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Abstract

Contrastive learning has emerged as a powerful technique for learning meaningful represen-
tations from unlabeled data. However, its vulnerability to adversarial attacks remains a
significant challenge. Adversarial contrastive learning, which combines contrastive learning
with adversarial training, offers a promising avenue for achieving robust representations that
withstand diverse attacks. Despite empirical evidence supporting its effectiveness, a compre-
hensive theoretical framework for adversarial contrastive learning has been lacking. In this
paper, we address this gap by providing novel generalization bounds and theoretical insights.
Leveraging the covering number technique and Lipschitzness of loss functions, we derive
generalization bounds on the unsupervised adversarial contrastive learning function class.
Our results apply to both linear and non-linear representations, including those obtained
using deep neural networks (DNNs), which have improved the generalization bounds.

1 Introduction

Learning meaningful representations from unlabeled data plays a crucial role in enhancing the performance
of machine learning models. Representation learning has shown great success in fields such as computer
vision (Chen et al.| [2020b; He et al. 2020} |Caron et al., |2020) and natural language processing (Brown et al.,
2020; |Gao et al.| 2021} [Radford et al.}|2021). Among various representation learning techniques, self-supervised
contrastive learning, popularized by the SimCLR framework (Chen et al., [2020b), stands out. The core idea
behind contrastive learning is to bring similar pairs (z, ") closer together in the embedding space while
pushing apart negative samples from z, (denoted as (x,z7,--- , 2, )). These learned representations can then
be leveraged for downstream tasks, whether supervised or unsupervised (Chen et al., 2020bj He et al., |2020;
Khosla et al., 2020). Notably, extensive research in contrastive learning has revealed that a sufficient number
of negative samples is essential for achieving high-quality representations (Chen et al.| |2020b; [Khosla et al.
2020; Henaff] 2020; 'Tian et al., [2020)).

Despite significant progress in representation learning, these representations remain susceptible to adversarial
examples (Szegedy et al., [2013; [Biggio et al.l [2013)), which are subtly perturbed samples carefully crafted to
manipulate a model’s predictions. Specifically, adversarial attacks aim to maximize the model’s loss by slightly
perturbing input samples. To mitigate this vulnerability, researchers have proposed adversarial training (Chen
et al., [2020a; [Tramer & Boneh| 2019). This technique employs a min-max optimization approach, where the
model simultaneously minimizes its loss while facing maximally perturbed examples. By doing so, adversarial
training enhances the robustness of the learned representations against adversarial attacks.

Adversarial contrastive learning (ACL) emerges from applying adversarial training to contrastive learning. In
this paradigm, adversarial training enhances the robustness of representations learned from unlabeled data
during unsupervised training. Empirical evidence supports the effectiveness of ACL in improving the quality
of these robust representations (Kim et al. |2020; |Ho & Nvasconcelos, 2020; [Jiang et al., 2020). Despite
its empirical success, the theoretical foundations of ACL remain somewhat limited. Recent work by |Zou
& Liul (2023) leverages Rademacher complexity to show the connection between unsupervised contrastive
learning and the downstream classification task and claimed that the average adversarial risk of downstream
tasks can be upper bounded by the adversarial unsupervised risk of the upstream task. In case of a linear
representation and /., attack, they demonstrate that the bound depends on factors such as £-norm of the
input, the Frobenius norm of the weights, and the input dimension. For non-linear cases, the bound is
influenced by the square root of the input dimension. However, their study only considers scenarios with a
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single negative sample, overlooking the impact of a large number of negative samples, which is crucial for
achieving optimal generalization performance (Chen et al., [2020b} [Tian et al., |2020; Henafl, [2020; Khosla,
et al] 2020). Our work extends this analysis to a general case with a large number of negative samples, and
our aim isto improve the dependency on this number.
In this paper, we present the following contributions:

e We apply the ¢.-Lipschitz property of loss functions to derive generalization error bounds for ACL.
These bounds incorporate the covering number of feature classes and show improved dependency on
the number of negative examples, resulting in tighter bounds compared to existing literature.

e Our general results are applied to two specific scenarios of unsupervised representation learning:
learning linear features and learning non-linear features via DNNs. In both cases, the bounds show a
logarithmic dependence on the number of negative samples. For the non-linear case, the bound is
also depends on the depth of the DNNss.

The remainder of the paper is organized as follows: Section [2] reviews related work and state-of-the-art
approaches in this area. Section [3] defines the problem formulation. Our main theorem on the generalization
error bound of ACL is presented in Section[d] Section[5applies our theorem and demonstrates the generalization
bounds for both linear and nonlinear feature representations. Section [§] contains all the proofs of our lemmas
and theorems, as well as an additional theorem used in our proofs. Finally, Section [7] provides the conclusion.

2 Related work

Contrastive Learning Theoretical generalization analysis in contrastive learning is limited to a few
works such as |Arora et al.| (2019); [Ji et al.| (2023)); [Lei et al.| (2023). |Arora et al. (2019) shows that the
upstream unsupervised errors of representation learning bound the downstream classification task. They used
Rademacher complexity to develop a generalization bound for the unsupervised CRL of the representation
function class. However, their generalization bounds depend linearly on k, the number of negative samples,
which is not beneficial if k is large, which is mostly the case in CRL. Motivated by this, |Lei et al.| (2023
improved the dependency on the number of negative samples regarding Rademacher complexity. For ¢
Lipschitz loss, their bound doesn’t depend on k; for ¢, Lipschitz loss, it is improved by a factor of k.
Nozawa et al.| (2020) derived PAC-Bayesian bounds on the posterior distribution of representation functions.
Negative examples are typically selected randomly, which may result in them having the same label as the
point of interest. This can introduce bias in the CRL loss function and potentially reduce performance in
practice. |(Chuang et al.| (2020]) derived an approximation for the unbiased error of CRL loss and developed a
generalization bound for the downstream task.

Adversarial Robustness Since |Szegedy et al.| (2013)) demonstrated the vulnerability of neural networks to
input perturbations, numerous generalization bounds for adversarial learning have been proposed. Montasser
et al.| (2019) established the PAC learnability of adversarial robust learning and |Xu & Liul (2022)) extended
these results to the multi-class setting.

Additionally, other researchers have employed Rademacher complexity to generalize the ¢,-additive pertur-
bation attack (Yin et all [2019; |Awasthi et al. 2020; |Khim & Loh} 2018; Xiao et al.| 2022; [Mustafa et al.,
2022). |Yin et al.| (2019)) used the Rademacher complexity-based bound for linear models and one-layer neural
networks based on surrogate loss, whereas |Awasthi et al.| (2020) introduced a bound based on the direct loss
for linear models and two-layer neural networks. Mustafa et al.| (2022)) broadened this approach to encompass
a wider array of attacks, applying their bounds directly to the loss function, resulting in a growth rate of
O(log K). Conversely, Khim & Loh| (2018)) proposed a tree-transform technique to propagate adversarial
noise through the network, leading to a bound that grows exponentially as O(K), where K is the number of
classes.

Adversarial Contrastive Learning Recently, numerous studies have applied adversarial training to
contrastive learning loss to enhance model robustness. However, the theoretical foundations of ACL remain
underexplored. Zou & Liu| (2023) utilized Rademacher complexity to establish a bound on the ACL loss
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for linear models and multi-layer neural networks under ¢,-attack and with only one negative sample.
Their findings indicate that the average adversarial risk of downstream tasks can be upper-bounded by the
adversarial unsupervised risk of the upstream task.

3 Problem Formulation

3.1 Contrastive Representation Learning

Let X be some input space (e.g., a set of input images). Given pairs of similar data, represented as (z,z™)
drawn from some unknown distribution Dy, and negative data samples z7,25, -,z drawn from a
negative distribution Dyee. The distributions Dgir, and Dyeg are generally characterized through a set of
latent classes C and an associated probability distribution p over these classes (Arora et al., [2019). For each
latent class ¢ € C, let D, be the conditional distribution of the inputs given the latent class c. Dgjm and Dyeg
are defined as:
Dgim (2, $+) = Ec~p[DC(x)DC(x+)]’
Dneg(m_) = ]ECNP[DC('T_)]~

That is, Dgim(z, x+) measures the probability of drawing = and 1 from the same class ¢ ~ p, while Dneg(l‘_)
measures the probability of drawing = that is irrelevant to z and x+. The objective of CRL is to select a
feature map f : X — R? from a class of representation functions F = {f : ||f(-)||1 < R}, for some R > 0,
where || - || denotes the ¢1-norm, and d € N represents the dimensionality of the feature space. This is
achieved using the training set

S = {($17mf’x171a"' ’x;K)v(x27$2+’$517"' >x5K)7"' 7($n’xr—t7xn17"' 7xr:K>}v

where (:zrj,xj') ~ Dsim and (257, ,2%) ~ DE,, with j € [n] := {1,---,n} and K indicating
the number of negative samples. The quality of the representation f is evaluated using the loss
C{F@)T(f(@F) = flzy)He,), where £ : RE — [0, B] is some loss function and f(z)7 is the transpose

of f(x). The population and empirical risks are then defined as follows.
Definition 3.1 (Upstream unsupervised risk). The population unsupervised risk is defined as:

Lun(f) = Ep[0({f(2)"(f(2™) = f(zi ) }iz0)),

and the empirical unsupervised risk on S is defined as:
~ 1 — _
Lun(f) = S @) (fah) = flap)) b))
i=1

3.2 Adversarial Contrastive Representation Learning

In this paper, we examine adversarial settings where an attacker employs a noise function A: X x B — X,
with B being a noise set, to subtly introduce noise § € B to an input € X in order to maximize the loss.
For example, in the L,-additive attack, A(z,d) = x + § and B is the £,-ball {0 : ||§]|, < 8}. The attacker’s
objective is to select 0* € B that maximizes the loss:

5* = argmax L({F(A(x, )" (f(x™) = F () Hica).

The adversarial and empirical risks are subsequently defined as follows.

Definition 3.2. (Unsupervised adversarial contrastive risk). The population unsupervised adversarial
contrastive risk is defined as:

Lin' (F) = Elmax £({ f(A(=,0))" (F(=") = f(w) }im)]

and the empirical unsupervised adversarial contrastive risk is defined as:

n

() = = S max (0L F (Al ) (£ — ) M)
=1

1=

Our goal is to derive a generalization bound for ACL, that is a bound on L23V(f) — Ladv(fy.

un
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4 Generalization Error Bounds

In this section, we establish a generalization bound for ACL. Our technique relies on the concept of covering
numbers of the adversarial contrastive loss class.

Definition 4.1 (Covering number). Let F := {(f(z1),- -, f(zn)) : f € F} be a real-valued function class
defined over a vector space V, and let S := {z1,--- ,2,} C X™ be a dataset. For any ¢ > 0, the {,-norm
covering number, denoted as N, (¢, F, S), is defined as the size of the smallest set of vectors vy, - ,v,, that
covers JF. Specifically, it satisfies:

1 o)}
sup min (- 2 176 - ir)’ <e

feFi€lm

where v1, -+ - , vy, forms the (e, £,)-cover of F with respect to S. We define the worst-case covering number as

Ny(e, F,S) = maxgex Np(e, F, S).

Our generalization analysis relies on the Lipschitz continuity of the loss. We consider a general Lipschitz
continuity w.r.t. a p-norm.

Definition 4.2 (Lipschitz continuity). A function ¢ : R® — R, is said to be A-Lipschitz continuous with
respect to the £,-norm (p > 1) if for any v,v’ € RY, the following inequality holds:

[6(v) = £()] < Ajo = 0|l

In other words, a Lipschitz continuous function exhibits only a small change in its output when its inputs
slightly change. We now proceed to derive the generalization bounds for ACL. The loss function class of
interest is defined as follows:

Guas = {(,a* a7 i) o max 6({f (A(w, )7 (f(ah) = fp ML) : f € F).

The main challenge for the analysis of that class is due to the maxsep operator. The following lemma shows
a bound on the covering number of G,4, in terms of the covering number of an extended function class that
does not contain the maxgsep-operator and the loss function £ on f. The extended function class is defined as:

H={(z.a".27,8) > f(A@,8)T(f@*) ~ f7)): f € F,

That is, the functions in H are explicitly parameterized by the adversarial noise §. Consequently, the data
set is extended to:

Sy = {(xi,x;r,x;k,g) (i €n), ke [K],g € CB(T;)}’

where Cg(ﬁ) is an (ﬁ,foo)—cover of B, for some €,\; > 0. Specifically, for any § € B, there exists

b€ Cs(z5;) such that |6 — Oloe < 75+ We now introduce our next lemma, which establishes a relationship
between the covering number of G.4, on S and that of H on Sy.

Lemma 4.1. Let § — (({f(A(z,8)T(f(z™) — f(x},))}5 ;) be Ai-Lipschitz and ¢ be Ao-Lipschitz with
respect to the {o-norm, for all (z, 2",z ,...,2%) € XE+2 and f € F. Then, we have:

Noo (€, Gaay, S) < Nw(i,ﬂ,sﬂ).

The lemma shows that we can upper-bound the £, covering number of the ACL function class by that of
the class H with the extended training set Sz . Notably, the class H does not include the maxsc operator,
significantly simplifying the analysis. Furthermore, it shifts the dependence on the number of negative
samples from the dimensionality of the function class’s output to the size of the training set. For most classes,
the dependence of the covering numbers on the size of the training set is only logarithmic (Zhang, 2002).
Consequently, our bound will lead to a generalization bound that only has a logarithmic dependence on the
number of negative samples. The proof of Lemma [41]is provided in the appendix.
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While Lemma provides an upper bound on the ACL class G,q4y in terms of the non-adversarial class H,
the class H is not directly the representation function class F. This makes it challenging to utilize existing
covering number results for typical models (e.g., linear models (Zhang} [2002) or DNNs (Ledent et al., 2021b)).
The following lemma establishes a relationship between the covering numbers of H and those of F.

Lemma 4.2. Assume the previous conditions hold and that ||f()||; < R. We define the function class F as
follows:

F = {(z,j)— fi(z): fe Fee X, jeld}
over the training set Sz:

Sz ={(A(@:,0),4) i€ n],jeld,de CB( )}U{( Ty d) 11 € [n] k€ [K],j € [d}{(27,5) -i € [n],j € [d]}.

Then, we have:
€
NM(E,H,SH) < Now (8RA F.5z).

The proof of this lemma is provided in the appendix. The lemma upper-bounds the covering number of H by
the covering number of the class F. Notably, F is a class of scalar-valued functions of the same form as the
representation function class F. This simplifies the analysis by (1) reducing the form of the functions in H
to that of the representation class, and (2) simplifying the analysis from vector-valued functions to scalar
functions of the same form. Note that the number of dimensions contributes only through the size of the
dataset Sz, and for many typical function classes, this contribution is only logarithmic. This achieves the
best known rate for vector-valued functions (Lei et al.,|2019). Combining Lemmas and with Dudlely’s
integral gives our main result.

Theorem 4.1. Let 6 € (0,1), and F and F be defined as above. With probability at least 1 — & over the
randomness of the training data S with size n, we have for all f € F:

3B, /log(%
L2YV(f) < Ladv(f) + 30y oss) —|—inf 8a+ —/ log? M.

g Ners F.Sg)de).

8R)\

The theorem demonstrates that we can control the generalization error of ACL by controlling the covering
number of the class F. The covering numbers of many classes F (e.g., linear models (Zhang, 2002]),
MLPs (Bartlett et al.l [2017)), CNNs (Ledent et al, 2021b)), and structured learning models (Mustafa et al.,
2021)) can be directly applied here to derive generalization bounds for ACL across a large family of models.

5 Applications

To find the representations f in an unsupervised manner, we employ an unsupervised loss function £ : R¥ — R
which can be chosen to be a hinge loss. This loss function can be chosen as a hinge loss. Given a vector u,
the hinge loss is defined as:
£(u) = max{0,1 + max{—wu;}}.
i€[K]

For simplicity, we assume the loss function is bounded by B for any f € F. Specifically, this means:

UL f (A, 0)T (f(a™) = flap ))Hisy) < B, VfeF.

This assumption is valid because we can impose constraints on the norms of the model’s weights and inputs,
ensuring the loss function remains bounded.

In this section, we instantiate our bound (Theorem W4.1] . ) for two models: linear and DNN-based features.
Throughout the section, we consider feature extractors of the form z — Uv(z), where U € R¥? s a
transformation matrix, and v : X — RY is a map from the original data z € X to some intermediate
embedding space in RY. We consider the linear feature extractor in Section while in Section m, we
explore features from a DNN.
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5.1 Linear Features

First, we focus on the linear features. That is, we assume that v is the identity map.

We consider the £ -attack, in which the attacker uses an additive noise function A(x,d) =z + 0, for x € X
and 0 € B, where the noise set, B, is the {,.-ball

B={5:6]- < B} CRP.

We begin by showing that the function § +— ((Uv(z +6))T(Uv(z™) —Uv(:z:,;))le) is indeed Lips-
chitz. The following lemma establishes and quantifies the upper bound on the Lipschitz constant of

5 L(U(x + )T (U (") = Uly))pey)-

Lemma 5.1. Consider the function gy (z,d) = £((U(z + §))T(U(zT) — U(x;))szl) and assume ||Ul|2 < Ay.

Then, for any x, the function & + gy (x,0) is || - ||eo-Lipschitz with the Lipschitzness constant 2A%|z||2v/D.

Now that we have the Lipschitzness of § on the loss function ¢, we can bound the covering number of our
linear scalar-valued feature class in the following lemma.

Lemma 5.2. Let F be the linear feature class and Sz be a given dataset in equation [4.2| with ||z||2 < ¥, for
all x € X, and ||U||2,2 < A, then for all € > 0, we have

CR2NZA%(V + VDB)? Liog
2 )

logNoo (LP]:—, S]i—) <

8R>\2 €

where C'is an absolute constant, m = [Cg(557)[, ¥' =¥ + VDj and

!

4AT
Liog :=1log | 2 {
€

D
2
] G-+t (W) o

If we plug Lemma [5.2] back into the Theorem [I.1] we get the following corollary.

Corollary 5.1. Assuming the above assumptions, for all f € F, with probability at least 1 — § over the
training data, we have

. 8 log(2/6)  VCRMAV'Ly,
adv < Jadv = g
Lun (f) _— Lun (f) + n + 3B 2n + \/ﬁ b)

where C is a constant, ¥ = ¥ + /Dj, m = ICs(557)|; N =nmd + ndK + nd and

Liog = log? <4 [2AU'N + 1] N(1262Af||x||2\/5N)D + 1) (log(n) + log(B)).

Remark. Our bound has a dependency on the square root of the input dimension, v/D, in the term ¥’. This
arises due to the mismatch between the £5-norm of the input and the /,.-norm in the ball 5, as encapsulated
by the inequality ||0]|z < v/D||0]|ee. Additionally, the bound has a logarithmic dependence on the negative
samples, K. The logarithmic dependency shows the appealing behavior of ACL for learning with a large
number of negative examples.

5.2 Nonlinear Features

Now, we consider the covering numbers for learning the nonlinear features by DNNs. We say an activation
function o : R — R is positive-homogeneous if o(ax) = ao(x) for a > 0, and is contracting if |o(z) — o(z')]| <
|z — 2’|. The ReLU activation function o(x) = max{z,0} is both positive-homogeneous and contractive. Now
assume the DNN feature map is defined as (removing matrix U for now),

V={axw—vx)=cVyo(VL_1---c(V1z))) : VI € [L]}
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Each layer [ € [L] has the width of w;, where wy = D (the input dimension) and wy = d (the number of
feature dimension).

Let V' € V be the weight of the network. Suppose that V is such that, for all V € V, ||Vi||2 < a; and | V]|, < &
for all [ € [L — 1]. Further, suppose that, for all V € V, |V |2 < ar, ||VL <sp and |[Vi1,00 < 8-

We now consider the ¢,,-additive perturbation applied to the DNN. As with the linear case, we first establish

the Lipschitzness of the function & — (((Uv(x + 9))T (Uv(z™) — Uv(a?,;))szl) w.rt. || - |leo-norm. The

following lemma establishes the Lipschitz continuity of the loss as a function of §.

Lemma 5.3. Consider the function gy (x, ) = £(Uv(x + )T (Uv(z™) — Uv(x_))iil) and assume ||U||z <
Ay and v(+) is the neural network. Then, for any x € X and V' € V, the function § — gyyv(x,d) is || - | co-

Lipschitz with constant 2A%,/wr, HlL:2 s1/w1 8y H1L:1 sillz||2-

Now, we can get the upper bound of the covering number of the neural network scalar-valued feature class
w.r.t. ||.||co-norm.

Lemma 5.4. Let F be the DNN (nonlinear) feature class on the extended dataset S 7, defined as before.
Let B := {0 : ||d]|oc < B}. Assume the previous assumptions on the weights of DNN, and ||z||2 < ¥. Then,
for Sz and € > 0, we have

" CR2NZL2U? &, (A a?
~ P A — _
log Voo (SR)\ F, S]_-> < 2 llzllsl l; p Liog,

where

12 A2 L / L D
Liog ::log((CﬂIJT/e—&-ng)(nmd+ndK+nd)( P 1VwLHl—2sle151H1—1Sl”x”2> +1),

€

U = (UV+vVDp), T = maxle[L](HiLzl si)aywy /sy, W = maxje[r) wi, m = |Cp(55;)], and C, C1, Cz are universal

constants.

Plugging Lemma [5.4] into Theorem (.1} we get the following corollary.

Corollary 5.2. Under the previous assumptions, for all f € F, with probability at least 1 — § over the
training data, we have

N log(2/9) A \I//
ORI GRERENE CU I

where C is an absolute constant, ¥ = ¥ + vDB, m = |Cp(55 -)|, N = nmd+ndK +nd and

) ) L L s
Liog=log? ((CI\I/IFN‘FCQU))N(].Qﬁ?A%\/@UL H s1/wish H sl||:vH2N) +1> (log(n) + log(B)).
1=2 =1

Remark. Similar to the results for the linear case, our analysis reveals a dependency on the square root of the
input dimension. This issue can be resolved if we assume the ¢ attack, where B = {d : |||z < 8}. As in the
linear case, our results maintain a logarithmic dependence on the negative samples, K.

6 Proofs

6.1 Proofs of Results in Section [

To prove Theorem we define the Rademacher complexity and review the theorem from [Mohri et al.
(2018)), which controls generalization of learning algorithms by Rademacher complexity of function classes.
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Definition 6.1 (Rademacher complexity). Given a class of real-valued functions F and dataset S = {z;}I",
drawn from the distribution D over a space Z, the empirical Rademacher complexity of F w.r.t. S is
defined as Mg = Ec[sup;c %Zie[m} €;f(z;)], where each ¢; is an independent Rademacher variable, uniformly
distributed over {+1,—1}". The worse-case Rademacher complexity is then Rz, = supgc z.|51=m [Rs (F)]-

Theorem 6.1 (Mohri et al.|[2018). Let S = {z;}I"; be i.i.d. random sample from a distribution D defined
over Z. Further let 7 C [0,1]% be a loss class. Then for all § € (0, 1), we have with probability at least 1 — §
over the draw of the sample S, for all f € F that

R(f) < R(f) + 205 (F) + 3220

Our approach relies, however, on another complexity measure, namely ¢,.-covering numbers. The following
classical result of Dudley’s entropy integral (Boucheron et al., 2003; |Bartlett et al., 2017; |Ledent et al., 2021a;
Srebro et al. 2010) gives a relationship between the Rademacher complexity and £..-covering number. We
apply the version by [Srebro et al.| (2010)).

Theorem 6.2 (Srebro et al.|2010)). Let F be a class of functions mapping from a space Z and taking values
in [0,b], and assume that 0 € F. Let S be a finite sample of size m and E[f(2)?] := £ 5" | f(2;)?. Then

: m

12 /SqueF V

E[f(2)?]
<i —
R(F) < ér;fo doo+ Tn V1og Ns(e, F, S)de

We are now ready to present the proof of Theorem [1.1]

Proof of Theorem[{.1 The proof is a direct application of Theorems [6.2] and [6.1} With probability at least
1—4, forall f e Fandde(0,1), we have,

L (1) < L () + 25 (Gua) + 38y B2

log(2/9)

. 24 (B
< Ladvip) + h;% <8a+ ﬁ/ \/IOgNoo(evgadvaS)Ck) +3B

i 24 [P €z log(2/9)
< adv : el & B .
< L2V(f) +£f0 <8a + \/ﬁ/a \/1ogNoo(8R/\2, F, Sf)de> + 3B o

The first and the second inequality follow from Theorem [6.1] and Theorem [6.2] respectively. The final
inequality is derived from Lemmas [f.1] and [4:2] O

6.2 Proofs of Results in Section [5.1]

In this subsection, we present the omitted proofs of section when the features are linear. Our approach
relies on /,-covering numbers for the feature classes. First, we show that the loss function is ¢..-Lipschtiz
with respect to the noise parameter §. Next, we derive a bound on the size of the set C(e/2)A1). Finally, we
establish a bound on the {4 -covering number of the feature class F on the extended data set S 7

Initially, we prove the bounds of {,,-additive attacks applied to linear models as stated in Lemma Our
first step is to derive the || - ||o-Lipschitz constant of the function § — ({(U(z + )T (U(z*) — U(zy ) H ).
The following is the proof of Lemma [5.1
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Proof of Lemma[5.1. The proof is a direct derivation. For all x € X, ||U||2 < Ay, 6,6 € B, we have:
[{(U(x +0)T (U (") = Uleyp)}izy) — (U@ + )T (U(F) = Ulz) )|
< (U +0)" (U@™) =U(x7) = LU+ )T (U (") = Ua™)))l
<|U@+8)" (U@?) =U@7) = (U +6)T(U@") = U))l
<NU(+6) = Uz +8)[2U(@") = Ua7)ll2 < U0 = &)U —27)]2
<2(|UaVD)6 = 8 [loo[[U 2 ]l2l2 < 2A3||2]|2V' D16 = &[] oo

The second inequality is derived from the fact that hinge loss £ is £,,-Lipschitz with constant 1. The last
inequality follows from [|§ — &[]z < V/D||§ — &'||s, for all §,6" € RP. O

In this paper, we need upper bounds on covering numbers of bounded balls in R”. We start by reviewing a
result that provides an upper bound on the size of the set Cg(¢) defined w.r.t. a general norm | - ||.

Lemma 6.1 (Long & Sedghi|2019)). Let d be a positive integer, || - || be a norm, p be the metric induced by
it, and k,e > 0. A ball of radius £ in R? w.r.t. p can be covered by (2£)? balls of radius e.

We now review the upper bounds on the ¢,,-covering numbers of linear models.

Lemma 6.2 (Zhang||2002). Let £ be a class of linear functions on a set of size n. That is, £ = {(w,z) ,z,w €
RN}, If ||z, < b and ||w||, < a, where 2 < ¢ < oo and 1/p + 1/q = 1, then for any € > 0, we have

a2b?
log Noo (€, £L,n) < 36(q — 1)—b10g[ 2[4ab/e + 2|n + 1],

where N (€, £, n) is the worst case covering number of the class £ on a dataset of size n.

In the following, we present the proof of Lemma [5.2]

Proof of Lemma[5-3 First, we consider the {o-norm on the set B. According to Lemma 5.1} the function
§ = L{(U(x+ )T (U@™) = U2y, ) H,) is || - |so-Lipschitz with a constant of 2A%||z[|2v/D. Nest, consider
the set Ci(e/4A3||z||2v/D). By applying Lemma and noting that ||d]|ec < B, we have for all § € B:

D
2
Ca(e/43all:vD)| < (W)

Thus, the size of our dataset is:

1Szl =

D
2 /
n (12/\1||:£||2Dﬂ> d+ ndK + nd.
€

For & € Sz, where & = (z,0), we have: ||Z]ls < ||z]l2 + ||0]2 < ¥ + VD||§]|c = ¥’'. Therefore, the result
follows from Lemma O
Below, we provide the proof for Corollary

Proof of Corollary[5.1} The proof follows directly from Theorem by setting « to % Therefore, consider
the following integral

2)\2A2(V 4 /D)2 Ly, Ly, B
/ log Noo ( 7)de < / CREA Jr Ly g de < VORN AT 18 / Zde
SR)\ log(n) /1

€

<VC CRAAV'; Liog log(e)]: <VC CRAAV'; Liog (log(B) + log(n)).
fog(m LoE(l4 log(n) |
The first inequality follows from the monotonicity property of integrals. The second inequality derives from
the observation that replacing e by % in Lyog can only increase its value. Substituting this into Theorem
yields the desired result. ]
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6.3 Proofs of Results in Section [5.2

In this subsection, we provide the omitted proofs from section [5.2| for the case when the features are non-linear.
As in the linear case, we begin by showing that the loss function is /,.-Lipschitz with respect to the noise
parameter . We then establish a bound on the set Cp(e/2\1) and apply the {o.-covering number results of
the non-linear feature class F on the extended dataset S £

First, we prove the bounds of the /.-additive attacks applied to non-linear models as stated in Lemmal[5.3] The
first step is to derive the £-Lipschitz constant of the function § — (({(Uv(z+6))T (Uv(z™) — Uv(zy ) H ).
The following is the proof of Lemma [5.3]

Proof of Lemma[5.3 The proof is a direct derivation. For all z,z™, 2, € X, |U|l2 < Ay, 6,0’ € B, we have:

[{(Uv(z +0) (Uv(a™) = Uv(zy ) Hzy) = L{UV(@ + )T (Uv(a™) = Uv(a) )]

< [((Uv(z +0) (Uv(a™) = Uv(a7))) = L(Uv(z + )" (Uv(a™) = Uv(a7)))|

<|(Uv(z +8)T(Uv(") = Uv(zT)) = (Uv(z + ") (Uv(z™) = Uv(z7))|

< |Uv(z +0) = Uv(z + )2 Uv(z") = Uv(zT)ll2 < [U(v(z +0) = v(z + 0)[|U(v(2T) = v(z7))]2
< |Ul2lv(z +0) = v(z + &)l2[U]l2[v(z") = v(z7)]2

<NUIBIVEvE @ +0) = v~ @+ 8D VE vy @) = vim (@7)l2

<NUBVaL|VEvy @ +6) = v @ + )l [VE (v (@) = vy @7)12

< A?\/ﬁigl[g);] IVl vy~ (@ 4 8) = v @ + NIV E 2l vy (@) = v @)

L L
<A Vwr [[silVi@+6) = Vie+ ) [[sillzt — 2|2

=2 =1

L L
< A2wg Hsl\/levl(m +68) = VHz 4+ )| l_IslHalc+ — 272
1=2

=1

L L
< At [[sivan max IVl +5 =2 =6/l [T slle™ =2
1=2 teli =1

L L
< 2A%/wy, Hsl\/wls'l HsleHng — 0| 0o
1=2 1=1

The second inequality is derived from the 1-Lipschitz property of the loss function . The seventh inequality
results from converting the ||.||2-norm to ||.||co-norm. The eighth inequality stems from the definition of
{oo-norm and Holder inequality. The ninth inequality follows from the 1-Lipschitz property of the non-linearity
and an induction over the layers. Finally, the last inequality is based on the fact that ||z — 27 || < 2||z]|2,
for all z € RP. O

We now review the upper bounds on the ¢.-covering numbers of norm-bounded neural networks (non-linear)
function classes.

Lemma 6.3 (Ledent et al[2021bf). Let V be the class of neural networks, that is, V = {z — v(z)}, where
V = (V1 ..., VL) are a set of weights the DNN v(-) and ¢ is defined as above. Suppose that ||[V!|21 < a;
and ||V, < s foralll € [L—1], VL2 < ar, [VE]2.00 < 81, ||z]l2 < b, and w; is the width of the I’th

layer. Then given a data set S with n elements and € > 0, we have

CL? & 5 [~ a?
log Noo (6, V, 5) < =2 Hsl ZS—Q log ((C10I' /e + Cow )n + 1),

=1 1=1 "1

L _ .
where I' = max; () ([ [;Z, s:)aimi/s;, w = max;e[z) wi, and C, Cy, Cy are universal constants.

10
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In the following, we present the proof of Lemma [5.4

Proof of Lemma[5.4 First, consider the {s-norm on the set B. By Lemma we have the function ¢ —
({Uv(z+8) T (Uv(zt)—Uv(ay))}E ) is || |lso-Lipschitz with constant 2A%/wr, [T, siv/wish [Ty sillz]]a-
Consider the set Cg(e/4A%,/wy, Hlez S1y/W18] H1L=1 sil|z]l2)- By Lemma and that ||0]||oc < 8, we have for
all 6 € B:

D
- <12AWL [l s1v/onst 11 Szllxllzﬁ>
< . .

L L
Cu e/t g [ [ sovawrst [ sillzl2)
=2 =1

Thus, the size of our dataset is:

D
12A2 oz T2, sivan s, TT-
1S5 =n ( oL 1o siywist [1,2, sillz]28 d+ ndK + nd,
€

For & € Sz, where Z = (z, ), we have:
1|2 < [|2ll2 + [|8]l2 < ¥ + VDl|6]| o = .

Therefore, the result follows from Lemma [6.3] O
In the following, we present the proof of Corollary

Proof of Corollary[5.4 The proof is similar to the proof of Corollary 5.1} It is a direct application of Theorem
by setting « to % O

7 Conclusion

We conducted a generalization analysis of ACL, showing that the generalization error is bounded by the
covering number of the feature class. Our results leverage the Lipschitz continuity and boundedness of the
hinge loss as our unsupervised loss function, given the constraints on the model’s weights and inputs. We
applied this bound on both linear and non-linear features, subject to £.-additive attacks. Our analysis reveals
a logarithmic dependence on the number of negative samples. However, these are algorithm-independent
bounds, which could be extended to algorithm-dependent bounds to see how the optimization process affects
the generalization error. In this paper, we have applied only /..,-additive attacks; however, other kinds of
adversarial attacks can also be tested, especially non-additive attacks.

References

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saunshi. A
theoretical analysis of contrastive unsupervised representation learning. arXiv preprint arXiv:1902.09229,
2019.

Pranjal Awasthi, Natalie Frank, and Mehryar Mohri. Adversarial learning guarantees for linear hypotheses
and neural networks. In International Conference on Machine Learning, pp. 431-441. PMLR, 2020.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural
networks. Advances in neural information processing systems, 30, 2017.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndié, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion attacks against machine learning at test time. In Machine Learning and Knowledge
Discovery in Databases: Furopean Conference, ECML PKDD 2013, Prague, Czech Republic, September
23-27, 2013, Proceedings, Part III 13, pp. 387-402. Springer, 2013.

11



Under review as submission to TMLR

Stéphane Boucheron, Gabor Lugosi, and Olivier Bousquet. Concentration inequalities. In Summer school on
machine learning, pp. 208-240. Springer, 2003.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised
learning of visual features by contrasting cluster assignments. Advances in neural information processing
systems, 33:9912-9924, 2020.

Kejiang Chen, Yuefeng Chen, Hang Zhou, Xiaofeng Mao, Yuhong Li, Yuan He, Hui Xue, Weiming Zhang, and
Nenghai Yu. Self-supervised adversarial training. In ICASSP 2020-2020 IEEFE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 2218-2222. IEEE, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pp. 1597-1607. PMLR,
2020b.

Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie Jegelka. Debiased
contrastive learning. Advances in neural information processing systems, 33:8765-8775, 2020.

Tianyu Gao, Xingcheng Yao, and Danqgi Chen. Simcse: Simple contrastive learning of sentence embeddings.
arXiv preprint arXiv:2104.08821, 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVE conference on computer vision and pattern
recognition, pp. 9729-9738, 2020.

Olivier Henaff. Data-efficient image recognition with contrastive predictive coding. In International conference
on machine learning, pp. 4182-4192. PMLR, 2020.

Chih-Hui Ho and Nuno Nvasconcelos. Contrastive learning with adversarial examples. Advances in Neural
Information Processing Systems, 33:17081-17093, 2020.

Wenlong Ji, Zhun Deng, Ryumei Nakada, James Zou, and Linjun Zhang. The power of contrast for feature
learning: A theoretical analysis. Journal of Machine Learning Research, 24(330):1-78, 2023.

Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang. Robust pre-training by adversarial contrastive
learning. Advances in neural information processing systems, 33:16199-16210, 2020.

Justin Khim and Po-Ling Loh. Adversarial risk bounds via function transformation. arXiv preprint
arXiv:1810.09519, 2018.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot,
Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural information processing
systems, 33:18661-18673, 2020.

Minseon Kim, Jihoon Tack, and Sung Ju Hwang. Adversarial self-supervised contrastive learning. Advances
in Neural Information Processing Systems, 33:2983-2994, 2020.

Antoine Ledent, Rodrigo Alves, Yunwen Lei, and Marius Kloft. Fine-grained generalization analysis of
inductive matrix completion. In Advances in Neural Information Processing Systems, volume 34, pp.
2554025552, 2021a.

Antoine Ledent, Waleed Mustafa, Yunwen Lei, and Marius Kloft. Norm-based generalisation bounds for deep
multi-class convolutional neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 8279-8287, 2021b.

12



Under review as submission to TMLR

Yunwen Lei, Uriin Dogan, Ding-Xuan Zhou, and Marius Kloft. Data-dependent generalization bounds for
multi-class classification. IEEE Transactions on Information Theory, 65(5):2995-3021, 2019.

Yunwen Lei, Tianbao Yang, Yiming Ying, and Ding-Xuan Zhou. Generalization analysis for contrastive
representation learning. In International Conference on Machine Learning, pp. 19200-19227. PMLR, 2023.

Philip M Long and Hanie Sedghi. Size-free generalization bounds for convolutional neural networks. arXiv
preprint arXiv:1905.12600, 35:4053—4061, 2019.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press,
2018.

Omar Montasser, Steve Hanneke, and Nathan Srebro. Vc classes are adversarially robustly learnable, but
only improperly. In Conference on Learning Theory, pp. 2512-2530. PMLR, 2019.

Waleed Mustafa, Yunwen Lei, Antoine Ledent, and Marius Kloft. Fine-grained generalization analysis of
structured output prediction. arXiv preprint arXiv:2106.00115, 2021.

Waleed Mustafa, Yunwen Lei, and Marius Kloft. On the generalization analysis of adversarial learning. In
International Conference on Machine Learning, pp. 16174-16196. PMLR, 2022.

Kento Nozawa, Pascal Germain, and Benjamin Guedj. Pac-bayesian contrastive unsupervised representation
learning. In Conference on Uncertainty in Artificial Intelligence, pp. 21-30. PMLR, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International conference on machine learning, pp. 8748-8763. PMLR, 2021.

Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and fast rates. Advances in
Neural Information Processing Systems, 23, 2010.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Computer Vision-ECCV
2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XI 16, pp. 776-794.
Springer, 2020.

Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple perturbations. Advances in
neural information processing systems, 32, 2019.

Jiancong Xiao, Yanbo Fan, Ruoyu Sun, and Zhi-Quan Luo. Adversarial rademacher complexity of deep
neural networks. arXiv preprint arXiv:2211.14966, 2022.

Jingyuan Xu and Weiwei Liu. On robust multiclass learnability. Advances in Neural Information Processing
Systems, 35:32412-32423, 2022.

Dong Yin, Ramchandran Kannan, and Peter Bartlett. Rademacher complexity for adversarially robust
generalization. In International conference on machine learning, pp. 7085-7094. PMLR, 2019.

Tong Zhang. Covering number bounds of certain regularized linear function classes. Journal of Machine
Learning Research, 2(Mar):527-550, 2002.

Xin Zou and Weiwei Liu. Generalization bounds for adversarial contrastive learning. Journal of Machine
Learning Research, 24(114):1-54, 2023.

13



Under review as submission to TMLR

8 Appendix

In this section, we provide the missing proofs of section [
To discretize the function space, we assume § — ({f(A(z, )T (f(z*) — f(x},))H<,) is Ai-Lipschitz for all
z € X and f € F. Let C(g57) be an (55—, foc)-cover of B. Assume the discretized class of loss function is

_C';adv, defined as below:
Gaav = { (@, 2™ a7, 25,0) = L F(A, )T (F@@™) = f@E DI < f € F
with an extended training set S-
§ = {(@iat a5, 27, 8) i € [n], 5 € Ca(e/(2M)) |-

Now, we review a lemma from [Mustafa et al. (2022)) to relate the £, -covering number of class G4y to the
covering number of the discretized version G4, -

Lemma 8.1 (Mustafa et al.[2022)). Let Gadv be defined as above. Then, the following holds:

NOO(Ea gadv7 S) < Noo(e/2a g~adv7 S’)

This lemma simplifies the complexity of our function class by discretizing the loss function according to 4.

Now, we can prove Lemma

Proof of Lemma[/.1. According to Lemma [8:1] it suffices to show that
Noo(€/27 g~advv S) S Noo(e/(2>\2)a Hu S’H)

The observation here is that we can construct a cover for the function class C;adv on the training set S from
the elements of the cover of the function class . Additionally, from the Definition 1], we know that the
covering number of a set is the cardinality of the smallest cover for a set.

For any f, define hy as

hy(z,a* 27, 8) = f(A(z,0))" (f(z*) = fa7)).
Let Cp(e/(2A1)) = {01,...,0m}. The projection of H onto the set Sy is

he(zy, o, 277,61) .. hy(x,2f, 27, 6m)
Hs,, = : : cf e Fp c RHExm
hy(zn,xb, @, 1 01) .. hy(zp, ), 2, 0m)
Let
Mo o M om)
Cy = il =1,...,M  c RnExm
B8y o ()

be an (¢/(2A2), loo)-cover of Hg,,. This means, for all f € F, there exists an r € [M], such that:

max max max h xi,xﬂ',x»_,é _ ks <i.
i€[n] kG[K]éecs(zf\l)‘ f( ¢ ik ) T ( )| — 2)\2

Now we show the following set is an (€/2, £, )-cover of Gudv W.I.b. S:

(et (G)}sy) - e (0m) i)

Cs,,, = i =1,...,M y C R"™™,

WEF GO o e (B}
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Indeed, for any f € F, we know

max max |({f(A(z:,0)" (f(@]) = fla))}his) — €{eF ()]

i€[n] d€Cn (557

= 0 he(zg, af, o, OV ) — 0({c*(8)VE
?el?ﬁéeég?fm‘ {hp(xi, o, ai, 6) Hmy) — €{cF(0) 1)

<max max |max E(hf(zi,zj,xi_k,(s)) — max £(ciF(6))

T igln] 56C5(2§1) ke[K] ke[K]

< U hp(zi,al, x5, 0)) — 06
*52?51‘562??;1)%2%’ (hy (i, 2 2y, 6)) = £ (9))]

€ €

< Ao ma a ax |hy(xi, a2, 0) — F(6)] < A =—.
S T e B B2 (e ) = O S dagy =5

The second inequality comes from |max, f(z) — max, g(x)| < max, |f(z) — g(z)| and the third inequality
follows from the Ao-Lipschitzness of the loss function £. Since the cardinality of Cy and Cg  —are the same,

we have Noo($, Gadv: S) < Noo(55, H Sn)- O
Now, we are going to prove Lemma

Proof of Lemma[{-3 Our goal is to control the {o-covering number of the function class H using the covering
number of the representation function class F. We will prove the lemma in two parts.
First, we claim to show:

Noo (i,%sﬂ) < Nm(ﬁ,ﬁ S;),

where we introduce Sz as follows:
Sy ={%;:j € [nm+nK+n]} = {A(x;,0) : i € [n],0 € Cple/(2\1))}U{x;, 1 i € [n], k € [K]}U{a] :i € [n]}

and m = |Cp(e/2\1)]. Consider the following class of functions defined on Sz:

Fs, = {(f(gzl), oo f Frmmicin) : f € f} C RrmnKAn
which can be expanded as:

{(f(A<x1’61))’ ) f(A(x7H 6m>)7 f(xf)v ) f(aj:)a f(xfl)v LR f(I;K)a f(mgl)v SR f(I;K))}
Suppose the function class Fg, has a proper (e/(8RAz2), s )-cover as below

Cr={(Eh(61),....e0(0m), e, ... &0t et ..., af ) o e [M]} c RmmnEn,

y !y !

Then for all f € F, there exists an r € [M] such that:
. €
A i75a -G 5@ < Py
max max |f(A(zi;a)) — & (%)| < grr
+) _ it < ¢
max |f(zf) — 67| < e
€

-\ _ gk < .
51612[15]( ;IGI?I?] ’f(xzk) Cr ‘ ~ 8RR\

Now, for the following function class

o, = { (F(A(1,60)T (@) = F@0))s -+ F(Awn, 8)) T (F(@) = Flamge))) | © RYE™
projected onto the dataset Sz, we construct a cover as follows

Coi= {(hBr)s .o, (B)) : 7 € [M]} C RO,
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where ¢f(3,) = &, (3,)7 (¢5F — &F7). We then have:

ma max max | F(A(i, 0))T (f(zF) = Fla) — cF(6a)|
= max max max | f(A(zi,04))" (f(z]) = f(7,)) — &7 (da) (@ — &F)]

i€[n] ke[K] a€[m]

= max max max ‘f (A2, 00)T (f(z]) — f(@,) — f(A(4,6,))T (@5 — &)

i€[n] k€[K] a€[m]
(Al 8))T (& — ) = T @G (@ - )|
< max max max (If(A(xu 5))T (Faf) = F(@3)) = F(A(i, )T (@5 = &4

i€[n] k€[K] a€[m]
A B @ - 8) - a Gt -

< max max max | f(A(z;,0))7 (f(z]) = &F — flz;) + &k~
T ig[n] ke[K] ae[m]‘ )> (f( v ) r f( “V) T )’

+ max max max |(&F — FRT(F(A(z4,04)) — ézr(ga))‘

i€[n] ke[K ]aE [m] "

Smax max 1 (A(zs, 6 ))HlmaxmaXIIf( =t — )+ |

i€[n] a€[m €[n] ke[K
zk < ~1 (<
i76a — 6 60, s}
+gr€1?5]<,§relzg(x]llc ||1H€1?5]<;2[aw>§]llf( (i,04)) —E.(0a) |
€ €
<92R 2R 4R —
T SR)\Q 8R>\2 =

Here, the third inequality uses the property that [#7y| < [|lz[l1|y|ls. Since the cardinality of Cx and Cy are
the same, we have: Noo (55, H, 1) < Noo(5755;, F» S7)-

For the second part of the proof, we need to show:

N fS;)_NOO(L f”,5~).

(SR)\ 8RAy’

We introduce S z:
Sz={(z,0):1€ [ndm+ndK+nd]}
= {(A(2,0),4) s i € [n], ] []5606( )}U{( i) i€ nlkelK]jeldyu{(z],]):ieln],jeld}

Assume }
F={(z,j)~ fi(x): fe Fe e X,je[d}
over Sz has a (€/(8R\2), £ )-cover defined as below:

C]:- — { ~11 ) ~nd(8 ) ~11+".'76§L/d+7621/11—7.”76'$Kd—) Ii/ c [M]} CRndm+ndK+nd

This means the projection of F on the extended dataset S 7 is:

Fsp = {(f1(A(21,81))s- -, fa(Awn, b)), frlal), oo falah), filany), o falay )} € Rramtndficnd

Then for all f € F, there exists an r € [M], such that:

~ €
i;éa 5 >~
gré?ﬁ;g%%?flfg A(24,04)) — &7 (0a)| < TN
+ 2]+ €
) — 7 < g
’Lk]f €
R R g ) — 5 < sy
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Now, for the function class,

‘FS}‘ = {(f(A(wlvdl))a .. ,f(A(:En,(sm)),f(I-f), sy f(zjlr)vf(xl_l)7 . '7f(‘T1_K)vf(‘T;1)7 . 7f(z7_lK))}?

we construct a cover:
Cri={(cir(b1),....cp(br), ety el ™, ) o e [M]} c RPEREET

where ¢, (04) = (€} (8a), - .-, E8(02))7, ciF = (&1, ... &) T and ¢iF~ = (&M, ... &FT,
Therefore,

max max || f(A(zi,04)) — ¢ (3a)|loo = max max [max f;(A(z;,0,)) — max & (5,)

i€[n] a€[m] i€[n] a€[m] |jE[d] J€[d]
~ .. 6
< max max max | f;(A(x;,0,)) — &7 | < ,
T i€[n] a€lm] jeld) |f]( ( ) | 8R)\o

max |/ () - ¢l = max

i€[n] v i€[n]

max f;(z;") — max &t
jeld el T

.. €
< () — | < ——
S e - < gy

— ik— _ - ~ikj
ma .. ) — C co — IMax ma. ma i\ — ma. Cr
max max [ f(2) — || max max je[;]{f( i) max
o €
< (z5) — &k < ——.
< oo g M o) = 271 <

The second inequality for all the three equations comes from |max, f(z) — max, g(z)| < max, |f(z) — g(x)|
and the cardinality of Cz and Cr are the same. It then follows that Cr is an (¢/(8R\2), s )-cover to F.
Thus, we have:

Noo (ﬁ,f, S;) < N (ﬁ

The proof is completed. O

F, Sﬁ).

17



	Introduction
	Related work
	Problem Formulation
	Contrastive Representation Learning
	Adversarial Contrastive Representation Learning

	Generalization Error Bounds
	Applications
	Linear Features
	Nonlinear Features

	Proofs
	Proofs of Results in Section  4
	Proofs of Results in Section 5.1
	Proofs of Results in Section 5.2

	Conclusion
	Appendix

