍 3𝐷
𝑐𝑜𝑚 to obtain 𝐻 𝑓 𝑢𝑠𝑒 , 𝐻2𝐷 , 𝐻3𝐷

respectively. Taking the 2D view as an example, we mark the
positive pairs as {(ℎ𝑓 𝑢𝑠𝑒

𝑖
, ℎ2𝐷

𝑐𝑜𝑚,𝑗
) |𝑖 = 𝑗}, and negative pairs as

{(ℎ𝑓 𝑢𝑠𝑒
𝑖

, ℎ2𝐷
𝑐𝑜𝑚,𝑗

) |𝑖 ≠ 𝑗}. For the contrastive loss under the 2D view,
the calculation formula can be expressed as follows:

𝜙 (ℎ𝑓 𝑢𝑠𝑒
𝑖

, ℎ2𝐷𝑐𝑜𝑚,𝑖 ) =
ℎ
𝑓 𝑢𝑠𝑒

𝑖
· ℎ2𝐷

𝑐𝑜𝑚,𝑖

| |ℎ𝑓 𝑢𝑠𝑒
𝑖

| | · | |ℎ2𝐷
𝑐𝑜𝑚,𝑖

| |
, (8)

𝐿2𝐷 = − 1
𝑁

𝑁∑︁
𝑖=1

log ©«
𝑒𝑥𝑝 (𝜙 (ℎ𝑓 𝑢𝑠𝑒

𝑖
, ℎ2𝐷

𝑐𝑜𝑚,𝑖
)/𝜏))∑𝑁

𝑗=1 𝑒𝑥𝑝 (𝜙 (ℎ
𝑓 𝑢𝑠𝑒

𝑖
, ℎ2𝐷

𝑐𝑜𝑚,𝑗
)/𝜏)

ª®¬ , (9)

where 𝜙 (·) denotes the dot product similarity between the two
vectors and 𝜏 is the temperature hyperparameter. Similarly, we
calculate the contrastive loss for 3D views:

𝐿3𝐷 = − 1
𝑁

𝑁∑︁
𝑖=1

log ©«
𝑒𝑥𝑝 (𝜙 (ℎ𝑓 𝑢𝑠𝑒

𝑖
, ℎ3𝐷

𝑐𝑜𝑚,𝑖
)/𝜏))∑𝑁

𝑗=1 𝑒𝑥𝑝 (𝜙 (ℎ
𝑓 𝑢𝑠𝑒

𝑖
, ℎ3𝐷

𝑐𝑜𝑚,𝑗
)/𝜏)

ª®¬ . (10)

The total cross-view contrastive unification loss function is as fol-
lows:

𝐿𝑐𝑣𝑐 =
1
2
(𝐿2𝐷 + 𝐿3𝐷 ). (11)

3.5 Training Objective
The pre-training goal of MolCVG is to reconstruct mask node fea-
tures. From GraphMAE, we recognize the potential of this genera-
tive pre-training and the existence of some improvement possibili-
ties. It is limited by a single data source to fully capture molecular
features, which easily leads to incomplete information and insuf-
ficient feature coverage. For this reason, we propose Cross-view
contrastive unification to guide node feature reconstruction while
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focusing on global consistency and local details learning. We first
concatenate the common and private representations, and then
obtain the pre-reconstructed node representations 𝑍𝛿

𝑝𝑟 through an
Linear funtion:

𝑍𝛿
𝑝𝑟 =𝑊 𝛿 (𝑍𝛿

𝑐𝑜𝑚 | |𝑍𝛿
𝑝𝑟𝑖 ) + 𝑏

𝛿 , 𝛿 ∈ {2𝐷, 3𝐷}, (12)

where𝑊 𝛿 and 𝑏𝛿 are the learnable weights and biases, respectively.
This is currently still in the single-view case. With multi-view
enhancement, the features of cross-view contrastive unification
are leveraged to enrich the recognition capability of the model.
Specifically, the knowledge or information provided by the cross-
view fusion feature𝑍 𝑓 𝑢𝑠𝑒 guides the pre-reconstructed node feature
set 𝑍𝛿

𝑝𝑟 for reconstruction adaptation:

𝑍𝛿
𝑔 = 𝑀𝛿

𝜃
(𝑍𝛿

𝑝𝑟 | |𝑍 𝑓 𝑢𝑠𝑒 ), 𝛿 ∈ {2𝐷, 3𝐷}, (13)

where 𝑀𝛿
𝜃
is a single-layer neural network. Finally, we decode

the cross-view guided reconstruction features 𝑃 to obtain the re-
constructed outputs. Formally, we denote the reconstructed node
feature set as 𝑍𝛿

𝑟𝑒 = 𝑓𝑑 (𝑍𝛿
𝑔 ). 𝑓𝑑 is implemented as a single-layer

MLP. The node reconstruction loss is calculated by computing the
cosine similarity between the reconstructed node feature set 𝑍𝛿

𝑟𝑒

and the corresponding original node features. It is worth noting
that only mask nodes are computed for node reconstruction loss.
The loss can be expressed as follows:

𝐿𝑟𝑒𝑐𝑜𝑛 =
1
|Ω |

1
|𝑉 |

∑︁
𝛿∈Ω

∑︁
𝑣𝑖 ∈𝑉

(1 −
𝑥𝑇
𝑖
𝑍𝛿
𝑟𝑒

| |𝑥𝑖 | | · | |𝑍𝛿
𝑟𝑒 | |

), (14)

where Ω = {2𝐷, 3𝐷}, |Ω | represents the total number of elements
in the set Ω, |𝑉 | denotes the total number of elements contained in
the mask node set 𝑉 .

In the pre-training phase the overall loss of MolCVG consists of
three components: the node reconstruction loss 𝐿𝑟𝑒𝑐𝑜𝑛 , the inter-
correlation loss 𝐿𝑖𝑐 and the cross-view contrastive unification loss
𝐿𝑐𝑣𝑐 . The formula is as follows:

𝐿 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝛼𝐿𝑐𝑣𝑐 + 𝛽𝐿𝑖𝑐 , (15)

where 𝛼 and 𝛽 are hyperparameters for regulating weights.
The fine-tuning phase, the pretrained 2D GNN model is applied

for fine-tuning on specific downstream tasks. At this point, it relies
only on the 2D molecular map data. MolCVG is fine-tuned on each
of the eight benchmarkmolecular datasets used for the classification
task. The probability of the output molecule 𝑖 to be determined as
a positive class is denoted as 𝑝𝑖 after the encoded features are
processed by the prediction header. The loss of the prediction and
the target label is calculated as follows:

𝐿𝑓 𝑡 (𝑝,𝑦) = − 1
𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log(𝜎 (𝑝𝑖 )) + (1 − 𝑦𝑖 ) log(1 − 𝜎 (𝑝𝑖 ))] ,

(16)
where 𝑦𝑖 is the label of the molecule 𝑖 . MolCVG implemented op-
timizations for 2D characterization of molecules in a generative
pre-training task, and subsequent ablation studies demonstrated
these enhancements.

Table 1: Summary of the benchmark datasets.

Category Dataset # Molecule # Tasks
Physiology BBBP 2,039 1
Physiology ClinTox 1,478 2
Physiology Tox21 7,831 12
Physiology SIDER 1,427 27
Physiology ToxCast 8,575 617
Biophysics BACE 1,513 1
Biophysics HIV 41,127 1
Biophysics MUV 93,087 17

4 EXPERIMENT
4.1 Dataset
The pre-training dataset we usedwas obtained from the PubChemQC
database, which contains about 4 million molecules with 3D geo-
metric configurations. These data were accurately computed by
using Density Functional Theory (DFT). These data are optimized
by Molecule3D [32] to be a suitable form for deep learning model
processing. For pre-training, we selected a subset containing 1 mil-
lion molecular 3D geometric conformation.

For the fine-tuning dataset, we evaluated the performance of
MolCVG on 8 public datasets on MoleculeNet [26], including BACE,
BBBP, ClinTox, Tox21, SIDER, ToxCast, MUV, and HIV, which are
widely adopted in molecular and drug representation learning and
property prediction tasks. For each benchmark dataset, the scaffold
splitting scheme is applied to divide them. These molecules are
assigned to the training set, validation set, and test set in the ratio
of 80%, 10%, and 10%. The statistics for these eight datasets are
summarized in Table 1.

4.2 Experimental Setup
Baselines. To demonstrate the effectiveness of MolCVG, we

selected eight baselines as benchmark references. Among them
are ContextPred [8], AttrMasking [8], GraphCL [34], JOAO [33],
GraphLoG [31], GraphMAE [7] and Mol-BERT [27] for single-view
molecular property prediction, and GraphMVP [13], 3D Infomax
[22], MEMO [37] for multi-view molecular property prediction.

Evaluation metric. During the evaluation process, we follow
previous work to adopt the area under the receiver operating char-
acteristic curve (ROC-AUC) as the primary metric. For each experi-
ment, we ensure that three independent executions were performed
using different seeds and finally recorded the mean of each experi-
ment and its corresponding standard deviation as the presentation
of the experimental results.

Implementation details. In the process of constructing molecu-
lar 2D view representations, we draw on the successful practices of
previous studies and choose the Graph Isomorphism Network [30]
with a five-layer structure as the core to construct the backbone
model. For encoding the molecular 3D conformations, the Schnet
[20] model is adopted as the basic backbone to effectively encode
and analyze the molecular 3D views. In the pre-training phase,
we set the masking ratio to 0.25. The Adam optimizer is adopted
for the pre-training process of 100 training epoch, initializing the
learning rate to 8 × 10−4 and setting the batch size to 256. We set
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Table 2: For the eight molecular property prediction tasks on the MoleculeNet benchmark, the best and second best ROC-AUC
(%) results are highlighted in bold and underlined, respectively.

Method BACE BBBP SIDER Tox21 ClinTox ToxCast MUV HIV Avg
ContextPred [8] 79.6(1.2) 64.3(2.8) 60.9(0.6) 75.7(0.7) 65.9(3.8) 63.9(0.6) 75.8(1.7) 77.3(1.0) 70.4
AttrMasking [8] 79.3(1.6) 64.3(2.8) 61.0(0.7) 76.7(0.4) 71.8(4.1) 64.2(0.5) 74.7(1.4) 77.2(1.1) 71.1
GrapgCL [34] 75.3(1.4) 69.7(0.7) 60.5(0.9) 73.9(0.7) 76.0(2.7) 62.4(0.6) 69.8(2.7) 78.5(1.2) 70.8
JOAO [33] 77.3(0.5) 70.2(1.0) 60.0(0.8) 75.0(0.3) 81.3(2.5) 62.9(0.5) 71.7(1.4) 76.7(1.2) 71.9

GraphLoG [31] 83.5(1.2) 72.5(0.8) 61.2(1.1) 75.7(0.5) 61.2(1.1) 63.5(0.7) 76.0(1.1) 77.8(0.8) 73.4
GraphMAE [7] 83.1(0.9) 72.0(0.6) 60.3(1.1) 75.5(0.6) 82.3(1.2) 64.1(0.3) 76.3(2.4) 77.2(1.0) 73.8
GraphMVP [13] 76.8(1.1) 68.5(0.2) 62.3(1.6) 74.5(0.4) 79.0(2.5) 62.7(0.1) 75.0(1.4) 74.8(1.4) 71.7
3D InfoMax [22] 79.4(1.9) 69.1(1.0) 60.6(0.7) 74.5(0.7) 79.9(3.4) 64.4(0.8) 76.2(1.4) 76.1(1.3) 72.5
MEMO [37] 82.6(0.3) 71.6(1.0) 61.2(0.6) 76.7(0.4) 81.6(3.7) 64.9(0.8) 78.5(0.5) 78.3(0.4) 74.4

Mole-BERT [27] 80.8(1.4) 71.9(1.6) 62.8(1.1) 76.8(0.5) 78.9(3.0) 64.3(0.2) 78.6(1.8) 78.2(0.8) 74.0
MolCVG (our) 85.0(1.2) 72.9(1.2) 62.9(1.3) 76.7(0.7) 90.6(1.7) 64.4(0.8) 78.9(1.0) 79.2(0.8) 76.3

Table 3: Ablation results of MolCVG loss function.

MolCVG Loss dataset
𝐿𝑟𝑒𝑐𝑜𝑛 𝐿𝑐𝑣𝑐 𝐿𝑖𝑐 BACE BBBP ClinTox√

- - 83.1(0.9) 72.0(0.6) 82.3(1.2)√
-

√
83.5(1.0) 71.1(0.6) 86.5(1.2)√ √

- 83.7(0.7) 72.3(0.8) 86.5(1.8)√ √ √
85.0(1.2) 72.9(1.2) 90.6(1.7)

the mask ratio and temperature coefficient by default to 0.25 and
0.1 respectively. In addition, we apply a cosine annealing learning
rate scheduling strategy to dynamically adjust the learning rate
throughout the pre-training process. In the fine-tuning phase, the
Adam optimizer is still followed for model optimization. We deter-
mine the learning rate, dropout, batch size, and epoch with grid
search. All experiments are done in RTX 3080 GPU environment.

4.3 Results and Analysis
Table 2 summarizes the performance of the comparison methods
for molecular property prediction on the eight datasets. It is demon-
strated that our MolCVG model exhibits excellent performance on
all 8 downstream task datasets, with 6 of them achieving the best
results and realizing an absolute performance improvement of up
to 1.9% in average performance compared to the existing methods.
The outstanding results validate the superiority of our proposed
method. It shows that MolCVG can better capture the commonal-
ities and differences between molecular 2D and 3D views, and it
can fully utilize the multi-view information of molecules.

Compared to the baseline of single-view molecular property pre-
diction, MolCVG outperforms almost all baselines. Specifically, for
example, when evaluated on the BACE and ClinTox datasets, Mol-
CVG performed significantly better by 1.5% and 8.3%, respectively.
We found that MolCVG slightly underperforms Mol-Bert on the
Tox21 dataset by 0.1%, which may be due to dataset-specificity and
randomization factors, but both also have comparable performance.
Overall an absolute improvement of 2.3% was obtained on average.
Single-view molecular property prediction method emphasizes the
deep mining and learning of a single-view and it fails to enjoy

Table 4: Ablation results of MolCVG’s strategies

strategies dataset
C-V

Contrastive
Guidance

CP-Info
Separation BACE BBBP ClinTox

- - 83.1(0.9) 72.0(0.6) 82.3(1.2)
-

√
83.2(0.9) 71.8(0.6) 86.1(1.6)√

- 84.3(0.7) 72.4(0.9) 86.6(2.1)√ √
85.0(1.2) 72.9(1.2) 90.6(1.7)

the complementary information from multi-views. GraphMAE and
GraphCL are the typical generative and contrastive approaches,
respectively, which both produce suboptimal results compared to
MolCVG. This goes some way to show that it is quite feasible for
our cross-view contrastive unification fusion to guide generative
tasks. These results demonstrate that MolCVG has superior hid-
den representation learning capability and can effectively handle
the coordination of multi-view information under the molecular
property prediction task.

Compared with the multi-view molecular property prediction
baseline, MolCVG also outperforms almost all multi-view MPP
baselines. Specifically, an overall average improvement of 1.9%
is obtained. We notice that MolCVG underperforms MEMO by
0.5% on the Toxcast dataset. We speculate that this is a result of
MEMO utilizing more complementary information from the four
molecular views for processing, improving its performance on the
Toxcast dataset. In addition, GraphMVP and 3D Infomax both utilize
2D and 3D views for self-supervised methods. The experimental
results show that MolCVG outperforms them both. It resonates
with our motivation that there is a performance bottleneck in global
contrast and reconstruction based on the assumption that multi-
view information can be matched one-to-one, which may overlook
important local details.

4.4 Ablation Study
4.4.1 The effectiveness of the MolCVG’s loss function. In this sub-
section, we investigate the node reconstruction loss 𝐿𝑟𝑒𝑐𝑜𝑛 , the
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Figure 3: Ablation experiments of temperature hyperparam-
eter 𝜏 and mask ratio on datasets BACE, BBBP, and ClinTox.

inter-correlation loss 𝐿𝑖𝑐 and the cross-view contrastive unification
loss 𝐿𝑐𝑣𝑐 . We report the performance of each loss component on
the three datasets BACE, BBBP, and ClinTox in Table 3. The experi-
mental results show that our method with a complete loss function
achieves optimal performance. Specifically, it improves 1.9%, 0.9%,
and 8.3% on the BACE, BBBP, and ClinTox datasets, respectively,
compared to only with node reconstruction loss. This indicates
that the loss of our method is significantly effective. Further, we
observe a performance decrease on the BBBP dataset when our
method lacks the cross-view contrastive unification fusion loss,
although the overall performance is improved. This corresponds to
our previous observational analysis, where direct fusion without
differentiating the data across views may misleading information
cause interference. In addition, the complete MolCVG obtains a
larger increase in performance compared to the case where inter-
correlation loss is lacking. This also suggests that neglecting view
specificity and information filtering limits model to learn effective
representations.

4.4.2 The effectiveness of the strategies of MolCVG. Table 4 demon-
strates the effectiveness study of two strategies for MolCVG. The
experimental results show that our proposed method achieves supe-
rior performance. Note that there are differences in the setup of this
strategy ablation and loss ablation, and we aim to explore the effects
of these two strategies. Specifically, the C-V Contrastive Guidance
setting item in Table 4 refers to whether the fused features obtained
through cross-view contrastive unification fusion are used to guide
node feature reconstruction, but the cross-view contrastive unifica-
tion loss function remains. CP-Info Separation refers to whether
to extract and separate the common and private information of
each view or not, unlike loss ablation this setting eliminates CIL
and PIL, and at the same time inter-correlation loss also its cannot
be constructed. This is because it is not possible to preserve the
inter-correlation loss function without adopting an information
separation strategy. We can observe that both strategies contribute
to the performance of the model. It is worth noting that only lacking
the CP-Info Separation strategy or the C-V Contrastive Guidance,
although the performance is improved compared to the version
that lacks both, there is still a large gap compared to the full version
of MolCVG. In particular, on the ClinTox dataset, there is still a
4% significant gap. This phenomenon demonstrates that MolCVG
combines the two strategies well and achieves significant results. It
also shows that the successful integration of these two strategies

(a) BACE (b) BBBP

Figure 4: Ablation study of hyperparameters 𝛼 and 𝛽 used to
regulate weights in the loss function.

in the MolCVG framework effectively addresses and solves the two
challenges mentioned in above.

4.4.3 Effect of Mask Ratio. The plot on the right of Figure 3, shows
the effect of the mask ratio. In most cases, when a low mask ratio
is adopted for the feature reconstruction task, it is not challenging
enough to motivate the model to learn beneficial features. If the
mask ratio is set too high, it may result in certain key features
not being effectively recovered, which may cause performance
degradation. As the mask ratio increases from 0.15 to 0.25, the
model performance shows significant improvement, demonstrating
that moderately increasing the difficulty of feature reconstruction
contributes to the model’s ability to learn richer and more valuable
intrinsic patterns. However, as the mask ratio continues to increase
to 0.75, there is a slight decrease in the overall performance at first
both, after that the model shows a relatively stable trend. Based on
experience we set the mask ratio to 0.25.

4.4.4 Parameter sensitivity analysis. We performed an ablation
study of the hyperparameters in MolCVG, and the detailed results
are shown in Figures 3 and 4. In Eq. (15), the trade-off coefficient
hyperparameters 𝛼 and 𝛽 are included. We set 𝛼, 𝛽 ∈ [0.2, 1.0] with
an interval of 0.2, respectively, to explore the effects of these two
parameters in MolCVG. As shown in Figure 4, our experimental
results demonstrate that our method is robust to the choice of 𝛼 and
𝛽 . Moreover, we perform ablation experiments on the temperature
coefficient 𝜏 in Eq. (9) and Eq. (10). We set 𝜏 ∈ [0.1, 0.9] with an
interval of 0.2 to explore the effect of temperature hyperparameter
in MolCVG. As shown in the left plot of Figure. 3, there is good
robustness of MolCVG to 𝜏 over the experimental range we set.

5 CONCLUSION
In this paper, we present MolCVG, a cross-view contrastive uni-
fication guides generative pre-training method , which considers
molecular 2d topological views and 3d geometrical views jointly
for molecular property prediction. In MolCVG, after encoding the
2D and 3D views of molecule, the common and private information
are extracted and separated from the different views of molecule.
Focusing on global consistency while taking into account the preser-
vation and learning of local details, MolCVG designs a cross-view
contrastive unification to guide node feature reconstruction. Ex-
tensive experiments on eight public molecular property prediction
benchmarks demonstrate the superiority of our method.
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