
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIMPL: SCALABLE AND HASSLE-FREE OPTIMIZATION
OF NEURAL REPRESENTATIONS FROM BEHAVIOUR

Anonymous authors
Paper under double-blind review

ABSTRACT

High-dimensional neural activity in the brain is known to encode low-
dimensional, time-evolving, behaviour-related variables. A fundamental goal of
neural data analysis consists of identifying such variables and their mapping to
neural activity. The canonical approach is to assume the latent variables are be-
haviour and visualize the subsequent tuning curves. However, significant mis-
matches between behaviour and the encoded variables may still exist — the agent
may be thinking of another location, or be uncertain of its own — distorting the
tuning curves and decreasing their interpretability. To address this issue a variety
of methods have been proposed to learn this latent variable in an unsupervised
manner; these techniques are typically expensive to train, come with many hyper-
parameters or scale poorly to large datasets complicating their adoption in prac-
tice. To solve these issues we propose SIMPL (Scalable Iterative Maximization
of Population-coded Latents), an EM-style algorithm which iteratively optimizes
latent variables and tuning curves. SIMPL is fast, scalable and exploits behaviour
as an initial condition to further improve convergence and identifiability. We
show SIMPL accurately recovers latent variables in biologically-inspired spatial
and non-spatial tasks. When applied to a large rodent hippocampal dataset SIMPL
efficiently finds a modified latent space with smaller, more numerous, and more
uniformly-sized place fields than those based on behaviour, suggesting the brain
may encode space with greater resolution than previously thought.

1 INTRODUCTION

Large neural populations in the brain are known to encode low-dimensional, time-evolving latent
variables which are, oftentimes, closely related to behaviour (Afshar et al., 2011; Harvey et al.,
2012; Mante et al., 2013; Carnevale et al., 2015; Kobak et al., 2016). Coupled with a recent data-
revolution driven by the advent of large-scale neural recording techniques (Jun et al., 2017; Wilt
et al., 2009), focus in recent years has shifted from single-cell to population-level analyses where
the goal is to extract these variables using a variety of statistical (Yu et al., 2008a; Cunningham &
Yu, 2014; Kobak et al., 2016; Zhao & Park, 2017; Williams et al., 2020) and computational (Van der
Maaten & Hinton, 2008; Pandarinath et al., 2018; Mackevicius et al., 2019) methods, ultimately
providing deeper insight into the computations embodied by neural circuits.

This paradigm shift is particularly pertinent in the context of the mammalian spatial memory sys-
tem where Nobel-prize winning discoveries have identified cells whose neural activity depends on
spatially-relevant behavioural variables such as position (O’Keefe & Dostrovsky, 1971; O’Keefe,
1978; Hafting et al., 2005; Doeller et al., 2010; Moser et al., 2015), heading direction (Taube et al.,
1990), speed (McNaughton et al., 1983) and distance to environmental boundaries (Lever et al.,
2009)/objects (Høydal et al., 2019)in a highly structured manner. These discoveries include place
cells (O’Keefe & Dostrovsky, 1971) and grid cells (Hafting et al., 2005) which are widely held to
constitute the brain’s “cognitive map” (Tolman, 1948; O’Keefe, 1978). Characterizing neural ac-
tivity in terms of behaviour has been, and remains, a cornerstone practice in the field; however, the
core assumption supporting it — that the latent variable encoded by neural activity is and only is the
behavioural variable — is increasingly being called into question (Sanders et al., 2015; Whittington
et al., 2020; George et al., 2024b).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

E-step ≈ MLE + Kalman

≈

x = argmaxx log p(s | x)
‸

xt xt+1

xt
‸

xt+1
‸s1

sN

xt xt+1

••• s1
sN
•••

x

y
behaviour true dynamics

dim 1
di

m
 2

(c) (d)

“E-step” decode position

“M-step” fit tuning curves
tuning curves, fi(x)

latent trajectory, x(t)

(a)

t

i

spikes,
s(t) ~ true dynamics

(b)

• ••••
•
•

•••

•

M-step ≈ spike smoothing

⊗

SIMPL

x(0) f(0) f*x*

Figure 1: Schematic of the SIMPL algorithm. (a) A latent variable model for spiking data (fi(x),x(t)) is
optimized by iterating a two-step procedure closely related to the expectation-maximization (EM, Dempster
et al. 1977) algorithm: First, tuning curves are fitted to an initial estimate of the latent variable (the “M-step”),
which are then used to redecode the latent variable (the “E-step”). (b) SIMPL fits tuning curves using kernel
density estimation (KDE) with a Gaussian kernel (top) and decodes the latent variables by Kalman-smoothing
maximum likelihood estimates. Measured behaviour (c) is used to initialize the algorithm as it is often closely
related to the true generative latent variable of interest (d).

The brain is not a passive observer of the world. Active internal processing like planning a future
route (Spiers & Maguire, 2006) or recalling past positions (Squire et al., 2010) as well as observed
phenomena such as replay (Carr et al., 2011), theta sweeps (Maurer et al., 2006), and predictive
coding (Muller & Kubie, 1989; Mehta et al., 1997; Stachenfeld et al., 2017) will cause encoded
variables to deviate from behaviour. Additionally, the brain is not a perfect observer; irreducible
uncertainty due to limited, noisy or ambiguous sensory data can lead to similar encoding discrep-
ancies. Experimental inaccuracies, like measuring the wrong behaviour or measuring behaviour
poorly, can contribute further. These hypotheses are supported by decoding analyses which show
that “behaviour” decoded from behaviourally-fitted tuning curves rarely achieves perfect perfor-
mance (Glaser et al., 2020; Wilson & McNaughton, 1993) as well as the observation that neurons
show high variability under identical behavioural conditions (Fenton & Muller, 1998; Low et al.,
2018).

All combined, these facts hint at a much richer and more complex internal neural code. When this
complexity is not accounted for (as is typically the case), neural data may be misinterpreted and
tuning curves will be blurred or distorted relative to their true form, weakening the validity of the
conclusions drawn from them. As an explicit example, consider an animal situated at position X
‘imagining’ or ‘anticipating’ another position, Y, for which a cell is tuned (e.g. the cell has a place
field at Y). This might trigger the cell to fire leading a researcher, who only examines the animal’s
externally measurable behavioural-position, to mistakenly conclude that the cell has a place field at
location X. Nonetheless, the observation that behaviour is still a close-but-imperfect proxy for the
true latent variable motivates the search for techniques to refine behaviourally fitted tuning curves as
opposed to starting from scratch. Current methods either fail to exploit behaviour (Yu et al., 2008a;
Wu et al., 2017), don’t scale to large neural datasets (Wu et al., 2017), are computationally expensive
to train (Smith & Brown, 2003; Pandarinath et al., 2018) or are limited in the expressiveness of their
tuning curve models (Macke et al., 2011; Gao et al., 2016; Archer et al., 2014).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Contributions Here we introduce SIMPL (Scalable Iterative Maximization of Population-coded
Latents), a straightforward yet effective enhancement to the current paradigm. Our approach fits
tuning curves to observed behaviour and iteratively refines these through a two-step process: first
we decode the latent variable from the previously estimated tuning curves; then, we refit the curves
based on these decoded latents. SIMPL imposes minimal constraints on the structure of the tuning
curves, scales well to large neural datasets and does not rely on neural network function approxi-
mators which can be hard to interpret and expensive to train. We theoretically analyse SIMPL and
establish formal connections to expectation-maximisation (EM, Dempster et al. 1977) for a simple
but flexible class of generative models. By exploiting behaviour as an initialization, SIMPL con-
verges fast and alleviates well known issues to do with local minima and identifiability (Hyvärinen
& Pajunen, 1999; Locatello et al., 2019). This allows it to reliably return refined tuning curves
and latent variables which remain close to, but improve upon, their behavioural analogues readily
admitting direct comparison.

We first validate and analyse the properties of SIMPL on synthetic datasets that closely match those
analysed by experimentalists: a discrete 2AFC decision-making task and a continuous grid cells
dataset. Finally, we apply SIMPL to rodent electrophysiological hippocampal data (Tanni et al.,
2022) and show it modifies the latent space in an incremental but significant way. The optimized
tuning curves explain the data better than their behavioural counterparts and contain sharper, more
numerous place fields which allow for a reinterpretation of previous experimental results, motivating
the use of SIMPL in future studies. SIMPL has only two hyperparameters and can be run on quickly
on large neural datasets O(200 neurons, 106 spikes, 1 hour) ∼ O(1 CPU-min) without requiring a
GPU. It outperforms a popular modern alternative technique based on neural networks (Schneider
et al., 2023) and is over 30× faster. This make it a practical alternative to existing tools particularly
of interest to navigational communities where data is abundant and behavioural variables are close
to the true latent. We provide an open-source JAX-optimised (Bradbury et al., 2018) implementation
of our code1.

2 METHOD

Here we provide a high-level description of the SIMPL algorithm. Comprehensive details, as well as
a theoretical analysis linking SIMPL formally to expectation-maximization of a class of generative
models, is provided in the Appendix.

Algorithm 1 SIMPL: An algorithm for optimizing tuning curves and latents from behaviour

1: s ∈ NN×T . Spike count matrix
2: x(0) ∈ RD×T . Initial latent estimate e.g. measured position of animal
3: procedure SIMPL(s,x(0))
4: for e← 0 to E do . Loop for E iterations
5: f (e) ← FitTuningCurves(x(e), s) . The “M-step”
6: x(e+1) ← DecodeLatent(f (e), s) . The “E-step”
7: end for
8: return x(E+1), f (E) . The optimised latent and tuning curves
9: end procedure

2.1 THE MODEL

SIMPL models spike trains of the form s := (sti)
i=1,...N
t=1,...T , where sti represents the number of spikes

emitted by neuron i between time (t − 1) · ∆t and t · ∆t, for some time discretization interval
dt. We denote st := (st1, . . . , stN) the vector of spike counts emitted by all neurons in the t-th
time bin. SIMPL posits that such spike trains s are modulated by a latent, continuously-valued,
low-dimensional, time-evolving variable x := (xt)t=1,...,T ∈ RD through the following random
process:

sti | xt ∼ Poisson(fi(xt))

xt+1 | xt ∼ N (xt, σ
2
vI),

1Code and a demo can be found at: https://anonymous.4open.science/r/simpl/

3

https://anonymous.4open.science/r/simpl/

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where σv := v · dt and x0 ∼ N (0, σ2
0I). Here, v is some constant expected velocity hyperparam-

eter. The resulting prior distribution p(x) = p(x0)
∏

t=1
T p(xt|xt−1) enforces a tunable (through

v) amount of temporal smoothness in the trajectories. At each time step the latent variable xt de-
termines the instantaneous firing rate of each neuron via its intensity function fi (hereon called its
tuning curve, collectively denoted f), which is unknown a priori, and which SIMPL will estimate.
Moreover, we make the common assumption that all neurons are conditionally independent given
xt, i.e. p(st|xt) =

∏
N
i=1 p(sti|xt). Finally, we assume the latent variable x evolves only according

to its previous state (it is Markovian), a common assumption in the neuroscience literature (see, e.g.
George et al. 2021). This model has been previously studied in the literature (Smith & Brown,
2003; Macke et al., 2011), albeit using highly restrictive intensity function models, something which
SIMPL avoids as discussed below.

2.2 THE SIMPL ALGORITHM

Outline We now seek an estimate of the true, unknown latent trajectory x? and tuning curves f? that
led to some observed spike train, s. SIMPL does so by iterating a two-step procedure closely related
to the expectation-maximisation (EM) algorithm: first, tuning curves are fitted to an initial estimate
of the latent variable (the “M-step”), which are then used to decode the latent variable (the “E-step”).
This procedure is then repeated using the new latent trajectory, and so on until convergence.

The M-step In the M-step (or “fitting” step) of the e-th iteration SIMPL fits intensity functions to
the current latent trajectory estimate x(e) using kernel density estimation (KDE):

f
(e)
i (x) :=

∑T
t=1 sti k(x,x

(e)
t)∑T

t=1 k(x,x
(e)
t)

≈ # spikes at x
visits to x

(1)

The use of a smooth kernel allows extrapolation of the intuitive estimate on the right of Equation 1
to locations not present in the trajectory x(e). In practice, we use a Gaussian kernel with bandwidth
σ.

The E-step In the E-step (or “decoding” step), SIMPL produces a new estimate x(e+1) of the la-
tent trajectory by smoothing — using the prior p(x) — across time the (non-smooth) maximum
likelihood estimate (MLE) x̂ of x, given s and f (e). To do so, SIMPL computes a linear-Gaussian
approximation of the conditional distribution p(x̂t|xt) ≈ N (xt; Σt). With this approximation, the
variables (x, x̂) form a Linear Gaussian State Space Model, fully characterized by σ2

vI (the tran-
sition noise covariance) and Σt (the observation noise covariance). This allows SIMPL to employ
Kalman Smoothing, an efficient inference procedure for such models, to approximate Ep(x|x̂)[x].

Crucially, the linear-Gaussian approximation is not made on the spiking emissions p(s|x), which
is non-Gaussian by design, but on p(x̂|x), a quantity which is provably asymptotically Gaussian
in the many-neurons regime (full theoretical argument and an explicit formula for Σt in B.1). At
a high level, SIMPL’s E-step can thus be summarized as (see Fig. 1b, lower panel, for a graphical
summary):

x̂(e+1) := arg max
x

log p(s|x, f (e))

x(e+1) := E
p(x|x̂(e+1)

t)
[x] ≈ KalmanSmooth(x̂(e+1);σ2

vI,Σt)
(2)

Behavioural initialization Spike trains often come alongside behavioural recordings which are
thought to be closely related to the latent variable x. SIMPL leverages this by setting x(0), the
initial decoded latent trajectory, to measured behaviour. We posit that such a behavioural initial-
ization will place the first iterate of SIMPL in the vicinity of the true trajectory and tuning curves.
This, in turn, faciliates the search for a good model which favours the true latent and tuning curves
(x?, f?) over alternative pairs (φ(x?), f? ◦ φ−1) whose latent space is warped by some invertible
map φ, and which would explain the data equally well (i.e. solution pairs which are isomorphic
to the ground truth). Through ablation studies, we confirm the beneficial effects of this behavioral
initialization in the experiments section (see Fig. 3 and 4).

All in all, SIMPL is interpretable and closely matches common practice in neuroscience; moreover,
it can be formally related to a generalized version of the EM-algorithm, for which theoretical guar-
antees may be obtained under suitable assumptions. We describe in detail the theoretical arguments
justifying the validity of SIMPL as well as its connection to EM in the appendix.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 RELATED WORK

Probabilistic inference in spike trains modulated by latent variables has been a major topic in neural
data analysis for decades — see, e.g. Yu et al. (2005; 2006; 2008b;a); Macke et al. (2011); Mangion
et al. (2011); Park et al. (2015); Gao et al. (2016); Duncker et al. (2019); Zhou & Wei (2020);
Schneider et al. (2023). Closest to SIMPL are the works of Smith & Brown (2003); Macke et al.
(2011), which both perform approximate EM in a hidden markov model with Poisson emissions and
a Gaussian random walk prior on x. Both methods use a simplistic parametric linear–exponential
model of intensity functions; such parametric models are not flexible enough to capture neurons with
complex tuning properties such as place cells and grid cells. The (approximate) E-step of Macke
et al. (2011) employs a global Laplace approximation, leveraging the concavity of the log-posterior
of such models to compute the maximum a posteriori (MAP) of the entire trajectory; however,
this concavity is a consequence of the intensity function model, and does not hold in our more
complex case. On the other hand, the approximate E-step of Smith & Brown (2003) uses a local
Laplace approximation to obtain the MAP. However, their algorithm requires running optimization
algorithms sequentially, which can be computationally expensive. In contrast, the MLE optimization
problems computed in SIMPL’s E-step can be solved in parallel across time points, making SIMPL
more scalable.

Markovian models assume that the future trajectory of an agent is only influenced by its current state,
not its past ones. To relax this assumption a series of methods, pioneered by Yu et al. (2008a), and
refined in Wu et al. (2017); Zhao & Park (2017); Jensen et al. (2020) instead consider spike train
models using a Gaussian process prior on x, which only enforces smoothness, not Markovianity,
in the latent dynamics. However, inference using Gaussian processes is computationally quadratic
in the number of time points, requiring additional approximations to remain tractable thus these
techniques are typically used for very short neural datasets unlike the O(hours)-long datasets we
consider here.

To model complex non-linear, but Markovian, transition structures and alleviate some time scaling
issues of GP methods, LFADS (Pandarinath et al., 2018) uses a Recurrent Neural Network to model
latent dynamics. While LFADS is capable of modelling a wide range of firing patterns and temporal
dynamics, its linear–exponential intensity function model will, again, not capture the complex tuning
properties of grid cells and place cells. Moreover, LFADS comes with expensive training overheads
and hyperparameters which are reportedly hard to tune (Keshtkaran et al., 2022). Pi-VAE (Zhou
& Wei, 2020) uses a Variational Autoencoder (Kingma & Welling, 2014) to learn both a generative
model and a latent decoding network for latent-modulated spike events. Finally, CEBRA (Schneider
et al., 2023) is a neural network based technique that learns a deterministic encoder mapping spikes
to latents using Noise–Contrastive Estimation. CEBRA focuses on decoding and does not natively
learn intensity functions, which are of primary interest in our setting. Of these methods only pi-VAE
and CEBRA exploit behaviour to find latent variables (pi-VAE uses behaviour labels to define a
prior over latent variables, CEBRA uses behaviour as labels for a contrastive loss function). To our
knowledge, SIMPL is the first technique to explore using behaviour as an initialisation.

4 RESULTS

4.1 TOY MODEL OF A DISCRETE LATENT VARIABLE TASK

This section will be moved to the appendix to make room for the new results Before testing SIMPL
on a large temporally continuous dataset we constructed a smaller dataset akin to a discrete two-
alternative forced choice task (2AFC) (Fig. 2) — a widely studied decision–making paradigm (Platt
& Glimcher, 1999; Bogacz et al., 2006; Znamenskiy & Zador, 2013; Lieder et al., 2019). The true
latent states x?

t ∈ {0, 1} are binary and have no temporal structure (here subscript t indexes trials
not time), analagous to a series of random “left” or “right” choices (Fig. 2b). This latent state is
stochastically encoded by a population of neurons with random tuning curves giving the Bernoulli
emission probabilities under each latent state:

f?i (x) =

{
fi0 ∼ U(0, 1) x = 0,

fi1 ∼ U(0, 1) x = 1,

x?
t ∼ Bernoulli(0.5) and sti|xt ∼ Bernoulli(f?i (x?

t)).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Data is then sampled for T = 50 trials and N = 15 neurons as shown in Fig. 2. Initial conditions,
x
(0)
t , are generated from the true latent by randomly resampling a fraction of trials ρ = 0.5 (Fig.

2b). This partial resample represents an initial discrepancy between the behavioural measurement
and the true internal state of the agent.

We perform inference on this dataset using a reduced version of the model (SIMPL-R). In the M-step,
tuning curves were fitted by calculating the average activity of a neuron across each latent condition
(e.g. f (e)i (x) =

∑
t stiδ(x

(e)
t ,x)/

∑
t δ(x

(e)
t ,x), conceptually similar to KDE). For the E-step, each

latent was the decoded according to the maximum likelihood estimate under the observed spikes and
tuning curve estimates from the previous epoch: x

(e+1)
t = arg maxx

∑
i log p(sti|x, f (e)i) (there is

no time dependence between latents, thus no Kalman smoothing). This process was repeated for 5
epochs and, with high reliability, converged on the true latents after approximately two (Fig. 2c & d,
distributions show repeat for 1000 randomly seeded datasets, dotted lines show ceiling performance
on a model perfectly initialized with noiseless x(0) = x?). We repeated this experiment for various
values of ρ: latent recovery was almost perfect when ρ was small (i.e. when the initial conditions
were close to the true latent), dropping off as ρ approached 1. At ρ = 1 when the conditions
were completely random, the model was biased to recover a latent space that is either perfectly
correlated or perfectly anti-correlated (“left”↔ “right”) with the true latent (Fig. 2c, right), a valid
isomorphism discussed more in the upcoming sections.

tuning curves

L
R •••

trials 500 trials 500

•••
true latent x★ x(5) “optimised” latent “measured behaviour” x(0)

data, s ~ p(•|x★, f★)

50
0n

eu
ro

ns

15

trials0

(a)

(b)

1

-1

correlation

0 5epoch, e epoch, e

-290

-460
0 5

log-likelihood

-1

1

ρ0 1

final corr.

0 1
P(spike)

LR LR LR

f★f(0) f(5)
(c) (d)

Figure 2: A two-alternative forced choice task (2AFC) toy-model. (a) Data generation: Spikes are sampled
from a simple generative model. For each of T=50 independent trials a random binary latent — analogous
to a “left” or “right” choice — is encoded by a population of N=15 neurons with randomly initialized tuning
curves. (b) Model performance: Starting from a noisy estimate (yellow) of the true latent (black) where a
fraction ρ = 0.5 of trials are resampled, SIMPL-R recovers the true latent variables (green) with high accuracy.
(c) Left: Correlation between x(e) and x?. Middle: Log-likelihood, log p(s|x(e), f (e)). Right: Final correlation
between x(5) and x? as a function of initialization noise ρ. Violin plots show distributions over 1000 randomly
seeded datasets, dotted lines show ceiling performance of a perfectly initialized model (x(0) = x?) (d) Tuning
curves.

4.2 CONTINUOUS SYNTHETIC DATA: 2D GRID CELLS

Next we tested SIMPL on a realistic navigational task by generating a large artificial dataset of spikes
from a population of N = 225 2D grid cells — a type of neuron commonly found in the medial
entorhinal cortex which activate on the vertices of a regular hexagonal grid (Hafting et al., 2005)
— in a 1 m square environment. Grid cell tuning curves, f?, were modelled as the thresholded
sum of three planar waves at 0◦, 60◦ and 120◦ to some offset direction (a commonly used model
within the computational neuroscience literature (George et al., 2024a)) and, as observed in the
brain, cells were arranged into three discrete modules, 75 cells per modules, of increasing grid scale
from 0.3–0.8 m (Fig. 3c). Each cell had a maximum firing rate of 10 Hz. A latent trajectory, x?, was
then generated by simulating an agent moving around the environment for 1 hour under a smooth
continuous random motion model replicating rodent foraging behaviour. Data was sampled at a rate
of 10 Hz giving a total of T = 36, 000 time bins (∼ 800,000 spikes). All data was generated using
the RatInABox package (George et al., 2024a).

x? ∼ Smooth-continuous-random-walk and sti|x?
t ∼ Poi(fGC

i (x?
t)) (3)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

time [min]
0

1

po
s

[m
]

tuning curves, fi(e)(x)
e = 0

e = 1

e = 10

latent trajectory, x(e)(t)

0 1
true tuning curves, fi★(x)

yx
estimate, x(e)

true, x★

0

1
0

1

-0.05

-0.23

x(e) errorlog-likelihood Δf(e)/Δe spatial info.
≈

-8.9

-7.414.2

0

0.19

0
0 10e

test
train

(a) (b)

(d) (c)

1 m

Nneurons

5 20 50
100
200

2
5
10
30
60

T
[m

in
s]

40 020
error
[cm]

CPU-
sec
60
10
1

(e)

Figure 3: Results on a synthetic 2D grid cell dataset. An artificial agent locomotes a 1 m square environment
for 1 hour (∆t = 0.1 s). Spikes are generated from N=225 artificial grid cells. (a) Estimated latent trajectories
shown for epochs 0, 1 and 10. x and y positions are denoted by dotted and dashed lines respectively. Initial
conditions are generated from the true latent (black) by the addition of smooth continuous Gaussian noise. (b)
Tuning curve estimates for 5 examplar grid cells at epochs 0, 1 and 10. (c) Ground truth tuning curves. (d)
Performance metrics: Left: log-likelihood of the train and test spikes (averaged per time step, dotted line shows
ceiling performance on a model initialized with the true latent). Middle-left: Euclidean distance between the
true and estimated latent trajectories (averaged per time step). Middle-right: Epoch-to-epoch change in the
tuning curves. Right: Cell spatial information. Violin plots, where shown, display distributions across all 225
neurons. (e) A sweep over the number of cells and the duration of the trajectory. Final error between ground
truth and estimated latent trajectory (colour, shades of green show improvements over the initialisation) as well
as compute size (size) is shown.

The initial latent trajectory, x(0), was generated by adding smooth Gaussian noise to the latent x
such that, on average, the true latent and initial condition differed by 20 cm (Fig. 3a, top panel).
This discrepancy, modelling the agent’s own uncertainty in their position and/or a measurement
error, was sufficient to obscure almost all structure from the initial grid cell tuning curves f (0)(x)
(Fig. 3b, top).

To assess performance we track to the log-likelihood of train and test spike (see Appendix D for
details of how we partition the dataset) . We also calculate the Euclidean distance between the true
and latent trajectory (Fig. 3d, middle-left), T−1

∑
t ‖x(e)(t) − xt‖2, the epoch-to-epoch change

in the tuning curves (Fig. 3d, middle-right) and the entropy (hereon called “spatial info”, Fig. 3d,
right) of the normalized tuning curves as a measure of how spatially informative they are.

SIMPL was then run for 10 epochs (total compute time 39.8 CPU-secs on a consumer grade laptop).
The true latent trajectory and receptive fields were recovered almost perfectly and the log-likelihood
of both train and test spikes rapidly approached the ceiling performance with negligible overfitting.
As expected SIMPL performs better on larger datasets, Fig. 3e however, our testing shows perfor-

mance is still good even with substantially small datasets (e.g. 50 cells for a duration of 5 minutes).
Performance drops off sharply for datasets with less than 20 cells.

Influence of behavioural initializations on performance Latent variable models trained with
EM can experience two issues that usually complicate the scientific interpretability of their results.
The first concerns the quality of the solution; does the algorithm converge on a good model of the
data which predicts the spikes well? The second issue concerns identifiability; even if the recovered
latent trajectory and tuning curves (f (e),x(e)) are of high quality, they may differ from the true ones
(f?,x?) by some invertible “warp” φ in a way that does not affect the overall goodness of fit of the
model. While SIMPL is a latent variable model, we show that behavioural initialization drastically
minimizes the severity of both of these issues.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

initialised: noisy ground truth (fig. 3)ground truth
epoch 0 epoch 1 epoch 10

randomly

warp
maps

exemplar
tuning
curve

epoch 10

reference

corr

f(x)
f(e)(x(e)) 0.41 0.83 0.98 0.87

(a) (b) (c)

warp distance 0.126 0.050 0.039 0.498

Figure 4: Latent manifold analysis: (Top) Examplar tuning curve in the ground truth latent space (a), the
latent space discovered by behaviourally-initialised-SIMPL after 0, 1 and 10 epochs (b) and the latent space
discovered by SIMPL initialized with a random latent trajectory (c). Inset scatter plots show the true and
predicted firing rates of all neurons across all times as well as their correlation values (“accurate” models have
higher correlations). (Bottom) Visualizations of the warp functions mapping each latent space to the “closest”
location in ground truth as measured by the distance between the tuning curves population vectors.

SIMPL
CEBRA

GPLVM

(a) (b)

pi-VAE

0 25 0 20Latent error
[cm]

CPU-time
[mins]

be
ha
vio

ur

Ground
truth

SIMPL(c) (d)
CEBRA
GPLVM
pi-VAE

ground truth
behaviour

Figure 5: Comparison between SIMPL and CEBRA,
GPLVM and pi-VAE.

To do so, we first assess the absolute goodness–
of–fit of SIMPL by computing the correlation
between the estimated instantaneous firing rates
f (e)(x

(e)
t) (a quantity invariant to warping) and

the true ones. Our analysis shows that SIMPL
converges to a highly accurate model (r=0.98)
under behavioural initialization, but to a less
accurate (though still quite accurate) one (r =
0.87) when initialized with a random latent
trajectory which is uncorrelated with behav-
ior. Second, we estimate, quantify and visu-
alize the warp map φ between SIMPL’s esti-
mates (f (e),x(e)) and the ground truth (f?,x?).
We obtain this estimate by finding a map-
ping from the discovered latent space to the
true latent space which minimizes the L2 dif-
ference between the tuning curves (φ(x) =
arg miny ‖f?(y) − f (e)(x)‖2). We then quan-
tify the “warpness” of this mapping by calcu-
lating the average distance between x and φ(x)
across the environment, normalized by its char-
acteristic length scale (1 m). This warp dis-
tance should be 0 for total un-warped models
and O(1) for heavy warps. We find that in addition to perfectly fitting the data, the solution found
by SIMPL under behavioural initialization is minimally warped (warp dist = 0.050). In contrast, the
good (but imperfect) solution found by SIMPL under random initialization is heavily warped (warp
dist. = 0.498) in a fragmented manner. These results are shown in Fig. 4 and strongly motivate the
use of behavioural initializations in latent variable models as an effective mean to encourage con-
vergence towards latent spaces which are both accurate and un-warped with respect to the ground
truth.

Benchmarking SIMPL against existing techniques We compared SIMPL to a popular latent vari-
able extraction technique called CEBRA (Schneider et al., 2023). Unline SIMPL which uses be-
haviour as an initialisation, CEBRA learns latent embeddings directly from spikes by training a
deep neural network to minimise a contrastive loss function with behaviour as the labels. We trained

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

CEBRA on our synthetic grid cell dataset using out-of-the-box hyperparameters2 training for the de-
fault 10000 iterations. After training we aligned the latent to behaviour and observed that CEBRA,
like SIMPL, found a latent trajectory (Fig. ??a, blue) very close to the true latent (Fig. ??a, black).
CEBRA’s latent embedding was noisier than SIMPL’s (a likely consequence of the explicit smooth-
ing we perform) and had significantly larger final error (9.2 cm vs 4.0 cm). Since CEBRA doesn’t
explicitly learn a generative model in order to visualise tuning curves we applied our standard KDE
fitting procedure (an “M-step”) to the CEBRA latents. The resulting grid cells but remained blurry
relative to the ground truth (but were better than behaviour), in comparison to SIMPL, which pro-
duced sharp, well-defined grid fields (Fig. ??b) close to the ground truth. CEBRA took just over 23
minutes to train on a consumer laptop with 8-CPUs compared to just under 40 seconds for SIMPL
on the same machine.

4.3 HIPPOCAMPAL PLACE CELL DATA

Next, we test SIMPL on a neural dataset from N = 226 hippocampal neurons recorded from a rat as
it foraged in a large 3.5 m by 2.5 m environment for 2 hours (full details can be found in Tanni et al.
2022). The data was binned at 5 Hz (dt = 0.2s giving T = 36, 000 data samples, total ∼ 700,000
spikes). Place cells are a type of neuron commonly found in the hippocampus which activate when
an animal is in a specific location in space (its “place field”) and, like grid cells, are thought to be
a key component of the brain’s navigational system (O’Keefe, 1978). In large environments place
cells are known to exhibit tuning curves with multiple place fields (Park et al., 2011).

log-likelihood

10
0

1.5

dwall [m]

A,
 [m

2]

ns

**

0 6 1.50

ns

**

10 0 15 -6-8

ns
*

time [min]
0

3.5

po
s

[m
]

0

no. of place fields field area, A [m2] field ‘roundness’ max. firing rate [Hz] spatial info.

tuning curves, fi(e)(x)

1.5

0

[m
]

latent trajectory, x(e)(t)

before
after

control

epoch0

-0.12

-0.15
10

yxbefore (behaviour)
after (latent)

control

train
test

ns

Δ = ‖x(0)-x(10)‖

area vs dist. to wall

3.5 m

(a)

(c)

(d)

(b)

(f)x-difference(e)

3
Figure 6: Results on a hippocampal place cell dataset collected by Tanni et al. (2022). (a) Exemplar tuning
curves before and after optimization. Automatically identified place field boundaries shown in white. (b)
Log-likelihood of test and train spikes. Equivalent results for a control model — fitted with spikes resampled
from the behavioural place fields, scontrol ∼ p(·|x(0), f (0)) — shown in grey. (c) Place field (before, after,
control-after) analysis. Violin plots show the distributions over all place fields / place cells. (d) The final latent
trajectory estimated from SIMPL (green) overlaid on top of the behaviour (used as initial conditions) (yellow).
x and y coordinates shown with dotted and dashed lines respectively. (e) Behavioural discrepancy map: the
average discrepancy ‖x(0)

t − x
(10)
t ‖2 as a function of the optimized latent x(10). Overlaid is a snippet of the

behavioural vs optimized true latent trajectory. (f) Median place field sizes, and distributions, as a function of
the distance to the nearest.

We initialized SIMPL using the measured position of the animal and optimized for 10 epochs. The
log-likelihood of test and train spikes increased, Fig. 6b, converging after approximately 4 epochs
(compute time 41.2 CPU-secs). Place fields were automatically identified by thresholding the ac-
tivity of each neuron at 1 Hz and identifying contiguous regions of activity with a peak firing rate
above 2 Hz and a total area less than half that of the full environment, similar to previous work
(Tanni et al., 2022).

2with the exception that we turned ‘off’ normalisation so outputs weren’t normalised onto a sphere

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

log-
likelihood

(test)

epoch0
-0.528

-0.514(b) SIMPL4D (hand position
& velocity)

SIMPL2D (hand position)

10

SIMPL2D (hand velocity)

time [sec] 400

x

y

behaviour SIMPL 2D

x

y

(hand position only)

time [sec] 400 time [sec] 400

x

y

vx

vy

behaviour SIMPL 4D behaviour SIMPL 4D

x

y

vx

vy

(hand position…………..and……….....hand velocity)

time [sec] 400

x

y

behaviour SIMPL 2D

vx

vy

(hand velocity only)
(d)

vx
vy

x
y

corr. = 0.74 corr. = 0.57

corr. = 0.41

vx
vy

x
y

corr. = 0.59

(c)

(e)

(a)

Figure 7: SIMPL applied to a somatosensory cortex dataset. (a) A macaque
perform a serier of centre-out reaches and N = 65 neurons from the so-
matosensory cortex are recorded. (b) Log-likelihood curves for the three
SIMPL models described in panels c-e. (c) SIMPL is trained with a 2D la-
tent initialised to the x− and y−position of the monkeys hand. Top-left show
the raw behaviour averaged across all (active) trial aligned to movement onset
time (-100ms – 500ms). Top-right shows SIMPL’s latent after optimisation.
Middle shows 40 seconds of behaviour (yellow) and latent (green) for 40 sec-
onds. Bottom shows four example tuning curves at epochs 0 (behaviour) and
10 (optimised). (d) Same as c but with hand velocity as the initial condition.
(e) Same as c but with a 4D latent where dimensions 1 and 2 are initialised
with hand position and dimensions 3 and 4 are initialised with hand velocity.

Tuning curves were visibly
sharper after optimization,
Fig. 6a; diffuse place fields
shrunk (e.g. see the third
exemplar tuning curve) or
split into multiple, smaller
fields (second exemplar)
(Fig. 6a). Occasionally,
new place fields appeared
(fourth exemplar) or mul-
tiple place fields merged
into a single larger field
(fifth exemplar). Sta-
tistically, tuning curves
had significantly more
individual place fields
(+19%, mean 1.14→1.41
per cell, p = 0.0035
Mann Whitney U tests),
substantially higher max-
imum firing rates (+45%,
median 4.2→6.1 Hz,
p = 9.8 × 10−7) and were
more spatially informative
(p = 0.038). Individual
place fields were sub-
stantially smaller (-25%,
median 0.59→0.44 m2)
and rounder (+8%, median
0.63→0.68, p = 0.0037).
Notably only place cells
— defined as cells with
at least one place field —
showed significant changes
in their tuning curves
whilst non-place cells were
statistically unaffected
(data not shown).

To ensure that these
changes were not an
artefact of the SIMPL algo-
rithm we generated a con-
trol dataset by resampling
spikes from the behaviour-
fitted tuning curves,
scontrol ∼ p(·|x(0), f (0)).
Control spikes thus had
very similar temporal
statistics and identical
tuning curves to those in
the original dataset but,

crucially, were generated from a known ground truth model exactly equal to the initialization.
Thus, any changes to the control spike tuning curves under SIMPL optimization can be considered
artefactual and not fundamental to the underlying neural data. Notably, no significant effect of
optimization on the control data (except for a slight increase in field area) was observed and all
measured effects – though statistically insignificant – pointed in the opposite direction to those
observed in the real data (except for roundness) (Fig. 6c). This control provides strong evidence

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

that the changes observed in the real data are genuine and reflect the true nature of neural tuning
curves in the brain.

After 10 iterations of optimization the latent trajectory x(10) remained highly correlated with the
behaviour (R2 = 0.86, fig. 6d) occasionally diverging for short period as the latent “jumped” to and
from a new location, as if the animal was mentally teleporting itself (one such “jump” is visualized
in Fig. 6e). The close correspondence between the optimized latent and the behaviour allows us
to directly compare when, and where, they diverge. We calculated the discrepancy between the
optimized latent and the behaviour at each time point, ‖x(0)

t − x
(10)
t ‖2, and visualized this as a heat

map overlaid onto the latent space (Fig. 6e). Discrepancy was minimal around the edges of the
environment and peaked near the centre, consistent with the hypothesis that sensory input is less
reliable in the centre of the environment (where there are fewer visual and tactile cues) to guide self-
localisation resulting in a larger average discrepancy between the optimized latent and the behaviour.

Tanni et al. (2022) found that place field size increased with distance from the nearest wall in the
environment. Our observation — that latent-behaviour discrepancy is highest in the centre of the
environment — suggests a possible explanation: place fields in the centre of the environment are not
larger but appear larger because they are distorted and blurred by the discrepancy which is largest
near the centre of the environment. To test this we binned place fields according to their distance to
the nearest wall (measured with respect to the place fields centre of mass) and plotted the median
field size against distance (Fig. 6f). Optimized place fields, much like behavioural place fields,
were the smallest near the walls and grew with distance (replicating Tanni et al. (2022)), but this
correspondence broke down around ∼ 0.5 m after which the optimized size distribution flattened
off (something not observed in the control). A majority of the shrink in place field size thus came
from larger place fields near the centre of the environment not the smaller ones near the walls. This
result suggests that a substantial fraction of the increased size of place fields away from walls is not
a fundamental feature of the neural tuning curves themselves but can be attributed to a behaviour-
induced distortion in the tuning curves, an artefact which can be corrected for by optimising the
latent with SIMPL.

5 SOMATOSENSORY CORTEX DATA DURING A HAND-REACHING TASK

To assess the generality of SIMPL beyond navigational/hippocampal datasets we tested it on data
from the somatosensory cortex of a macaque monkey performing a centre-out hand-reaching task
Chowdhury et al. (2020). During this recording the monkey made a series of reaches to a target
in one of 8 directions, 7. On about half of the trials the reach was “active” whereby the monkey
moved the manipulandum towards the target by itself and, on the other half the reach was “passive”,
whereby the monkey’s hand was bumped in the direction of one of the targets by a force applied to
the manipulandum, forcing the monkey to correct and return the cursor to the centre. We binned the
data (N = 65 neurons, T = 37 mins, 1.02× 106 spikes) at 20 Hz and trained SIMPL models on the
entire dataset (active and passive reaches as well as the inter-trial intervals) for 10 epochs.

First we trained SIMPL with a 2D latent initialised to the measured x- and y-hand position of the
monkey (Fig. 7c). The log-likelihood of the test spikes reliably increased during training (Fig. 7c)
following which we visualised the latent trajectory, averaged across trial type aligned to movement
onset time (i.e. reach direction, Fig. 7c top-right). We found the latent trajectory had diverged from,
but remained correlated with, hand-position (correlation = 0.59). Individual trial types had distinct
but overlapping trajectory motifs in the optimised latent space. We then trained SIMPL but with hand
velocity, rather than position, as the initial condition (Fig. 7d). This model performed comparably,
converging to an almost identical log-likelihood as the position model. After optimisation, the latent
correlated only weakly with hand-velocity (corr.= 0.41).

Finally, we trained SIMPL with a 4D latent. Two of the dimensions were initialized with x- and
y-hand position whilst the other two were initialized with x- and y-hand velocity. This model per-
formed better than either of the two 2D models, converging to a higher log-likelihood. The latent
dimensions initialised to position remained highly correlated with position (corr. = 0.74) and the
latent dimensions initiales with velocity remained correlated with velocity (corr. = 0.57). The latent
trajectory was also more structured, with distinct non-overlapping motifs for each trial type. We
visualised two-dimensional slices of the four-dimensional tuning curves for each neuron and found
that they had sharp and well-defined receptive fields similar to place fields in the hippocampus.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

6 DISCUSSION

We introduced SIMPL, a tool for optimizing tuning curves and latent trajectories using a technique
which refines estimates obtained from behaviour. It hinges on two well-established sub-routines —
fitting and decoding — which are widely used by both experimentalists and theorists for analysing
neural data. By presenting SIMPL as an iterative application of these techniques, we aim to make
latent variable modelling more accessible to the neuroscience community.

Furthermore, we see SIMPL as a specific instance of a broader class of latent optimization algo-
rithms. In principle any arbitrary curve fitting procedure and any arbitrary decoder could be coupled
into a candidate algorithm for optimizing latents from neural data. Our specific design choices,
while attractive due to their conceptual simplicity, will also come with limitations. For example, we
predict KDE won’t scale well to very high dimensional latent spaces (Györfi et al., 2006). In these
instances users could consider substituting this component with a parametric model, e.g. a neural
network, which are known to perform better in high dimensions (Bach, 2017), potentially at the cost
of compute time.

Our synthetic analysis focussed on settings where behaviour and the true latent differed only in
an unbiased manner. It would be interesting to determine if SIMPL’s strong performance extends to
more complex perturbations. In the brain, fast, non-local and asymmetric perturbations are common;
for instance “replay”Carr et al. (2011) where the latent jumps to another location in the environment.
Likewise, during theta sweeps (Maurer et al., 2006), the encoded latent moves away from the agent.
This forward-biased discrepancy could theoretically induce a backward-biased skew in behavioral
place fields, even if the true tuning curves remain unskewed. If this is the case, latent dynamics
–— and tools like SIMPL for extracting them — could help reinterpret the predictive nature of place
field tuning curves Stachenfeld et al. (2017); Fang et al. (2023); Bono et al. (2023); George et al.
(2023), similar to how latent optimization reduced the asymmetry in place field sizes further from
walls (Fig. 6f).

REFERENCES

Afsheen Afshar, Gopal Santhanam, M Yu Byron, Stephen I Ryu, Maneesh Sahani, and Krishna V
Shenoy. Single-trial neural correlates of arm movement preparation. Neuron, 2011.

Evan W Archer, Urs Koster, Jonathan W Pillow, and Jakob H Macke. Low-dimensional models of
neural population activity in sensory cortical circuits. Advances in neural information processing
systems, 2014.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of Ma-
chine Learning Research, 18(19):1–53, 2017.

Patrick Billingsley. Statistical methods in markov chains. The annals of mathematical statistics,
1961.

Rafal Bogacz, Eric Brown, Jeff Moehlis, Philip Holmes, and Jonathan D Cohen. The physics of
optimal decision making: a formal analysis of models of performance in two-alternative forced-
choice tasks. Psychological review, 2006.

Jacopo Bono, Sara Zannone, Victor Pedrosa, and Claudia Clopath. Learning predictive cognitive
maps with spiking neurons during behavior and replays. Elife, 12:e80671, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs. 2018. URL http:
//github.com/jax-ml/jax.

Ralph A Bradley and John J Gart. The asymptotic properties of ml estimators when sampling from
associated populations. Biometrika, 1962.

Federico Carnevale, Victor de Lafuente, Ranulfo Romo, Omri Barak, and Néstor Parga. Dynamic
control of response criterion in premotor cortex during perceptual detection under temporal un-
certainty. Neuron, 2015.

12

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Margaret F Carr, Shantanu P Jadhav, and Loren M Frank. Hippocampal replay in the awake state: a
potential substrate for memory consolidation and retrieval. Nature neuroscience, 2011.

Raeed H Chowdhury, Joshua I Glaser, and Lee E Miller. Area 2 of primary somatosensory cortex
encodes kinematics of the whole arm. Elife, 9:e48198, 2020.

John P Cunningham and Byron M Yu. Dimensionality reduction for large-scale neural recordings.
Nature neuroscience, 2014.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B (methodological), 1977.

Eric L Denovellis, Anna K Gillespie, Michael E Coulter, Marielena Sosa, Jason E Chung, Uri T
Eden, and Loren M Frank. Hippocampal replay of experience at real-world speeds. Elife, 10:
e64505, 2021.

Christian F Doeller, Caswell Barry, and Neil Burgess. Evidence for grid cells in a human memory
network. Nature, 2010.

Lea Duncker, Gergo Bohner, Julien Boussard, and Maneesh Sahani. Learning interpretable
continuous-time models of latent stochastic dynamical systems. In International conference on
machine learning. PMLR, 2019.

Ching Fang, Dmitriy Aronov, LF Abbott, and Emily L Mackevicius. Neural learning rules for
generating flexible predictions and computing the successor representation. elife, 12:e80680,
2023.

André A Fenton and Robert U Muller. Place cell discharge is extremely variable during individual
passes of the rat through the firing field. Proceedings of the National Academy of Sciences, 1998.

Ronald Aylmer Fisher. Theory of statistical estimation. In Mathematical proceedings of the Cam-
bridge philosophical society. Cambridge University Press, 1925.

Yuanjun Gao, Evan W Archer, Liam Paninski, and John P Cunningham. Linear dynamical neural
population models through nonlinear embeddings. Advances in neural information processing
systems, 2016.

Dileep George, Rajeev V Rikhye, Nishad Gothoskar, J Swaroop Guntupalli, Antoine Dedieu, and
Miguel Lázaro-Gredilla. Clone-structured graph representations enable flexible learning and vi-
carious evaluation of cognitive maps. Nature communications, 2021.

Tom M George, William de Cothi, Kimberly L Stachenfeld, and Caswell Barry. Rapid learning of
predictive maps with stdp and theta phase precession. Elife, 12:e80663, 2023.

Tom M George, Mehul Rastogi, William de Cothi, Claudia Clopath, Kimberly Stachenfeld, and
Caswell Barry. Ratinabox, a toolkit for modelling locomotion and neuronal activity in continuous
environments. Elife, 2024a.

Tom M George, Kimberly L Stachenfeld, Caswell Barry, Claudia Clopath, and Tomoki Fukai. A
generative model of the hippocampal formation trained with theta driven local learning rules.
Advances in Neural Information Processing Systems, 2024b.

Joshua I Glaser, Ari S Benjamin, Raeed H Chowdhury, Matthew G Perich, Lee E Miller, and Kon-
rad P Kording. Machine learning for neural decoding. eneuro, 7(4), 2020.

László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A distribution-free theory of
nonparametric regression. Springer Science & Business Media, 2006.

Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard I Moser. Microstruc-
ture of a spatial map in the entorhinal cortex. Nature, 2005.

Christopher D Harvey, Philip Coen, and David W Tank. Choice-specific sequences in parietal cortex
during a virtual-navigation decision task. Nature, 2012.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Pierre Hodara, Nathalie Krell, and Eva Löcherbach. Non-parametric estimation of the spiking rate
in systems of interacting neurons. Statistical Inference for Stochastic Processes, 2018.

Øyvind Arne Høydal, Emilie Ranheim Skytøen, Sebastian Ola Andersson, May-Britt Moser, and
Edvard I Moser. Object-vector coding in the medial entorhinal cortex. Nature, 2019.

Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence and
uniqueness results. Neural networks, 1999.

Kristopher Jensen, Ta-Chu Kao, Marco Tripodi, and Guillaume Hennequin. Manifold gplvms for
discovering non-euclidean latent structure in neural data. Advances in Neural Information Pro-
cessing Systems, 2020.

James J Jun, Nicholas A Steinmetz, Joshua H Siegle, Daniel J Denman, Marius Bauza, Brian Barbar-
its, Albert K Lee, Costas A Anastassiou, Alexandru Andrei, Cağatay Aydın, et al. Fully integrated
silicon probes for high-density recording of neural activity. Nature, 2017.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Mohammad Reza Keshtkaran, Andrew R Sedler, Raeed H Chowdhury, Raghav Tandon, Diya Bas-
rai, Sarah L Nguyen, Hansem Sohn, Mehrdad Jazayeri, Lee E Miller, and Chethan Pandarinath.
A large-scale neural network training framework for generalized estimation of single-trial popu-
lation dynamics. Nature Methods, 2022.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR, 2014.

Dmitry Kobak, Wieland Brendel, Christos Constantinidis, Claudia E Feierstein, Adam Kepecs,
Zachary F Mainen, Xue-Lian Qi, Ranulfo Romo, Naoshige Uchida, and Christian K Machens.
Demixed principal component analysis of neural population data. elife, 2016.

Colin Lever, Stephen Burton, Ali Jeewajee, John O’Keefe, and Neil Burgess. Boundary vector cells
in the subiculum of the hippocampal formation. Journal of Neuroscience, 2009.

Itay Lieder, Vincent Adam, Or Frenkel, Sagi Jaffe-Dax, Maneesh Sahani, and Merav Ahissar. Per-
ceptual bias reveals slow-updating in autism and fast-forgetting in dyslexia. Nature neuroscience,
2019.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learn-
ing of disentangled representations. In international conference on machine learning, 2019.

Ryan J Low, Sam Lewallen, Dmitriy Aronov, Rhino Nevers, and David W Tank. Probing variability
in a cognitive map using manifold inference from neural dynamics. BioRxiv, 2018.

Jakob H Macke, Lars Buesing, John P Cunningham, Byron M Yu, Krishna V Shenoy, and Maneesh
Sahani. Empirical models of spiking in neural populations. Advances in neural information
processing systems, 2011.

Emily L Mackevicius, Andrew H Bahle, Alex H Williams, Shijie Gu, Natalia I Denisenko, Mark S
Goldman, and Michale S Fee. Unsupervised discovery of temporal sequences in high-dimensional
datasets, with applications to neuroscience. Elife, 2019.

Andrew Zammit Mangion, Ke Yuan, Visakan Kadirkamanathan, Mahesan Niranjan, and Guido San-
guinetti. Online variational inference for state-space models with point-process observations.
Neural computation, 2011.

Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent
computation by recurrent dynamics in prefrontal cortex. nature, 2013.

Andrew P Maurer, Stephen L Cowen, Sara N Burke, Carol A Barnes, and Bruce L McNaughton.
Organization of hippocampal cell assemblies based on theta phase precession. Hippocampus,
2006.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Bruce L McNaughton, Carol A Barnes, and JJEBR O’Keefe. The contributions of position, direc-
tion, and velocity to single unit activity in the hippocampus of freely-moving rats. Experimental
brain research, 1983.

Mayank R Mehta, Carol A Barnes, and Bruce L McNaughton. Experience-dependent, asymmetric
expansion of hippocampal place fields. Proceedings of the National Academy of Sciences, 1997.

May-Britt Moser, David C Rowland, and Edvard I Moser. Place cells, grid cells, and memory. Cold
Spring Harbor perspectives in biology, 2015.

Robert U Muller and John L Kubie. The firing of hippocampal place cells predicts the future position
of freely moving rats. Journal of Neuroscience, 1989.

J O’Keefe. The hippocampus as a cognitive map, 1978.

John O’Keefe and Jonathan Dostrovsky. The hippocampus as a spatial map: preliminary evidence
from unit activity in the freely-moving rat. Brain research, 1971.

Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky,
Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg,
et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nature
methods, 2018.

EunHye Park, Dino Dvorak, and André A Fenton. Ensemble place codes in hippocampus: Ca1, ca3,
and dentate gyrus place cells have multiple place fields in large environments. PloS one, 2011.

Mijung Park, Gergo Bohner, and Jakob H Macke. Unlocking neural population non-stationarities
using hierarchical dynamics models. Advances in Neural Information Processing Systems, 2015.

Michael L Platt and Paul W Glimcher. Neural correlates of decision variables in parietal cortex.
Nature, 1999.

Herbert E Rauch, F Tung, and Charlotte T Striebel. Maximum likelihood estimates of linear dynamic
systems. AIAA journal, 1965.

Honi Sanders, César Rennó-Costa, Marco Idiart, and John Lisman. Grid cells and place cells: an
integrated view of their navigational and memory function. Trends in neurosciences, 2015.

Steffen Schneider, Jin Hwa Lee, and Mackenzie Weygandt Mathis. Learnable latent embeddings for
joint behavioural and neural analysis. Nature, 2023.

Anne C Smith and Emery N Brown. Estimating a state-space model from point process observations.
Neural computation, 2003.

Hugo J Spiers and Eleanor A Maguire. Thoughts, behaviour, and brain dynamics during navigation
in the real world. Neuroimage, 2006.

Larry R Squire, Anna S van der Horst, Susan GR McDuff, Jennifer C Frascino, Ramona O Hopkins,
and Kristin N Mauldin. Role of the hippocampus in remembering the past and imagining the
future. Proceedings of the National Academy of Sciences, 2010.

Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The hippocampus as a
predictive map. Nature neuroscience, 2017.

Sander Tanni, William De Cothi, and Caswell Barry. State transitions in the statistically stable place
cell population correspond to rate of perceptual change. Current Biology, 2022.

Jeffrey S Taube, Robert U Muller, and James B Ranck. Head-direction cells recorded from the post-
subiculum in freely moving rats. i. description and quantitative analysis. Journal of Neuroscience,
1990.

Edward C Tolman. Cognitive maps in rats and men. Psychological review, 1948.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 2008.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

James CR Whittington, Timothy H Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil Burgess,
and Timothy EJ Behrens. The tolman-eichenbaum machine: unifying space and relational mem-
ory through generalization in the hippocampal formation. Cell, 2020.

Alex Williams, Anthony Degleris, Yixin Wang, and Scott Linderman. Point process models for
sequence detection in high-dimensional neural spike trains. Advances in neural information pro-
cessing systems, 2020.

Matthew A Wilson and Bruce L McNaughton. Dynamics of the hippocampal ensemble code for
space. Science, 1993.

Brian A Wilt, Laurie D Burns, Eric Tatt Wei Ho, Kunal K Ghosh, Eran A Mukamel, and Mark J
Schnitzer. Advances in light microscopy for neuroscience. Annual review of neuroscience, 2009.

Anqi Wu, Nicholas A Roy, Stephen Keeley, and Jonathan W Pillow. Gaussian process based non-
linear latent structure discovery in multivariate spike train data. Advances in neural information
processing systems, 2017.

Byron M Yu, Afsheen Afshar, Gopal Santhanam, Stephen Ryu, Krishna V Shenoy, and Maneesh Sa-
hani. Extracting dynamical structure embedded in neural activity. Advances in neural information
processing systems, 2005.

Byron M Yu, Krishna V Shenoy, and Maneesh Sahani. Expectation propagation for inference in non-
linear dynamical models with poisson observations. In 2006 IEEE Nonlinear Statistical Signal
Processing Workshop. IEEE, 2006.

Byron M Yu, John P Cunningham, Gopal Santhanam, Stephen Ryu, Krishna V Shenoy, and Ma-
neesh Sahani. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural
population activity. Advances in neural information processing systems, 2008a.

Byron M Yu, John P Cunningham, Krishna V Shenoy, and Maneesh Sahani. Neural decoding of
movements: From linear to nonlinear trajectory models. In Neural Information Processing: 14th
International Conference, ICONIP 2007, Kitakyushu, Japan, November 13-16, 2007, Revised
Selected Papers, Part I 14. Springer, 2008b.

Yuan Zhao and Il Memming Park. Variational latent gaussian process for recovering single-trial
dynamics from population spike trains. Neural computation, 2017.

Ding Zhou and Xue-Xin Wei. Learning identifiable and interpretable latent models of high-
dimensional neural activity using pi-vae. Advances in Neural Information Processing Systems,
2020.

Petr Znamenskiy and Anthony M Zador. Corticostriatal neurons in auditory cortex drive decisions
during auditory discrimination. Nature, 2013.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Supplementary Material for “SIMPL: Scalable and hassle-free
optimization of neural representations from behaviour”

A BACKGROUND

A.1 EXPECTATION MAXIMIZATION

Expectation Maximization (EM, Dempster et al. 1977) is a widely used paradigm to perform statis-
tical estimation in latent variable models. The goal of EM is to maximize the Free Energy, a lower
bound on the log-likelihood log p(s; f) of the data, given by (following the notations of Section 2.1):

F(f , q) := Eq(x)[log p(x, s ; f)]− Eq(x)[log q(x)] ≤ log p(s; f),

where q is some probability distribution on the latent variable x. Importantly, for a given set of
intensity functions f , F is maximized, and the lower bound becomes “tight”, at q? := p(x|s ; f), i.e.
the posterior distribution of the latent variable given the s and f . Moreover, for a fixed q, the only
f -dependent term in F is Eq(x)[log p(x, s ; f)]. To maximize F(f , q) — and thus also increase the
log-likelihood — EM produces a sequence (f [e])e≥0 of parameters f [e] by invoking, at each step e
and given f [e−1], two well known subroutines:

• E-step: Define q[e] := p(x|s ; f [e−1]); compute F 7−→ Eq[e] [log p(x, s ; f)]

• M-step: Compute f [e] := arg maxf F(f , q[e]) = arg maxf Eq[e] [log p(x, s ; f)]

with the property that log p(s; f [e]) ≥ log p(s; f [e−1]) for all e, grounding the use of EM to maximize
the likelihood of the data. As the E-step computes specific posterior expectations, a tractable E-step
often implies the ability to compute in particular posterior means and variances, the most valuable
expectations in the context of decoding the latent variable from behaviour. Thus, in the context of
neural data, EM offers a framework to both estimate intensity functions via maximum likelihood,
and to ‘decode’ the variable encoded by the neurons, here by taking the mean of the posterior.

Finally, note that while the E-step writes an expectation under the full posterior q[e] := p(x|s, f [e−1]),
only specific marginals of this posterior may actually be needed depending on the structure of the
joint distribution, as further discussed in Section A.2.

Impossibility of Exact EM for Gaussian-Modulated Poisson Processes The E-step of the EM
algorithm requires computing a function defined as an expectation w.r.t p(x|s ; f [e−1]). In the case
of Hidden Markov Models, such expectations are intractable to compute in closed form, unless the
latent variable x is discrete, or both the transition and the emission probabilities are Gaussian (with
mean and variance depending linearly on x, Rauch et al. 1965). In particular, exact inference in the
model described in Section 2.1 is impossible because the emission probabilities are Poisson with
mean given by a non-linear function of x via each neurons tuning curve.

In order to perform statistical inference for our spike train model, SIMPL runs an approximation of
Exact EM, which we detail below. At a high level the goal is to convert the non-linear, non-Gaussian
spiking observations, into a variable which is linear and Gaussian with resepct to the latent, thus can
be solved using a Kalman smoother.

A.2 LINEAR GAUSSIAN STATE SPACE MODELS AND KALMAN SMOOTHING

Linear Gaussian State Space Models (LGSSM) are dynamical systems of the form:

zt+1 = Ftzt + εt, εt ∼ N (0d, Qt)

xt = Htzt + δt, δt ∼ N (0m, Rt).
(4)

where z ∈ Rd, x ∈ Rm, Ft, Qt ∈ Rd×d, Ht ∈ Rp×d and Rt ∈ Rm×m. LGSSMs can be
used as latent variable models given some observed data x, where z is treated as a latent variable.
While these models are limited in their expressiveness, their benefits are that inference (and in set-
ting, “E-steps”) can be done very efficiently: not only is the posterior p(z1, . . . , zT |x1, . . . ,xT)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

a Gaussian distribution (of dimension Td), but all of its marginals and pairwise marginals
p(zt|x1, . . . ,xT), p(zt, zt+1|x1, . . . ,xT) (crucially, the only distributions needed for learning the
parameters of LGSSM via EM) can be computed jointly in O(T) time using a technique known as
Kalman Smoothing (Kalman, 1960; Rauch et al., 1965). Such a scaling contrasts with naive binning-
based alternatives for (approximate) inference in continuous, non-Gaussian State Space Models,
which require maintaining an estimate of each bin — a vector of size n (no. bins) where n grows
exponentially with the dimension of the latent space, as used in e.g. Denovellis et al. 2021. Instead,
for LGSSMs, the Gaussianity means only the mean and covariance of the marginal posterior dis-
tributions — of size d and d2 respectively — need to be stored. This is not memory intensive and,
perhaps more importantly, the Kalman Filter proceeds to compute them in a combined O(T) time.
In our experiments, we found the cost of the Kalman Filter to be negligible relative to the KDE
evaluations which are the main computational bottleneck of SIMPL.

B SIMPL AS AN APPROXIMATE EM ALGORITHM

B.1 MLE-BACKED APPROXIMATE E-STEP

Instead of q[e] = p(x|s ; f [e−1]), SIMPL computes an approximation q̂[e] to q[e], allowing for both
statistical estimation and uncertainty-aware trajectory decoding. As a first step towards obtaining
q̂[e], SIMPL first performs Maximum Likelihood Estimation (MLE) on the latent trajectory x. In-
stead of returning a posterior on x, MLE returns a point estimate of the true trajectory that led to the
observed spike train s. In particular, MLE does not use the prior knowledge encoded by p(x). The
MLE x̂ of x given s is given by:

x̂ = arg max
x

log p(s|x ; f [e−1]) = arg max
x

T∑
t=1

N∑
i=1

log p(sti|xt ; f [e−1])

=⇒ x̂t = arg max
xt

N∑
i=1

log p(sti|xt ; f [e−1]).

The second equality follows from the conditional independence structure of the HMM. This maxi-
mization problem can be solved independently for each t, yielding the formula for x̂t given by the
third equality. As a function of s, the MLE x̂ is itself a random variable. In the many neurons
limit, under certain regularity assumptions, the distribution of this random variable converges to a
Gaussian, a fact known as asymptotic normality. We restate a formal statement of this result in the
case of independent, but non identically distributed observations 3 originally established in Bradley
& Gart (1962), and reformulated using the notations of the model at hand. For simplicity, we will
consider the case where only P distinct intensity functions f1, . . . , fP exist, although versions of this
result exist without this assumption.
Theorem B.1 (Asymptotic Normality of the MLE). Let x?

t ∈ Rd. Let s = (s1t, . . . , sNt) be
independent random variables with probability densities p(sti|x?

t ; ft(i)), where t(i) ∈ 1, . . . , P is
the index of the intensity function ft(i) that generated the spike train sti. For p ∈ 1, . . . , P , denote
np the number of times the intensity function fp appeared in the sequence ft(i). Assume that the
MLE x̂t exists and it is unique. Then, under mild regularity conditions, we have:

√
N (x̂t − x?

t)
d−−−−→

N→∞
N (0, I(x?

t)−1)

where I(x?
t) :=

P∑
p=1

µpEp(st;fp)Hess(log p(st|x?
t ; fp)) is the Fisher Information matrix of the model

at x?
t , d→ means convergence in distribution, and we defined µp := limN→∞

np

N .

The asymptotic Gaussianity of the MLE in the many neurons limit suggests performing approximate
inference in a surrogate Hidden Markov Model, with the same transition probabilities p(xt+1|xt)
as the original ones, but where the observations s are replaced by the previously computed MLE
x̂ of the latent variable. Leveraging Theorem B.1, SIMPL approximates the emission probabili-
ties p(x̂t|xt) by the Gaussian distribution N (xt,Σt), where Σt := (NI(x̂t))

−1 ≈ (NI(xt))
−1.

3The i.i.d case was established in Fisher (1925)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

By treating the covariance matrices Σt as deterministic instead of depending on xt, the variables
(xt, x̂t) form a Linear Gaussian State Space Model, with hidden variables xt and observed variables
x̂t given by:

x̂t | xt ∼ N (xt,Σt)

xt+1 | xt ∼ N (xt, σ
2
vI),

(5)

for σv = v · dt. This model is precisely an instance of Linear Gaussian State Space Models defined
in Equation 4, with latent variable zt := xt, observation x̂t, and the four matrices set to:

Ft = I (constant)
Ht = I (constant)

Qt = σ2
vI (constant)

R = Σt (time-varying).

This correspondence allows SIMPL to compute an approximation of the marginal posterior distri-
butions p(xt|s) ≈ p(xt|x̂) using Kalman Smoothing (Kalman, 1960; Rauch et al., 1965). This
posterior is then used as the approximation q̂[e] to q[e] in SIMPL’s E-step. Finally, F(f, q̂[e]) is
approximated by sampling from q̂[e], and computing the empirical average of log p(x, s ; f). Im-
portantly, obtaining the MLE estimates x̂t can be obtained in parallel for all t; the only sequential
procedure remaining being the Kalman Smoothing step.

B.2 SPIKE SMOOTHING AS AN APPROXIMATE M-STEP

In the M-step, one maximizes Eq̂[e] [log p(x, s ; f)] w.r.t to the intensity functions (tuning curves)
f = (f1, · · · , fN). This step is often done by specifying a parametric model for each f , and then
optimizing the parameters. However parametric models come with diadvantages, for example if the
true function cannot be accurately represented by the parameteric model, the final procedure will
suffer from a bias that does not vanish in the large sample limit. While one could use a neural
network (whose bias can be made arbitrarily small by increasing the number of neurons), neural
networks can be hard to interpret and expensive to train. Instead, SIMPL uses a non-parametric
approach that is both training-free and interpretable. To do so, SIMPL samples from its approximate
posterior x̃ ∼ q̂[e], and computes a non-parametric estimate (Hodara et al., 2018) of the intensity
functions fi given by:

f̂
[e]
i (x) :=

∑T
t=1 sti k(x, x̃t)∑T
t=1 k(x, x̃t)

. (6)

Here, k : Rd × Rd 7−→ R+ is some kernel function.

We propose an explanation of the above formula as the generalization of an M-step: for a fixed
q̂[e], Ep(s)q̂[e](x) log p(s,x ; f) equals (up to a constant) the negative KL divergence between the
“data” distribution 4 p(s)q̂[e](x|s) and the model p(s,x; f). Thus, an M-step can be understood as
minimizing this KL divergence approximately, by replacing the expectation over p(s) by an empir-
ical average over the true data s, an approximation which is asymptotically consistent in the large
number of time-steps limit under suitable ergodicity conditions (Billingsley, 1961). SIMPL relaxes
this approximation further, replacing the expectation over q̂[e](x|s) by a one-sample estimate of it
through x̃. Moreover, it does not use the KL as a loss function, but instead performs model fitting in
a non-parametric manner. Under this procedure, the existing guarantees regarding the EM algorithm
do not hold – on the other hand, SIMPL’s M-step precisely matches spike smoothing, a fast and
standard practice in neuroscience.

C IMPLEMENTATION DETAILS

Below we provide some implementation details that were important to maximize the computational
efficiency of the method.

4We denote qk(x) by qk(x|s) to highlight the dependence between x and s.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.1 MAXIMIZING SIMPL’S COMPUTATIONAL EFFICIENCY

C.1.1 COMPUTATIONAL BOTTLENECKS IN SIMPL

A single evaluation of the log-likelihood log p(st|xt) requires evaluating the KDE-based rate map
estimates given in Equation 6, which takes O(T) time as it involves a sum across timesteps. More-
over, this O(T)-length calculation will be repeated T -times for each step of the Kalman smoother
in order to (1) compute the MLEs x̂t (which naively require gradient ascent on log p(st|xt)) and (2)
evaluate the MLE variance Σt := (NI(x̂t))

−1 = (NHx(log p(s|x̂t))(x̂t))
−1. All in all, an exact

implementation of SIMPL E-step thus has a quadratic O(T 2) time complexity, which is prohibitive
for long datasets. Moreover, the second-order differentiation needed to compute I(x̂t) is also com-
putationally expensive (formally, in introduces a large constant factor in front of the O(T 2) term).
In the next sections, we describe additional approximations which allow SIMPL to estimate the MLE
and its variance in O(T) time and without differentiating the rate maps.

C.1.2 LINEAR-TIME, MLE ESTIMATION

Naive gradient-based solution The naive way to calculate the MLE x̂t is to evaluate all N tun-
ing curves (recall each evaluation costs O(T)) for some location x, use these to establish the log-
likelihood log p(st|x), calculate the gradient of this log-likelihood w.r.t. x, and then take, for exam-
ple, k gradient descent steps to find the MLE. This process is repeated for each timestep t, leads to
a quadratic time complexity of O(kNT 2).

SIMPL’s approach To compute the MLE in linear time SIMPL bypasses the need to recalculate
the tuning curves at each time step by, instead, binning them onto a discretised grid of points once
at the start of each iteration.

Formally SIMPL computes n evaluations the tuning curves f̃ := (f̃1, . . . , f̃n) := (f(g1), . . . , f(gn))
on a grid of n points G = (g1, . . . ,gn). This has time complexity O(NnT). We use a uniform
rectangular grid of points (the smallest rectangle containing the full observed behavioural variable)
of spacing dx. For example, in a 1 m × 1 m environment with dx = 0.02 m, this would yield a grid
of 50×50 points (n = 2500).

Then, given f̃ , SIMPL then discretizes the log-likelihood functions log p(st|x) over that same grid:

l̃it := log p(st|gi) =

N∑
j=1

log p(stj |gi) =

N∑
j=1

log
e−f̃ij f̃

stj
ij

stj !

= −
N∑
j=1

f̃ij + stj log f̃ij − log stj !

(7)

where we noted f̃ij := (f̃i)j . Finally, given such evaluations, SIMPL set its approximation of the
MLE to be

x̂t := arg max
g∈G

log p(st|g) = arg max
i

l̃it

This way of calculating the MLE has linear time complexity yielding an improvement for n < kT .

C.1.3 LINEAR-TIME DERIVATIVE-FREE MLE VARIANCE ESTIMATION

A similar strategy could be employed to also compute I(x̂t) := −Hx(log p(st|x̂t))(x̂t), which
appears in Σt. Here Hx is the Hessian operator defined as Hx(f)(x) := ∇2

xf(x). To do
so, one could compute the Hessian of the rate maps and their logarithm on that grid, from
which any Hx(log p(s|x̂t))(x̂t) at the grid-point-based MLE obtained above can be evaluated
as Hx(log p(st|gi))(gi) = −

∑N
j=1 Hx(fj)(gi) + stjHx(log fj)(gi). However, we found that

differentiating f could be slow. To further improve computational efficiency, SIMPL produces
an estimation of Σt by instead estimating the variance of the posterior distribution p(xt|st) ∝
p(xt)p(st|xt) = p(st,xt). The posterior variance and the MLE variance are expected to closely
match, as discussed in our theoretical justification above. Moreover, as this posterior is available
analytically up to the normalizing constant p(st), its variance can be approximately computed by

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

binning p(xt|st) onto the same grid G introduced above, yielding the following fast estimator for
Σt.

Σt ≈ Cov p(xt|st) ≈
∑

i p̃it(gi − µt)(gi − µt)
T∑

i p̃it
, µt :=

∑
i gip̃it∑
i p̃it

(8)

where p̃it := exp(l̃it) = p(st|gi). Intuitively, this is equivalent to fitting a multivariate Gaussian to
the binned likelihood map. The covariance matrix of this Gaussian is then used as an approximation
of the MLE variance. We provide a theoretical argument justifying the validity of this formula below.

Theoretical Justification Equation 8 is justified by the Bernstein Von Mises theorem, which states
that the difference (in total variation) between the posterior distribution and the distribution of the
MLE vanishes in the many neurons limit. We restate this theorem using the notations of our paper,
assuming a unique rate map, and without stating some of the required regularity assumptions for
simplicity. We refer the reader to (Van der Vaart, 2000, Theorem 10.1, p.141–144) for the full
version.
Theorem C.1 (Bernstein-von Mises). Let x?

t ∈ Rd. Let st = (s1t, . . . , sNt) be i.i.d random vari-
ables with probability density p(st|x?

t ; f). Assume that the MLE x̂t exists and it is unique. Then,
under mild regularity conditions, for any prior p on xt, we have:

‖p(xt|st)−N (x̂t, (NI(x?
t))−1)‖TV

p(st)→
N→∞

0

where
p(s)→ denotes convergence in probability, and ‖ · ‖TV denotes the Total Variation norm on

bounded measures.

From this theorem, we thus have that the (random) posterior distribution behaves (in total varia-
tion) as a Gaussian whose covariance matrix is precisely the asymptotic variance of the MLE. Note
however that convergence in total variation does not a priori imply convergence of variances. Fur-
ther work could examine under which assumptions such a convergence of variances may hold. In
practice, we found that this approximation yielded a satisfying trade-off between performance and
accuracy.

C.2 ITERATIVE LINEAR REALIGNMENT OF THE TRAJECTORIES

To improve the identifiability properties and the numerical stability of SIMPL, we also transform
the decoded latent trajectory at each iteration using a linear mapping which maximally aligns it
with behaviour defined as x

(e)
t ← Mx

(e)
t + c where M, c = arg min

∑
t ‖x

(0)
t − (Mx

(e)
t + c)‖.

This approach ensures the scale, orientation and centre of the optimised latent trajectory are tied
to behaviour, preventing accumulation of linear shifts/rotations across iterations and allowing us
to interpret the latent relative to, and in the same units as, behaviour. We suspect that performing
this alignment on all iterates after the optimization would yield similar results. Because the trans-
formed latent necessarily has similar scale to the behaviour — which was used to set the size of the
discretised environment — we can reuse the same discrete grid for the latent avoiding the need to
rediscretize the environment at each iteration.

C.3 HYPERPARAMETERS SETTINGS

SIMPL has two model hyperparameters:

• v: the diffusion rate for Kalman smoothing, which sets a prior over expected velocity of
the latent variable. Units are in ms−1.
• σ: the bandwidth of the kernel used in the M-step to smooth spikes. Units are in m.

Additionally there are some implementation-specific parameters:

• dx: the bin size for the variance estimation of the MLE. Units are in m.
• dt: the time step of the discretization of the latent variable. Units are in s.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• E: the number of iterations of the EM algorithm.

Finally, in all simulations we used a test fraction of 10% and held out ‘speckled’ data segments of
length 1 second to evaluate the performance of the model. We provide in Table 1 the value of these
hyperparameters for the Artificial Grid Cell Dataset and the Real Hippocampal Dataset.

Table 1: Hyperparameters settings

Hyperparameter Artificial Grid Cell Dataset (Fig. 3) Real Hippocampal Dataset (Fig. 6)

velocity prior, v 0.4 ms−1 1.0−1

KDE bandwidth, σ 0.02 m 0.1 m

arena bin size, dx 0.02 m 0.04 m

time discretisation, dt 0.1 s 0.2 s

number of EM iterations, E 10 10

D TEST-TRAIN PARTITIONING

To assess performance we partition the spike data matrix, s, into testing and training sets, Stest,Strain.
Inference is performed solely on the training set and we then track the log-likelihood of data in both
sets (Fig. 3d, left), e.g. `(e) = |Stest|−1test

∑
(i,t)∼S test log p(sti|x(e)

t , f
(e)
i). This partitioning requires

careful consideration: entire time intervals cannot be withheld for testing without impairing the
model’s ability to infer the latent over this period. Likewise, entire neurons cannot be withheld
without impairing the model’s capacity to estimate their tuning curves. Instead, we adopt a speckled
train-test mask previously used in latent variable modelling set-ups (Williams et al., 2020) which
withholds for testing extended chunks of time bins arranged in an irregular “speckled” pattern across
the data matrix (totalling 10% of the data).

E ADDITIONAL RESULTS

E.1 HYPERPARAMETER SWEEP

We swept over the two hyperparameters v (the velocity prior) and σ (the KDE bandwidth) to assess
how sensitive SIMPL is to these hyperparameters, as shown in Figure 8. For this we used the same
synthetic grid cell dataset used in Fig. 3. Notably, SIMPL’s performance (measured in terms of the
final error, see panel b) is relatively stable across a wide range of hyperparameters; kernel band-
widths between 0.1 cm and 5 cm and velocity priors between 0.2 m/s and 1 m/s all yield similar
performance. When the tuning curves are confirmed that kernel bandwidth has a significant effect
on their appearance. Broader kernels give smoother tuning curves eventually blurring the individual
grid fields together whilst narrower kernels give sharper tuning curves eventual leading to overfitting
where individual spikes are resolved.

E.2 NON-CONTINUOUS HIPPOCAMPAL REPLAY DATASET

Since SIMPL places an explicit prior on latent trajectories which are smooth and continuous we
tested whether it could be used to model a dataset where the latent variable is non-continuous. For
this we simulated a synthetic “replay” dataset from N = 225 small Gaussian place cells. In this
dataset the latent variable and behaviour perfectly match except for regular, brief periods of ”replay”
where the latent variable jumps to a new location. Using the same hyperparameters as in the main
text we found that SIMPL was able to recover the latent variable, capturing (or “decoding”) the
replay events with high accuracy (Fig. 9), despite its smoothness prior.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

σ [cm]
kernel bandwidth

0.1
0.5
2 5 20

0.05
0.2
0.4
1
10

σv [ms-1]
speed prior

40 020
error
[cm]

CPU-
sec
60
10
1

σ [cm]
kernel bandwidth

0.1 200.5 52

0.05

0.2

0.4

1.0

10

σv [ms-1]
speed prior

(a) (b)

Figure 8: Performance of SIMPL on the synthetic grid cell dataset as a function of the hyperparameters v (speed
prior) and σ (kernel bandwidth). (a) Tuning curves. (b) Final error between the latent and ground truth (colour)
and total compute time (size).

0

1

po
s
[m
]

0

1

po
s
[m
]

0 1time [mins]

x
y Epoch 0 (behaviour)Ground truth

x
y Epoch 10Ground truth

(a) (b)

Figure 9: A synthetic hippocampal “replay” dataset. (a) One minute of trajectory, x-coordinate in solid line,
y-coordinate in dashed. The behaviour (light-green, top panel) is smooth, actually matching the latent most
of the time except when the latent takes regular, brief discontinuous jumps reminiscent of hippocampal replay
events. After optimisation SIMPL is able to recover the latent (dark-green, bottom panel) and capture the replay
events with high accuracy. (b) Spike raster plots; spikes plotted against the behaviour, optimised latent and
ground truth latent.

23

