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ABSTRACT

High-dimensional neural activity in the brain is known to encode low-
dimensional, time-evolving, behaviour-related variables. A fundamental goal of
neural data analysis consists of identifying such variables and their mapping to
neural activity. The canonical approach is to assume the latent variables are be-
haviour and visualize the subsequent tuning curves. However, significant mis-
matches between behaviour and the encoded variables may still exist — the agent
may be thinking of another location, or be uncertain of its own — distorting the
tuning curves and decreasing their interpretability. To address this issue a variety
of methods have been proposed to learn this latent variable in an unsupervised
manner; these techniques are typically expensive to train, come with many hyper-
parameters or scale poorly to large datasets complicating their adoption in prac-
tice. To solve these issues we propose SIMPL (Scalable Iterative Maximization
of Population-coded Latents), an EM-style algorithm which iteratively optimizes
latent variables and tuning curves. SIMPL is fast, scalable and exploits behaviour
as an initial condition to further improve convergence and identifiability. We
show SIMPL accurately recovers latent variables in biologically-inspired spatial
and non-spatial tasks. When applied to a large rodent hippocampal dataset SIMPL
efficiently finds a modified latent space with smaller, more numerous, and more
uniformly-sized place fields than those based on behaviour, suggesting the brain
may encode space with greater resolution than previously thought.

1 INTRODUCTION

Large neural populations in the brain are known to encode low-dimensional, time-evolving latent
variables which are, oftentimes, closely related to behaviour (Afshar et al., 2011; Harvey et al.,
2012; Mante et al., 2013; Carnevale et al., 2015; Kobak et al., 2016). Coupled with a recent data-
revolution driven by the advent of large-scale neural recording techniques (Jun et al., 2017; Wilt
et al., 2009), focus in recent years has shifted from single-cell to population-level analyses where
the goal is to extract these variables using a variety of statistical (Yu et al., 2008a; Cunningham &
Yu, 2014; Kobak et al., 2016; Zhao & Park, 2017; Williams et al., 2020) and computational (Van der
Maaten & Hinton, 2008; Pandarinath et al., 2018; Mackevicius et al., 2019) methods, ultimately
providing deeper insight into the computations embodied by neural circuits.

This paradigm shift is particularly pertinent in the context of the mammalian spatial memory sys-
tem where Nobel-prize winning discoveries have identified cells whose neural activity depends on
spatially-relevant behavioural variables such as position (O’Keefe & Dostrovsky, 1971; O’Keefe,
1978; Hafting et al., 2005; Doeller et al., 2010; Moser et al., 2015), heading direction (Taube et al.,
1990), speed (McNaughton et al., 1983) and distance to environmental boundaries (Lever et al.,
2009)/objects (Høydal et al., 2019)in a highly structured manner. These discoveries include place
cells (O’Keefe & Dostrovsky, 1971) and grid cells (Hafting et al., 2005) which are widely held to
constitute the brain’s “cognitive map” (Tolman, 1948; O’Keefe, 1978). Characterizing neural ac-
tivity in terms of behaviour has been, and remains, a cornerstone practice in the field; however, the
core assumption supporting it — that the latent variable encoded by neural activity is and only is the
behavioural variable — is increasingly being called into question (Sanders et al., 2015; Whittington
et al., 2020; George et al., 2024b).
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Figure 1: Schematic of the SIMPL algorithm. (a) A latent variable model for spiking data (fi(x),x(t)) is
optimized by iterating a two-step procedure closely related to the expectation-maximization (EM, Dempster
et al. 1977) algorithm: First, tuning curves are fitted to an initial estimate of the latent variable (the “M-step”),
which are then used to redecode the latent variable (the “E-step”). (b) SIMPL fits tuning curves using kernel
density estimation (KDE) with a Gaussian kernel (top) and decodes the latent variables by Kalman-smoothing
maximum likelihood estimates. Measured behaviour (c) is used to initialize the algorithm as it is often closely
related to the true generative latent variable of interest (d).

The brain is not a passive observer of the world. Active internal processing like planning a future
route (Spiers & Maguire, 2006) or recalling past positions (Squire et al., 2010) as well as observed
phenomena such as replay (Carr et al., 2011), theta sweeps (Maurer et al., 2006), and predictive
coding (Muller & Kubie, 1989; Mehta et al., 1997; Stachenfeld et al., 2017) will cause encoded
variables to deviate from behaviour. Additionally, the brain is not a perfect observer; irreducible
uncertainty due to limited, noisy or ambiguous sensory data can lead to similar encoding discrep-
ancies. Experimental inaccuracies, like measuring the wrong behaviour or measuring behaviour
poorly, can contribute further. These hypotheses are supported by decoding analyses which show
that “behaviour” decoded from behaviourally-fitted tuning curves rarely achieves perfect perfor-
mance (Glaser et al., 2020; Wilson & McNaughton, 1993) as well as the observation that neurons
show high variability under identical behavioural conditions (Fenton & Muller, 1998; Low et al.,
2018).

All combined, these facts hint at a much richer and more complex internal neural code. When this
complexity is not accounted for (as is typically the case), neural data may be misinterpreted and
tuning curves will be blurred or distorted relative to their true form, weakening the validity of the
conclusions drawn from them. As an explicit example, consider an animal situated at position X
‘imagining’ or ‘anticipating’ another position, Y, for which a cell is tuned (e.g. the cell has a place
field at Y). This might trigger the cell to fire leading a researcher, who only examines the animal’s
externally measurable behavioural-position, to mistakenly conclude that the cell has a place field at
location X. Nonetheless, the observation that behaviour is still a close-but-imperfect proxy for the
true latent variable motivates the search for techniques to refine behaviourally fitted tuning curves as
opposed to starting from scratch. Current methods either fail to exploit behaviour (Yu et al., 2008a;
Wu et al., 2017), don’t scale to large neural datasets (Wu et al., 2017), are computationally expensive
to train (Smith & Brown, 2003; Pandarinath et al., 2018) or are limited in the expressiveness of their
tuning curve models (Macke et al., 2011; Gao et al., 2016; Archer et al., 2014).
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Contributions Here we introduce SIMPL (Scalable Iterative Maximization of Population-coded
Latents), a straightforward yet effective enhancement to the current paradigm. Our approach fits
tuning curves to observed behaviour and iteratively refines these through a two-step process: first
we decode the latent variable from the previously estimated tuning curves; then, we refit the curves
based on these decoded latents. SIMPL imposes minimal constraints on the structure of the tuning
curves, scales well to large neural datasets and does not rely on neural network function approxi-
mators which can be hard to interpret and expensive to train. We theoretically analyse SIMPL and
establish formal connections to expectation-maximisation (EM, Dempster et al. 1977) for a simple
but flexible class of generative models. By exploiting behaviour as an initialization, SIMPL con-
verges fast and alleviates well known issues to do with local minima and identifiability (Hyvärinen
& Pajunen, 1999; Locatello et al., 2019). This allows it to reliably return refined tuning curves
and latent variables which remain close to, but improve upon, their behavioural analogues readily
admitting direct comparison.

We first validate and analyse the properties of SIMPL on synthetic datasets that closely match those
analysed by experimentalists: a discrete 2AFC decision-making task and a continuous grid cells
dataset. Finally, we apply SIMPL to rodent electrophysiological hippocampal data (Tanni et al.,
2022) and show it modifies the latent space in an incremental but significant way. The optimized
tuning curves explain the data better than their behavioural counterparts and contain sharper, more
numerous place fields which allow for a reinterpretation of previous experimental results, motivating
the use of SIMPL in future studies. SIMPL has only two hyperparameters and can be run on quickly
on large neural datasets O(200 neurons, 106 spikes, 1 hour) ∼ O(1 CPU-min) without requiring a
GPU. It outperforms a popular modern alternative technique based on neural networks (Schneider
et al., 2023) and is over 30× faster. This make it a practical alternative to existing tools particularly
of interest to navigational communities where data is abundant and behavioural variables are close
to the true latent. We provide an open-source JAX-optimised (Bradbury et al., 2018) implementation
of our code1.

2 METHOD

Here we provide a high-level description of the SIMPL algorithm. Comprehensive details, as well as
a theoretical analysis linking SIMPL formally to expectation-maximization of a class of generative
models, is provided in the Appendix.

Algorithm 1 SIMPL: An algorithm for optimizing tuning curves and latents from behaviour

1: s ∈ NN×T . Spike count matrix
2: x(0) ∈ RD×T . Initial latent estimate e.g. measured position of animal
3: procedure SIMPL(s,x(0))
4: for e← 0 to E do . Loop for E iterations
5: f (e) ← FitTuningCurves(x(e), s) . The “M-step”
6: x(e+1) ← DecodeLatent(f (e), s) . The “E-step”
7: end for
8: return x(E+1), f (E) . The optimised latent and tuning curves
9: end procedure

2.1 THE MODEL

SIMPL models spike trains of the form s := (sti)
i=1,...N
t=1,...T , where sti represents the number of spikes

emitted by neuron i between time (t − 1) · ∆t and t · ∆t, for some time discretization interval
dt. We denote st := (st1, . . . , stN ) the vector of spike counts emitted by all neurons in the t-th
time bin. SIMPL posits that such spike trains s are modulated by a latent, continuously-valued,
low-dimensional, time-evolving variable x := (xt)t=1,...,T ∈ RD through the following random
process:

sti | xt ∼ Poisson(fi(xt))

xt+1 | xt ∼ N (xt, σ
2
vI),

1Code and a demo can be found at: https://anonymous.4open.science/r/simpl/
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where σv := v · dt and x0 ∼ N (0, σ2
0I). Here, v is some constant expected velocity hyperparam-

eter. The resulting prior distribution p(x) = p(x0)
∏

t=1
T p(xt|xt−1) enforces a tunable (through

v) amount of temporal smoothness in the trajectories. At each time step the latent variable xt de-
termines the instantaneous firing rate of each neuron via its intensity function fi (hereon called its
tuning curve, collectively denoted f ), which is unknown a priori, and which SIMPL will estimate.
Moreover, we make the common assumption that all neurons are conditionally independent given
xt, i.e. p(st|xt) =

∏
N
i=1 p(sti|xt). Finally, we assume the latent variable x evolves only according

to its previous state (it is Markovian), a common assumption in the neuroscience literature (see, e.g.
George et al. 2021). This model has been previously studied in the literature (Smith & Brown,
2003; Macke et al., 2011), albeit using highly restrictive intensity function models, something which
SIMPL avoids as discussed below.

2.2 THE SIMPL ALGORITHM

Outline We now seek an estimate of the true, unknown latent trajectory x? and tuning curves f? that
led to some observed spike train, s. SIMPL does so by iterating a two-step procedure closely related
to the expectation-maximisation (EM) algorithm: first, tuning curves are fitted to an initial estimate
of the latent variable (the “M-step”), which are then used to decode the latent variable (the “E-step”).
This procedure is then repeated using the new latent trajectory, and so on until convergence.

The M-step In the M-step (or “fitting” step) of the e-th iteration SIMPL fits intensity functions to
the current latent trajectory estimate x(e) using kernel density estimation (KDE):

f
(e)
i (x) :=

∑T
t=1 sti k(x,x

(e)
t )∑T

t=1 k(x,x
(e)
t )

≈ # spikes at x
# visits to x

(1)

The use of a smooth kernel allows extrapolation of the intuitive estimate on the right of Equation 1
to locations not present in the trajectory x(e). In practice, we use a Gaussian kernel with bandwidth
σ.

The E-step In the E-step (or “decoding” step), SIMPL produces a new estimate x(e+1) of the la-
tent trajectory by smoothing — using the prior p(x) — across time the (non-smooth) maximum
likelihood estimate (MLE) x̂ of x, given s and f (e). To do so, SIMPL computes a linear-Gaussian
approximation of the conditional distribution p(x̂t|xt) ≈ N (xt; Σt). With this approximation, the
variables (x, x̂) form a Linear Gaussian State Space Model, fully characterized by σ2

vI (the tran-
sition noise covariance) and Σt (the observation noise covariance). This allows SIMPL to employ
Kalman Smoothing, an efficient inference procedure for such models, to approximate Ep(x|x̂)[x].

Crucially, the linear-Gaussian approximation is not made on the spiking emissions p(s|x), which
is non-Gaussian by design, but on p(x̂|x), a quantity which is provably asymptotically Gaussian
in the many-neurons regime (full theoretical argument and an explicit formula for Σt in B.1). At
a high level, SIMPL’s E-step can thus be summarized as (see Fig. 1b, lower panel, for a graphical
summary):

x̂(e+1) := arg max
x

log p(s|x, f (e))

x(e+1) := E
p(x|x̂(e+1)

t )
[ x ] ≈ KalmanSmooth(x̂(e+1);σ2

vI,Σt)
(2)

Behavioural initialization Spike trains often come alongside behavioural recordings which are
thought to be closely related to the latent variable x. SIMPL leverages this by setting x(0), the
initial decoded latent trajectory, to measured behaviour. We posit that such a behavioural initial-
ization will place the first iterate of SIMPL in the vicinity of the true trajectory and tuning curves.
This, in turn, faciliates the search for a good model which favours the true latent and tuning curves
(x?, f?) over alternative pairs (φ(x?), f? ◦ φ−1) whose latent space is warped by some invertible
map φ, and which would explain the data equally well (i.e. solution pairs which are isomorphic
to the ground truth). Through ablation studies, we confirm the beneficial effects of this behavioral
initialization in the experiments section (see Fig. 3 and 4).

All in all, SIMPL is interpretable and closely matches common practice in neuroscience; moreover,
it can be formally related to a generalized version of the EM-algorithm, for which theoretical guar-
antees may be obtained under suitable assumptions. We describe in detail the theoretical arguments
justifying the validity of SIMPL as well as its connection to EM in the appendix.
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3 RELATED WORK

Probabilistic inference in spike trains modulated by latent variables has been a major topic in neural
data analysis for decades — see, e.g. Yu et al. (2005; 2006; 2008b;a); Macke et al. (2011); Mangion
et al. (2011); Park et al. (2015); Gao et al. (2016); Duncker et al. (2019); Zhou & Wei (2020);
Schneider et al. (2023). Closest to SIMPL are the works of Smith & Brown (2003); Macke et al.
(2011), which both perform approximate EM in a hidden markov model with Poisson emissions and
a Gaussian random walk prior on x. Both methods use a simplistic parametric linear–exponential
model of intensity functions; such parametric models are not flexible enough to capture neurons with
complex tuning properties such as place cells and grid cells. The (approximate) E-step of Macke
et al. (2011) employs a global Laplace approximation, leveraging the concavity of the log-posterior
of such models to compute the maximum a posteriori (MAP) of the entire trajectory; however,
this concavity is a consequence of the intensity function model, and does not hold in our more
complex case. On the other hand, the approximate E-step of Smith & Brown (2003) uses a local
Laplace approximation to obtain the MAP. However, their algorithm requires running optimization
algorithms sequentially, which can be computationally expensive. In contrast, the MLE optimization
problems computed in SIMPL’s E-step can be solved in parallel across time points, making SIMPL
more scalable.

Markovian models assume that the future trajectory of an agent is only influenced by its current state,
not its past ones. To relax this assumption a series of methods, pioneered by Yu et al. (2008a), and
refined in Wu et al. (2017); Zhao & Park (2017); Jensen et al. (2020) instead consider spike train
models using a Gaussian process prior on x, which only enforces smoothness, not Markovianity,
in the latent dynamics. However, inference using Gaussian processes is computationally quadratic
in the number of time points, requiring additional approximations to remain tractable thus these
techniques are typically used for very short neural datasets unlike the O(hours)-long datasets we
consider here.

To model complex non-linear, but Markovian, transition structures and alleviate some time scaling
issues of GP methods, LFADS (Pandarinath et al., 2018) uses a Recurrent Neural Network to model
latent dynamics. While LFADS is capable of modelling a wide range of firing patterns and temporal
dynamics, its linear–exponential intensity function model will, again, not capture the complex tuning
properties of grid cells and place cells. Moreover, LFADS comes with expensive training overheads
and hyperparameters which are reportedly hard to tune (Keshtkaran et al., 2022). Pi-VAE (Zhou
& Wei, 2020) uses a Variational Autoencoder (Kingma & Welling, 2014) to learn both a generative
model and a latent decoding network for latent-modulated spike events. Finally, CEBRA (Schneider
et al., 2023) is a neural network based technique that learns a deterministic encoder mapping spikes
to latents using Noise–Contrastive Estimation. CEBRA focuses on decoding and does not natively
learn intensity functions, which are of primary interest in our setting. Of these methods only pi-VAE
and CEBRA exploit behaviour to find latent variables (pi-VAE uses behaviour labels to define a
prior over latent variables, CEBRA uses behaviour as labels for a contrastive loss function). To our
knowledge, SIMPL is the first technique to explore using behaviour as an initialisation.

4 RESULTS

4.1 TOY MODEL OF A DISCRETE LATENT VARIABLE TASK

This section will be moved to the appendix to make room for the new results Before testing SIMPL
on a large temporally continuous dataset we constructed a smaller dataset akin to a discrete two-
alternative forced choice task (2AFC) (Fig. 2) — a widely studied decision–making paradigm (Platt
& Glimcher, 1999; Bogacz et al., 2006; Znamenskiy & Zador, 2013; Lieder et al., 2019). The true
latent states x?

t ∈ {0, 1} are binary and have no temporal structure (here subscript t indexes trials
not time), analagous to a series of random “left” or “right” choices (Fig. 2b). This latent state is
stochastically encoded by a population of neurons with random tuning curves giving the Bernoulli
emission probabilities under each latent state:

f?i (x) =

{
fi0 ∼ U(0, 1) x = 0,

fi1 ∼ U(0, 1) x = 1,

x?
t ∼ Bernoulli(0.5) and sti|xt ∼ Bernoulli(f?i (x?

t )).
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Data is then sampled for T = 50 trials and N = 15 neurons as shown in Fig. 2. Initial conditions,
x
(0)
t , are generated from the true latent by randomly resampling a fraction of trials ρ = 0.5 (Fig.

2b). This partial resample represents an initial discrepancy between the behavioural measurement
and the true internal state of the agent.

We perform inference on this dataset using a reduced version of the model (SIMPL-R). In the M-step,
tuning curves were fitted by calculating the average activity of a neuron across each latent condition
(e.g. f (e)i (x) =

∑
t stiδ(x

(e)
t ,x)/

∑
t δ(x

(e)
t ,x), conceptually similar to KDE). For the E-step, each

latent was the decoded according to the maximum likelihood estimate under the observed spikes and
tuning curve estimates from the previous epoch: x

(e+1)
t = arg maxx

∑
i log p(sti|x, f (e)i ) (there is

no time dependence between latents, thus no Kalman smoothing). This process was repeated for 5
epochs and, with high reliability, converged on the true latents after approximately two (Fig. 2c & d,
distributions show repeat for 1000 randomly seeded datasets, dotted lines show ceiling performance
on a model perfectly initialized with noiseless x(0) = x?). We repeated this experiment for various
values of ρ: latent recovery was almost perfect when ρ was small (i.e. when the initial conditions
were close to the true latent), dropping off as ρ approached 1. At ρ = 1 when the conditions
were completely random, the model was biased to recover a latent space that is either perfectly
correlated or perfectly anti-correlated (“left”↔ “right”) with the true latent (Fig. 2c, right), a valid
isomorphism discussed more in the upcoming sections.

tuning curves

L
R •••

trials 500 trials 500

•••
true latent x★ x(5) “optimised” latent “measured behaviour” x(0)

data, s ~ p(•|x★, f★)

50
0n
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ns

15
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(a)

(b)
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Figure 2: A two-alternative forced choice task (2AFC) toy-model. (a) Data generation: Spikes are sampled
from a simple generative model. For each of T=50 independent trials a random binary latent — analogous
to a “left” or “right” choice — is encoded by a population of N=15 neurons with randomly initialized tuning
curves. (b) Model performance: Starting from a noisy estimate (yellow) of the true latent (black) where a
fraction ρ = 0.5 of trials are resampled, SIMPL-R recovers the true latent variables (green) with high accuracy.
(c) Left: Correlation between x(e) and x?. Middle: Log-likelihood, log p(s|x(e), f (e)). Right: Final correlation
between x(5) and x? as a function of initialization noise ρ. Violin plots show distributions over 1000 randomly
seeded datasets, dotted lines show ceiling performance of a perfectly initialized model (x(0) = x?) (d) Tuning
curves.

4.2 CONTINUOUS SYNTHETIC DATA: 2D GRID CELLS

Next we tested SIMPL on a realistic navigational task by generating a large artificial dataset of spikes
from a population of N = 225 2D grid cells — a type of neuron commonly found in the medial
entorhinal cortex which activate on the vertices of a regular hexagonal grid (Hafting et al., 2005)
— in a 1 m square environment. Grid cell tuning curves, f?, were modelled as the thresholded
sum of three planar waves at 0◦, 60◦ and 120◦ to some offset direction (a commonly used model
within the computational neuroscience literature (George et al., 2024a)) and, as observed in the
brain, cells were arranged into three discrete modules, 75 cells per modules, of increasing grid scale
from 0.3–0.8 m (Fig. 3c). Each cell had a maximum firing rate of 10 Hz. A latent trajectory, x?, was
then generated by simulating an agent moving around the environment for 1 hour under a smooth
continuous random motion model replicating rodent foraging behaviour. Data was sampled at a rate
of 10 Hz giving a total of T = 36, 000 time bins (∼ 800,000 spikes). All data was generated using
the RatInABox package (George et al., 2024a).

x? ∼ Smooth-continuous-random-walk and sti|x?
t ∼ Poi(fGC

i (x?
t )) (3)

6
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Figure 3: Results on a synthetic 2D grid cell dataset. An artificial agent locomotes a 1 m square environment
for 1 hour (∆t = 0.1 s). Spikes are generated from N=225 artificial grid cells. (a) Estimated latent trajectories
shown for epochs 0, 1 and 10. x and y positions are denoted by dotted and dashed lines respectively. Initial
conditions are generated from the true latent (black) by the addition of smooth continuous Gaussian noise. (b)
Tuning curve estimates for 5 examplar grid cells at epochs 0, 1 and 10. (c) Ground truth tuning curves. (d)
Performance metrics: Left: log-likelihood of the train and test spikes (averaged per time step, dotted line shows
ceiling performance on a model initialized with the true latent). Middle-left: Euclidean distance between the
true and estimated latent trajectories (averaged per time step). Middle-right: Epoch-to-epoch change in the
tuning curves. Right: Cell spatial information. Violin plots, where shown, display distributions across all 225
neurons. (e) A sweep over the number of cells and the duration of the trajectory. Final error between ground
truth and estimated latent trajectory (colour, shades of green show improvements over the initialisation) as well
as compute size (size) is shown.

The initial latent trajectory, x(0), was generated by adding smooth Gaussian noise to the latent x
such that, on average, the true latent and initial condition differed by 20 cm (Fig. 3a, top panel).
This discrepancy, modelling the agent’s own uncertainty in their position and/or a measurement
error, was sufficient to obscure almost all structure from the initial grid cell tuning curves f (0)(x)
(Fig. 3b, top).

To assess performance we track to the log-likelihood of train and test spike (see Appendix D for
details of how we partition the dataset) . We also calculate the Euclidean distance between the true
and latent trajectory (Fig. 3d, middle-left), T−1

∑
t ‖x(e)(t) − xt‖2, the epoch-to-epoch change

in the tuning curves (Fig. 3d, middle-right) and the entropy (hereon called “spatial info”, Fig. 3d,
right) of the normalized tuning curves as a measure of how spatially informative they are.

SIMPL was then run for 10 epochs (total compute time 39.8 CPU-secs on a consumer grade laptop).
The true latent trajectory and receptive fields were recovered almost perfectly and the log-likelihood
of both train and test spikes rapidly approached the ceiling performance with negligible overfitting.
As expected SIMPL performs better on larger datasets, Fig. 3e however, our testing shows perfor-

mance is still good even with substantially small datasets (e.g. 50 cells for a duration of 5 minutes).
Performance drops off sharply for datasets with less than 20 cells.

Influence of behavioural initializations on performance Latent variable models trained with
EM can experience two issues that usually complicate the scientific interpretability of their results.
The first concerns the quality of the solution; does the algorithm converge on a good model of the
data which predicts the spikes well? The second issue concerns identifiability; even if the recovered
latent trajectory and tuning curves (f (e),x(e)) are of high quality, they may differ from the true ones
(f?,x?) by some invertible “warp” φ in a way that does not affect the overall goodness of fit of the
model. While SIMPL is a latent variable model, we show that behavioural initialization drastically
minimizes the severity of both of these issues.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

initialised: noisy ground truth (fig. 3)ground truth
epoch 0 epoch 1 epoch 10

randomly

warp 
maps 

exemplar 
tuning 
curve 

epoch 10

reference

corr

f(x)
f(e)(x(e)) 0.41 0.83 0.98 0.87

(a) (b) (c)

warp distance 0.126 0.050 0.039 0.498

Figure 4: Latent manifold analysis: (Top) Examplar tuning curve in the ground truth latent space (a), the
latent space discovered by behaviourally-initialised-SIMPL after 0, 1 and 10 epochs (b) and the latent space
discovered by SIMPL initialized with a random latent trajectory (c). Inset scatter plots show the true and
predicted firing rates of all neurons across all times as well as their correlation values (“accurate” models have
higher correlations). (Bottom) Visualizations of the warp functions mapping each latent space to the “closest”
location in ground truth as measured by the distance between the tuning curves population vectors.

SIMPL
CEBRA

GPLVM

(a) (b)

pi-VAE

0 25 0 20Latent error
[cm]

CPU-time 
[mins]

be
ha
vio

ur

Ground
truth

SIMPL(c) (d)
CEBRA
GPLVM
pi-VAE

ground truth
behaviour

Figure 5: Comparison between SIMPL and CEBRA,
GPLVM and pi-VAE.

To do so, we first assess the absolute goodness–
of–fit of SIMPL by computing the correlation
between the estimated instantaneous firing rates
f (e)(x

(e)
t ) (a quantity invariant to warping) and

the true ones. Our analysis shows that SIMPL
converges to a highly accurate model (r=0.98)
under behavioural initialization, but to a less
accurate (though still quite accurate) one (r =
0.87) when initialized with a random latent
trajectory which is uncorrelated with behav-
ior. Second, we estimate, quantify and visu-
alize the warp map φ between SIMPL’s esti-
mates (f (e),x(e)) and the ground truth (f?,x?).
We obtain this estimate by finding a map-
ping from the discovered latent space to the
true latent space which minimizes the L2 dif-
ference between the tuning curves (φ(x) =
arg miny ‖f?(y) − f (e)(x)‖2). We then quan-
tify the “warpness” of this mapping by calcu-
lating the average distance between x and φ(x)
across the environment, normalized by its char-
acteristic length scale (1 m). This warp dis-
tance should be 0 for total un-warped models
and O(1) for heavy warps. We find that in addition to perfectly fitting the data, the solution found
by SIMPL under behavioural initialization is minimally warped (warp dist = 0.050). In contrast, the
good (but imperfect) solution found by SIMPL under random initialization is heavily warped (warp
dist. = 0.498) in a fragmented manner. These results are shown in Fig. 4 and strongly motivate the
use of behavioural initializations in latent variable models as an effective mean to encourage con-
vergence towards latent spaces which are both accurate and un-warped with respect to the ground
truth.

Benchmarking SIMPL against existing techniques We compared SIMPL to a popular latent vari-
able extraction technique called CEBRA (Schneider et al., 2023). Unline SIMPL which uses be-
haviour as an initialisation, CEBRA learns latent embeddings directly from spikes by training a
deep neural network to minimise a contrastive loss function with behaviour as the labels. We trained
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CEBRA on our synthetic grid cell dataset using out-of-the-box hyperparameters2 training for the de-
fault 10000 iterations. After training we aligned the latent to behaviour and observed that CEBRA,
like SIMPL, found a latent trajectory (Fig. ??a, blue) very close to the true latent (Fig. ??a, black).
CEBRA’s latent embedding was noisier than SIMPL’s (a likely consequence of the explicit smooth-
ing we perform) and had significantly larger final error (9.2 cm vs 4.0 cm). Since CEBRA doesn’t
explicitly learn a generative model in order to visualise tuning curves we applied our standard KDE
fitting procedure (an “M-step”) to the CEBRA latents. The resulting grid cells but remained blurry
relative to the ground truth (but were better than behaviour), in comparison to SIMPL, which pro-
duced sharp, well-defined grid fields (Fig. ??b) close to the ground truth. CEBRA took just over 23
minutes to train on a consumer laptop with 8-CPUs compared to just under 40 seconds for SIMPL
on the same machine.

4.3 HIPPOCAMPAL PLACE CELL DATA

Next, we test SIMPL on a neural dataset from N = 226 hippocampal neurons recorded from a rat as
it foraged in a large 3.5 m by 2.5 m environment for 2 hours (full details can be found in Tanni et al.
2022). The data was binned at 5 Hz (dt = 0.2s giving T = 36, 000 data samples, total ∼ 700,000
spikes). Place cells are a type of neuron commonly found in the hippocampus which activate when
an animal is in a specific location in space (its “place field”) and, like grid cells, are thought to be
a key component of the brain’s navigational system (O’Keefe, 1978). In large environments place
cells are known to exhibit tuning curves with multiple place fields (Park et al., 2011).

log-likelihood
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3
Figure 6: Results on a hippocampal place cell dataset collected by Tanni et al. (2022). (a) Exemplar tuning
curves before and after optimization. Automatically identified place field boundaries shown in white. (b)
Log-likelihood of test and train spikes. Equivalent results for a control model — fitted with spikes resampled
from the behavioural place fields, scontrol ∼ p(·|x(0), f (0)) — shown in grey. (c) Place field (before, after,
control-after) analysis. Violin plots show the distributions over all place fields / place cells. (d) The final latent
trajectory estimated from SIMPL (green) overlaid on top of the behaviour (used as initial conditions) (yellow).
x and y coordinates shown with dotted and dashed lines respectively. (e) Behavioural discrepancy map: the
average discrepancy ‖x(0)

t − x
(10)
t ‖2 as a function of the optimized latent x(10). Overlaid is a snippet of the

behavioural vs optimized true latent trajectory. (f) Median place field sizes, and distributions, as a function of
the distance to the nearest.

We initialized SIMPL using the measured position of the animal and optimized for 10 epochs. The
log-likelihood of test and train spikes increased, Fig. 6b, converging after approximately 4 epochs
(compute time 41.2 CPU-secs). Place fields were automatically identified by thresholding the ac-
tivity of each neuron at 1 Hz and identifying contiguous regions of activity with a peak firing rate
above 2 Hz and a total area less than half that of the full environment, similar to previous work
(Tanni et al., 2022).

2with the exception that we turned ‘off’ normalisation so outputs weren’t normalised onto a sphere
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Figure 7: SIMPL applied to a somatosensory cortex dataset. (a) A macaque
perform a serier of centre-out reaches and N = 65 neurons from the so-
matosensory cortex are recorded. (b) Log-likelihood curves for the three
SIMPL models described in panels c-e. (c) SIMPL is trained with a 2D la-
tent initialised to the x− and y−position of the monkeys hand. Top-left show
the raw behaviour averaged across all (active) trial aligned to movement onset
time (-100ms – 500ms). Top-right shows SIMPL’s latent after optimisation.
Middle shows 40 seconds of behaviour (yellow) and latent (green) for 40 sec-
onds. Bottom shows four example tuning curves at epochs 0 (behaviour) and
10 (optimised). (d) Same as c but with hand velocity as the initial condition.
(e) Same as c but with a 4D latent where dimensions 1 and 2 are initialised
with hand position and dimensions 3 and 4 are initialised with hand velocity.

Tuning curves were visibly
sharper after optimization,
Fig. 6a; diffuse place fields
shrunk (e.g. see the third
exemplar tuning curve) or
split into multiple, smaller
fields (second exemplar)
(Fig. 6a). Occasionally,
new place fields appeared
(fourth exemplar) or mul-
tiple place fields merged
into a single larger field
(fifth exemplar). Sta-
tistically, tuning curves
had significantly more
individual place fields
(+19%, mean 1.14→1.41
per cell, p = 0.0035
Mann Whitney U tests),
substantially higher max-
imum firing rates (+45%,
median 4.2→6.1 Hz,
p = 9.8 × 10−7) and were
more spatially informative
(p = 0.038). Individual
place fields were sub-
stantially smaller (-25%,
median 0.59→0.44 m2)
and rounder (+8%, median
0.63→0.68, p = 0.0037).
Notably only place cells
— defined as cells with
at least one place field —
showed significant changes
in their tuning curves
whilst non-place cells were
statistically unaffected
(data not shown).

To ensure that these
changes were not an
artefact of the SIMPL algo-
rithm we generated a con-
trol dataset by resampling
spikes from the behaviour-
fitted tuning curves,
scontrol ∼ p(·|x(0), f (0)).
Control spikes thus had
very similar temporal
statistics and identical
tuning curves to those in
the original dataset but,

crucially, were generated from a known ground truth model exactly equal to the initialization.
Thus, any changes to the control spike tuning curves under SIMPL optimization can be considered
artefactual and not fundamental to the underlying neural data. Notably, no significant effect of
optimization on the control data (except for a slight increase in field area) was observed and all
measured effects – though statistically insignificant – pointed in the opposite direction to those
observed in the real data (except for roundness) (Fig. 6c). This control provides strong evidence
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that the changes observed in the real data are genuine and reflect the true nature of neural tuning
curves in the brain.

After 10 iterations of optimization the latent trajectory x(10) remained highly correlated with the
behaviour (R2 = 0.86, fig. 6d) occasionally diverging for short period as the latent “jumped” to and
from a new location, as if the animal was mentally teleporting itself (one such “jump” is visualized
in Fig. 6e). The close correspondence between the optimized latent and the behaviour allows us
to directly compare when, and where, they diverge. We calculated the discrepancy between the
optimized latent and the behaviour at each time point, ‖x(0)

t − x
(10)
t ‖2, and visualized this as a heat

map overlaid onto the latent space (Fig. 6e). Discrepancy was minimal around the edges of the
environment and peaked near the centre, consistent with the hypothesis that sensory input is less
reliable in the centre of the environment (where there are fewer visual and tactile cues) to guide self-
localisation resulting in a larger average discrepancy between the optimized latent and the behaviour.

Tanni et al. (2022) found that place field size increased with distance from the nearest wall in the
environment. Our observation — that latent-behaviour discrepancy is highest in the centre of the
environment — suggests a possible explanation: place fields in the centre of the environment are not
larger but appear larger because they are distorted and blurred by the discrepancy which is largest
near the centre of the environment. To test this we binned place fields according to their distance to
the nearest wall (measured with respect to the place fields centre of mass) and plotted the median
field size against distance (Fig. 6f). Optimized place fields, much like behavioural place fields,
were the smallest near the walls and grew with distance (replicating Tanni et al. (2022)), but this
correspondence broke down around ∼ 0.5 m after which the optimized size distribution flattened
off (something not observed in the control). A majority of the shrink in place field size thus came
from larger place fields near the centre of the environment not the smaller ones near the walls. This
result suggests that a substantial fraction of the increased size of place fields away from walls is not
a fundamental feature of the neural tuning curves themselves but can be attributed to a behaviour-
induced distortion in the tuning curves, an artefact which can be corrected for by optimising the
latent with SIMPL.

5 SOMATOSENSORY CORTEX DATA DURING A HAND-REACHING TASK

To assess the generality of SIMPL beyond navigational/hippocampal datasets we tested it on data
from the somatosensory cortex of a macaque monkey performing a centre-out hand-reaching task
Chowdhury et al. (2020). During this recording the monkey made a series of reaches to a target
in one of 8 directions, 7. On about half of the trials the reach was “active” whereby the monkey
moved the manipulandum towards the target by itself and, on the other half the reach was “passive”,
whereby the monkey’s hand was bumped in the direction of one of the targets by a force applied to
the manipulandum, forcing the monkey to correct and return the cursor to the centre. We binned the
data (N = 65 neurons, T = 37 mins, 1.02× 106 spikes) at 20 Hz and trained SIMPL models on the
entire dataset (active and passive reaches as well as the inter-trial intervals) for 10 epochs.

First we trained SIMPL with a 2D latent initialised to the measured x- and y-hand position of the
monkey (Fig. 7c). The log-likelihood of the test spikes reliably increased during training (Fig. 7c)
following which we visualised the latent trajectory, averaged across trial type aligned to movement
onset time (i.e. reach direction, Fig. 7c top-right). We found the latent trajectory had diverged from,
but remained correlated with, hand-position (correlation = 0.59). Individual trial types had distinct
but overlapping trajectory motifs in the optimised latent space. We then trained SIMPL but with hand
velocity, rather than position, as the initial condition (Fig. 7d). This model performed comparably,
converging to an almost identical log-likelihood as the position model. After optimisation, the latent
correlated only weakly with hand-velocity (corr.= 0.41).

Finally, we trained SIMPL with a 4D latent. Two of the dimensions were initialized with x- and
y-hand position whilst the other two were initialized with x- and y-hand velocity. This model per-
formed better than either of the two 2D models, converging to a higher log-likelihood. The latent
dimensions initialised to position remained highly correlated with position (corr. = 0.74) and the
latent dimensions initiales with velocity remained correlated with velocity (corr. = 0.57). The latent
trajectory was also more structured, with distinct non-overlapping motifs for each trial type. We
visualised two-dimensional slices of the four-dimensional tuning curves for each neuron and found
that they had sharp and well-defined receptive fields similar to place fields in the hippocampus.
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6 DISCUSSION

We introduced SIMPL, a tool for optimizing tuning curves and latent trajectories using a technique
which refines estimates obtained from behaviour. It hinges on two well-established sub-routines —
fitting and decoding — which are widely used by both experimentalists and theorists for analysing
neural data. By presenting SIMPL as an iterative application of these techniques, we aim to make
latent variable modelling more accessible to the neuroscience community.

Furthermore, we see SIMPL as a specific instance of a broader class of latent optimization algo-
rithms. In principle any arbitrary curve fitting procedure and any arbitrary decoder could be coupled
into a candidate algorithm for optimizing latents from neural data. Our specific design choices,
while attractive due to their conceptual simplicity, will also come with limitations. For example, we
predict KDE won’t scale well to very high dimensional latent spaces (Györfi et al., 2006). In these
instances users could consider substituting this component with a parametric model, e.g. a neural
network, which are known to perform better in high dimensions (Bach, 2017), potentially at the cost
of compute time.

Our synthetic analysis focussed on settings where behaviour and the true latent differed only in
an unbiased manner. It would be interesting to determine if SIMPL’s strong performance extends to
more complex perturbations. In the brain, fast, non-local and asymmetric perturbations are common;
for instance “replay”Carr et al. (2011) where the latent jumps to another location in the environment.
Likewise, during theta sweeps (Maurer et al., 2006), the encoded latent moves away from the agent.
This forward-biased discrepancy could theoretically induce a backward-biased skew in behavioral
place fields, even if the true tuning curves remain unskewed. If this is the case, latent dynamics
–— and tools like SIMPL for extracting them — could help reinterpret the predictive nature of place
field tuning curves Stachenfeld et al. (2017); Fang et al. (2023); Bono et al. (2023); George et al.
(2023), similar to how latent optimization reduced the asymmetry in place field sizes further from
walls (Fig. 6f).
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Pierre Hodara, Nathalie Krell, and Eva Löcherbach. Non-parametric estimation of the spiking rate
in systems of interacting neurons. Statistical Inference for Stochastic Processes, 2018.

Øyvind Arne Høydal, Emilie Ranheim Skytøen, Sebastian Ola Andersson, May-Britt Moser, and
Edvard I Moser. Object-vector coding in the medial entorhinal cortex. Nature, 2019.

Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence and
uniqueness results. Neural networks, 1999.

Kristopher Jensen, Ta-Chu Kao, Marco Tripodi, and Guillaume Hennequin. Manifold gplvms for
discovering non-euclidean latent structure in neural data. Advances in Neural Information Pro-
cessing Systems, 2020.

James J Jun, Nicholas A Steinmetz, Joshua H Siegle, Daniel J Denman, Marius Bauza, Brian Barbar-
its, Albert K Lee, Costas A Anastassiou, Alexandru Andrei, Cağatay Aydın, et al. Fully integrated
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Supplementary Material for “SIMPL: Scalable and hassle-free
optimization of neural representations from behaviour”

A BACKGROUND

A.1 EXPECTATION MAXIMIZATION

Expectation Maximization (EM, Dempster et al. 1977) is a widely used paradigm to perform statis-
tical estimation in latent variable models. The goal of EM is to maximize the Free Energy, a lower
bound on the log-likelihood log p(s; f) of the data, given by (following the notations of Section 2.1):

F(f , q) := Eq(x)[log p(x, s ; f)]− Eq(x)[log q(x)] ≤ log p(s; f),

where q is some probability distribution on the latent variable x. Importantly, for a given set of
intensity functions f , F is maximized, and the lower bound becomes “tight”, at q? := p(x|s ; f), i.e.
the posterior distribution of the latent variable given the s and f . Moreover, for a fixed q, the only
f -dependent term in F is Eq(x)[log p(x, s ; f)]. To maximize F(f , q) — and thus also increase the
log-likelihood — EM produces a sequence (f [e])e≥0 of parameters f [e] by invoking, at each step e
and given f [e−1], two well known subroutines:

• E-step: Define q[e] := p(x|s ; f [e−1]); compute F 7−→ Eq[e] [log p(x, s ; f)]

• M-step: Compute f [e] := arg maxf F(f , q[e]) = arg maxf Eq[e] [log p(x, s ; f)]

with the property that log p(s; f [e]) ≥ log p(s; f [e−1]) for all e, grounding the use of EM to maximize
the likelihood of the data. As the E-step computes specific posterior expectations, a tractable E-step
often implies the ability to compute in particular posterior means and variances, the most valuable
expectations in the context of decoding the latent variable from behaviour. Thus, in the context of
neural data, EM offers a framework to both estimate intensity functions via maximum likelihood,
and to ‘decode’ the variable encoded by the neurons, here by taking the mean of the posterior.

Finally, note that while the E-step writes an expectation under the full posterior q[e] := p(x|s, f [e−1]),
only specific marginals of this posterior may actually be needed depending on the structure of the
joint distribution, as further discussed in Section A.2.

Impossibility of Exact EM for Gaussian-Modulated Poisson Processes The E-step of the EM
algorithm requires computing a function defined as an expectation w.r.t p(x|s ; f [e−1]). In the case
of Hidden Markov Models, such expectations are intractable to compute in closed form, unless the
latent variable x is discrete, or both the transition and the emission probabilities are Gaussian (with
mean and variance depending linearly on x, Rauch et al. 1965). In particular, exact inference in the
model described in Section 2.1 is impossible because the emission probabilities are Poisson with
mean given by a non-linear function of x via each neurons tuning curve.

In order to perform statistical inference for our spike train model, SIMPL runs an approximation of
Exact EM, which we detail below. At a high level the goal is to convert the non-linear, non-Gaussian
spiking observations, into a variable which is linear and Gaussian with resepct to the latent, thus can
be solved using a Kalman smoother.

A.2 LINEAR GAUSSIAN STATE SPACE MODELS AND KALMAN SMOOTHING

Linear Gaussian State Space Models (LGSSM) are dynamical systems of the form:

zt+1 = Ftzt + εt, εt ∼ N (0d, Qt)

xt = Htzt + δt, δt ∼ N (0m, Rt).
(4)

where z ∈ Rd, x ∈ Rm, Ft, Qt ∈ Rd×d, Ht ∈ Rp×d and Rt ∈ Rm×m. LGSSMs can be
used as latent variable models given some observed data x, where z is treated as a latent variable.
While these models are limited in their expressiveness, their benefits are that inference (and in set-
ting, “E-steps”) can be done very efficiently: not only is the posterior p(z1, . . . , zT |x1, . . . ,xT )
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a Gaussian distribution (of dimension Td), but all of its marginals and pairwise marginals
p(zt|x1, . . . ,xT ), p(zt, zt+1|x1, . . . ,xT ) (crucially, the only distributions needed for learning the
parameters of LGSSM via EM ) can be computed jointly in O(T ) time using a technique known as
Kalman Smoothing (Kalman, 1960; Rauch et al., 1965). Such a scaling contrasts with naive binning-
based alternatives for (approximate) inference in continuous, non-Gaussian State Space Models,
which require maintaining an estimate of each bin — a vector of size n (no. bins) where n grows
exponentially with the dimension of the latent space, as used in e.g. Denovellis et al. 2021. Instead,
for LGSSMs, the Gaussianity means only the mean and covariance of the marginal posterior dis-
tributions — of size d and d2 respectively — need to be stored. This is not memory intensive and,
perhaps more importantly, the Kalman Filter proceeds to compute them in a combined O(T ) time.
In our experiments, we found the cost of the Kalman Filter to be negligible relative to the KDE
evaluations which are the main computational bottleneck of SIMPL.

B SIMPL AS AN APPROXIMATE EM ALGORITHM

B.1 MLE-BACKED APPROXIMATE E-STEP

Instead of q[e] = p(x|s ; f [e−1]), SIMPL computes an approximation q̂[e] to q[e], allowing for both
statistical estimation and uncertainty-aware trajectory decoding. As a first step towards obtaining
q̂[e], SIMPL first performs Maximum Likelihood Estimation (MLE) on the latent trajectory x. In-
stead of returning a posterior on x, MLE returns a point estimate of the true trajectory that led to the
observed spike train s. In particular, MLE does not use the prior knowledge encoded by p(x). The
MLE x̂ of x given s is given by:

x̂ = arg max
x

log p(s|x ; f [e−1]) = arg max
x

T∑
t=1

N∑
i=1

log p(sti|xt ; f [e−1])

=⇒ x̂t = arg max
xt

N∑
i=1

log p(sti|xt ; f [e−1]).

The second equality follows from the conditional independence structure of the HMM. This maxi-
mization problem can be solved independently for each t, yielding the formula for x̂t given by the
third equality. As a function of s, the MLE x̂ is itself a random variable. In the many neurons
limit, under certain regularity assumptions, the distribution of this random variable converges to a
Gaussian, a fact known as asymptotic normality. We restate a formal statement of this result in the
case of independent, but non identically distributed observations 3 originally established in Bradley
& Gart (1962), and reformulated using the notations of the model at hand. For simplicity, we will
consider the case where only P distinct intensity functions f1, . . . , fP exist, although versions of this
result exist without this assumption.
Theorem B.1 (Asymptotic Normality of the MLE ). Let x?

t ∈ Rd. Let s = (s1t, . . . , sNt) be
independent random variables with probability densities p(sti|x?

t ; ft(i)), where t(i) ∈ 1, . . . , P is
the index of the intensity function ft(i) that generated the spike train sti. For p ∈ 1, . . . , P , denote
np the number of times the intensity function fp appeared in the sequence ft(i). Assume that the
MLE x̂t exists and it is unique. Then, under mild regularity conditions, we have:

√
N (x̂t − x?

t )
d−−−−→

N→∞
N (0, I(x?

t )−1)

where I(x?
t ) :=

P∑
p=1

µpEp(st;fp)Hess(log p(st|x?
t ; fp)) is the Fisher Information matrix of the model

at x?
t , d→ means convergence in distribution, and we defined µp := limN→∞

np

N .

The asymptotic Gaussianity of the MLE in the many neurons limit suggests performing approximate
inference in a surrogate Hidden Markov Model, with the same transition probabilities p(xt+1|xt)
as the original ones, but where the observations s are replaced by the previously computed MLE
x̂ of the latent variable. Leveraging Theorem B.1, SIMPL approximates the emission probabili-
ties p(x̂t|xt) by the Gaussian distribution N (xt,Σt), where Σt := (NI(x̂t))

−1 ≈ (NI(xt))
−1.

3The i.i.d case was established in Fisher (1925)
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By treating the covariance matrices Σt as deterministic instead of depending on xt, the variables
(xt, x̂t) form a Linear Gaussian State Space Model, with hidden variables xt and observed variables
x̂t given by:

x̂t | xt ∼ N (xt,Σt)

xt+1 | xt ∼ N (xt, σ
2
vI),

(5)

for σv = v · dt. This model is precisely an instance of Linear Gaussian State Space Models defined
in Equation 4, with latent variable zt := xt, observation x̂t, and the four matrices set to:

Ft = I (constant)
Ht = I (constant)

Qt = σ2
vI (constant)

R = Σt (time-varying).

This correspondence allows SIMPL to compute an approximation of the marginal posterior distri-
butions p(xt|s) ≈ p(xt|x̂) using Kalman Smoothing (Kalman, 1960; Rauch et al., 1965). This
posterior is then used as the approximation q̂[e] to q[e] in SIMPL’s E-step. Finally, F(f, q̂[e]) is
approximated by sampling from q̂[e], and computing the empirical average of log p(x, s ; f). Im-
portantly, obtaining the MLE estimates x̂t can be obtained in parallel for all t; the only sequential
procedure remaining being the Kalman Smoothing step.

B.2 SPIKE SMOOTHING AS AN APPROXIMATE M-STEP

In the M-step, one maximizes Eq̂[e] [log p(x, s ; f)] w.r.t to the intensity functions (tuning curves)
f = (f1, · · · , fN ). This step is often done by specifying a parametric model for each f , and then
optimizing the parameters. However parametric models come with diadvantages, for example if the
true function cannot be accurately represented by the parameteric model, the final procedure will
suffer from a bias that does not vanish in the large sample limit. While one could use a neural
network (whose bias can be made arbitrarily small by increasing the number of neurons), neural
networks can be hard to interpret and expensive to train. Instead, SIMPL uses a non-parametric
approach that is both training-free and interpretable. To do so, SIMPL samples from its approximate
posterior x̃ ∼ q̂[e], and computes a non-parametric estimate (Hodara et al., 2018) of the intensity
functions fi given by:

f̂
[e]
i (x) :=

∑T
t=1 sti k(x, x̃t)∑T
t=1 k(x, x̃t)

. (6)

Here, k : Rd × Rd 7−→ R+ is some kernel function.

We propose an explanation of the above formula as the generalization of an M-step: for a fixed
q̂[e], Ep(s)q̂[e](x) log p(s,x ; f) equals (up to a constant) the negative KL divergence between the
“data” distribution 4 p(s)q̂[e](x|s) and the model p(s,x; f). Thus, an M-step can be understood as
minimizing this KL divergence approximately, by replacing the expectation over p(s) by an empir-
ical average over the true data s, an approximation which is asymptotically consistent in the large
number of time-steps limit under suitable ergodicity conditions (Billingsley, 1961). SIMPL relaxes
this approximation further, replacing the expectation over q̂[e](x|s) by a one-sample estimate of it
through x̃. Moreover, it does not use the KL as a loss function, but instead performs model fitting in
a non-parametric manner. Under this procedure, the existing guarantees regarding the EM algorithm
do not hold – on the other hand, SIMPL’s M-step precisely matches spike smoothing, a fast and
standard practice in neuroscience.

C IMPLEMENTATION DETAILS

Below we provide some implementation details that were important to maximize the computational
efficiency of the method.

4We denote qk(x) by qk(x|s) to highlight the dependence between x and s.
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C.1 MAXIMIZING SIMPL’S COMPUTATIONAL EFFICIENCY

C.1.1 COMPUTATIONAL BOTTLENECKS IN SIMPL

A single evaluation of the log-likelihood log p(st|xt) requires evaluating the KDE-based rate map
estimates given in Equation 6, which takes O(T ) time as it involves a sum across timesteps. More-
over, this O(T )-length calculation will be repeated T -times for each step of the Kalman smoother
in order to (1) compute the MLEs x̂t (which naively require gradient ascent on log p(st|xt)) and (2)
evaluate the MLE variance Σt := (NI(x̂t))

−1 = (NHx(log p(s|x̂t))(x̂t))
−1. All in all, an exact

implementation of SIMPL E-step thus has a quadratic O(T 2) time complexity, which is prohibitive
for long datasets. Moreover, the second-order differentiation needed to compute I(x̂t) is also com-
putationally expensive (formally, in introduces a large constant factor in front of the O(T 2) term).
In the next sections, we describe additional approximations which allow SIMPL to estimate the MLE
and its variance in O(T ) time and without differentiating the rate maps.

C.1.2 LINEAR-TIME, MLE ESTIMATION

Naive gradient-based solution The naive way to calculate the MLE x̂t is to evaluate all N tun-
ing curves (recall each evaluation costs O(T )) for some location x, use these to establish the log-
likelihood log p(st|x), calculate the gradient of this log-likelihood w.r.t. x, and then take, for exam-
ple, k gradient descent steps to find the MLE. This process is repeated for each timestep t, leads to
a quadratic time complexity of O(kNT 2).

SIMPL’s approach To compute the MLE in linear time SIMPL bypasses the need to recalculate
the tuning curves at each time step by, instead, binning them onto a discretised grid of points once
at the start of each iteration.

Formally SIMPL computes n evaluations the tuning curves f̃ := (f̃1, . . . , f̃n) := (f(g1), . . . , f(gn))
on a grid of n points G = (g1, . . . ,gn). This has time complexity O(NnT ). We use a uniform
rectangular grid of points (the smallest rectangle containing the full observed behavioural variable)
of spacing dx. For example, in a 1 m × 1 m environment with dx = 0.02 m, this would yield a grid
of 50×50 points (n = 2500).

Then, given f̃ , SIMPL then discretizes the log-likelihood functions log p(st|x) over that same grid:

l̃it := log p(st|gi) =

N∑
j=1

log p(stj |gi) =

N∑
j=1

log
e−f̃ij f̃

stj
ij

stj !

= −
N∑
j=1

f̃ij + stj log f̃ij − log stj !

(7)

where we noted f̃ij := (f̃i)j . Finally, given such evaluations, SIMPL set its approximation of the
MLE to be

x̂t := arg max
g∈G

log p(st|g) = arg max
i

l̃it

This way of calculating the MLE has linear time complexity yielding an improvement for n < kT .

C.1.3 LINEAR-TIME DERIVATIVE-FREE MLE VARIANCE ESTIMATION

A similar strategy could be employed to also compute I(x̂t) := −Hx(log p(st|x̂t))(x̂t), which
appears in Σt. Here Hx is the Hessian operator defined as Hx(f)(x) := ∇2

xf(x). To do
so, one could compute the Hessian of the rate maps and their logarithm on that grid, from
which any Hx(log p(s|x̂t))(x̂t) at the grid-point-based MLE obtained above can be evaluated
as Hx(log p(st|gi))(gi) = −

∑N
j=1 Hx(fj)(gi) + stjHx(log fj)(gi). However, we found that

differentiating f could be slow. To further improve computational efficiency, SIMPL produces
an estimation of Σt by instead estimating the variance of the posterior distribution p(xt|st) ∝
p(xt)p(st|xt) = p(st,xt). The posterior variance and the MLE variance are expected to closely
match, as discussed in our theoretical justification above. Moreover, as this posterior is available
analytically up to the normalizing constant p(st), its variance can be approximately computed by
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binning p(xt|st) onto the same grid G introduced above, yielding the following fast estimator for
Σt.

Σt ≈ Cov p(xt|st) ≈
∑

i p̃it(gi − µt)(gi − µt)
T∑

i p̃it
, µt :=

∑
i gip̃it∑
i p̃it

(8)

where p̃it := exp(l̃it) = p(st|gi). Intuitively, this is equivalent to fitting a multivariate Gaussian to
the binned likelihood map. The covariance matrix of this Gaussian is then used as an approximation
of the MLE variance. We provide a theoretical argument justifying the validity of this formula below.

Theoretical Justification Equation 8 is justified by the Bernstein Von Mises theorem, which states
that the difference (in total variation) between the posterior distribution and the distribution of the
MLE vanishes in the many neurons limit. We restate this theorem using the notations of our paper,
assuming a unique rate map, and without stating some of the required regularity assumptions for
simplicity. We refer the reader to (Van der Vaart, 2000, Theorem 10.1, p.141–144) for the full
version.
Theorem C.1 (Bernstein-von Mises). Let x?

t ∈ Rd. Let st = (s1t, . . . , sNt) be i.i.d random vari-
ables with probability density p(st|x?

t ; f). Assume that the MLE x̂t exists and it is unique. Then,
under mild regularity conditions, for any prior p on xt, we have:

‖p(xt|st)−N (x̂t, (NI(x?
t ))−1)‖TV

p(st)→
N→∞

0

where
p(s)→ denotes convergence in probability, and ‖ · ‖TV denotes the Total Variation norm on

bounded measures.

From this theorem, we thus have that the (random) posterior distribution behaves (in total varia-
tion) as a Gaussian whose covariance matrix is precisely the asymptotic variance of the MLE. Note
however that convergence in total variation does not a priori imply convergence of variances. Fur-
ther work could examine under which assumptions such a convergence of variances may hold. In
practice, we found that this approximation yielded a satisfying trade-off between performance and
accuracy.

C.2 ITERATIVE LINEAR REALIGNMENT OF THE TRAJECTORIES

To improve the identifiability properties and the numerical stability of SIMPL, we also transform
the decoded latent trajectory at each iteration using a linear mapping which maximally aligns it
with behaviour defined as x

(e)
t ← Mx

(e)
t + c where M, c = arg min

∑
t ‖x

(0)
t − (Mx

(e)
t + c)‖.

This approach ensures the scale, orientation and centre of the optimised latent trajectory are tied
to behaviour, preventing accumulation of linear shifts/rotations across iterations and allowing us
to interpret the latent relative to, and in the same units as, behaviour. We suspect that performing
this alignment on all iterates after the optimization would yield similar results. Because the trans-
formed latent necessarily has similar scale to the behaviour — which was used to set the size of the
discretised environment — we can reuse the same discrete grid for the latent avoiding the need to
rediscretize the environment at each iteration.

C.3 HYPERPARAMETERS SETTINGS

SIMPL has two model hyperparameters:

• v: the diffusion rate for Kalman smoothing, which sets a prior over expected velocity of
the latent variable. Units are in ms−1.
• σ: the bandwidth of the kernel used in the M-step to smooth spikes. Units are in m.

Additionally there are some implementation-specific parameters:

• dx: the bin size for the variance estimation of the MLE. Units are in m.
• dt: the time step of the discretization of the latent variable. Units are in s.
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• E: the number of iterations of the EM algorithm.

Finally, in all simulations we used a test fraction of 10% and held out ‘speckled’ data segments of
length 1 second to evaluate the performance of the model. We provide in Table 1 the value of these
hyperparameters for the Artificial Grid Cell Dataset and the Real Hippocampal Dataset.

Table 1: Hyperparameters settings

Hyperparameter Artificial Grid Cell Dataset (Fig. 3) Real Hippocampal Dataset (Fig. 6)

velocity prior, v 0.4 ms−1 1.0−1

KDE bandwidth, σ 0.02 m 0.1 m

arena bin size, dx 0.02 m 0.04 m

time discretisation, dt 0.1 s 0.2 s

number of EM iterations, E 10 10

D TEST-TRAIN PARTITIONING

To assess performance we partition the spike data matrix, s, into testing and training sets, Stest,Strain.
Inference is performed solely on the training set and we then track the log-likelihood of data in both
sets (Fig. 3d, left), e.g. `(e) = |Stest|−1test

∑
(i,t)∼S test log p(sti|x(e)

t , f
(e)
i ). This partitioning requires

careful consideration: entire time intervals cannot be withheld for testing without impairing the
model’s ability to infer the latent over this period. Likewise, entire neurons cannot be withheld
without impairing the model’s capacity to estimate their tuning curves. Instead, we adopt a speckled
train-test mask previously used in latent variable modelling set-ups (Williams et al., 2020) which
withholds for testing extended chunks of time bins arranged in an irregular “speckled” pattern across
the data matrix (totalling 10% of the data).

E ADDITIONAL RESULTS

E.1 HYPERPARAMETER SWEEP

We swept over the two hyperparameters v (the velocity prior) and σ (the KDE bandwidth) to assess
how sensitive SIMPL is to these hyperparameters, as shown in Figure 8. For this we used the same
synthetic grid cell dataset used in Fig. 3. Notably, SIMPL’s performance (measured in terms of the
final error, see panel b) is relatively stable across a wide range of hyperparameters; kernel band-
widths between 0.1 cm and 5 cm and velocity priors between 0.2 m/s and 1 m/s all yield similar
performance. When the tuning curves are confirmed that kernel bandwidth has a significant effect
on their appearance. Broader kernels give smoother tuning curves eventually blurring the individual
grid fields together whilst narrower kernels give sharper tuning curves eventual leading to overfitting
where individual spikes are resolved.

E.2 NON-CONTINUOUS HIPPOCAMPAL REPLAY DATASET

Since SIMPL places an explicit prior on latent trajectories which are smooth and continuous we
tested whether it could be used to model a dataset where the latent variable is non-continuous. For
this we simulated a synthetic “replay” dataset from N = 225 small Gaussian place cells. In this
dataset the latent variable and behaviour perfectly match except for regular, brief periods of ”replay”
where the latent variable jumps to a new location. Using the same hyperparameters as in the main
text we found that SIMPL was able to recover the latent variable, capturing (or “decoding”) the
replay events with high accuracy (Fig. 9), despite its smoothness prior.
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Figure 8: Performance of SIMPL on the synthetic grid cell dataset as a function of the hyperparameters v (speed
prior) and σ (kernel bandwidth). (a) Tuning curves. (b) Final error between the latent and ground truth (colour)
and total compute time (size).
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Figure 9: A synthetic hippocampal “replay” dataset. (a) One minute of trajectory, x-coordinate in solid line,
y-coordinate in dashed. The behaviour (light-green, top panel) is smooth, actually matching the latent most
of the time except when the latent takes regular, brief discontinuous jumps reminiscent of hippocampal replay
events. After optimisation SIMPL is able to recover the latent (dark-green, bottom panel) and capture the replay
events with high accuracy. (b) Spike raster plots; spikes plotted against the behaviour, optimised latent and
ground truth latent.
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