
Under review as a conference paper at ICLR 2023

SUPPORT VECTOR-BASED SHAPLEY VALUE ESTIMA-
TION FOR FEATURE SELECTION AND EXPLANATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, employing Shapley values to compute feature importance has
gained considerable attention. Calculating these values inherently necessitates
managing an exponential number of parameters—a challenge commonly miti-
gated through an additivity assumption coupled with linear regression. This paper
proposes a novel approach by modeling supervised learning as a multilinear game,
incorporating both direct and interaction effects to establish the requisite values
for Shapley value computation. To efficiently handle the exponentially increasing
parameters intrinsic to multilinear games, we introduce a support vector machine
(SVM)-based method for parameter estimation, its complexity is predominantly
contingent on the number of samples due to the implementation of a dual SVM
formulation. Additionally, we unveil an optimized dynamic programming algo-
rithm capable of directly computing the Shapley value and interaction index from
the dual SVM. Our proposed methodology is versatile, ascertaining feature im-
portance across a myriad of supervised tasks, thereby offering a practical tool for
feature selection and explanation. Experiments underscore the competitive effi-
cacy of our proposed methods in terms of feature selection and explanation.

1 INTRODUCTION

Shapley value-based feature importance, such as Kernel SHAP, is a prominent model-agnostic in-
terpretability method, utilizing an additive feature attribution approach to clarify the predictions of
any machine learning model (Lundberg & Lee, 2017; Covert & Lee, 2021). However, its limita-
tions are noteworthy. The additive nature of Kernel SHAP (and many other Shapley valued-based
explanations) could lead to oversimplification and loss of nuanced insights, especially in models
encoding complex nonlinear relationships and interaction effects. In addition, the precision and
reliability of these calculations can be precarious in scenarios featuring high feature correlation or
intricate nonlinear interactions, and isolating and quantifying such interactions accurately is chal-
lenging. Furthermore, methods like the Shapley-Taylor interaction index (Sundararajan et al., 2020)
or Faith-SHAP (Tsai et al., 2023) that do consider interactions rigorously have their own set of chal-
lenges, as they involve an exponential number of parameters, complicating both the computation and
the interpretation. The assumption of feature independence in Kernel SHAP may lead to unreliable
interpretations when there are correlated features, and its reliance on linear regression can introduce
approximation errors with highly nonlinear models, besides being computationally intensive with
high-dimensional datasets.

In addressing the limitations inherent in existing interpretability models like Kernel SHAP, we pro-
pose a method based on the multilinear extension of cooperative games, allowing supervised learn-
ing tasks to be modeled as multilinear games. This enables the more comprehensive incorporation
and nuanced understanding of interactions between features in contrast to conventional additive
models. To tackle the challenge of the exponential growth of parameters intrinsic to models that
consider interactions, the dual formulation of support vector machine (SVM) is leveraged. This ap-
proach not only serves to circumvent the computational complexity associated with the exponential
increase in parameters but also helps provide a representation of the Shapley value based on the dual
SVM solution. The methodology promises efficient computation of the newly formulated Shapley
value through dynamic programming, contributing a computationally efficient tool for interpreting
complex, nonlinear models. The proposed method can be applied to any supervised learning task,
so the computed Shapley value could be used both for feature selection and explanation (Section 2).

1

Under review as a conference paper at ICLR 2023

In summary, the paper has the following contributions: (i) We formulate the supervised learning
task as multilinear games, employing direct and interaction effects as the characteristic function of
a game; (ii) We effectively handle the exponential parameters in multilinear games by employing
SVM, focusing the complexity of the problem on the number of samples rather than the myriad
of features and their interactions; (iii) We put forward a data-driven representation of the Shapley
value based on the dual SVM solution and devise a dynamic programming algorithm to efficiently
compute the Shapley value or interaction index.

Notation. We show the matrices with upper-case (unbold-faced) letters, the vectors with bold-faced
lower-case, scalars with lower-case (unbold-faced) letters, and the sets with curly upper-case letters.
The training set containing n samples is denoted by {xxxi, yi}ni=1, where xxxi ∈ Rd. The set of all data
points xxxi’s is denoted by X ∈ Rn×d, and Xi• and X•j refer to the ith row and jth column of matrix
X , respectively. The data matrix with all interactions is shown by X̂ ∈ Rn×(2d−1). We also show
the set of features by F and the set of features with interactions by F̂ . Obviously, F and F̂ contain
d and 2d − 1 elements, respectively. We also use the one-to-one mapping function u : F̂ → Ind,
where Ind ∈ [1, 2d − 1] is an integer mapping a set in F̂ to the corresponding column in X̂ . So, for
instance, if we have three features F = {1, 2, 3} and want to have the interaction term {1, 2} in the
fourth column of X̂ , then it follows that u({1, 2}) = 4. We also use the inverse of u for mapping the
index to an interaction set, e.g., u−1(4) = {1, 2}. The element-wise multiplication, or Hadamard
product, is also shown by ⊗.

2 SUPERVISED LEARNING AND COOPERATIVE GAME THEORY

Shapley Value and Mobius Transformation. A cooperative game is characterized by specifying a
function for each coalition. For a set of player F , the characteristic function µ : 2F → R assigns
a value to each subset of players. The function represents the collective payoff of a set of players
when forming the coalition. From a supervised learning perspective, the features and the label (or
predicted variable) serve as the players and the payoff, respectively.

Given a characteristic function, the Shapley value is a solution concept in cooperative game theory
that concerns the attribution of a payout among the involved players (Shapley, 1953). A salient prop-
erty of the Shapley value is that it is the unique value that fulfills four axioms (efficiency, symmetry,
dummy, additivity). The Shapley value computation is based on the marginal contributions of each
feature to all feature subsets. Let µ(S) be the value for a feature subset S, the marginal contributions
of feature i to S is µ(S∪{i})−µ(S),∀S ⊆ F \{i}. In particular, the Shapley value is the weighted
average of all marginal contributions and is defined as (Shapley, 1953):

νi =
∑

S⊆F\{i}

|S|!(|F| − |S| − 1)!

|F|!

[
µ(S ∪ {i})− µ(S)

]
, (1)

where νi is the Shapley value of feature i. For feature importance of a learning model, the µ(S)
values can be computed by retaining a model for each subset of features (Lipovetsky & Conklin,
2001), but recent approaches use a sampling approximation of equation (1) with no need of having
a model for all feature subsets (Lundberg & Lee, 2017; Mitchell et al., 2022; Datta et al., 2016;
Štrumbelj & Kononenko, 2014).

A useful representation of the Shapley value is computed by using the Mobius transformation. The
set function µ can be represented as (Shapley, 1953; Grabisch, 1996):

µ(B) =
∑
A⊆B

mµ(A), ∀B ⊆ F , (2)

and the Mobius transformation mµ can be written as follows:

mµ(A) =
∑
B⊆A

(−1)|A\B|µ(B).

2

Under review as a conference paper at ICLR 2023

The Shapley value for feature i as in equation (1) can be represented by using the Mobius transfor-
mation as (Grabisch, 1996):

νi =
∑

B⊆F|i∈B

1

|B|
mµ(B). (3)

The idea of averaging over the marginal contributions for computing the feature importance can
be extended to compute the Shapley interaction index. In particular, for any T ⊆ F , we need to
compute the marginal contributions µ(S ∪ T)− µ(S),∀S ⊆ F \ T . The Shapley interaction index
is then defined as (Grabisch & Roubens, 1999):

Iν(T) =
∑

B⊆F|T ⊆B

1

|B| − |T |+ 1
mµ(B). (4)

Multilinear Extension of Games. The multilinear extension of a cooperative game provides a
way to extend a discrete game into a continuous setting (Owen, 1972; 1988a). For a traditional
cooperative game with a player (or here feature) set F and a characteristic function µ : 2N → R,
the multilinear extension G : [0, 1]N → R is defined as follows:

G(xxx) =
∑
S⊆F

µ(S)
∏
i∈S

xi

∏
j∈F\S

(1− xj) (5)

Here, xi is a continuous variable between 0 and 1 that represents the extent to which player i is part
of a coalition. This formula allows for fractional coalition memberships and thereby converts the
game into a continuous form. Also, it is shown that the integration of the first derivative of equation
(5) results in the Shapley value (Owen, 1972). It is also shown that G can be represented by the
Mobius transformation of µ as:

G(xxx) =
∑
S⊆F

mµ(S)
∏
i∈S

xi. (6)

The extension to this formulation for multichoice games is also provided, which extends the contin-
uous variable xi beyond the hypercube (Owen, 1988b; Borkotokey et al., 2015).

Supervised Learning as Multilinear Game. The multilinear extension of games as in equation (6)
provides a compact formulation that could be used in the supervised learning approaches instead of
conventional linear models. We first define multilinear game-theoretic learning.

Definition 1 A multilinear model for supervised learning is:

y = h

(
b+

∑
S⊆F|j=u(S)

mj

∏
i∈S

xi

)
, mmm ∈ R2d−1,xxx ∈ Rd, (7)

where h is a link function, b is a bias term, and mj = mµ

(
u−1(j)

)
.

The multilinear model, delineated in equation (7), expands upon the traditional linear model by in-
corporating feature interactions, known in the fields of machine learning and statistics. What sets
this model apart is the way interaction effects are interpreted through the lens of the multilinear ex-
tension. In this framework, direct and interaction effects are construed as the Mobius transformation
of the characteristic function corresponding to their respective feature subsets. This interpretation
paves the way for the calculation of critical elements in cooperative game theory, such as the Shapley
value and the interaction index, enabling a more profound understanding of feature subset interac-
tions within the model. Another game-theoretic interpretation of this model based on the Harsanyi
framework (Harsanyi, 1959; 1963) is presented in Appendix A.

The model (7) is general and can be applied to any supervised task, and the computed Shapley value
can be interpreted accordingly. In particular, they can be used in:

• Feature Selection: Given a training set, we can train a model (e.g., lasso) based on equa-
tion (7), obtain mj’s, and compute the Shapley value accordingly. Such Shapley values
represent their importance and can be used to select the most informative features.

3

Under review as a conference paper at ICLR 2023

• Local Explanation, that refers to explaining the prediction of an instance, the features in
xxx are a set of simplified explainable features from the original data. For text classification,
for instance, an explainable feature represents the existence of a word in the corresponding
document. The data set X is also generated by the permutation of the instance under
explanation, and the labels are obtained by feeding the generated data to the learned model,
and the computed Shapley value delineates the importance of features in that prediction.

The challenge is that the multilinear model contains an exponential number of parameters, thereby
having computational burdens. The next section presents efficient algorithms for such computations.

3 SUPPORT VECTOR-BASED SHAPLEY VALUE LEARNING

This section presents a support vector-based method for Shapley value estimation. We focus on
the SVM for binary classification in this section, and we present the local explainable model with
support vector regression in Appendix B. The results, nonetheless, can be generalized to arguably
any kernel learning algorithm.

3.1 KERNEL SUPPORT VECTOR MACHINE FOR MULTILINEAR EXTENSION

Multilinear feature mapping and SVM. Given a data point xxx, we define a multilinear feature
mapping ϕML : Rd → R2d−1 that contains all the feature interactions and is defined as,

ϕML(xxx) = (x1, ..., xd, x1x2, ..., xd−1xd, x1x2x3, ..., x1x2...xd). (8)

Then, for a training set for binary classification, the SVM seeks to find a hyperplanemmmTϕML(xxx)+b
by solving the following minimization (Cortes & Vapnik, 1995):

min
mmm,b

1

2
∥mmm∥2 + C

∑
i

max(0, 1− yi(mmm
TϕML(xxxi) + b)), (9)

where C > 0 is a trade-off parameter between the loss function and regularization. Since the di-
mension of feature space is potentially big (exponential here), the SVM provides a dual formulation
for minimization (9) as:

min
ααα

1

2

∑
i,j

αiαjyiyjϕML(xxxi)
TϕML(xxxj)−

∑
i

αi s.t.
∑
i

αiyi = 0, 0 ≤ ααα ≤ C. (10)

The interesting property of problem (10) is that it only depends on the number of samples, and not
features (or its mapping to a higher dimensional space). Also, if we map xxxi’s to a higher dimen-
sional space like ϕML(.), we only need to know the inner product of the points in that space (i.e.,
ϕML(xxxi)

TϕML(xxxj)) and use minimization (10) for classification. Realizing such an inner product
is known as the kernel trick and the corresponding inner product is known as the kernel function.

Full and q-additive Kernel functions. To compute the kernel function in ϕML, we consider the
case that we account for all interactions, as well as when we restrict the order of interactions.

For all interactions, we show in the following lemma that the inner product of points in the ϕML()
space can be realized very efficiently1. See Appendix C for the proof.

Lemma 1 The kernel function for points xxx and zzz with the multilinear extension is computed as:

kML(xxx,zzz) = ϕML(xxx)
TϕML(zzz) = −1 +

d∏
i=1

(
1 + xizi

)
. (11)

Lemma 1 provides a linear-time formulation for computing the kernel function for the multilinear
extension. However, for some problems, there is some prior knowledge that restricts the order of
interactions among features. In addition, some interaction indices fulfill a set of axioms when the
interaction order is restricted (Sundararajan et al., 2020; Tsai et al., 2023). As such, we define the
q-order Shapley mapping as follows.

1The kernel function is similar to the ANOVA kernel with a linear base kernel (Durrande et al., 2013; Stitson
et al., 1999), with a minor difference of having a -1. we provide the proof for completeness and because it helps
understand the dynamic programming for q-additive kernel function presented in the following.

4

Under review as a conference paper at ICLR 2023

Definition 2 The multilinear mapping is said to be q-order additive, or simply q-additive, if maxi-
mum q features can interact. The corresponding kernel is called the q-additive kernel.

The q-additive multilinear mapping ϕq
ML(xxx) has the following form:

ϕq
ML(xxx) = (x1, ...xd, x1x2, ..., xd−1xd, ..., x1...xq, ..., xd−qxd). (12)

Given the q-additive multilinear mapping, the q-additive multilinear kernel, shown by kqML, cannot
be computed by equation (11). Instead, we formulate the q-additive kernel as a dynamic program-
ming problem, whose recursive formula is as follows:

kq̃,d̃ML(xxx,zzz) =

∑d̃

i=1 xizi if q̃ = 1

kd̃,d̃ML(xxx,zzz) if q̃ > d̃

xd̃zd̃
(
kq̃−1,d̃−1
ML (xxx,zzz)

)
+ kq̃,d̃−1

ML (xxx,zzz) otherwise.

(13)

In equation (13), kq̃,d̃ML is the q̃-additive kernel for the first d̃ elements, and xxx,zzz ∈ Rd, d̃ ≤ d.
We initialize q̃ and d̃ with q (i.e., maximum order of interaction) and d (number of features), and
the output of equation (13) is the q-additive multilinear kernel for xxx and zzz. The first two cases in
equation (13) give the solution for cases the interaction is one (i.e., no interaction) and when the
interaction order is greater than d̃, respectively, and the last case captures the recursion computation
and is based on the first d̃ − 1 elements. Appendix D gives the iterative implementation of the
dynamic programming approach presented in equation (13).

3.2 SHAPLEY VALUE COMPUTATION: A DUAL SVM REPRESENTATION

Using the multilinear mapping and the corresponding kernel in the dual SVM simplifies the compu-
tations. However, we need to compute the primal SVM solution mmm in order to be able to calculate
the Shapley value and interaction index. Given the dual SVM solution ααα, the primal solution could
also be computed by the following equation (Cortes & Vapnik, 1995):

mmm =
∑
i

αiyiϕML(xxxi). (14)

The vector mmm in equation (14), however, has an exponential number of elements in the number of
features and its computation is thus time- and memory-consuming for a large number of features.
For only 30 features, for instance,mmm contains more than one billion elements. We now present some
formalizations and algorithms to estimate the Shapley value and interaction index based on the dual
SVM solution, thereby circumventing the computational burdens. The following theorem provide
such a representation (see Appendix E for the proof).

Theorem 1 The interaction index in equation (4) can be represented based on the dual SVM solu-
tion ααα as:

Iν(T) = α̂ααT

((
⊗i∈T X•i

)
⊗
(
111 +

∑
B⊆F\T

|B|≤q−|T |,j=u(B)

1

|B|+ 1
X̂•j

))
, (15)

where 111 is a vector of one and α̂αα = ααα⊗ yyy.

Given that Iν({i}) = νi, the Shapley value is a special case of the interaction index and the above
formula. Theorem 1 facilitates the computation of the Shapley interaction index based on the dual
SVM solution. However, the computation is still intense since the summation on the right-hand side
of equation (15) makes the calculation complex. We now present a dynamic programming approach
for computing equation (15). First, we define ΩT as:

ΩT =
∑

B⊆F\T
|B|≤q−|T |,j=u(B)

1

|B|+ 1
X̂•j . (16)

5

Under review as a conference paper at ICLR 2023

Computing ΩT efficiently leads to an efficient computation for the Shapley value and interaction
index as in equation (22). To that end, we proposed a dynamic programming approach whose
recursive formula is given as:

Ω̂q̃,d̃,o
T =

o−1111 +
∑

0<j<d̃
j /∈T

X•j if q̃ = 1

Ω̂d̃,d̃,o
T if q̃ > d̃

Ω̂q̃,d̃−1,o
T if i = d̃

X•d̃ ⊗
(
Ω̂q̃−1,d̃−1,o+1

T
)
+ Ω̂q̃,d̃−1,o

T otherwise.

(17)

In equation (17), Ωq̂,d̂,o
T is the q̂-additive summation of the first d̂ features, and o is a positive integer

responsible for generating the fractions in the Shapley value formula. The first case in equation
(17) gives the solution when the interaction order is one, the second case is when the interaction
order is bigger than the size of features at that step, the third case is a jump over the feature under
explanation, and the last case is the main recursion and is based on the first d̂ − 1 features. Then,
Ω could be computed by setting Ω = Ω̂

q−|T |,d,1
T . The iterative dynamic programming algorithm to

compute Ω̂ for the Shapley value is presented in Appendix F.

3.3 OVERALL ALGORITHM AND TIME COMPLEXITY

Given a training set {X, y}, Algorithm 1 summarizes the steps for computing the Shapley values of
the features in the training set.

Algorithm 1 Support Vector-based Shapley Value Learning (SVSVL)

Input X ∈ Rn×d, y, q ∈ N
Computing the kernel matrix by Algorithm 2 (see Appendix D)
Solving dual SVM and get the solution ααα
SV ← zeros(d) # array with d zero elements for Shapley values
for i=1:d do

SV [i] = Shapley value for feature i by Algorithm 3 (see Appendix F)
end for
Output: SV

The proposed approach is very efficient for high-dimensional data. Training an SVM with the multi-
linear kernel is computationally as expensive as other kernel functions and its order is of O(n). The
number of operations required is d summations and 2d multiplication. For the q−additive kernel, we
require 2qd summations and qd multiplications, which is still very efficient given that q is typically
a small number. Having constructed the kernel matrix, solving the SVM has a complexity between
O(n2) and O(n3). For some particular cases (i.e., least-square SVM), the solution is even obtained
by solving a linear equation system. The problem with solving the dual SVM, however, is that it is
time-consuming if the number of data points is very large. Nonetheless, the complexity is related to
the number of data points n, and not d (or 2d when interactions are considered).

For computing the Ω̂ of a continuous-valued feature, the complexity of Algorithm 3 is O(qd), and
in each iteration, we need 2qdn summations and multiplications. This number of operations could
be simplified if we only consider the data points with the corresponding ααα in the dual SVM nonzero
(i.e., the so-called support vectors). Let nα be the number of support vectors, then the number of
operations is reduced to 2qdnα summations and multiplications. Then, for computing the Shap-
ley value given Ω̂, we need nα summations and multiplications. In total, we need 2qdnα + nα

summations and multiplications for each feature, given the dual SVM solution.

4 RELATED WORK

Feature Selection Methods Feature selection is pivotal in model construction and interpretation
and is typically grouped into two approaches as delineated by (Fleuret, 2004). First, Filter Methods

6

Under review as a conference paper at ICLR 2023

assess feature relevance by computing the correlation between features and labels, employing met-
rics like mutual information and the χ2 test (Sánchez-Maroño et al., 2007), offering the advantage
of being model-independent. In contrast, Wrapper Methods rely on the construction and evaluation
of a model to determine the optimal feature subset, with Lasso (O’Brien, 2016) being a prominent
representative. It enforces coefficient sparsity, ensuring only the most critical features are included.
This work utilizes a similar approach, employing SVM to compute feature Shapley values.

Shapley Value-Based Explanation Methods Explainable methods are categorized into local and
global approaches. Local methods, like SHAP (Lundberg & Lee, 2017), focus on explaining in-
dividual instance predictions. Although initially local, SHAP has inspired various other Shapley
value-based methods, like BivariateSHAP (Masoomi et al., 2021), which accounts for pairwise fea-
ture interactions, and L2X (Chen et al., 2018a) and C-Shapley (Chen et al., 2018b), which utilize
mutual information to capture feature interactions up to a specific order.

For a global perspective, SAGE (Covert et al., 2020) provides model-wide explanations using a
permutation-based sampling technique, attributing importance based on an additive assumption.
Similarly, ShapleyEffect (Song et al., 2016) employs Shapley values for global explanations, in-
corporating interaction terms and using Monte Carlo approximation for Shapley value estimation.

Interaction Indices, like Shapley-Taylor (Sundararajan et al., 2020) and Faith-SHAP (Tsai et al.,
2023), present novel means of interpreting feature interactions using robust axioms. Notably, Faith-
SHAP introduces an innovative optimization model closely resembling the multilinear model pro-
posed herein, although its efficiency diminishes with an exponential increase in parameters, neces-
sitating restriction in interaction order.

5 EXPERIMENTS

This section presents some experiments comparing the proposed method for use in explanations and
feature selection. The implementation is publicly available2. All experiments are conducted on a
MacBook, with a CPU of 2.3 GHz 8-Core Intel Core i9 and 16GB of RAM.

5.1 SYNTHESIZED DATASETS

To do an objective comparison, we construct three synthetic datasets, each embedded with a known
ground truth about feature importance. The goal is to contrast the ground truth feature importance
with the important features identified by the tested methods. Each dataset contains 10 features.
The features are generated according to a normal distribution or a random binary generator. For
each synthetic dataset, the target variable is constructed as a known function of a subset of the
generated features, making it possible to assess the precision of the feature importance retrieval by
the methods. For the first data set, the target variable is assigned as y ∝ X1 ∗ X2 ∗ X3. For the
second data set, we assume more complex interactions among features and set the target variable to
y ∝ X1 ∗ X2 ∗ X3 + X4 ∗ X5. For the third one, we assume that the interactions are among the
second moments of the first three features, and set the target variable to y ∝ exp

(∑4
i=1 X

2
i

)
.

For feature selection, we contrast our proposed method, SVSVL, with several established method-
ologies: Mutual Information (MI) (Fleuret, 2004), K-Best selection utilizing the ANOVA F-value,
Recursive Elimination (RE) (Chen & Jeong, 2007), Random Forest (RF) (Breiman, 2001), and Lasso
(O’Brien, 2016). We utilize the implementations provided by scikit-learn (Pedregosa et al., 2011)
for all comparative methods. Each synthetic dataset undergoes feature selection processes, with fea-
ture ranks determined by each method. Given our a priori knowledge of the important features in
each dataset, we are able to compute and compare the average ranks of significant features derived
by different methods. This experimentation cycle, encompassing both data generation and feature
ranking, is replicated 100 times for each dataset. The first row of Figure 1 displays the box plot of
the average ranks of pivotal features. Considering the first dataset (left panel), where the optimal av-
erage rank is 2, methods like K-Best, RE, and Lasso exhibit suboptimal performance in identifying
the most critical features. Conversely, RF, MI, and SVSVL exhibit reliable discernment of crucial
features, owing to their capability to account for feature interactions, a capability inherently lacking
in linear methods like Lasso. Transitioning to the second dataset (middle panel), where interactions

2It is enclosed as supplementary material but will be uploaded in a repository upon acceptance.

7

Under review as a conference paper at ICLR 2023

amongst features escalate in complexity, MI struggles to discern the most critical features, whereas
RF and SVSVL continue to exhibit proficiency in identifying them. The last scenario focuses on
interactions among the higher moments of the features (right panel). Here, SVSVL faces challenges
in reliably pinpointing the most vital features due to its inclination to interpret interactions among
the features’ first moments. In contrast, RF emerges as a robust methodology, demonstrating com-
mendable performance in interpreting interactions among features’ higher moments.

(a) First data set (b) Second data set (c) Third data set

(d) First data set (e) Second data set (f) Third data set

Figure 1: Comparison of explainable (top row) and feature selec-
tion methods (bottom row) on synthesized data sets.

We employed the three syn-
thetic datasets to assess the ef-
ficacy of our proposed method
relative to established explain-
ability methods, namely LIME
(Ribeiro et al., 2016), SHAP
(Lundberg & Lee, 2017), L2X
(Chen et al., 2018a), and Bi-
variateSHAP (Masoomi et al.,
2021). Notably, L2X and Bi-
variateSHAP are capable of ac-
commodating feature interac-
tions. We adhered to default set-
tings for all the compared meth-
ods. For L2X, we employed the
neural architectures tailor-made
for their experiments. The first
row of Figure 1 presents a box
plot detailing the average rank of
the retrieved important features
by each method for each dataset; the lower the average rank of the important features is, the better
the method. A clear observation is that LIME and SHAP struggle to identify important features,
delineated by a higher average rank of the important features. SVSVL, in contrast, exhibits robust
performance as a local explainer in the first two scenarios. However, as anticipated, it finds the last
scenario more challenging due to the complexity of interactions but still shows superior performance
compared to the feature selection scenarios by generating more samples for local explanations. Bi-
variateSHAP also performs well when interactions are not intricate (left panel), given its ability to
account only for pairwise interactions. L2X, meanwhile, maintains competitive performance across
all cases but faces challenges and slight decreases in performance when interactions intensify in
complexity (left panel).

5.2 EXPLANATION ON REAL DATA SETS

In this section, we scrutinize the effectiveness and applicability of SVSVL in real-world scenarios,
particularly focusing on its comparative performance in local fidelity and execution time against es-
tablished explainable methods. Our comparative study involves two models: a Bidirectional LSTM
model designed for sentiment analysis on IMDB reviews and a Random Forest model, comprising
50 trees, honed on the Boston housing dataset. SVSVL is methodically compared against LIME
(Ribeiro et al., 2016), Kernel SHAP (Lundberg & Lee, 2017), L2X (Chen et al., 2018a), and Bivari-
ateSHAP (Masoomi et al., 2021). We present some examples of explanation in Appendix G.

We use two metrics for comparison: the execution time and the fidelity score, which is the dif-
ference between the prediction of the original model with that of the local surrogate model. We
use the mean square error (MSE) to gauge the fidelity of an explainable model. Table 1 shows
the MSE between local explainers and the original predictions of the corresponding models, as
well as the average execution time for an explanation across 100 different experiments. The dis-
cernible trends from the table underscore a conspicuous superiority of models, like SVSVL, that
incorporate interactions among features, exhibiting significantly reduced MSE in surrogate mod-
els, especially evident in the LSTM model. This enhancement in local fidelity is attributable to
their nonlinear nature, enabling a more nuanced replication of the behaviors of the models under
explanation. Interestingly, the differences in explaining the Random Forest model were compara-
tively marginal, reflecting the inherent simplicity of the model where linear methods can be nearly

8

Under review as a conference paper at ICLR 2023

as effective as their nonlinear counterparts. Within this context, SVSVL stands out by achieving
the lowest MSE, highlighting its ability to account for all possible interactions among features.

Table 1: The comparison of explainable methods based on
fidelity of the local explanation and the average execution
time in seconds (rounded to the first integer).

Method MSE Average time (s)
LSTM RF LSTM RF

LIME 0.12± 0.02 0.003e± 0.0 123 2
SHAP 0.11± 0.03 0.004± 0.0 310 29
L2X 0.10± 0.01 0.002± 0.01 73 2

BivariateSHAP 0.07± 0.02 0.004± 0.01 120 12
SVSVL 0.05± 0.01 0.004± 0.0 129 3

Delving into the execution time re-
veals another layer of competitive
advantage for SVSVL. It show-
cases a time efficiency comparable
to LIME, which does not account for
interactions, and remarkably outper-
forms SHAP, even with the incorpo-
ration of sub-sampling to alleviate
computational burdens. The prox-
imity of SVSVL’s average execution
time to that of LIME further ampli-
fies its competitive stance in the do-
main of explainable AI. Meanwhile,
L2X exhibits impressive speed, attributed to its single training stage for providing explanations
across the dataset, emphasizing the diverse range of execution efficiencies within the examined
explainable methods. In conclusion, the amalgamation of superior local fidelity and competitive ex-
ecution time positions SVSVL as a robust candidate in the realm of explainable methods, especially
when intricate interactions are pivotal.

5.3 TIME COMPARISON

Figure 2: The time comparison of methods.

We extend our comparison to include an exam-
ination of the execution times of the different
explainability methods, incorporating Shapley-
Taylor and Faith-SHAP into our evaluation.
Data sets are randomly generated, each contain-
ing between 10 and 20 features, with a known
target function. These datasets are then sub-
jected to each explainability method to eluci-
date 10 randomly selected samples. Figure 2
illustrates the execution times of the various
methods corresponding to each feature num-
ber. Our analysis was limited to datasets with
no more than 20 features due to the prohibitive
computational expense of calculating explana-
tions using Shapley-Taylor and Faith-SHAP. All tested methods exhibited roughly equivalent time
complexities. As the number of features increases, the execution times of Shapley-Taylor and Faith-
SHAP experience a substantial increase. In contrast, the execution times of the other methods tend
to increase almost linearly with the increment in the number of features. The disparate trends in ex-
ecution times highlight the enhanced computational efficiency of SVSVL than Shapley-Taylor and
Faith-SHAP, particularly as these methods include the interactions among features as well.

6 CONCLUSION AND DISCUSSION

This paper has introduced a novel, non-additive method for computing the Shapley value and inter-
action index within supervised learning settings, utilizing a multilinear game model, support vector
machine (SVM), and efficient dynamic programming algorithms. The key contributions of this
work are the multilinear kernel for SVM which considers all feature interactions, a generalized non-
additive explanation model applicable to various learning tasks, and a novel representation for the
Shapley value based on dual SVM with expedited computational methods, proving effective in fea-
ture selection and explanation tasks. However, the method has its limitations, including its inability
to account for higher moments of features. A noteworthy consideration is the method’s compat-
ibility with L2 regularization in SVMs; it is not applicable to the L1 regularization as the kernel
trick cannot be applied directly, preventing full utilization of the method’s advantages. Future work
may focus on addressing these limitations and exploring alternative interaction functions and further
efficient algorithms to identify crucial feature interactions based on the dual SVM.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Surajit Borkotokey, Pankaj Hazarika, and Radko Mesiar. Fuzzy bi-cooperative games in multilinear
extension form. Fuzzy Sets and Systems, 259:44–55, 2015.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. Learning to explain: An
information-theoretic perspective on model interpretation. In International Conference on Ma-
chine Learning, pp. 883–892. PMLR, 2018a.

Jianbo Chen, Le Song, Martin J Wainwright, and Michael I Jordan. L-shapley and c-shapley: Effi-
cient model interpretation for structured data. arXiv preprint arXiv:1808.02610, 2018b.

Xue-wen Chen and Jong Cheol Jeong. Enhanced recursive feature elimination. In Sixth international
conference on machine learning and applications (ICMLA 2007), pp. 429–435. IEEE, 2007.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

Ian Covert and Su-In Lee. Improving kernelshap: Practical shapley value estimation using linear
regression. In International Conference on Artificial Intelligence and Statistics, pp. 3457–3465.
PMLR, 2021.

Ian Covert, Scott M Lundberg, and Su-In Lee. Understanding global feature contributions with
additive importance measures. Advances in Neural Information Processing Systems, 33:17212–
17223, 2020.

Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via quantitative input influ-
ence: Theory and experiments with learning systems. In 2016 IEEE symposium on security and
privacy (SP), pp. 598–617. IEEE, 2016.

Nicolas Durrande, David Ginsbourger, Olivier Roustant, and Laurent Carraro. Anova kernels and
rkhs of zero mean functions for model-based sensitivity analysis. Journal of Multivariate Analy-
sis, 115:57–67, 2013.

François Fleuret. Fast binary feature selection with conditional mutual information. Journal of
Machine learning research, 5(9), 2004.

Michel Grabisch. The representation of importance and interaction of features by fuzzy measures.
Pattern Recognition Letters, 17(6):567–575, 1996.

Michel Grabisch and Marc Roubens. An axiomatic approach to the concept of interaction among
players in cooperative games. International Journal of game theory, 28:547–565, 1999.

John C Harsanyi. A simplified bargaining model for the n-person cooperative game. International
Economic Review, 4(2):194–220, 1963.

John Charles Harsanyi. A bargaining model for the cooperative n-person game. Stanford University,
1959.

Stan Lipovetsky and Michael Conklin. Analysis of regression in game theory approach. Applied
Stochastic Models in Business and Industry, 17(4):319–330, 2001.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances
in neural information processing systems, 30, 2017.

Aria Masoomi, Davin Hill, Zhonghui Xu, Craig P Hersh, Edwin K Silverman, Peter J Castaldi,
Stratis Ioannidis, and Jennifer Dy. Explanations of black-box models based on directional feature
interactions. In International Conference on Learning Representations, 2021.

Rory Mitchell, Joshua Cooper, Eibe Frank, and Geoffrey Holmes. Sampling permutations for shap-
ley value estimation. 2022.

Carl M O’Brien. Statistical learning with sparsity: The lasso and generalizations. 2016.

10

Under review as a conference paper at ICLR 2023

Guillermo Owen. Multilinear extensions of games. Management Science, 18(5-part-2):64–79, 1972.

Guillermo Owen. Multilinear extensions of games. The Shapley Value. Essays in Honor of Lloyd S.
Shapley, pp. 139–151, 1988a.

Guillermo Owen. Multilinear extensions of games. The Shapley Value. Essays in Honor of Lloyd S.
Shapley, pp. 139–151, 1988b.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Noelia Sánchez-Maroño, Amparo Alonso-Betanzos, and Marı́a Tombilla-Sanromán. Filter methods
for feature selection–a comparative study. Lecture notes in computer science, 4881:178–187,
2007.

Lloyd S Shapley. A value for n-person games. 1953.

Eunhye Song, Barry L Nelson, and Jeremy Staum. Shapley effects for global sensitivity analysis:
Theory and computation. SIAM/ASA Journal on Uncertainty Quantification, 4(1):1060–1083,
2016.

Mark Stitson, Alex Gammerman, Vladimir Vapnik, Volodya Vovk, Chris Watkins, and Jason We-
ston. Support vector regression with anova decomposition kernels. Advances in kernel meth-
ods—Support vector learning, pp. 285–292, 1999.

Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individual predictions with
feature contributions. Knowledge and information systems, 41:647–665, 2014.

Mukund Sundararajan, Kedar Dhamdhere, and Ashish Agarwal. The shapley taylor interaction
index. In International conference on machine learning, pp. 9259–9268. PMLR, 2020.

Che-Ping Tsai, Chih-Kuan Yeh, and Pradeep Ravikumar. Faith-shap: The faithful shapley interac-
tion index. Journal of Machine Learning Research, 24(94):1–42, 2023.

11

Under review as a conference paper at ICLR 2023

A INTERPRETATION OF THE DIRECT AND INTERACTION EFFECTS BASED ON
THE HARSANYI DIVIDENDS

In cooperative game theory, the concept of Harsanyi dividends provides a way to allocate the
‘marginal contribution’ of forming a coalition among its members (Harsanyi, 1959; 1963). Given
a characteristic function µ : 2F → R, which assigns a real value to each possible coalition, the
Harsanyi dividend d(S) for a coalition S ⊆ F is defined as (Harsanyi, 1959; 1963):

d(S) = µ(S)−
∑
T ⊂S

µ(T)

Intuitively, the Harsanyi dividend d(S) captures the additional value generated by the coalition S
that cannot be accounted for by summing the values of its proper subsets T . In other words, it is the
‘extra’ benefit realized when the players in S collaborate, beyond what they could achieve separately
in smaller coalitions. Interestingly, if we divide this extra benefit uniformly among the players in
the coalition, then the value of each player is tantamount to their Shapley value, i.e.,

νi =
∑

S⊆F/{i}

d(S)
|S|

, (18)

which is the same as the Mobius transformation of the Shapley value. So, the mj in the multilinear
model could be construed as the surplus influence of the joint features when they collaborate in a
supervised learning task. And, if this surplus is divided equally among the corresponding features,
the share of each feature will be tantamount to the Shapley value of the feature.

B LOCAL MODEL-AGNOSTIC EXPLANATIONS WITH SUPPORT VECTOR
REGRESSION (SVR)

Local explainable methods, like LIME (Ribeiro et al., 2016) and Kernel SHAP (Lundberg & Lee,
2017), aim to explain the predictions of any machine learning model f : Rd → R locally by
approximating it with a simpler model m : Rd → R. Given an instance xxx ∈ Rd, they generate
a dataset of perturbed samples Z = {zzz1, zzz2, ..., zzz′n} and weighs them using a metric like ω. For
LIME, for instance, ω is defined using a distance function dis as:

ωi = ω(zzzi) = exp

(
−dis(xxx,zzzi)

2

σ2

)
.

The objective is to find an m that minimizes the local loss:

min
m∈M

n′∑
i=1

ωi(f(zzzi)− h(zzzi))
2 +Ω(m)

where Ω controls the complexity of the model m. Since the local explainable methods are usually
concerned with a continuous predicted variable, we need to use support vector regression (SVR) to
deal with the continuous predicted variable. For SVR, the primal problem as a local explainer can
be written as:

min
mmm,b,ξ,ξ∗

1

2
||mmm||2+C

n′∑
i=1

ωi(ξi+ξ∗i) s.t. ∀i : f(zzzi)−(mmmTzzzi+b) ≤ ϵ+ξi, (mmm
Tzzzi+b)−f(zzzi) ≤ ϵ+ξ∗i , ξi, ξ

∗
i ≥ 0

The corresponding dual problem is:

max
α,α∗
−1

2

n′∑
i,j=1

(αi − α∗
i)(αj − α∗

j)k(zzzi, zzzj)− ϵ

m∑
i=1

(αi + α∗
i) +

m∑
i=1

f(zzzi)(αi − α∗
i)

subject to:
m∑
i=1

(αi − α∗
i) = 0, 0 ≤ αi, α

∗
i ≤ Cωi

12

Under review as a conference paper at ICLR 2023

The learned SVR model m then offers insights into the contribution of each feature locally around
the instancexxx. To use the multilinear extension, we add all the interactions to each zi (i.e., ϕML(zzzi)),
so algorithms for computing the kernel function for the multilinear extension can be used here as
well by employing the dual SVR. In addition, the relationship between the primal and dual solution
is:

w =

n′∑
i=1

(αi − α∗
i)ϕML(zzzi).

With some minor adjustments, the dynamic algorithm for the Shapley value computation could also
be applied to compute the Shapley value based on the dual SVR problem.

C PROOF OF LEMMA 1

We prove equation (11) by induction. For the base case d = 23, one can write:

kML(xxx,zzz) = x1y1 + x2y2 + x1y1x2y2

= x1y1(1 + x2y2) + x2y2 + 1− 1

= −1 + (1 + x1y1)(1 + x2y2),

which is identical to equation (11) for d = 2. We now define arbitrarily xxx,zzz ∈ Rd, and also define
xxx−, zzz− ∈ Rd−1 by removing the last element in xxx and zzz, respectively. By induction, we assume that
equation (11) holds true for xxx−, zzz−, and prove that it also holds for xxx,zzz. When the dth element is
added to the xxx−, zzz−, two terms are added to the Shapley kernel for the first d− 1 elements: (1) the
multiplication of the dth element (i.e., xdzd); (2) the terms that xdzd create with the previous d− 1
elements, which is basically the terms in the Shapley kernel for the first d − 1 elements. Thus, one
can write:

kML(xxx,zzz) = kML(xxx
−, zzz−) + xdzd + xdzd

(
kML(xxx

−, zzz−)

)
.

The above equation can be rewritten as:

kML(xxx,zzz) =
(
1 + xdzd

)
kML(xxx

−, zzz−) + xdzd

= −1 +
(
1 + xdzd

)(
1 + kML(xxx

−, zzz−)

)
= −1 +

(
1 + xdzd

)(d−1∏
i=1

1 + xizi

)

= −1 +
d∏

i=1

(
1 + xizi

)
,

which is identical to equation (11) for xxx,zzz ∈ Rd, and that completes the proof.

D ITERATIVE DYNAMIC PROGRAMMING FOR Q-ADDITIVE SHAPLEY
KERNEL

The recursive formula for computing the q-additive Shapley kernel is discussed in equation (13).
We now present the iterative dynamic programming for the q-additive Shapley kernel computation
as described in Algorithm 2. Based on this Algorithm, the complexity is of order O(qd). It also
requires only q(2d) summations qd multiplications.

3For d = 1, there is no interaction and the equation is obvious.

13

Under review as a conference paper at ICLR 2023

Algorithm 2 The iterative dynamic programming for computing q-additive Shapley kernel

Input xxx,zzz ∈ Rd, q ∈ N
dp← zeros(q, d) # 2D array with zero elements
xz = x⊗ z # the element-wise product of xxx and zzz
dp[0, :] = xz # the first row of dp set to xz
sum current = sum(xz) # sum of all elements in xz
inner prod = sum current # the result of the inner product
for i=1:q do

temp sum = 0
for j=1:d do

sum current -= dp[i− 1, j]
dp[i, j] = xz[j − 1] ∗ sum current
temp sum+ = dp[i, j]

end for
sum current = temp sum
inner prod += temp sum

end for
Output: inner prod

E PROOF OF THEOREM 1

We assume that |T | ≤ q because otherwise Iν(T) = 0. We first begin by rewriting the primal SVM
solution based on ααα in equation (14) as:

mj = α̂ααT X̂•••j , (19)

where α̂αα = ααα⊗ yyy. Replacing mj in the Shapley interaction index, one can get:

Iν(T) =
∑

B⊆F|T ⊆B
|B|≤q,j=u(B)

1

|B| − |T |+ 1
mj = α̂ααT

(∑
B⊆F|T ⊆B

|B|≤q,j=u(B)

1

|B| − |T |+ 1
X̂•j

)
. (20)

The term inside the summation in equation (21) includes the columns of X̂ whose index is in T .
Thus, one can rewrite the above equation as:

Iν(T) = α̂ααT

((
⊗i∈T X•i

)
⊗
(
111 +

∑
B⊆F\T

|B|≤q−|T |,j=u(B)

1

|B|+ 1
X̂•j

))
, (21)

and that completes the proof.

F ITERATIVE DYNAMIC PROGRAMMING ALGORITHM FOR SHAPLEY VALUE
COMPUTATION

Since Iν({i}) = νi, one can simplify equation (15) as:

νi = α̂ααT

(
X•i ⊗

(
111 +

∑
B⊆F\{i}

|B|≤q−1,j=u(B)

1

|B|+ 1
X̂•j

))
. (22)

The recursive dynamic programming for computing Ω̂ with q-additivity constraints is presented in
equation (17). The iterative implementation of this algorithm is presented in Algorithm 3. The

14

Under review as a conference paper at ICLR 2023

Algorithm 3 The iterative dynamic programming for computing Ω̂ used for computing Shapley
value

Input X ∈ Rn×d, q ∈ N
dp← zeros(q, d, n) # 3D array with zero elements
dp[0, :, :] = X
sum current = colsum(X) # column-wise summation of the data matrix
Ω̂ = sum current # the result of the inner product
for i=1:q do

temp sum = zeros(n, 1)
for j=1:d do

sum current -= dp[i− 1, j, :]
dp[i, j, :] = (i/i+ 1) ∗X[:, j] ∗ sum current
temp sum+ = dp[i, j, :]

end for
sum current = temp sum

end for
Output: Ω̂ = sum(dp[:, 0, :])

Table 2: Two examples of the IMDB review data set.

IMDB examples
Don t waste your time and money on it It s not quite as bad as Adrenalin by the same director but that s not saying much

Hated it with all my being Worst movie ever Mentally scarred Help me It was that bad TRUST ME

complexity of the algorithm is O(qd), and each iteration requires 2qdn number of summations and
multiplications.

This algorithm could be used to compute the Shapley value and Shapley interaction index.

G EXPERIMENTS ON EXPLAINABILITY

We now further show the interactions of words in some of the IMDB reviews. In this regard, consider
the two reviews tabulated in Table 2. The top three interactions of each review are also plotted in
Figure 3. According to this figure, there is a negative interaction between ’waste’, ’bad’, and ’not’
in the first example, meaning that the collective importance for the three words should be less than
the sum of their importance. This is specifically in line with human recognition as the words like
’waste’ and ’bad’ (and even ’not’ for this example) convey a similar sentiment in a review. Also,
the interaction detected between ’not’, ’much’, and ’waster’ is interesting as they seem to have a
repetitive pattern in the review conveying the same message.

The second example shows positive interactions among ’worst’ and ’scarred’ as well as among
’worst’ and ’hated’. Nonetheless, a negative interaction also exists among the three words, meaning
that the existence of three words makes the prediction towards a negative sentiment, while there is
a redundancy to consider the three words, and this redundancy is balanced by a positive pairwise
interaction.

H BROADER IMPACT

This paper presented methodologies for learning, feature selection, and explainability. The selec-
tion of features is based on the estimation of the Shapley value, where the feature interactions are
included in the form of the multiplications of interacting features. If higher moments of features
interact, or interactions are in the form of other nonlinear functions, then the computed Shapley val-
ues might not reflect the true importance of the variables, both in feature selection and explanation,
which might influence the follow-up decisions made by the proposed method. Also, the merits of
other explainable methods for the use case at hand should also be investigated by the users as well.
In that regard, the proposed method needs to be evaluated also by humans, and its merits over other

15

Under review as a conference paper at ICLR 2023

(a) Example 1 in Table 2. (b) Example 2 in Table 2.

Figure 3: The interaction plots of two examples in Table 2

explainable methods are investigated empirically. Nonetheless, the proposed method can help in-
vestigate the biases in a model, find the interactions among features, and assist in applying machine
learning to large data sets with feature selection.

16

