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a b s t r a c t 

We propose a novel feature extraction approach for 3D facial expression recognition by incorporating 

non-rigid registration in face-model-free analysis, which in turn makes feasible data-driven, i.e., feature- 

model-free recognition of expressions. The resulting simplicity of feature representation is due to the fact 

that facial information is adapted to the input faces via shape model-free dense registration, and this pro- 

vides a dynamic feature extraction mechanism. This approach eliminates the necessity of complex feature 

representations as required in the case of static feature extraction methods, where the complexity arises 

from the necessity to model the local context; higher degree of complexity persists in deep feature hier- 

archies enabled by end-to-end learning on large-scale datasets. Face-model-free recognition implies inde- 

pendence from limitations and biases due to committed face models, bypassing complications of model 

fitting, and avoiding the burden of manual model construction. We show via information gain maps that 

non-rigid registration enables extraction of highly informative features, as it provides invariance to local- 

shifts due to physiognomy (subject invariance) and residual pose misalignments; in addition, it allows 

estimation of local correspondences of expressions. To maximize the recognition rate, we use the strat- 

egy of employing a rich but computationally manageable set of local correspondence structures, and to 

this effect we propose a framework to optimally select multiple registration references. Our features are 

re-sampled surface curvature values at individual coordinates which are chosen per expression-class and 

per reference pair. We show the superior performance of our novel dynamic feature extraction approach 

on three distinct recognition problems, namely, action unit detection, basic expression recognition, and 

emotion dimension recognition. 

© 2017 Elsevier Inc. All rights reserved. 
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1. Introduction 

Human facial expressions convey diverse set of signals which

can be associated with mental states such as emotions, with phys-

iological conditions like pain or tiredness, or with various non-

verbal social communication messages. There are many potential

applications of expression recognition systems. For instance, Cowie

et al. (2001) mention about two hundred emotional states and dis-

cuss applications in areas from medicine to education and enter-

tainment. 

Expression recognition is a challenging problem, not only due

to the variety and subtlety of expressions, but also due to the

hurdles in the extraction of effective features from facial images.
∗ Corresponding author. 

E-mail addresses: arman.savran@boun.edu.tr , arman.savran@iit.it (A. Savran). 
1 This paper is based on the work carried out in Department of Electrical and 

Electronics Engineering, Bogazici University. 
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ypically, automatic expression recognition starts with face detec-

ion, followed, possibly, by face pose normalization, and then by

eature extraction and classification. Expression recognition algo-

ithms must be robust against such confounding factors as varia-

ions in illumination, 3D face pose, subject identity, and texture-

ike facial hair and make-up. Arguably the most crucial component

s the feature extraction since features should be resilient, on the

ne hand, to the effects of these confounding factors; on the other

and, they must capture the critical facial details enabling discrim-

nation of expressions. Moreover, choice of effective features can

lso simplify the design and training of the classifiers. 

3D acquisition of facial expression images can inherently mit-

gate some of these challenges. Depending on the 3D reconstruc-

ion technique, 3D data can be immune to a great range of illu-

ination and texture variations, and it is not as sensitive as 2D

ight images to yaw and pitch type out-of-plane rotations. More-

ver, 2D light images may fail to capture subtle but discrimina-

ive changes on the face if they do not cause sufficient luminance

http://dx.doi.org/10.1016/j.cviu.2017.07.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2017.07.005&domain=pdf
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2 The term expression is used here in a broad sense, including facial action units. 
hanges, such as bulges on the cheeks and protrusion of the lips.

n fact, 3D has been shown to achieve better recognition than con-

entional 2D light cameras for many types, if not all, of facial ac-

ions ( Savran et al., 2012a ). Notice, however, that 3D modality has

ts own difficulties, and there are niche instances of facial actions

here light images perform better than 3D, such as in some ac-

ion units around the eyes. Moreover, combining 2D texture with

D modality improves the overall recognition performance ( Savran

t al., 2012a ). However, the aim of this paper is not to investigate

he best performing full recognition system (i.e., by combining the

est face detection, the best face pose alignment, the best feature

xtraction, 2D+3D modality fusion, the best classification, etc.). In-

tead, we conjecture that 3D modality provides a novel more con-

enient feature extraction approach which is fundamentally differ-

nt from conventional methods. 

Our main conjecture is that 3D expression recognition based on

stimated deformation field, but without the guidance of any kind

f face modeling is possible and it leads to very simple yet effec-

ive features. This approach provides both theoretical and practi-

al advantages. Theoretically, one does not need to make any sim-

lifying assumptions, therefore potential biases due to the design

f face models are avoided; similarly, one does not need to re-

ur to local feature models (use of local-context), which are typ-

cally high dimensional and cumbersome. Current methods in the

iterature typically perform local patch analysis resulting in multi-

imensional responses at each location, require landmark detec-

ors and more recently big datasets to construct deep feature rep-

esentations. The practical advantages of the proposed approach

ompared to face model-driven methods are that it avoids the te-

ious face model construction stage, which usually requires ex-

ertise, and also there is no need for a model fitting stage, with

oncomitant problems of complexity and sensitivity to fitting er-

ors. Our method has also some practical advantages compared

o deep representations in that it does not necessitate collection

f huge datasets, data augmentation and pooling for handling lo-

al spatial variations, and effort s to design an adequate deep ar-

hitecture which involves long experimentation durations over big

atasets. 

To the best of our knowledge, all the prior expression recog-

ition methods based on deformation estimation, whether 3D or

onventional, have used models of face shape; for instance, in the

ase of 3D data, landmarking ( Berretti et al., 2010; Fang et al., 2012;

aalej et al., 2011 ), active shape/appearance models ( Sun et al.,

008; Tsalakanidou and Malassiotis, 2010 ) or morphable models

 Mpiperis et al., 2008; Ramanathan et al., 2006 ); in the case of

D luminance images, recent landmarking techniques such as con-

trained local models ( Chew et al., 2012; Chu et al., 2017; Eleftheri-

dis et al., 2015; Zeng et al., 2016; Zhao et al., 2015 ). Nevertheless,

e do not claim definitive performance superiority of our method

face model-free deformation-estimation-based feature extraction) 

ver methods based on face models or deep models (when neces-

ary amount of training data is available). In principle, it may also

e possible to achieve high recognition performances with well-

ngineered facial landmark-guided methods and feature extractors,

r with deep models via end-to-end machine learning. However,

ur work opens up a third path for 3D data, with the merits that it

s free from effort s to develop landmark detectors and feature ex-

ractors which model the local-context, and it can operate without

he need for very large amounts of training samples to construct

omplex deep models. The simplicity of our feature representation

s because facial information is used to adapt to the input faces via

hape model-free dense registration providing a dynamic feature

xtraction mechanism. Consequently this eliminates the necessity

f complex feature representations which would be needed in the

ase of static feature extraction that obtains features always from

re-determined fixed coordinates in a reference coordinate system,
.e., without adapting their locations depending on the actual input

ace. 

Shape model-free image recognition based on estimated de-

ormation field has been applied in the context of handwritten

igit/character or medical image recognition tasks ( Keysers et al.,

007 ). In these works involving an image-matching framework,

istances for the purpose of nearest-neighbor classification are

omputed after a mapping has been estimated between the test

nput and the reference images. In principle, though deformable

mage-matching can be applied for face recognition purposes, it

s not viable for facial expression recognition as this task requires

ocal analysis. With the help of hand-crafted masks of deforma-

ion regions and manually chosen reference faces, our previous

ork has implemented a shape-free deformable method for 3D

xpression recognition ( Savran and Sankur, 2009 ). However, the

ssumption that local expression actions have their prototypical

egion masks limits the set of expressions or isolated facial ac-

ions that one can detect. Consequently, this method falls short

f meeting the challenge of complex expressions where one en-

ounters high-degree of variations and co-occurrences of local

eformations. 

We propose a novel framework to realize a face model-free

eformation-estimation-based feature extraction for 3D expression 

ecognition. Our framework is based on the premise of optimally

elected facial coordinates from the domains of also optimally cho-

en multiple face registration references. In this context optimal-

ty is defined as facial coordinates and face references that maxi-

ize the recognition rate, and not the registration accuracy, over

 training set. Basically, a different set of facial coordinates on se-

ected reference domains are identified in the training stage. Then

n input test face is registered to each of the reference faces by de-

orming the references towards the input, and then the test input

s resampled multiple times at the designated coordinates specific

o each reference face. We have made the following choices for the

mplementation of the above framework. We use 2D projections of

he 3D facial surfaces for saving in substantial amount of compu-

ations ( Savran et al., 2012a ). We use a simple deformation model

or non-rigid registration, as prior work has shown that further

omplexity does not improve the recognition performance ( Keysers

t al., 2007 ) but may make the computations intractable. As for the

eatures, we use mean curvature due to its comparatively superior

erformance ( Savran et al., 2012a; 2012b ) as well as due to its com-

actness (scalar representation of deformation at each point). Since

on-rigid registration provides invariance to local transformations,

eature models with large local support (like spin images, Gabor,

BP, HoG, SIFT, etc.) become unnecessary. Finally, we utilize boost-

ng as the selection mechanism. 

We show quantitatively that the framework consisting of non-

igid registration to multiple-references and optimally selected

ampling coordinates on them enables higher amount of infor-

ation gain in classification of facial actions. Our experiments on

arious datasets prove that such information gain leads to higher

ecognition performance. Our approach is generic with respect to

xpression 2 analysis tasks. As a point in case, we demonstrate

he performance of our method on the action unit (AU) detec-

ion problem, on the basic expression recognition problem, and

nally, on the emotion dimension prediction problem. These ex-

eriments involve three 3D face databases of different nature and

uality. 

The rest of the paper is organized as follows. Section 2 gives

 brief overview of face model-driven and model-free expression

ecognition as well as shape model-free non-rigid registration lit-

rature. The databases used in the experiments are described in
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Section 3 . Section 4 presents the proposed non-rigid registration

method. In Section 5 , we develop our registration based recogni-

tion approach. Section 6 is devoted to experiments and discussions

of the results. In Section 7 , we further discuss some important con-

sideration regarding to our face model-free framework. Finally, we

give the conclusions in Section 8 . 

2. Prior work 

A large variety of features have been used in the literature for

facial expression recognition, described in recent surveys such as

in Sariyanidi et al. (2015) for conventional light cameras and in

Corneanu et al. (2016) and Sandbach et al. (2012b ) for 3D cam-

eras. These feature extraction methods, whether applied to still

or video images, can be categorized into two fundamental groups,

namely, face model-driven and face model-free. While both ap-

proaches have their virtues and drawbacks, a comparative discus-

sion is as follows. 

2.1. Face model-driven recognition of expressions 

Face model-driven implies that a pre-designed model of human

faces is fitted to the input facial data before performing any analy-

sis task. The simplest model-based methods focus on detection of a

large number of facial landmarks, for example, up to 83 landmarks

as in Wang et al. (2006) , Soyel and Demirel (2007) , Tang and Huang

(2008) , Berretti et al. (2010) and Maalej et al. (2011) . There are also

methods that require fewer landmarks, e.g., Fang et al. (2012) uti-

lizes 12. However, although these studies report high recognition

performances, they all employ manual landmarks. Precision of au-

tomatic landmark detection is not guaranteed to be high enough

in practice, and robust landmark detection on 3D faces, especially

under expressions, continues to be a challenging task in Creusot

et al. (2013) . 

A popular approach is to restrict the allowable space of the

fiducial points to plausible locations and to variations that are

learned from real data, like in Active Shape Models, Active Ap-

pearance Models, and constrained local models ( Chew et al., 2012 ).

Prior works ( Sun et al., 2008; Tsalakanidou and Malassiotis, 2010 )

have directly used such constraint information on luminance data

concomitantly captured with 3D depth scans. Joint statistical mod-

els of local 3D geometry and texture features have also been

constructed for landmarking to recognize expressions ( Zhao et al.,

2013 ). Notice that, all these 3D works suffer from sensitivity to lu-

minance variations in the model fitting stage. However, landmark-

ing on luminance images is an active research field and new tech-

nique like Ren et al. (2014) and Kazemi and Sullivan (2014) may

lead to improved expression recognition performances. Some cur-

rent methods on 2D luminance data which employ landmark-

guided feature extraction are Zhao et al. (2015) , Eleftheriadis et al.

(2015) , Zeng et al. (2016) and Chu et al. (2017) . 

An alternative statistical shape modeling approach is dense

modelling of 3D geometry by 3D morphable models (3DMM)

( Blanz and Vetter, 1999 ), which has been applied to 3D expres-

sion recognition in Ramanathan et al. (2006) , and also with bilinear

modeling to account for identity and expression related variations,

simultaneously ( Mpiperis et al., 2008 ). 

2.2. Face model-free recognition of expressions 

Face model-free expression analysis does not depend on any

prior face shape model. A common approach is to extract a high-

dimensional dense feature set from the images, and then apply

dimension reduction, such as by feature selection, e.g., via Ad-

aBoost ( Gehrig and Ekenel, 2011; Littlewort et al., 2011; Sandbach
t al., 2012a; 2012c; Savran et al., 2012a ). Current feature tech-

iques are based on either filter-banks or image descriptors. One

f the best performing filter-bank methods are Gabor wavelets ap-

lied at multiple orientations and scales ( Littlewort et al., 2011 ).

abor filters have been shown to perform better than independent

omponent analysis and non-negative matrix factorization ( Savran

t al., 2012a ) features. Gehrig and Ekenel (2011) have demon-

trated that block-based discrete cosine transform filters work as

ell. 

The descriptor-based techniques typically compute histograms

f low-level image features over local patches. The most commonly

mployed descriptors are Local Binary Patterns (LBPs) ( Shan et al.,

009 ) and its various extensions. Histogram of oriented gradients

as also been applied successfully ( Dahmane and Meunier, 2011 ).

ecent methods have combined descriptors with filterbank outputs

o achieve modest improvements, as in Local Gabor Binary Pat-

erns ( Wu et al., 2012 ) and Local Phase Quantisation (LPQ) ( Dhall

t al., 2011 ) where the latter provides some insensitivity to image

lur. Alternative face model-free methods use bag-of-words using

IFT descriptors ( Sikka et al., 2012 ) and deep learning architectures

 Kahou et al., 2013 ). 

All these methods can be applied to 3D data as well, provided

hat 3D data is first converted to some geometry map. Examples

re Gabor filters on surface curvature map ( Savran et al., 2012a ),

inary pattern analysis on surface normal maps ( Sandbach et al.,

012c ) and depth maps ( Sandbach et al., 2012a ), Zernike moments

n depth maps ( Vretos et al., 2011 ), and histogram-descriptors on

urvatures ( Savran et al., 2013 ). 

Recent work on 3D expression recognition has also focused on

patio-temporal feature extraction to be able to benefit from more

nformation available in the temporal context. For instance, Neb-

la features ( Reale et al., 2013 ) are constructed by combining the

istograms which are extracted from fixed blocks over frontal face.

he histograms of the shape labels that are obtained by thresh-

lding the principal curvature values are calculated over a spatio-

emporal temporal support. Therefore Nebula features are cate-

orized as histogram-descriptors extended to spatio-temporal fea-

ure extraction. More methods to exploit the temporal context

ave been proposed on 2D images compared to 3D expressions

 Corneanu et al., 2016; Sariyanidi et al., 2015 ), like the popular LBP-

OP method ( Zhang et al., 2016; Zhao and Pietikainen, 2007 ), show-

ng that temporal context is helpful in increasing the recognition

ate. However, the scope of our work does not involve the tempo-

al feature extraction aspect. 

State-of-the-art in facial expression recognition, as in many

ecognition problems, is the deep learning approach, which per-

orms end-to-end learning starting from feature extraction with

onvolutional neural network (CNN) layers. By nature these models

re face model-free. Effectively exploiting very big scale datasets,

eep learning enables complex hierarchical feature representation.

ffectiveness of deep learning has been shown on generic object

ecognition ( Krizhevsky et al., 2012; Szegedy et al., 2013 ), and they

an achieve impressive performances on large scale face recogni-

ion problem ( Parkhi et al., 2015; Sun et al., 2014 ). Consequently

he success of deep learning has shifted the state-of-the-art in

acial expression recognition ( Kahou et al., 2013; Ding et al., 2016;

aiswal and Valstar, 2016; Jung et al., 2015; Khorrami et al., 2015;

im et al., 2015; Levi, 2015; Ng et al., 2015; Zhao et al., 2016 ) from

ngineered local feature extractors (Gabor, LBP, HoG, SIFT, etc.) as

ell. We want to notice that, before deep-learning became the

tate-of-the-art, the latest studies on 2D facial expression recogni-

ion employed facial landmarks detectors, i.e., for the guidance of

ace shape models for feature extraction, to better adapt the non-

igidity of faces. Landmarks are especially of help for local AUs;

or instance, Eleftheriadis et al. (2015) extract LBP features or Zhao

t al. (2015) extract SIFT features around 49 fiducial facial points.
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oreover, landmark detection has recently been employed to fa-

ilitate the deep learning by processing only the potentially more

elevant regions ( Jaiswal and Valstar, 2016 ). However, use of land-

arks violates the end-to-end learning as well as face model-free

hilosophy. 

The first difficulty in deep learning is the need for very large-

cale labeled training datasets. However, obtaining accurate facial

motion labels is a very time consuming task, which gets even

ore complicated and time consuming when the task is to la-

el facial action units. Due to the absence of sufficiently large

abelled facial expression datasets for effective training of deep

odels, current deep-learning models apply fine tuning or trans-

er learning. For instance, Levi (2015) first train on CASIA Webface

 Yi et al., 2014 ) images which involve 500K face images; however,

hese authors had to apply LBP feature representation to reduce

onfounding variations to achieve high recognition rates for basic

motion classification task (7 classes) and had to do fine-tuning

f the deep model on the expression dataset. To be able to ob-

ain an effective deep model on small datasets without requiring

and-crafted feature extractor in the first layer, Ng et al. (2015) fol-

ow deep CNN transfer learning approach by employing pre-trained

etwork, which is itself trained on the generic ImageNet database

 Krizhevsky et al., 2012 ) involving 1.2M images. They propose a

upervised fine-tuning approach which involves two stages: the

rst stage performs fine-tuning on a big facial expression dataset

ith around 30K labeled faces (FER-2013 database), and the sec-

nd stage continues fine-tuning on a small dataset with 1K labeled

aces (EmotiW dataset). Very recently Ding et al. (2016) proposed

n alternative approach to handle small datasets based on regular-

zation of a deep face recognition net for the expression recogni-

ion task. Their feature level regularization exploits the rich facial

nformation in the facenet ( Parkhi et al., 2015 ) which is trained on

.6M face images. In all these above methods, first, face pose align-

ent is performed by facial landmark detectors, and then data is

urther augmented by random cropping as well as by vertical mir-

oring. This procedure, which typically increases the sample-size

y more than an order of magnitude, becomes necessary in learn-

ng a high number of parameters. Data augmentation and max

ooling layers in the deep networks help to handle global and lo-

al spatial variations, which are mainly due to residual errors in

ead pose alignment, variations in physiognomy. 

A second difficulty in practice is that of determining a suitable

eep architecture. This effort must make various design choices,

uch as number of layers, type of units at each layer, layer size,

umber of convolution channels, etc. All these require consider-

ble amount of experimentation, and training of each deep model

equires very long periods and expensive computation resources

like servers with multiple GPUs) due to the large-scale data set

izes. 

This review of the literature shows that, by means of transfer

earning, deep models are applicable on relatively small labeled ex-

ression datasets. Nevertheless, they still need extremely-big train-

ng datasets for the learning of the initial deep model. The collec-

ion of 3D face datasets are much more difficult than simply col-

ecting images from Internet. Although deep learning has recently

een applied on 3D shape surfaces for object classification ( Sinha

t al., 2016 ), the resulting networks are quite shallow compared to

he state-of-the-art in 2D images due to the limited sample-size.

ecause of this limitation, to the best of our knowledge, currently

here is no work on deep models for 3D facial expression recogni-

ion. We stress that when training data is not abundant, the per-

ormance of deep architectures degrades significantly. For exam-

le, classification errors for object recognition on the Caltech-101

ataset using 5-layer Convnet ( Zeiler and Fergus, 2014 ) without

re-training can be as low as 46.5%, while with pre-training on the

n the ImageNet ( Krizhevsky et al., 2012 ) with a set of 1.2 million
mages, the performance jumps up to 86.5%. However, in future, we

xpect to see competitive results with deep learning when transfer

earning techniques are applied if sufficiently large datasets can be

ollected. 

.3. Face model-free vs. model-driven recognition 

Expression recognition free of any face model avoids the com-

lications arising from model-driven methods. First of all, there is

o commitment to a prior face model, which itself could consti-

ute a source of bias. For instance, the committed model, though

onveniently fitted to the data, may not allow the use all discrimi-

atory information on the expression face. Statistical shape models

an be biased and restrictive depending on the chosen set of train-

ng faces. Deformation functions employed by the statistical mod-

ls, such as the commonly utilized linear deformations, are often

nadequate representations of many types of facial actions which

re complex, local and subtle. Fully automatic model fitting can be

rror prone, and the quality of fitting directly influences the per-

ormance of the subsequent steps. Finally, the preparation of the

odels requires substantial and tedious manual work, expertise,

nd even additional datasets to be able to construct more general-

zable statistical models. 

On the positive side, model-driven recognition provides a cru-

ial benefit which is not available to current face model-free meth-

ds. This essential advantage is the non-rigid registration of the

ace that reduces the confounding variations due to the misalign-

ents of the facial/expression structures. However, even if the in-

ut face is aligned in pose, the facial/expression structures can

till remain misaligned due to the physiognomy of individuals.

oreover, uncertainties and imperfections in pose alignment, es-

ecially in the presence of strong facial expressions, can augment

esidual pose alignment errors. As factors undermining model-

riven methods, one can list non-linear transformations due to

erspective projection onto 2D images, out-of-plane head rota-

ions, and camera distortions. If the constructed models are ade-

uate and the model-fitting works perfectly, model-driven meth-

ds can compensate for these confounding misalignments with

arying degree of success, for instance, to a coarse level with the

andmark-based methods, or to a more detailed level by using

DMMs. In contrast, face model-free recognition methods provide

ome invariance to small local transformations while performing

ense local patch-based analysis, since it becomes infeasible to

earn all sorts of variations in the learning stage ( Sariyanidi et al.,

015 ). Notice that, local patch-based analysis is also commonly

sed in model-driven methods to compensate for any imperfec-

ion in modeling and fitting stages, albeit it is used at sparse lo-

ations as guided by the face model instead of densely on whole

mage. 

Recently, non-rigid registration has been applied in face model-

ree recognition by registering all the faces onto a common average

uminance face image ( Yang and Bhanu, 2012 ). However, this type

f registration can only provide relatively coarse correspondence

stimation due to the use of averaged (blurred) reference face, and

t is used as an intermediate step for non-rigid face normalization

efore the extraction of conventional local patch-based feature ex-

raction (LPQ descriptors). We show in the sequel that, via dense

on-rigid registration on 3D surface geometry, pure data-driven fa-

ial expression recognition, i.e., without any face model and feature

odel, is possible. This is the key improvement over conventional

ace model-free recognition. 

We emphasize that our work does not contest the superiority of

odel-free deformation estimation-based recognition over model- 

riven methods regarding to the recognition performance. We con-

ider expression recognition using face models as a separate re-

earch field; instead our claim is that significant information can
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be gained on the face deformation field leading to good expression

recognition ability without requiring supervision of face models. 

2.4. Dense shape model-free registration 

Though face model-free and dense non-rigid registration have

not been explored in facial recognition applications, shape model-

free registration has actually been extensively studied and it is

a maturing field, mostly in medical imaging for investigation of

anatomical and temporal structures, for statistical population mod-

eling, or for multi-modality fusion of different imaging devices or

protocols. As discussed in the comprehensive taxonomy in Sotiras

et al. (2013) , there are three main aspects to be decided for any

non-rigid registration method: the deformation model, matching

criteria, and the optimization method. The most critical aspect is

the choice of the deformation model, as it is a way to impose the

priors by determining acceptable class of transformations, and as it

allows to decide for the trade-off between computational efficiency

and detail of description. The choice of matching criteria and of the

optimization method is usually rather straightforward, though of-

ten depending on the task. 

The deformation model acts as a regularizer of the ill-posed

non-rigid registration problem. In the literature, various ap-

proaches ranging from knowledge-based methods to interpolation

theory, from physical models to task-specific constraints have been

proposed ( Sotiras et al., 2013 ). The choice of deformation model be-

comes critical especially when the degree of ill-posedness is high

and there are missing correspondences in the data. For face model-

free recognition, we cannot utilize knowledge-based methods and

task-specific constraints since they require use of face models. On

the other hand, physical deformation models, like elastic defor-

mations, can be applied as they do not require any face model-

ing. However the complexity and computational effort of physi-

cal models can be prohibitive, as even a single registration can

take several minutes on a computer. This is especially due to the

high number of parameters to infer. On the other hand, defor-

mations derived from interpolation theory (radial basis functions,

elastic body splines, free-form deformations, basis functions, and

piecewise affine models) can be used to handle the transforma-

tions with much lower degrees of freedom, thus with lower level

of complexity. 

Registration of facial expression images without the guidance of

face models may suffer from missing correspondences, i.e., when

one of the images does not possess expression structure on one

or more location, but which are present on the other image (e.g.,

furrows on the cheeks due to smile or disgust), and consequently

the mapping (deformation) is not reliable at those locations. A

straightforward remedy for shape model-free methods is to impose

strong deformation priors ( Sotiras et al., 2013 ) to somehow predict

a local solution, however, at the cost of, possibly, detail loss and

computational complexity. 

In our work, our goal is not to register faces onto some com-

mon reference; instead, our goal is to detect the presence of local

structures arising from expression deformations. Therefore we pro-

pose an alternative approach which employs multiple references.

Thus, we find an optimal set of references guided by facial ex-

pression discrimination (via boosting). The underlying idea is that,

while a single face reference can always suffer from missing cor-

respondence cases (occlusions), the chance of finding local cor-

respondences will increase with the increasing number of judi-

ciously selected references. Once the optimal reference set is es-

tablished, we then proceed to select the most discriminative pix-

els from different reference domains depending on the target ex-

pression to construct the classification features. Our features are, in

fact, curvature values resampled by inverse deformation as detailed

in Section 5 . The multiple-reference scheme enables the use of sim-
le and fast shape model-free registration for superior recogni-

ion. For highly detailed face model-free registration as well as fast

rocessing we perform curvature intensity matching and multi-

esolution gradient based continuous optimization as proposed in

avran and Sankur (2008) . However, notice that our novel frame-

ork is generic regarding to the non-rigid registration routine, i.e.,

ne can replace it with a shape model-free method of own choice.

. Databases 

We use three databases which differ not only in 3D im-

ge quality, but also they provide test-beds for different emo-

ion/expression recognition scenarios. 

The BU3DFE database ( Yin et al., 2006 ) involves 100 subjects en-

cting the six universal emotions (happiness, sadness, anger, dis-

ust, fear and surprise) ( Ekman and Friesen, 1971 ). Four snapshots

f each expression are taken during the subject’s acting, where the

rst snapshot is the onset, the last one is the apex and other two

re the in-between snapshots. We have included the apex and its

receding snapshot in our experimentation. Thus the total sam-

le size is 100 × (2 × 6 emotions + 1 neutral) = 1300 . The faces have

een captured by a high fidelity 3D structured light system. After

egmentation, smoothing and sub-sampling, there are on the aver-

ge 10K vertex points representing the face ( Fig. 1 ). 

The BOSPHORUS database ( Savran et al., 2013;Bosphorus ) con-

ains images of 105 subjects which are labeled by a certified Fa-

ial Action Coding System (FACS) ( Ekman et al., 2002 ) coder. The

umber of expressions per subject varies between 10 and 35, and

hese images involve both the universal expressions and instances

f action unit (AU) combinations with different intensities. In this

aper we consider detection of 25 AUs (18 lower AUs and seven

pper facial AUs) selected from AU types that furnish sufficient

ample size for experimentation. The total number of faces in our

xperiments is 2902. The faces have been captured by a high fi-

elity 3D structured light system. After segmentation, smoothing

nd sub-sampling, there are average 10K points representing the

ace ( Fig. 1 ). 

SBIA database ( Savran et al., 2013 ) is comprised of emotional va-

ence examples from 20 subjects, involving various positive emo-

ions, such as joy, happiness, affection, pleasure and pleasant sur-

rise, and anger, disgust, dislike, fear, startled surprise, and un-

leasant surprise as negative emotions. It is a semi-spontaneous

atabase and subjects are not constrained to frontal pose acquisi-

ion, unlike BOSPHORUS and BU3DFE databases. We use the apex

rames in the experiments. The sample size is 707, which breaks

own as 317 positive, 337 negative and 53 neutral valence sam-

les. 

Unlike most of the prior 3D databases, SBIA database is ac-

uired using a consumer-grade depth camera: The Kinect sensor.

inect sensor provides inexpensive acquisition and it is simple in

peration (small physical size and no need to train the operator).

n the downside, such consumer-grade depth cameras present a

ig challenge, since their 3D quality is rather poor, i.e., high noise

ontent and low resolution. Therefore, this database provides eval-

ation of the recognition performance on poorly captured images.

fter segmentation, smoothing and sub-sampling, there are on the

verage 3K points representing the faces ( Fig. 1 ). 

. Fast non-rigid facial surface registration in 2D image domain

In order to simplify the computations and minimize the effect

f resolution changes in 3D due to perspective effects, instead of

irectly deforming 3D faces, we first map 3D surface curvature

nto a regularly sampled 2D image. Then we perform curvature

ntensity matching via gradient descent-based multi-resolution op-

imization. 
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Fig. 1. Samples from the three databases. 
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.1. Surface curvature image 

The traditional local feature models used for recognition re-

uire spatial support to provide some degrees of translation invari-

nce. The trade-off to achieve this invariance is potential informa-

ion loss. Moreover, every feature model has different design pa-

ameters to choose, which may introduce bias. On the other hand,

on-rigid registration estimates the local transformations, and thus

t overcomes the requirement of translation invariance and allows

urely data-driven analysis (i.e., feature-model free). Therefore we

nly consider features with minimal local context for our frame-

ork, i.e., primitive local surface quantities. 

We can classify the primitive features according to the order

f the differential operator to calculate them. For instance, depth

r 3D coordinates are simply 0 th -order; surface normals are 1 st -
rder, and principal curvature based quantities - mean curvature,

aussian curvature, shape index and curvedness - are 2 nd -order

rimitive features. We prefer 2 nd -order quantities since they pro-

ide direct and compact quantification of the local shape. This also

eans they are not affected by small residual pose variations due

o imperfections of pose alignments, as they are invariant to rigid

ody motion. Being the trace of the shape operator ( Gray, 1997 ),

he scalar mean curvature compactly quantifies the bending of the

ormal field, hence the amount of local facial deformations. Our

revious work has shown that mean curvature is the best 2 nd -

rder feature among the four alternatives in all of AU detection,

ow-intensity subtler AU detection ( Savran et al., 2012a ), and AU

ntensity estimation ( Savran et al., 2012b ) problems. Therefore we

mploy in this work the mean curvature. 
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We generate surface curvature images after applying smoothing

for the BOSPHORUS and SBIA databases; no filtering need to be

done for the BU3DFE database since it has already been smoothed.

Smoothing involves spike filtering via depth threshold, hole filling

via morphological operations, and Gaussian smoothing on depth

maps. We apply heavier smoothing on SBIA due to higher amount

of noise. On BU3DFE and BOSPHORUS databases, we estimate cur-

vature via mesh-based discrete estimation. However, due to the

high amount of 3D noise in the SBIA database, we use a ro-

bust method by solving through normal curvatures as described in

Savran et al. (2013) . 

The 2D curvature images are generated by re-sampling on a

regular grid over the frontal faces, which have all been beforehand

3D pose aligned. We use the Iterative Closest Point (ICP) algorithm

( Rusu and Cousins, 2011 ) to align faces onto a neutral face com-

mon to all subjects. Notice that pose alignment is an operation that

is independent from feature extraction in our algorithm (which is

a standard approach in facial expression recognition), and a sys-

tem developer is free to choose his/her preferred method. Surfaces

are represented as triangular wire-frames and we orthographically

project the wire-frame meshes onto image planes after their align-

ment. The curvature values are re-sampled on the discrete image

coordinates by calculating the triangular barycentric coordinates of

the pixels and then by interpolating the curvature values at the tri-

angle vertices. We have found that 96 × 96 pixel image resolution

was adequate for subsequent processing. To find correspondences

between grid pixels and mesh triangles with whom they are asso-

ciated in a computationally efficient way for high density meshes,

we render the meshes on the z-buffers of graphics hardware. Af-

ter the re-sampling, regions of the grid that remain outside the

2D projection of mesh surfaces are filled by means of extrapola-

tion ( Savran et al., 2012a ) to prevent abrupt changes at the domain

boundaries. 

4.2. Image matching by triangular discretization 

In order to obtain the deformation between a pair of faces

(their curvature images), we find a mapping, ϕ(p) , satisfying im-

age matching constraint between a reference image, I ref , and a tar-

get image, I trg , 

I re f (p ) = I trg ( ϕ (p )) , p ∈ D re f , (1)

where D re f ⊂ R × R is the 2D projection domain of the correspond-

ing reference surface. Under the assumption that there is a full

correspondence (bijection) between the pair of images, a mapping

that satisfies the image matching constraint can be found by min-

imizing the image matching energy term 

E M 

( ϕ ) = 

1 

2 

∫ 
p ∈ D re f 

(
I trg ( ϕ(p) ) − I re f (p ) 

)2 
dp . (2)

We minimize this energy functional for our registration purpose.

However, this is a non-trivial problem. First of all, this is an ill-

posed inverse problem, because we seek a 2D vector for each

coordinate. Also, having similar curvature values at local regions,

aperture problem can cause considerable errors. Moreover, there

can be significant effects of the noise on the curvature values.

As we explained in Section 4.1 , we suppress the noise to a great

extent via smoothing before curvature estimation which is ad-

justed at the calibration stage to match the requirements of the

3D sensor. Because of all these problems, it is impossible to es-

timate correspondences completely without errors. However, the

error minimization strategy (coarse-to-fine gradient descent), the

employed spatial constraint for the deformation, and the proper

utilization of the estimated correspondences in the recognition al-

gorithm, as to be explained in the sequel, all reduce the residual

errors to an insignificant level for the recognition task. We show
n Section 5.1 that a big information gain is achieved on various

ype of facial actions with this registration technique. 

Our non-rigid registration performs locally affine interpolation

sing triangular meshes, which provides both a simple and fast

olution as well as attains local spatial constraint for the deforma-

ion, i.e., local regularization. More explicitly, since the deforma-

ion gradient is constant over a triangle, moving a mesh vertex in-

uces an affine transformation over each triangle that is connected

o that vertex, thus provides a local spatial constraint for the de-

ormation. We refer Sotiras et al. (2013) for a detailed discussion on

he deformation models including the locally affine models. 

Image matching energy ( Eq. (2) ) can be evaluated over a mesh

f triangular elements as 

 M 

( ϕ ) = 

1 

2 

∑ 

t∈ T 

∫ 
p ∈ D t 

‖ I trg ( ϕ t (p )) − I re f (p ) ‖ 

2 dp (3)

here T is the set of all triangles, D t is the domain of triangle t

ith the mapping function ϕt ( p ). The motion of triangle vertices

 p k → q k ) implies locally affine motion, as evaluated by barycentric

nterpolation ( ( ̂ p 1 , p 2 , p 3 ) denotes the triangle with vertices { p i }) 

 = ϕ t (p ) = 

3 ∑ 

k =1 

b k (p ) q k (4)

 k (p ) = 

Area ( ̂ p , p i � = k , p j � = k, j � = i ) 

Area ( ̂ p 1 , p 2 , p 3 ) 
. (5)

Energy minimization is carried out by gradient descent with re-

pect to mapping functional which is defined only on the mesh

odes. Let’s define q n = ϕ (p n ) as the mapping on the mesh node

 . Then the gradient at vertex n is obtained through the chain rule

s 

∂E M 

∂ q n 
= 

∑ 

t∈ T n 

∫ 
D t 

b k (t,n ) (p ) 

(
∂ I trg (q ) 

∂q 

∣∣∣
ϕ t (p ) 

)T 

e t (p ) dp 

e t (p ) = I trg ( ϕ t (p )) − I re f (p ) . (6)

ere, T n is the set of triangles connected to the node n, k ( t, n ) is

he k th vertex of the triangle t that corresponds to node n , and

 k ( t, n ) ( p ) is thus the k th barycentric coordinate ( Eq. (5) ) for the

oint p . At every iteration of minimization, the mesh node n of the

eference image is moved by the gradient vector, ∂ E M 

/ ∂ q n , which

s estimated over the surrounding triangles { t ∈ T n }. 

The integrals in Eqs. (3) and (6) are approximated by re-

ampling at the recursively subdivided triangle centers. This re-

ampling procedure, however, is adapted to the area of triangles

ince mesh triangles can differ largely in area, by not allowing

urther subdivision if the area of the subdivided triangle is less

han one pixel. Thus, while avoiding unnecessary computations for

mall triangles, we can accurately approximate integrals over the

arger triangles. Bilinear interpolation is used for resampling from

6 × 96 image grids. To estimate the partial derivative terms inside

he integral in Eq. (6) , we use 3 × 3 Scharr masks. Since the degree

f freedom of the deformation is constrained by the small number

f mesh nodes and since we re-sample over triangular elements,

his registration works quite fast. 

Minimization of Eq. (2) is obtained through cascaded minimiza-

ions by starting from a coarse scale and then refining the solution

t the consecutive finer scales, to avoid local minima and for faster

onvergence. This is realized by creating Gaussian image pyramids

f the reference and target images, and by adapting the resolution

f the reference domain meshes at each scale, as shown in Fig. 2

see Savran and Sankur, 2008 for the details). 



A. Savran, B. Sankur / Computer Vision and Image Understanding 162 (2017) 146–165 153 

Fig. 2. Meshes of a reference curvature image adaptively generated according to 

three scales. 
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. Non-rigid registration based data-driven recognition 

We conjecture that detailed registration improves the informa-

ion gain by reducing non-expression related variations and by

ncreasing the discrepancy between the class ( expression ) condi-

ional means, as will be explained soon in (9) . We examine our

onjecture by formulating the mutual information in Section 5.1 .

n the light of this conjecture, we develop a method which reg-

sters test images onto multiple references, as depicted in Fig. 3 .

ach registration is performed by deforming one reference toward

he test image and then resampling the test image over the un-

eformed reference domain via inverse mapping. The boosted-

eferences based recognition method is detailed in Section 5.2 . 

.1. Improving information gain via registration 

The goal of registration, as formulated in Eq. (2) , is to minimize

he sum of the squared differences between a reference and a tar-

et image. If all the images were deformed versions of each other

ith some small additive noise, the expected value of the square of

ifference (error) image over registered images I r = I trg ◦ ϕ , would

ave to be very small E I r [(I r − I re f ) 
2 ] ≈ 0 . This implies that the

ean and variance of the registered images would be 

= E I r [ I r ] ≈ I re f . (7) 

2 = E I r [(I r − μ) 2 ] ≈ 0 . (8) 

his assumption is valid if the differences between I trg and I ref can

e removed via the operator ϕ(p) in Eq. (2) . For instance, differ-

nces due to physiognomy can be estimated and removed to a

reat extent (see Fig. 4 ) since every face contains the same facial

arts that play a role in strong correspondences, e.g., nose, eyes

nd mouth. However, under facial expressions and depending upon

heir strength, local violations of this assumption will occur. Our

ethod is able to exploit both cases, that is, suppress physiog-

omic differences and profit from expression differences for clas-

ification. Therefore, we first examine their effects on the informa-

ion gain. 

For interpretation, we analyze the information gain computed

or binary Normal Naïve Bayes classifier (NBC). We resort to NBC,

rst because, being a generative classifier, we can obtain analyti-

al expression of the mutual information. The resulting numerical

alues provide simple interpretation and convenient visualization.

econd, our expression recognizers are based on boosting of single

eature NBCs. 

Letting y and x denote the class label and scalar feature (e.g.,

urvature value of a selected pixel on a reference face) vari-

bles, respectively, the class conditional density is p(x | y = c) =
(x | μc , σ 2 

c ) = (2 πσc ) −1 / 2 exp 

(
−(x − μc ) 2 / (2 σ 2 

c ) 
)
. As we have de-

ived in Appendix , the mutual information for binary NBC is ap-

roximated in terms of class means, variances and prior probabili-

ies ( p 0 and p 1 ) as 

(X ;Y ) ≈ M 

V 

= 

p 1 p 0 (μ1 − μ0 ) 
2 

p 1 σ 2 + p 0 σ 2 
(9) 
1 0 
We now examine the information gain due to registration of

ermanent structures and expression structures . 

Permanent face structures are always present on all the faces

with and without expressions, e.g., inner eye corners), that is,

hey are typical of all faces. Thus, the small variance assumption

 Eq. (8) ) holds at the pixels around those structures. Notice here

hat the term small is proportional to the magnitude of the struc-

ures in the expression images. Since permanent face structures are

resent in all classes, it follows then that their σ 0 and σ 1 are also

mall, which result in smaller variance V and higher information

ain I ( Eq. (9) ); in other words, having compensated for physiog-

omic differences, the remaining differences of class means ( M ) are

redominantly due to expression deformations. Fig. 5 .a illustrates

his effect clearly, that is, the role of registration in reducing the

ositive and negative group variances on faces. In the left part of

ig. 5 .a, we see the mutual information ( I ) map for single pixel Nor-

al Bayes classifier of AU24 - LipPresser according to the Eq. (9) .

he right part shows the same map after curvature images are reg-

stered. In the context of Fig. 5 .a, the positive class denotes face im-

ges displaying AU24 with variations on the concomitant AUs; the

egative class consists of all face images that do not contain AU24.

s expected, variances estimated over non-registered samples are

igher and more dispersed on the face than those estimated on

egistered samples, resulting in larger and darker regions. Also, the

ean images of the registered samples look sharper. Not surpris-

ngly, the strongest clues driving the registration of facial surfaces

re the nose region and cavities around inner eye corners, which

ave correspondingly very small variance values. Other face re-

ions provide less reliable clues due to the absence of strong struc-

ures or due to the variations originating from facial actions. As a

ase in point, mouth regions of the registered samples have almost

lways higher variance than any other parts of the faces. 

Expression structures occur only with certain expressions , but are

ot otherwise present on neutral faces or on the remaining set of

xpressions . These structures play a marked role to drive the regis-

ration process provided they exist also in one or more of the ref-

rence faces bearing that expression . An illustrative case for expres-

ion structures case is the high curvature structure on the mouth

hat occurs during facial actions involving parting of the lips, as

llustrated for AU16 - LowerLipDepressor in Fig. 6 . Fig. 6 compares

lass conditional means ( μ1 , μ0 ) and the resulting mutual infor-

ation maps ( I ) arising from two different references. The refer-

nce in the first row contains AU27 - MouthStretch, which shows

 big opening of the mouth, and the second reference is that of a

eutral face (lips are touching). We see from the class conditional

ean images and their differences, M , that there are big differ-

nces between the class means around mouth for the AU27 refer-

nce (due to convergence of means, Eq. (7) ), whereas this contrast

s quite low for the neutral reference in the bottom row. We also

ee that both references yields low variance ( V ) maps since differ-

nces such as those due to physiognomy have been mitigated. The

esulting I maps show that the reference with AU 27 provides much

igher information gain. 

In Fig. 5 .b, we compare information gains due to non-rigid reg-

stration for various upper and lower face AUs. In general we see

rom the maps that registration increases the information gain by

ushing informative (dark) regions into prominence and by attain-

ng more marked values compared to the non-registered cases.

hese dark regions clearly reveal the AU related deformations on

he face. Interestingly, AU27 - MouthStretch generates an unex-

ected map (rightmost bottom images in Fig. 5 ). While after reg-

stration, the information for AU27 lies correctly on the mouth re-

ion, without registration it is over all face parts. This is because

outh stretch is a very large deformation such that it affects the

igid registration of the face as vertical shift. Despite this global

hift our registration yields a highly detectable pattern around the
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Fig. 3. Registration based data-driven recognition. 

Fig. 4. Removal of physiognomy differences. 

Fig. 5. (a) Mutual information ( I ) map formation ( Eq. (9) ), and (b) action unit comparison examples on the BOSPHORUS database, for single pixel curvature Normal Bayes 

classifiers to evaluate non-rigid registration. 
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Fig. 6. Visualization of Eq. (9) using a neutral (bottom) and AU27-MouthStretch (top) references for AU16-LowerLipDepressor classification. Presence of open mouth in both 

AUs results in higher information gain (I map at top). 
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d  
ermanent facial structures . On the other hand, non-rigid registra-

ion compensates these misalignments and provides true location

or the deformations. 

.2. Recognition via boosted references 

As detailed in Section 5.1 , there are two factors for improving

xpression detectability: low within-class variance via registration

f permanent face structures and high between-class variance (dif-

erences of class means) via registration of expression structures .

hile the former goal is easily reachable with proper registration,

he latter is non-trivial since expression structures cause missing

orrespondences as they are instance based. A common solution

n shape model-free literature is to mitigate such errors by in-

olving sophisticated deformation models (see Section 2.4 ). Instead

f compensating for unavailable correspondences via strong defor-

ation models, we approach the problem by incorporating mul-

iple references, which can in total include a richer repertoire of

ocal structures, alleviating thus the problem of correspondences.

s shown in Fig. 5 , a different reference can dramatically increase

he information gain. We also show the improved information gain

aps due to registration on optimally selected references for vari-

us expressions in Fig. 6 . Therefore a proper selection of references

s the key to the success of our approach. Fig. 3 depicts the overall

ethod. An input face is registered onto a set of references, yield-

ng pixel lists, that is, curvature values resampled by inverse de-

ormation. Then, assigning NBC on each of these designated pixels,

eature selection (e.g., 200 pixels) and classification are performed

ia AdaBoost. 

The optimal selection of references is realized by a boosting

ased algorithm ( Fig. 7 ). Since there has to be a common set of ref-

rence faces for all one-vs-all classification tasks (totally K tasks),

t each iteration, we keep track of the boosting distribution of each

ask, B k , but pick only one task to select a reference. The classifi-

ation tasks used in the selection of the references are picked pro-

ortional to their positive sample sizes, i.e., according to the dis-

ribution p ( k ) in Fig. 7 . In principle this can also be achieved by

andomly sampling the tasks from p ( k ). However, when we sample

nly a few tasks (since we want at most like 25 references), cor-

ect proportional representation of the tasks in the reference set is

ot guaranteed. Therefore, we perform deterministic sampling us-

ng the scaled-histogram s (k ) = T R · p(k ) , k = 1 , . . . , K and give pri-

rity to classification tasks with larger positive samples. This is re-

lized at every iteration by picking the mode of the current his-

ogram, t ’th task, and then updating the scaled histogram s ( k ), for

he next round of reference selection by decrementing the bin size

f the selected task by one ( s (t) ← s (t) − 1 ). 
Having determined the task t at a boosting iteration, the best

eference, r , is the one that contains the minimum error weak clas-

ifier for the task t under distribution B t , and is added into the set

 . Iterations are repeated till we have T R references. 

We start by considering all the training faces as reference can-

idates. This requires N 

2 pairwise registrations. All the pairwise

egistrations are done before starting the boosting process. The

torage of all the registered images in memory is not practical for

he size of the databases considered. However, it suffices to store

nly the low dimensional estimated deformation parameters in

he memory and execute the re-sampling whenever required dur-

ng boosting. The training effort of the boosting can be expressed

s T R · D a · (N 

2 + K) where D a is the average domain size (num-

er of domain pixel points). In our experiments, pairwise registra-

ions of 707 × 707 pairs on SBIA, 1300 × 1300 pairs on BU3DFE, and

902 × 2902 pairs on BOSPHORUS databases took 3.5 h, 12.5 h and

.5 days, respectively on E5520 2.25 GHz workstation via paral-

el implementation on eight cores (including the duration for disk

/o). Thus, the resulting average pairwise registration is 0.025 s.

n the other hand, the boosted reference selection algorithm on

he SBIA, BU3DFE, and BOSPHORUS databases were completed in

4 min, 7.5 h and 11.5 h, respectively. In case the sample size is too

igh, training effort can be reduced, for instance by sub-sampling

o reduce D a or to reduce reference candidates to N R so that we

ave N R × N < N 

2 pairwise registrations. 

. Experiments 

In order to facilitate experimental comparisons across different

atabases ( Section 3 ) and classes with different priors, we calcu-

ate the area under the receiver operating curve (AuC) for each bi-

ary one-versus-all classification task; AuC is a threshold indepen-

ent measure, invariant to prior probabilities of classes, and equiv-

lent to theoretical maximum achievable correct binary classifica-

ion rate. We evaluate hit rate (true-positives/all-positives ratio)

ersus false alarm rate (false-positives/all-negatives ratio). Tests are

erformed via 10-fold cross validation, where test subjects are not

een in the training sets and each fold is forced to be balanced

ith respect to positive sample sizes, since their numbers are

uch smaller than the number of negatives. Then for each expres-

ion mean and standard deviation of AuC’s are estimated over the

est folds. Finally, averaged AuC and standard deviations are cal-

ulated by weighted averaging where weights are proportional to

ositive sample sizes. We also report the correct classification rates

hen comparing with the former results in the literature. 

In the description of experimental results, we first examine and

iscuss the benefit, if any, of the regularization model, applied
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Fig. 7. Boosted reference face selection algorithm. 
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at varying strengths, on the registration outcome ( Section 6.1 ).

Then, we evaluate our boosted reference selection algorithm

( Section 6.2 ). In Section 6.3 , we investigate various aspects of recog-

nition by non-rigid registration based features, comparing against

commonly used face model-free feature extraction. Finally, we

compare the recognition performance of our method with the pre-

vious work, as given in Section 6.4 , based on AuC and correct clas-

sification rates ( Fig. 7 ). 
i  
.1. Evaluation of registration 

In order to validate the effectiveness of our registration method

s well as to prove our conjecture, where we claim that strong

lobal regularization is not required if such a multiple registration-

ased scheme is used (since it avoids critical missing correspon-

ences), we perform a series of comparative evaluations. Being an

nverse ill-posed problem, non-rigid registration requires regular-

zation to constrain the solution and to obtain a smooth deforma-
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Fig. 8. Registrations for different rigidity values, ρ . 

Fig. 9. First row : reference and target faces; target faces are generated by applying ground-truth deformation obtained with TPS interpolation, which maps reference land- 

marks (green) onto target landmarks (red). Second row : deformation of the reference with regularization ρ = 10 2 . 5 and ρ = 0 . Third row : estimation error of deformations 

averaged over 90 registrations, all replicated with varying values of regularization parameter and additive Gaussian noise variance. Left column : Full correspondence case; 

Right column : missing correspondence case. (Details with various example deformation estimations are available in the supplementary document.). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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E

ion field ( Sotiras et al., 2013 ). To test the effect of regularization

n face registration, we augment the objective energy functional

 E M 

( ϕ) in Eq. (2) ) with a deformation energy functional, E D ( ϕ), re-

ulting in the total energy functional E T ( ϕ), 

 T ( ϕ ) = E M 

( ϕ ) + E D ( ϕ ) . (10) 

o handle large expression deformations, we use a hyper-elasticity

odel, which is better than standard linear elasticity, in the defor-

ation energy functional. The potential energy is measured by the
reen-Lagrange strain tensor 

 GL ( ϕ ) = 

1 

2 

( 

∂ϕ 

∂p 

T ∂ϕ 

∂p 

− I 

) 

, (11) 

nd we evaluate the deformation energy by its Froebenius

orm with the weight coefficient ρ over triangular meshes

 Savran, 2011 ) 

 D ( ϕ ) = ρ

∫ 
p ∈ D re f 

‖ E GL ( ϕ(p) ) ‖ 

2 
F dp . (12) 



158 A. Savran, B. Sankur / Computer Vision and Image Understanding 162 (2017) 146–165 

Fig. 10. Recognition performances (AuC with standard deviation bars) for varying 

ρ . 
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Deformation energy and its gradients are also computed on the tri-

angular meshes ( Savran, 2011 ). This regularization term can pro-

vide estimation of physically plausible face deformations by ap-

propriate choice of ρ , since it establishes diffeomorphism, i.e., a

smooth ( C ∞ ) and bijective mapping with a smooth inverse. ρ con-

trols the amount of rigidity. While bigger ρ values make the de-

formations more rigid, hence providing strong regularization and

possibly avoiding non-plausible results, such registrations may not

compensate for all local mismatches, especially if the actual defor-

mations of the input face are large vis-à-vis the reference. On the

other hand, while with small ρ the images can be matched bet-

ter locally, non-plausible deformations may also occur due to the

absence of corresponding structures. As can be seen in Fig. 9 we

obtain an unrealistic deformation of lips since correspondences are

missing between open mouth (reference) and a closed mouth in

the input image (see also Figs. 3 and 11 ). 

For the accuracy evaluation, we have prepared ground-truth de-

formations by applying thin-plate-spline (TPS) interpolation driven

by 22 facial landmarks marked on 10 samples (of different sub-

jects and expressions) from the The BOSPHORUS database . We have

also added Gaussian noise as well as artificial structures to test the

robustness and handling of missing correspondences. An example

reference-target pair is shown in the first row of Fig. 9 , with cor-

responding deformed references for two values of the rigidity pa-

rameter ( ρ = 10 2 . 5 and ρ = 0 ) in the second row. Accuracy is eval-

uated by calculating the average Euclidean distance between esti-

mated and true dense deformation fields (displacement vectors) on

10 × (10 − 1) = 90 registration pairs. 3 The third row in Fig. 9 shows

the estimation errors of the full deformation fields in pixels un-

der different regularization and noise levels, as well as for missing

correspondence cases. We observe that accurate registration is ob-

tained under noise without any need for global regularization, and

that global regularization (larger ρ) is helpful only when there are

missing correspondences. See for example the darker left bottom

corner of the sub-figure Missing Correspondences in Fig. 9 ; the per-

formance improves rapidly with the rigidity parameter increasing

beyond ρ > 10 0 . 

Second, we calculate the average recognition performances,

shown as a function of ρ (with the optimal references found

in Section 6.2 ) in Fig. 10 . We observe consistently across all three

databases that, although the appearance of registered faces can dif-
3 See the supplementary document for the experiment details. 

e  

o  

F  
er depending on the chosen rigidity value (see Fig. 8 ), the recogni-

ion performances are insensitive to ρ , until ρ = 10 3 where regis-

ration becomes ineffective due to strong penalization of deforma-

ions. In fact, we obtain the best results for ρ = 0 . 

Both deformation accuracy and recognition performance evalu-

tions reveal two important outcomes. First, they show that, with-

ut using global regularization, local affine interpolator, which in-

erently acts as local regularizer in our registration method, is suf-

cient to handle ill-posedness on facial curvature images. More-

ver, even though the global regularization is necessary to miti-

ate errors due to the missing correspondences ( Fig. 9 ), it is not

ecessary to improve recognition ( Fig. 10 ). Thus we provide strong

vidence for the validity of our conjecture that strong global regu-

arization is not required and for the effectiveness of our non-rigid

egistration method. 

.2. Evaluation of boosted references 

We evaluate the boosting-based reference selection by com-

aring against a simpler method, which basically picks references

rom dataset proportional to sample size of expressions . This is ac-

omplished by using scaled-histogram s ( k ) (in lines 9–10 in Fig. 7 )

o pick the binary classification task t . Then a reference is ran-

omly selected from the positive samples of the task t . Hence, this

ethod is called histogram-based reference selection method. 

Fig. 12 shows the AuC performances for varying number of

eferences. This figure is a clear evidence on the necessity of

ultiple-references, as use of single reference always results in

ower recognition performance. We observe rising trends in per-

ormance with increasing number of references across databases.

oosted-based reference method is slightly superior to histogram-

ased method of selecting references. 

We fixed the number of registration references according to this

valuation. There is a trade-off between recognition performance

nd computational efforts, both increasing with the number of ref-

rences. Therefore, as a compromise, we pick 11, 9 and 13 ref-

rences for the BOSPHORUS, BU3DFE and SBIA databases, respec-

ively (see Fig. 11 for selected examples). 

.3. Evaluation of recognition 

We compare our method with Gabor filter-banks and LBP de-

criptors, following common practices. For the Gabor wavelets, four

rientation and five scales, corresponding to wavelengths from 4

o 16 pixels, are applied. Responses of those 20 wavelets are com-

uted densely at each image pixel and their magnitudes are used

s the features. For the LBP features, images are divided into non-

verlapping blocks where binary pattern histograms (59 histogram

ins by using only the uniform patterns) are computed. Best LBP

adius and block size parameters can be quite different for differ-

nt databases ( Shan et al., 2009 ). Therefore, we determined these

arameters on the three databases by experimenting over all the

ombinations of 6 × 6, 8 × 8 and 12 × 12 block divisions and radius

izes of r ∈ {1, 2, 3, 4, 5} pixels. We found that the best parameters

n the Bosphorus and BU3DFE parameters are the same, 12 × 12

lock partitioning and radius r = 4 , while the optimal parameters

or the SBIA database are 8 × 8 partitioning with radius r = 4 . Ben-

fit of larger block size on the SBIA database may be due to the

esulting smoothing effect on the highly noisy data from consumer

epth cameras. 

In AdaBoost based recognition on high dimensional inputs,

he convention is to employ simple classifiers as weak learn-

rs, like tree-stumps or linear NBC with shared-variance. How-

ver, we observed that quadratic discrimination, i.e., NBC with-

ut shared-variance, considerably improves recognition as seen in

ig. 13 , especially on curvature images (pixel features) that had
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Fig. 11. Examples of registered curvature maps onto the first four references that are selected by boosting. 
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n  
he lowest performance. We also observed that when quadratic

BC is used, AdaBoost achieves higher performance than state-

f-the-art AdaSVM (SVM on the selected features by AdaBoost)

 Littlewort et al., 2011; Sandbach et al., 2012a; Savran et al., 2012a ).

or instance, it achieved 96.8% AuC score on BOSPHORUS and

6.1% on BU3DFE with registration based recognition, whereas

daSVM achieved slightly lower scores, 96.1% and 95.6%, respec-

ively. Marginals improvement by increasing the number of se-

ected features is possible as seen in Fig. 14 albeit with strongly di-

inishing returns (e.g., 97.2% AuC score on BOSPHORUS with regis-

ration based recognition). We fixed the number of features to 200

o run in feasible duration the large number of experiments. 

When we look at the performances of all the features in

ig. 13 , we see the superiority of non-rigid registration-based fea-

ures. Second in performance ranking comes the Gabor filter-banks.

oreover, we see that the registration-based method does not de-

eriorate as much compared to others under adverse conditions,

.e., when a linear classification is used in lieu of a quadratic one,

hen applied on low-fidelity 3D data of consumer depth cameras

SBIA), or when the number of features is reduced ( Fig. 14 ). As a

nal remark, comparing individual one-vs-all AuC performances in

ig. 15 , we see that registration-based recognition performs better

or almost all types of expressions . 

Finally, we evaluate resiliency of our recognition method

gainst residual errors of pose alignment. In fact, perturbations,

ven small, in pose is one of the major causes that degrades recog-

ition performance, whether it is for luminance data or for 3D ge-

metry data. This is because there is always some uncertainty in

he face alignment, which is amplified in the presence of some ex-
ressions. In fact, existing face model-free local feature extraction

ethods try to compensate for pose perturbations by using large

indows to provide some degrees of shift-invariance ( Sariyanidi

t al., 2015 ), which, however, causes loss of details. Our method

oes not need local windowing and each feature corresponds to

 single pixel, thanks to the local shift-invariance provided by the

etailed registration; hence we do not incur into any loss of detail.

e test the conjecture that non-rigid registration-based method is

obust to pose perturbations in an experiment where the perfor-

ance with ICP alignment is compared with the performance re-

ulting from a more accurate alignment using manually annotated

acial landmarks. Such landmarks are available in BOSPHORUS and

U3DFE databases. Fig. 16 compares the recognition performances

f the manual and of the automatic face alignments. While the per-

ormance of the non-rigid registration-based scheme remains the

ame under both types of alignment, all the other feature types

erform worse in the ICP alignment (less accurate). Notice that

here is practically nothing that our method can gain from manual

andmarks, and hence more accurate registration since it is fully

ompensating for all pose discrepancies. 

This compensation ability also eliminates any bias due to the

rbitrary choice of an ICP alignment reference. Even though we

ave chosen a random neutral face as the alignment reference, our

ethod allows the use of any expression face. Especially, expres-

ion faces with large deformations, like big mouth openings, can

ias a rigid transformation. We can see the effect of this bias at

he bottom-right corner of Fig. 5 which compares the information

ain maps on the mouth stretch action (AU27) with and without

on-rigid registration. We see that, unless dense non-rigid registra-
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Fig. 12. Recognition performances (averaged AuC values ± standard deviation bars) of references selected by boosting and by histogram sampling. The chosen number of 

boosted references are marked by cross signs. 

Fig. 13. Recognition performances (averaged AuC ± standard deviation) with dif- 

ferent features, and with boosted linear and quadratic Bayes classifiers. 

Fig. 14. Recognition performances (averaged AuC) under varying number of fea- 

tures (BOSPHORUS db.). 

Fig. 15. One-vs-all AuC scores (with standard deviation bars) of non-rigid registra- 

tion and Gabor features on surface curvature images (N: sample size). 
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Fig. 16. Averaged AuC values (with std. bars) of recognition by manual landmark 

versus automatic ICP alignment for different feature extraction methods. 

Table 1 

Averaged [AuC - correct rate] results (Curv: curvature image, 

Lum.: luminance image, NR: Nonrigid). 

Features (200) BOSPHORUS BU3DFE SBIA 

NR Registration 96.8–96.4 96.1–83.2 93.7–85.4 

Curv. 92.8–93.5 92.7–73.2 85.2–76.0 

Gabor on Curv. 95.4–95.7 94.0–76.0 87.6–77.2 

LBP on Curv. 93.8–94.1 93.2–74.4 87.1–76.7 

Gabor on Lum. 92.2–93.1 91.7–72.3 96.2–84.9 
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Table 2 

Confusion matrix on the BU3DFE database using the NR Regis- 

tration method. 

Neu Hap Ang Dis Sad Fea Sur 

Neu 87.5 2.0 6.0 0.0 3.0 1.0 1.0 

Hap 0.0 94.5 0.0 0.0 0.0 4.5 1.0 

Ang 2.5 0.5 77.0 6.0 9.0 5.0 0.0 

Dis 1.5 1.5 6.5 79.0 2.5 6.0 3.0 

Sad 4.5 0.0 8.0 0.0 82.0 5.5 0.0 

Fea 3.0 9.5 4.5 6.50 4.5 68.0 4.0 

Sur 0.5 0.5 0.0 2.0 0.5 3.5 93.0 

Table 3 

Confusion matrix on the SBIA database using 

the NR Registration method. 

Pos (317) Neu (53) Neg (337) 

Pos 90.9 0.0 9.1 

Neu 11.3 40.1 48.6 

Neg 11.6 0.6 87.8 
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ion is utilized, the information becomes spread all over the face

nd loses its locality instead of concentrating correctly over the

outh region. This spread of the deformation information is be-

ause targets have large deformation differences with respect to

mployed neutral face alignment reference and these cause ver-

ical shifts in all the mouth stretch samples. Since the non-rigid

egistration successfully compensates for this vertical shift, the in-

ormation remains localized around the mouth region. 

.4. Comparison with the prior work 

In order to make comparisons with the previous work, we also

alculate the recognition rates and the confusion matrices. Table 1

hows the recognition rates and the AuC scores. We observe that

ll features follow the same trend under both metrics. 

Previous AU detection performance on the BOSPHORUS

atabase in terms of AuC was: 96.3% with Gabor wavelets on mean

urvature and shape index data ( Savran et al., 2012a ), 96.3% AuC

y utilizing LBPs on normal vectors ( Sandbach et al., 2012c ), and

7.2% by combining LBP and Gabors as local-depth-Gabor-binary-

atterns ( Sandbach et al., 2012a ). However, Sandbach et al. (2012a );

012c ) had achieved these scores by manual landmark-based pose

lignment. As we have shown in Section 6.3, Fig. 16 , in reality, the

esidual alignment errors degrade the performances considerably.

n contrast, with fully automatic alignment, thanks to its compen-

ation capability for residual pose, non-rigid registration obtains

7.2% with 10 0 0 features ( Fig. 14 ); and if the feature count is lim-

ted to 200, it still achieves a high score of 96.8% AuC ( Table 1 ). 

There have been various reported results on the BU3DFE

atabase. In chronological order the correct recognition rates are

s follows: 83.6% by Wang et al. (2006) , 91.3% by Soyel and Demirel

2007) , 95.1% by Tang and Huang (2008) , 77.5% by Berretti et al.

2010) , 98.8% by Maalej et al. (2011) , and 73.0% by Vretos et al.

2011) . Notice that, except for Vretos et al. (2011) , all the other

ethods owe their high recognition performance to feature extrac-

ion aided by manual landmarks (between 20 and 83 landmarks). 
However, as recently shown in a comprehensive study ( Creusot

t al., 2013 ), actually landmark detection on 3D faces is highly error

rone, especially in the presence of the expressions . For instance, on

he BOSPHORUS database, average detection rates can drop down

o about 65% (even down to 25% for the chin point). Moreover, the

etection rates considerably degrade under out-of-plane rotations

f the face. Therefore, features based on automatically extracted

andmarks are prone to performance drops under expressions and

otations. As a case in point, Maalej et al. (2011) show that when

nly moderate noise is added on the eyebrow landmarks, the per-

ormance drops from 98.8% to 85.6%. It is obvious that this drop

ill be more dramatic, under high localization errors, especially of

he difficult lower face landmarks ( Creusot et al., 2013 ). Our non-

igid registration-based feature extraction achieves 83.2% with au-

omatic pose alignment and fully automatic feature extraction, sur-

assing its nearest competitor ( Vretos et al., 2011 ), who achieve

3.0% correct rate via Zernike-moments. The confusion matrix in

able 2 shows that most of the errors happen with the expression

ear . 

On the SBIA database, prior work ( Savran et al., 2013 ) has ob-

ained correct rate of 77.4% using histogram-based descriptors on

he mean curvature data; this score is considerably lower than our

orrect rate of 85.4%. Table 3 shows that neutral class is often con-

used with negative valence. This can be explained by its relatively

mall sample size (53 vs. 317 and 337). 

. Discussions 

In this section we discuss several important points that can be

seful when implementing an algorithm based on our generic de-

ormable framework for face model-free recognition. These points

re: choice of the non-rigid registration technique, an extra step

f high-level feature extraction after registration, and extension to

pplications on spontaneous expressions and uncontrolled environ-

ents. 

.1. Choice of the non-rigid registration technique 

As we discussed in detail in Section 2.4 , a variety of shape

odel-free non-rigid registration methods has been proposed

 Sotiras et al., 2013 ). One could want to investigate these alterna-

ive registration techniques as for their potential to alleviate the ill-

osed registration problem and to mitigate the errors due to miss-

ng correspondences via the imposition of strong priors. However,

heir direct application for expression recognition may be pre-

luded by the computational complexity of deformation models.
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Instead, our proposed solution uses a simple registration method

on a multitude of registration references. This can handle, to a

large extent, the missing correspondence problem, as shown ex-

perimentally in Section 6.1 . This flexibility enables us to run the

registration without strong priors, and makes our method com-

putationally feasible despite the dense registration approach. In

other words, simple and fast registration methods, like the one

we propose in Section 4 , are adequate in our multiple-reference

framework. Recall that we obtain improved recognition perfor-

mances even though our registration may not yield case by case

the best image-pair registration. This is in accordance with some

works in the literature suggesting the use of simplest registration

methods for the recognition tasks. After comparing various de-

formation models for different recognition problems, Keysers et al.

(2007) have shown that the simplest image distortion model per-

forms as good as the more constrained models, with the crucial

advantages of low-computational complexity and simplicity of im-

plementation. Consequently, based both on the literature and on

our experimental evaluations, we suggest the use of the simplest

registration methods if the recognition framework somehow in-

volves a representative set of references. 

7.2. High-level feature extraction after registration 

As we have shown in Section 6.3 (e.g., Fig. 13 ), despite the fact

that we have only used registered curvature pixels and no higher-

level features, our method surpasses the high-level feature mod-

els. Recall that the latter encodes the local patterns of the curva-

ture maps. Then a natural question follows: since high-level feature

models considerably improves the performance on the undeformed

curvature maps, can they also bring improvements if applied on

the registered curvature pixels? The short answer according to our

preliminary experiments ( Savran, 2011 ) is negative. The result of

our previous work have shown that dense Gabor feature extrac-

tion on each deformed curvature image and applying feature se-

lection AdaBoost, with the same parameters used here, does even

cause small drop in the performance. Also, there is a huge compu-

tational penalty of extracting high-level features on many reference

domains and difficulty of higher-dimensionality, which makes their

use prohibitive. 

In fact, a well-known major benefit of feature extraction over a

local support is the gain of some shift-invariance as well as illumi-

nation invariance. One must keep in mind also the fact that there

is a trade-off between the size of the local support and the lo-

calization precision. However, since non-rigid registration compen-

sates for the local deformations, wider local context cannot the-

oretically offer any benefit since shift-invariance has been guaran-

teed by registration. This can be the main reason of why high-level

features do not provide any benefit in the deformable recogni-

tion scheme. In fact in a previous study investigating the relation-

ship between features and registration in the face model-driven

schemes ( Chew et al., 2012 ), it has been shown that Gabors and

HoG are not beneficial compared to pixel-based representation in

the presence of non-rigid registration. 

We want to reemphasize that small local context is very im-

portant, both for the deformation estimation and feature extrac-

tion parts of our algorithm. As we have clarified in Section 4.1 , the

mean curvature models the local context as a 2 nd -order differen-

tial and it is superior to bare depth values and other types of local

contexts. Furthermore, as reported in Keysers et al. (2007) where

shape-model free deformable recognition of images has been in-

vestigated, local gradient context (via 3 × 3 Sobel filter) leads to

excellent results. Therefore, in accordance with the literature, we

do not suggest extraction of large local contexts as an additional

analysis step following the non-rigid registration. 
.3. Spontaneous expressions and uncontrolled environments 

An important current issue is the recognition of facial expres-

ions in naturalistic environments, i.e., where the expressions are

pontaneous and the environment is uncontrolled. As discussed

n Corneanu et al. (2016) , naturalistic environments can be char-

cterized by varying illumination conditions, larger head poses,

nd low to moderate intensity of spontaneous facial expressions.

ctive range acquisition systems are considered quite resistant

o varying illumination conditions, and 3D is beneficial for the

lignment of large head poses, especially for the out-of-plane

otations. 

There are recent efforts on collecting spontaneous 3D facial ex-

ression databases ( Zhang et al., 2014; 2016 ) to be able to better

ddress these difficulties of the spontaneous data with 3D data.

etection of subtle spontaneous expressions are especially diffi-

ult and use of the temporal representations help capturing the

ubtle expression differences. Therefore the recent spontaneous

atabases are composed of 3D video data to study the temporal

spects as well. A direct approach to capture the temporal infor-

ation is to construct spatio-temporal features, as in Zhao and

ietikainen (2007) for 2D videos or as in Reale et al. (2013) for 3D

ideos. We refer to recent surveys for other spatio-temporal meth-

ds ( Corneanu et al., 2016; Sariyanidi et al., 2015 ). On the other

and, more recent methods ( Chu et al., 2017; Zeng et al., 2016 ) still

se still-image feature extraction methods (e.g., local patch fea-

ures like SIFT around landmarks) to cope with the hard samples of

he spontaneous data, by designing person adaption mechanisms

xploiting temporal information in the later stages instead of in

he feature extraction stage. 

While we do not propose any method to better handle the

pontaneous data, in theory, our method can also be trained and

valuated on spontaneous databases as well. Although we expect

o observe lower recognition rates with spontaneous data, the per-

ormance of other feature extractors would also be lower and

he ranking of the tested feature extractors would not change.

s shown in recent studies, such as in Eleftheriadis et al. (2015) ,

he relative performances of different methods are quite consistent

ith both posed and spontaneous datasets. Therefore, we think

hat the databases employed in our work are sufficient to val-

date the potential of our novel feature extraction approach. In

act, based on its transformation invariance gained by dense reg-

stration (against transformations due to residual pose alignment

rrors as well as physiognomy) and also due to smaller degree

f degradation observed on the difficult semi-spontaneous (SBIA)

atabase with respect to baseline, we believe that our non-rigid

egistration-based feature extraction approach could be advanta-

eous in handling the spatial variations which occur with sponta-

eous data. Furthermore, to better cope with the difficulties of the

pontaneous data, it is possible to employ our feature extraction

echnique in the recent schemes like Zeng et al. (2016) and Chu

t al. (2017) which depend on still-image features; or, one can envi-

ion possible extensions to use temporal dependencies in the reg-

stration process or incorporating temporal context in the recogni-

ion. Extensions of our work with temporal context and its valida-

ions on the spontaneous 3D video databases is a future research

ffort. 

. Conclusions 

We have developed a feature extraction approach for face

odel-free 3D expression recognition based on a novel and ef-

ective use of non-rigid registration. This is in essence free from

eature models, i.e., it is a purely data-driven recognition. Our fea-

ure extraction provides a dynamic feature extraction mechanism

y forcing the facial information in a reference face gallery to adapt
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o input test faces via shape model-free dense registration, which

s fundamentally different from static feature extraction that ob-

ains features always from pre-determined fixed coordinates in a

eference coordinate system. This makes our simple feature repre-

entation very effective, and eliminates more complex feature rep-

esentations required as in the case of static feature extraction,

here the complexity arises from the necessity to model the lo-

al context, and more recently, from the deep feature hierarchies

y end-to-end learning on large-scale datasets. 

The proposed method is superior in two aspects: First, it en-

bles extraction of highly informative features which are dis-

riminative and increase inter-class distances via the merit of

ultiple registration references; at the same time, it attenu-

tes the confounding variability of faces mainly due to physiog-

omy and residual pose misalignments. Second, right from start,

ur method precludes loss of information due to assumed face

nd/or feature models. Concomitantly, there is no need for burden-

ome manual face model preparation and complex model-fitting

tage. 

The existing shape model-free registration methods ( Sotiras

t al., 2013 ) are computationally demanding, especially because of

omplex regularization schemes, which makes them impractical for

xpression recognition applications in real time. On the other hand,

trong permanent face structures make registration of 3D surfaces

ignificantly less ill-posed, hence allow the use of simpler regular-

zation methods. We show experimentally that our registration us-

ng local affine interpolator-based regularization is accurate when

here is full correspondence and hence yields superior recognition

ith very fast computations (about 0.025 s per face as given in

ection 5.2 ). However, the real challenge is the presence of expres-

ions , which causes missing correspondences. Rather than resort-

ng to a complex registration, we tackle this problem by registering

est faces on multiple-references, and thus we avoid the occurrence

f critical missing correspondences to a large extent. Although lo-

al failures can still occur at the fewer missing correspondences,

till superior recognition performance is achieved, since only the

ost informative pixels from a small set of optimally selected ref-

rence domains (see Fig. 7 ) are picked as features. 

Our comparative experiments using common high-level fea-

ure extraction techniques, like Gabor filter-banks and LBP descrip-

ors, show the superiority of non-rigid registration-based curvature

ixel features on a set of different expression recognition problems:

ecognition of basic expressions, of facial action units, and of emo-

ional valences, using three databases with differing 3D imaging

ualities. The superior advantages of our method derive from local

hift-invariance on the features and the use of an optimal refer-

nce set. Local shift-invariance is enabled by non-rigid registration,

hich provides invariance to physiognomy (subject-invariance) and

esidual pose misalignments. The optimally selected face reference

et improves discrimination and mitigates missing correspondence

roblem. A proof of the robustness of our non-rigid registration-

ased feature extraction is that the performance suffers very lit-

le whenever a weaker classifier, e.g., a linear classifier is used, or

hen the number of features is decreased. The recognition perfor-

ance of other methods or with other feature types in the litera-

ure suffers much more under these conditions. Another proof of

his robustness in the case of low-fidelity noisy 3D data as in the

BIA dataset. 

Our approach is currently not applicable for 2D texture fea-

ure extraction since 2D texture is not directly associated with face

eformations and it is affected by high degree of variations due

o other factors. However, since non-rigid registration is an active

esearch topic in face model-driven recognition, and our findings

uggest its importance in model-free recognition as well, develop-

ng a suitable method for the texture data based on the proposed

dea, could be the subject of a future work. We think that, whether
n 3D or 2D data, non-rigid registration should also be an impor-

ant aspect for future model-free recognition. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.cviu.2017.07.005 . 

ppendix 

Mutual Information for Normal Bayes. For Normal Bayes classifier

NBC), the class conditional densities are in the form of Normal

ensities { p(x | y = c) = N(x | μc , σ 2 
c } C−1 

c=0 
where y is the class variable

nd C is the number of classes. If we approximate the distribution

f the whole population as the Normal density, N ( x | μ, σ 2 ), then

he mutual information between x and y is evaluated as 

(X ;Y ) = H(X ) − H(X | Y ) (13) 

= 

∫ 
p(x ) ln p(x ) dx (14) 

−
∑ 

c 

p(y = c) 

∫ 
p(x | y = c) ln p(x | y = c) dx 

= 

1 

2 

ln 2 πeσ 2 −
∑ 

c 

p c 
1 

2 

ln 2 πeσ 2 
c (15) 

= ln σ −
∑ 

c 

p c ln σc (16) 

ince entropy of normal distribution is H(X ) = 

1 
2 ln 2 πeσ 2 and

onstant terms cancel out. Here, p c = p(y = c) is the prior for class

 . 

We can express σ , i.e. the variance of x , in terms of means and

ariances of class conditional densities as follows. The moments of

he whole population are 

= E[ X ] (17) 

2 = E [(X − E [ X ]) 2 ] = E [ X 

2 ] − E[ X ] 2 . (18) 

hus, E[ X 2 ] = σ 2 + μ2 . Then the mean and variance can be ex-

ressed as 

= E[ X ] = E[ E[ X | Y ]] (19) 

= 

∑ 

c 

p(y = c) E[ X | Y = c] = 

∑ 

c 

p c μc (20) 

2 = E[ X 

2 ] − E[ X ] 2 = E[ E[ X 

2 | Y ]] − E[ X ] 2 (21) 

= 

∑ 

c 

p(y = c) E[ X 

2 | Y = c] − E[ X 

2 ] 

= 

∑ 

c 

p c (σ
2 
c + μ2 

c ) −
(∑ 

c 

p c μc 

)2 

= 

∑ 

c 

p c σ
2 
c + 

∑ 

(c,c ′ ) ∈ [ S C ] 2 
2 p c p c ′ 

(
μ2 

c + μ2 
c ′ − 2 μc μc ′ 

)

= 

∑ 

c 

p c σ
2 
c + 

∑ 

(c,c ′ ) ∈ [ S C ] 2 
p c p c ′ (μc − μc ′ ) 

2 (22) 

[ S ] 2 is 2-combination set of S = { 0 , 1 , · · · , C − 1 } ). 
C C 

http://dx.doi.org/10.1016/j.cviu.2017.07.005
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Let’s use symbol V for the summation term over variances and

M for the summation term over square differences of means, i.e.,

σ 2 = V + M. Then 

I(X ;Y ) = 

1 

2 

ln ( V + M ) −
∑ 

c 

p c ln σc (23)

= 

1 

2 

ln 

(
1 + 

M 

V 

)
+ 

1 

2 

ln V − ln 

∏ 

c 

σ p c 
c (24)

= 

1 

2 

ln 

(
1 + 

M 

V 

)
− ln 

∏ 

c σ
p c 

c √ ∑ 

c p c σ
2 
c 

. (25)

The second term depends only on the variances and priors, and

changes insignificantly compared to the first term since it is the

ratio of weighted geometric mean to weighted arithmetic mean.

In particular, if the variances are all set equal, which means that

the classifier is a linear classifier, the second term becomes zero.

Therefore, the mutual information for NBC can be approximated

by the ratio 

I(X ;Y ) ≈ M 

V 

= 

∑ 

(c,c ′ ) ∈ [ S C ] 2 p c p c ′ (μc − μc ′ ) 
2 

∑ 

c p c σ
2 
c 

(26)

This ratio shows that the mutual information increases when

overall separation between the class means increases or when

within class variances decrease. The contributions from classes are

weighted by their prior probabilities. For binary classification prob-

lem, the ratio in Eq. (26) reduces to 

I(X ;Y ) ≈ M 

V 

= 

p 1 p 0 (μ1 − μ0 ) 
2 

p 1 σ 2 
1 

+ p 0 σ 2 
0 

(27)

For instance if p 0 = p 1 = 0 . 5 , then 

M 

V 

= 

1 
4 
(μ1 − μ0 ) 

2 

1 
2 

(
σ 2 

1 
+ σ 2 

0 

) = 

1 

4 

⎛ 

⎝ 

μ1 − μ0 √ 

1 
2 

(
σ 2 

1 
+ σ 2 

0 

)
⎞ 

⎠ 

2 

(28)

which is commonly used as discrimination or sensitivity index in

signal detection theory ( Green and Swets, 1966 ). 
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