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ABSTRACT

Diffusion models excel at generative modeling (e.g., text-to-image) but sampling
requires multiple denoising network passes, limiting practicality. Efforts such as
progressive distillation or consistency distillation have shown promise by reducing
the number of passes at the expense of quality of the generated samples. In
this work we identify co-variate shift as one of reason for poor performance of
multi-step distilled models from compounding error at inference time. To address
co-variate shift, we formulate diffusion distillation within imitation learning (DDIL)
framework and enhance training distribution for distilling diffusion models on both
data distribution (forward diffusion) and student induced distributions (backward
diffusion). Training on data distribution helps to diversify the generations by
preserving marginal data distribution and training on student distribution addresses
compounding error by correcting covariate shift. In addition, we adopt reflected
diffusion formulation for distillation and demonstrate improved performance, stable
training across different distillation methods. We show that DDIL consistency
improves on baseline algorithms of progressive distillation (PD), Latent consistency
models (LCM) and Distribution Matching Distillation (DMD2).

1 INTRODUCTION

Diffusion models, while capable of producing high-quality images, suffer from slow sampling times
due to their iterative denoising process. To address this, distillation techniques have been proposed to
reduce number of denoising steps. These techniques can be broadly categorized into trajectory-level
(Luo et al., 2023; Meng et al., 2023; Salimans & Ho, 2021; Song et al., 2023) and distribution-
matching approaches (Yin et al., 2023; 2024; Luo et al., 2024; Sauer et al., 2023) . While the former
focuses on preserving the teacher’s trajectory at a per-sample level, the latter matches the marginal
distribution.

Multi-step student models offer a promising approach in balancing quality and computational effi-
ciency. However, they often face a critical challenge: covariate shift. This occurs when the distribution
of noisy input latents that the student model encounters during training differs from that seen during
inference by the student. This mismatch can significantly impact generation quality especially when
the number of denoising steps are low. Recent works Kohler et al. (2024); Yin et al. (2024) only
consider backward trajectories to obtain feedback on quality of generation, but these approaches are
often agnostic to data distribution and can exhibit mode-collapse.

In this work, we identify ‘covariate shift’ as a critical factor that impacts the generation quality
in multi-step distilled diffusion models. To address covariate shift and to preserve diversity, we
introduce diffusion distillation within the imitation learning (DDIL) framework by improving the
training distribution for distillation. We achieve this by incorporating both the data distribution
(forward diffusion) and the student’s predictive distribution (backward trajectory at inference time).
This approach combines the benefits of (1) Preserving Marginal Data Distribution: Training on
the data distribution ensures the student model maintains the inherent statistical properties of the
original data, and (2) Correcting Covariate Shift: Training on backward trajectories enables the
student model to identify and adapt to covariate shifts, thereby improving the accuracy of score
estimates, particularly in few-step settings. We illustrate instantiation of DDIL framework in context
of progressive distillation in Figure 2. To this end, we make the following contributions:
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4Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade SecretsSource sample text

SSD1B (32 Steps) DMD2 (4 Steps) DMD2 + Threshold DMD2+DDIL+Threshold

a white robot, a red robot and a black robot standing together

the International Space Station flying in front of the moon

Anubis wearing sunglasses and sitting astride a hog motorcyle

the silhouette of an elephant on the full moon

Figure 1: Qualitative comparison of images generated with different distillation techniques.

T=999-4kT=999-2kT=999-k T=999-3k T=999-4kT=999-2kT=999-k T=999-3k

Progressive
Distillation Loss

Progressive
Distillation Loss

DDIL
Loss

(a) Standard Diffusion Distillation, e.g.
Progressive Distillation

(b) Progressive Distillation within
DDIL Framework

Teacher Unrolling

Student Unrolling

Multi-step
Student Unrolling

Teacher Unrolling on
Student's Unrolled Latents

Progressive
Distillation Loss

Figure 2: Preditions at different timesteps for different distillation frameworks: (a) We demon-
strate standard progressive distillation training framework where student always sees forward diffused
latent. (b) We show unrolling within our framework which in addition to (a) also obtains distillation
feedback by querying teacher (green) on backward trajectory.
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• We propose a novel DDIL framework which enhances training distribution of the diffusion
distillation within the dataset aggregation ‘DAgger’ framework by performing distillation
on on both the data distribution (forward) and student induced distribution (backward
trajectory), yielding improved aggregate predictive distribution and better coverage.

• To enhance the stability of the distillation process in diffusion models, we adopt thresh-
olding for both the teacher and student diffusion models to enforce the support of the data
distribution with reflected diffusion Lou & Ermon (2023) for distillation. Consequently, this
approach further mitigates covariate shift, leading to more substantial improvements when
combined with DDIL

• We demonstrate that our DDIL approach yields diverse samples and consistently improves
on different distillation techniques like progressive distillation (PD), latent consistency
distillation (LCM), distribution matching distillation (DMD2) in a computationally efficient
framework.

2 RELATED WORK

Diffusion distillation methods. Progressive distillation Salimans & Ho (2021); Meng et al. (2023)
and many follow up works Li et al. (2023b); Berthelot et al. (2023) try to reduce the number of
iterations of student model by forcing student to mimic multiple steps of the teacher. Consistency
models Song et al. (2023); Luo et al. (2023); Ren et al. (2024) assume deterministic probabilistic
flow at inference and enforce consistency in the data space for step-distillation. Additionally, recent
work decomposes the diffusion trajectory into multiple segments like in progressive distillation and
performs distillation within consistency formulation Kim et al. (2023). Instead of using the real
data, methods such as BOOT Gu et al. (2023) consider bootstrapping in the student trajectory to
generate samples of high quality and diversity. Liu et al. (2023) approximates the underlying map of
the pretrained diffusion model as linear paths. While above trajectory level distillation techniques
like progressive distillation and consistency-based approaches improve efficiency, the quality of the
generated samples exhibits low visual fidelity.

Alternatively, diffusion distillation has been formulated in the distributional matching framework
Yin et al. (2023); Luo et al. (2024); Yin et al. (2024); Salimans et al. (2024); Sauer et al. (2023;
2024). Within distribution matching approaches instead of matching teacher for each trajectory or
particle like in previous class of methods, we try to match marginals of distilled student model and
pretrained diffusion model. Further, adversarial loss has been applied to distillation approaches to
improve the visual quality of the generated images Sauer et al. (2023; 2024); Lin et al. (2024). Most
of distributional matching objectives like Sauer et al. (2024); Yin et al. (2023) are mode-seeking and
looses on diversity. EM distillation Xie et al. (2024) addresses this by richer sampling with langevian
MCMC to provide better target for distillation.

Reverse diffusion as Markov decision process. Policy gradient methods have recently gained
traction in text-to-image generation with diffusion models by formulating the reverse diffusion
process as a markov decision process (MDP) Fan et al. (2024); Xu et al. (2023a). Recent work Fan
et al. (2024) proposes a policy gradient method for data distribution matching in diffusion models.
Black et al. (2023) introduces a policy gradient algorithm with reward function that optimizes a
diffusion model for downstream tasks. Yang et al. (2024) assumes a latent reward function of the
reverse denoising process by emphasing the text and image alignment on the coarser steps of image
generation. All these approaches have been applied to improve the alignment between the prompts
and generated images for high-fidelity synthesis. In our work, we leverage the formulation of reverse
process as MDP for step-distillation. This formulation allows interactively update the student model
with the observations of the teacher model using dataset aggregation Ross et al. (2011).

3 BACKGROUND

3.1 REVERSE DENOISING PROCESS AS MDP

In imitation learning, an agent learns to perform tasks by observing and mimicking the behavior of
the expert. An MDP in imitation learning models the next action based on the previous action and the
current knowledge of the environment (Ke et al., 2021; Spencer et al., 2021). In general, an MDP is
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represented as ⟨S,A, P, ρ0⟩, where S is a finite set of states, A is the set of actions, P (s′|s, a) is a
state transition kernel to transition from s to s′ under the action a and ρ0 is the set of initial states. An
MDP produces a trajectory which is a sequence of state-action pairs τ = (s0, a0, s1, a1, ..., aT , sT )
over T time steps.

We formalize the reverse process of the diffusion models as a finite horizon MDP (Black et al., 2023;
Fan et al., 2024) with the policy πθ (the diffusion model with parameters θ) where the states and
the actions are st := (xt, t) and at := xt−1 respectively. The transition dynamics is defined by
P (st+1|st, at) := δ(xt−1, t) and ρ0(s) := (N (0, I), T ) denotes the initial state distribution. The
trajectory τ becomes (xT ,xT−1, . . . ,x0).

3.2 CO-VARIATE SHIFT IN DIFFUSION MODELS

With in iterative denoising steps of generation within backward trajectory of diffusion models,
student’s current predictions determines what the student (learner) sees in next step within sequential
setting, which is classic feedback loop [1] in imitation learning. So if student makes any mistake or
has bad score estimate in one of early steps this discrepancy excarbates in later iterations and results
in accumulation of error. This error results in change in input distribution (covariate shift) of latents
between training time (forward diffusion) and latents student model encounters when it is unrolled in
iterative fashion at generation i.e., backward trajectory. Exposure bias is another closely related line
of work Li et al. (2023a) which also discusses change in input distribution w.r.t pretrained diffusion
model and propose training-free methods to improve it. Our work primarily focuses on distilling
diffusion models and how this shift effects distillation.

Covariate shift is more prounced for distilled student diffusion model compared to pretrained diffusion
model. To further clarify why covariate shift poses more of a challenge for the student model
compared to the teacher model, we can consider inference as ancestral sampling (or annealing in
score estimation). During generation i.e., within intermediate time-steps of backward trajectory
of diffusion model, there is an implicit assumption that the marginal distributions between two
consecutive denoising steps significantly overlap. While this is a reasonable assumption in continuous
time diffusion models or when the number of denoising steps is sufficiently high for pretrained
diffusion model, when considering a diffusion model with only few steps, this assumption does not
hold. Consequently, any covariate shift would be more exacerbated for the student model, unlike the
continuous time teacher mode.

DAgger to mitigate Co-variate shift: Imitation learning has long been used to learn offline sequential
tasks wherein a student model is trained from teachers’ demonstrations. Standard imitation learning
also suffers from covariate shift in discrepancy in states visited by student and the teacher. Interactive
methods such as DAgger (Ross et al., 2011) in Imitation learning augment training data by querying
the teacher model on student’s states, thereby obtaining teacher’s feedback on student’s predictive
distribution(backward trajecories). Building on the ideas of interactive methods in imitation learning,
in our work we aim to improve training distribution for diffusion distillation.

Imitation Learning as Distribution Matching: Notably, Ke et al. (2021) has shown that the
imitation learning algorithms can be formalized as f -divergence minimization algorithms where the
DAgger approach minimizes the total variation (TV) distance between the student and the teacher
trajectory distributions. If ρθ(τ) and ρη(τ) are teacher and student trajectory distributions respectively,
then DAgger minimizes upperbound on total variation. DAgger achieves O(Tϵ) error compared to
behavior cloning equivalent progressive distillation or any method with teacher forcing bounded by
O(Tϵ2) error.

DTV (ρθ(τ), ρη(τ)) ≤ TEs∼ρη(s) [DTV (pθ(xt−1|xt, t), pη(xt−1|xt, t)] (1)

3.3 BACKWARD TRAJECTORIES FOR DISTILLING DIFFUSION MODELS

Backward trajectory distillation introduced in recent concurrent works like ImagineFlash(Kohler
et al., 2024) and DMD2 (Yin et al., 2024), focuses solely on evaluating the quality of generated
samples without considering the data distribution. Consequently, they lack a mechanism to prevent
mode collapse and ensure diversity.
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Table 1: Properties of Different Diffusion Distillation Techniques

Model x ∼ pdata(x) x ∼ qη(x) Preserve Diversity

Progressive Distillation (Meng et al., 2023; Salimans & Ho, 2021) ✓ ✗ ✓
ImagineFlash (Kohler et al., 2024) ✗ ✓ ✗
LCM ✓ ✗ ✓
InstantFlow (Liu et al., 2023) ✓ ✗ ✓
ADD (Sauer et al., 2023) ✓ ✓ ✗
DMD (Yin et al., 2023; 2024) ✗ ✓ ✗
DDIL (Ours) ✓ ✓ ✓

Mode Seeking: The problem of covariate shift and distribution changes in diffusion distillation is
multifaceted. It’s not just about input distribution shifts caused by error accumulation. The reduction
of diversity in the intermediate steps of backward trajectories (generative process) also plays a crucial
role. If diversity is lost early on, it cascades through subsequent steps, limiting the range of possible
outcomes. This is akin to error accumulation, but instead of errors, we are consistently losing diversity
across time. We can think of it like sequential Monte Carlo sampling in diffusion models: at each
step, we are discarding a large number of potential paths (particles), leading to a narrower range of
possibilities in the later stages.

While EM Distillation (Xie et al., 2024) addresses this by employing Langevin MCMC for a richer
reverse process and mode-covering divergences, it still doesn’t explicitly incorporate the data distri-
bution into its sampling prior during distillation.

Table 1 provides a summarized overview of the design choices adopted by different techniques.

4 METHOD

4.1 IMPROVING TRAINING DISTRIBUTION WITH DDIL

We introduce Diffusion Distillation with Imitation Learning (DDIL), a novel framework inspired
by the DAgger algorithm from imitation learning to enhance the sampling distribution of interme-
diate noisy latents for distilling diffusion models. Diffusion model distillation involves two key
considerations: (1) the training distribution of latent states encountered by the student model, and
(2) the feedback mechanism employed during distillation. DDIL specifically focuses on improving
the training distribution, remaining agnostic to the specific feedback mechanism utilized by different
distillation techniques.

To achieve this, DDIL strategically samples intermediate latent variables from three sources: (1)
forward diffusion of the dataset, captured by the sampling prior βfrwd (as illustrated in Algorithm 1);
(2) backward trajectories (unrolled latents) from the student model, denoted by the sampling prior
βstudent_bckwrd; and (3) backward trajectories from the teacher model, denoted by the sampling prior
βteacher_bckwrd, which is particularly advantageous in data-free settings for preserving marginal data
distribution. Combining these sampling strategies leads to improved distillation performance.

DDIL is a unified training framework for distilling diffusion models w.r.t sampling prior for distil-
lation. DDIL incorporates teacher feedback on student trajectories, aligning with the principles of
DAgger Ross et al. (2011) in case of progressive distillation and latent consistency models (LCM).
Furthermore, while methods like Kohler et al. (2024); Yin et al. (2024) perform distillation only
on backward trajectories and don’t account for marginal data distribution during distillation, DDIL
addresses this by consistently incorporating feedback from the chosen distillation algorithm on
both forward and backward trajectories. Our flexible framework thus allows for improved training
distribution to boost the performance of diffusion distillation methods.

Algorithm 1 outlines a generalized framework for Diffusion Distillation with Imitation Learning
(DDIL). This framework leverages a pre-trained diffusion model (teacher) and a student diffusion
model, typically initialized with the teacher’s parameters. Additionally, access to real data is assumed,
providing representative samples from the marginal data distribution during the distillation process.
The framework necessitates specifying hyperparameters for both the teacher and student models,
including their respective discretization schemes. For simplicity we assume DDIM solver in 1.
Distillation proceeds by randomly selecting one of three methods for sampling intermediate noisy
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Algorithm 1 Generalized DDIL framework for Distilling Diffusion Models
Require: Teacher diffusion model with text-conditioning with params: θ; student parameters: η; Dataset D;

Time step Discretization N,Ns of Teacher and student Models respectively.
k = 1000/N ▷ step size teacher diffusion model
ks = 1000/Ns ▷ step size of student diffusion model
x ∼ D ▷ Sample from data
Ts ∼ {1000, 999, . . . , 1} ▷ Sample time-step
ϵ ∼ N (0, I) ▷ Sample noise

▷ Choose current mini-batch sampling mode ∼ [forward, teacher backward, student backward]
if p ∼ U [0, 1] < βfrwd then ▷ Forward Process

zt = αtx+ σtϵ ▷ add noise to data
zTs ← zt

else if βfrwd ≤ p < βteach_bckwrd then ▷ Teacher Backward
for t = {1000, 1000− k, ..., Ts} do

zt−k = αt−k(αtzt − σtv̂t) + σt−k(σtzt − αtv̂t)
t← t− k

end for
zTs ← zt−k

else ▷ Student Backward βstudent_bckwrd

for t = {1000, 1000− ks, ..., Ts} do
zt−ks = αt−ks(αtzt − σtv̂

s
t ) + σt−ks(σtzt − αtv̂s

t)
t← t− ks

end for
zTs ← zt−ks

end if
Train student diffusion model on zTs with distillation method.

latent inputs to the student model. This selection is governed by user-defined sampling priors: βfrwd,
βteach_bckwrd, and βstudent_bckwrd, which correspond to the three sources of intermediate latents
previously discussed. The choice and updating of these sampling priors, denoted as βi, can be tailored
based on the training stage, objective function, and overall task goals.

Let qη be the predictive distribution of distilled student diffusion model from its generated backward
trajectories, then overall DDIL objective is

LDDIL = Et,ϵ,x̃∼pdata(x)LDistill + Et,ϵ,x̃∼qη(x)LDistill (2)

Where LDistill can assume any objective based on chosen algorithm like progressive distillation, latent
consistency distillation and distribution matching objective and LDDIL trains on both data distribution
and backward trajectories.

Reflected Diffusion Distillation: When distilling diffusion models either the teacher or student
model might not satisfy implicit assumed support during distillation which could makes training
unstable and require large batch sizes, etc. We adopt reflected diffusion models Lou & Ermon
(2023) framework for distillation i.e., threshold teacher’s score estimate and/or student’s and improve
stability of training, lower required batch size with improved performance.

Thresholding is applied to the teacher model’s estimates consistently across all investigated methods:
progressive distillation, Latent Consistency Models (LCM), and DMD2. Furthermore, within the
consistency distillation framework, the target derived from the student model is also threshold-ed.
For DMD2, thresholding is applied to the score estimates of the pre-trained diffusion model, the
fake critic, and the student model. Without thresholding our gradient feedback could be noisy and
negatively impacting training stability.

4.2 DDIL INTEGRATION

This section examines the integration of DDIL with various distillation techniques. Detailed design
choices are further elaborated in the appendix (section to be updated).

PD + DDIL: DDIL is integrated with progressive distillation using a DAgger-inspired approach
Ross et al. (2011). Distillation is performed on mixed rollouts generated by alternating between the
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pre-trained and student diffusion models within each generation. A stateless DDIM solver facilitates
this interleaved sampling process.

LCM + DDIL: DDIL is also applied to consistency distillation. Due to the pre-trained model’s
lack of prior consistency training, the mixed-rollout strategy used in progressive distillation is not
directly applicable. Therefore, DDIL is extended to LCM by applying consistency distillation to both
forward and backward trajectories of the student model, leveraging the student-induced distribution
and demonstrating performance improvements.

DMD2 + DDIL: Mirroring the progressive distillation approach, mixed rollouts are employed within
the DMD2 framework. Trajectories are sampled up to a predetermined noise level or timestep (e.g.,
t=500) using either the student or teacher model. The resulting latent serves as input to the student
model for gradient feedback within the DMD2 formulation. Distribution Matching aligns well
within our DDIL framework as discussed in Section 3.2 where within imitation learning framework
we consider matching generated trajectory distributions of student model with teacher or expert’s
trajectory distribution (of states or equivalently noisy latents in case of diffusion).

5 EXPERIMENTS

Datasets and metrics: Following standard practice for evaluating text-to-image diffusion models
Rombach et al. (2022); Meng et al. (2023), we evaluate our distilled models zero-shot on two public
benchmarks: COCO 2017 (5K captions), and COCO 2014 Lin et al. (2014) (30K captions) validation
sets. We use each caption to generate an image with a randomized seed and report CLIP score using
OpenCLIP ViT-g/14 model Ilharco et al. (2021) to evaluate image-text alignment. We also report
Fréchet Inception Distance (FID) Heusel et al. (2017) to estimate perceptual quality. To measure
diversity of generation, we report LPIPSDiversity , where for a given prompt we generate output for
10 different seeds and obtain pair-wise LPIPS score and finally average over 50 randomly sampled
COCO 2017 prompts.

Training: For all our experiments, we choose AdamW optimizer Loshchilov & Hutter (2017) with
1e− 05 learning rate with warmup and linear schedule on a batch size of 224 in case of progressive
distillation, 360 in case of LCM and 7 in case of DMD2 on SSD1B. To optimize for GPU usage, we
adopt gradient checkpoint and mixed-precision training. Please refer to Appendix A for additional
training details.

PD + DDIL:In case of progressive distillation, we train the model for 4k steps for ϵ to v space
conversion to perform step distillation in v space Salimans & Ho (2021). Then we perform guidance
conditioning following the same protocol as Meng et al. (2023) where we sample guidance scale
ω ∼ [2, 14] and incorporate additional guidance embedding as in Rombach et al. (2022) followed
by step distillation. Overall we train 10K steps to obtain guidance conditioned checkpoint SD(gc).
For progressive distillation, we start with a 32-step discretization assumption for the pre-trained
diffusion model and perform 32 → 16 step distillation for 5K iterations with 500 steps of warm-up.
We progressively increase training compute or gradient steps as we go towards fewer iteration student.
For 16 → 8, we follow a similar protocol, but we further split each stage of training into two parts.
First, we do distillation for 6K steps to obtain a checkpoint and resume with warmup and 1e− 05
learning rate for another 4K steps of training. For 8 → 4 and 4 → 2 distillation, we first distill model
for 8K steps followed by another 6K steps.We split single stage of training into two parts to exactly
match training protocol of Step Distillation and DDIL. See supplemental for additional details. We
adopt timesteps for discretization from the default config of the DPM++ solver i.e., for 4-step models
our timesteps are {999, 749, 500, 250}.

LCM + DDIL: We trained both LCM and DDIL models on the Common Caption dataset for 8,000
steps, using the SDv1.5 checkpoint and a batch size of 60 on 6 A100 GPUs. To enhance consistency
distillation, we introduced backward trajectory sampling. Specifically, we randomly selected a
number of inference steps (3, 4, or 5) and obtained samples at specific timesteps along the backward
trajectory. This enabled us to incorporate consistency distillation loss feedback not only on forward
diffused latents but also on these backward trajectory latents within our framework.

DMD2 + DDIL: In this work we consider distilling SSD1B checkpoint Gupta et al. (2024) with
DMD2 for computational efficiency. To achieve stable training within the DMD2 framework, which
utilizes a teacher model and a "fake" critic, we update the fake critic ten times for every update of the

7
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Table 2: Text guided image generation results on 512× 512 MS-COCO 2017-5K validation set. Our
4-step Model demonstrates SOTA performance for checkpoints based on SD1.5 where as ADD is
based SD2.1 with more expressive text encoder and LCM also uses different checkpoint. ‘∗’ denote
derived baselines and ‘‡’ denote different checkpoints

Model Steps NFEs FID [↓] CLIP [↑] LPIPSDiversity [↑]

SnapFusion* Li et al. (2023b) 8 16 24.20 0.300 N/A
Step Distillation* et al.Meng et al. (2023) 8 8 26.90 0.300 N/A
Step Distillation* et al.Meng et al. (2023) 4 4 26.40 0.300 N/A
UFOGen* et al.Xu et al. (2023b) 1 1 22.5 0.311 N/A
ImagineFlash* ‡Kohleret al. (2024) 2 2 34.7 0.301 N/A

ADD ‡ 1 1 19.7 0.328 0.52
LCM ‡ 4 4 36.36 0.294 0.49
LCM-LoRA ‡ 4 4 37.01 0.300 0.52
LCM-LoRA 4 4 36.46 0.291 0.61
Instaflow(0.9B) Liu et al. (2023) 1 1 23.4 0.303 0.61

LCM 4 4 24.39 0.305 0.61
+ Reflected 4 4 24.25 0.306 0.59
+ DDIL 4 4 23.44 0.308 0.59
+ Reflected +DDIL 4 4 22.86 0.309 0.59

Progressive Distillation 4 4 23.34 0.302 0.60
+DDIL 4 4 22.42 0.302 0.60

Progressive Distillation 2 2 26.43 0.288 0.58
+DDIL 2 2 24.13 0.291 0.58

SD (v) 32 64 22.50 0.321 0.62
SD (gc) 32 32 24.46 0.304 0.62

student model. We present two sets of results. The first serves as an oracle experiment, establishing
an upper bound on performance. Here, we distill SSD1B into the DMD2 student model using a batch
size of 64, 70,000 gradient updates, and SDXL critics. We then compare this oracle experiment
with SSD1B checkpoints trained with a significantly smaller batch size of 7 and 30,000 gradient
steps on a single A100 node. Reducing the batch size drastically leads to unstable training and
poor performance. However, by employing reflected diffusion distillation, we achieve improved
training stability and a significant boost in performance, both quantitatively and qualitatively. Further
performance gains are observed when incorporating a mixed rollout setting of DDIL within DMD2,
as demonstrated in the table 3

Student Selection Prior: Our protocol for student selection in trajectory collection follows standard
practice from imitation learning. Where early in training, student’s performance is bad and hence we
prioritize sampling more from pdata(x) but as training progress and student’s performance is good
we want to obtain expert feedback on mistakes that student makes i.e., address co-variate shift caused
by feedback and training, inference mismatch but still sample from pdata(x) to preserve marginal
data distribution.

5.1 TEXT-GUIDED IMAGE GENERATION

We demonstrate effectiveness of our proposed DDIL framework across different baseline distillation
techniques in case of text-to-image generation tasks as shown in Table 2. DDIL consistency improves
on progressive distillation(PD) and latent consistency models (LCM) as observed in Table 2/ In
case of progressive distillation, for 4-step version DDIL improves FID from 23.34 → 22.42 and
maintains clip score of 0.302 and similarly we can also observe DDIL improves on LCM with FID
from 24.25 → 22.86 and CLIP score 0.306 → 0.309. From Tab. 4 in appendix, we can observe that
4-step variant of PD +DDIL with a guidance value of 8 achieves best FID of 13.97, the highest
among trajectory based distillation methods.

We also demonstrate effectiveness of DDIL with distribution matching techniques which adopt
multi-step student like in DMD2. When we apply DMD2 to SSD1B, we can observe that DDIL
improves FID from 31.77 → 27.72 and clip score from 0.320 → 0.326 and HPSv2 score from
0.302 → 0.304.

Computational efficiency: DDIL demonstrates superior computational efficiency compared to
state-of-the-art methods such as Instaflow and DMD. For instance, LCM augmented with DDIL
(LCM+DDIL) achieves strong performance using only 8,000 gradient steps with a batch size of 420.
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This contrasts sharply with Instaflow, which requires 183 A100 GPU-days for distillation. DDIL with
progressive distillation (PD) reduces this to 15 A100 GPU-days. Similarly, while DMD necessitates
64 GPUs with a larger batch size and extended training duration, DDIL attains comparable results
using significantly fewer resources.

To minimize the overall computational burden of distillation, all experiments utilizing DMD2
employed a single A100 node with a batch size of 7. For a direct comparison with the original DMD2
configuration, an oracle experiment is conducted, distilling SSD1B with DMD2 across four A100
GPU nodes with a batch size of 64 and 70,000 gradient updates. We observed that training DMD2
with a smaller batch size exhibited instability, even with 10 fake critic updates per student update.
However, integrating reflected diffusion and DDIL yielded improved stability and performance,
producing qualitative results comparable to the larger-scale experiment.

By incorporating the DDIL framework and the reflected diffusion distillation formulation, we
demonstrate enhanced training stability and achieve strong performance with DMD2 and LCM using
significantly smaller batch sizes and fewer gradient updates.

Diversity vs. quality trade-off: Adversarial distillation methods Sauer et al. (2023; 2024) exhibit
a decrease in generation diversity (measured by LPIPSDiversity) compared to the baseline. Ss
discussed in previous section most common objectives of distribution matching also have mode-
seeking objects Xie et al. (2024); Yin et al. (2024). This highlights the quality-diversity trade-off often
encountered in generative models when fine-tuning for human preferences or specific applications.

Table 3: Text guided image generation results on 512× 512 COCO 2017-5K validation set. These results are
obtained by adopting latent consistency distillation retrained for SSD1B and incorpating DDIL within DMD2
setting. We integrate DDIL into the DMD2 framework by unrolling just the student model exactly like DMD2
but also unrolling teacher to corresponding noise level too to better capture underlying data distribution and
align gradient fields of student model and teacher model.

Model Steps FID [↓] CLIP [↑] HPSV2 [↑] LPIPSDiversity [↑]

SSD1B (guidance = 8) 20 30.23 0.336 0.297 0.48

SSD1B-LCM 4 35.23 0.311 0.282 0.45
SSD1B-DMD2 (batch = 64,70k) 4 26.56 0.337 0.309 0.49
SSD1B-DMD2 (batch = 7,30k) 4 31.77 0.320 0.302 0.52

+ Reflected (batch = 7,30k) 4 29.32 0.323 0.302 0.51
+ Reflected + DDIL (batch = 7,30k) 4 27.72 0.326 0.304 0.51

6 CONCLUSION

This work introduces DDIL, a novel framework for distilling diffusion models that addresses the
challenge of covariate shift while preserving the marginal data distribution. Integrating DDIL with
established distillation techniques, including Progressive Distillation, Consistency Distillation (LCM),
and Distribution Matching based Distillation (DMD2), consistently yields quantitative and qualitative
improvements. Furthermore, we also show that integrating DDIL within the DMD2 framework
enhances training stability, reduces required batch sizes, and improves computational efficiency
demonstrating wider applicability and practical usefulness.
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