R-PRM: Reasoning-Driven Process Reward Modeling

Anonymous ACL submission

Abstract

Process Reward Models (PRMs) have emerged
as a promising solution to address the reason-
ing mistakes of large language models (LLMs).
However, existing PRMs typically output eval-
uation scores directly, limiting both learning
efficiency and evaluation accuracy, which is
further exacerbated by the scarcity of anno-
tated data. To address these issues, we pro-
pose Reasoning-Driven Process Reward Mod-
eling (R-PRM), which leverages the reason-
ing ability to improve process-level evaluation.
First, we leverage stronger LLMs to generate
seed data from limited annotations, effectively
activating reasoning capabilities and enabling
comprehensive step-by-step evaluation. Sec-
ond, we explore self-improvement of our PRM
through preference optimization, without re-
quiring additional annotated data. Third, we
introduce inference-time scaling to fully har-
ness our model’s reasoning potential. Exten-
sive experiments demonstrate R-PRM’s effec-
tiveness: on ProcessBench and PRMBench, it
surpasses strong baselines by 13.9 and 8.5 F1
scores. When applied to guide mathematical
reasoning, R-PRM achieves consistent accu-
racy improvements of over 8.6 points across six
challenging datasets. Further analysis reveals
that R-PRM exhibits more comprehensive eval-
uation and robust generalization capabilities,
thereby highlighting significant potential.

1 Introduction

Recently, large language models (LLMs) have
demonstrated significant progress in solving chal-
lenging mathematical problems through chain-of-
thought reasoning (Wei et al., 2023; Yang et al.,
2024; Shao et al., 2024). However, LLMs still tend
to make reasoning errors, undermining the reliabil-
ity of their solutions and hindering their capacity
to generate correct solutions.

Therefore, Process Reward Models (PRMs) have
been proposed to further improve model reason-

ing ability (Lightman et al., 2023). Unlike Out-
come Reward Models (ORMs) that only focus
on the final results, PRMs evaluate each reason-
ing step in a more fine-grained manner, enabling
them to better identify and mitigate error processes,
thereby improving both performance and general-
ization (Lightman et al., 2023; Wang et al., 2024b).

A primary challenge in PRM development arises
from data scarcity. While human annotation can
provide high-quality process-level labels (Light-
man et al., 2023), it incurs substantial costs. Al-
ternative automated approaches, such as Monte
Carlo (MC) methods that estimate step correctness
based on the probability of reaching the correct fi-
nal answer (Wang et al., 2024b,a; Luo et al., 2024b),
or methods that use stronger language models as
judges for data filtering (Zhang et al., 2025), have
shown some promise. However, these methods
either require significant computational resources
or still struggle with noise and bias, leaving the
challenge of sufficient high-quality training data
unresolved.

Moreover, existing process reward models di-
rectly provide evaluations based on the given steps.
We argue that for challenging process-level eval-
uation tasks, this direct evaluation approach con-
strains the model’s learning process and reduces
learning efficiency. Furthermore, it lacks inter-
pretability, as it fails to identify why specific steps
are incorrect, making it difficult to provide con-
structive feedback for improvement.

To address these issues, we propose a Reasoning-
Driven Process Reward Modeling (R-PRM) frame-
work, which utilizes reasoning through each given
step to conduct process-level evaluation. The
framework consists of three key components: First,
we construct seed data by prompting stronger
LLMs based on a small set of human-annotated
process-level labels and subsequently fine-tune
Qwen2.5-Math-7B-Instruct as a quick cold-start.
Through this reasoning-centric paradigm, our

model develops the capability to perform compre-
hensive and transparent analyses for evaluating
complex solution steps of challenging questions.
Second, we explore the self-evolution of our model
through preference optimization, which encourages
the model to generate reasoning trajectories that
yield correct evaluations. This approach enables
our model to improve its capabilities without requir-
ing additional annotated data. Finally, we further
exploit the reasoning capabilities of our model at
inference time, allowing multiple evaluation trajec-
tories to be sampled for a more comprehensive and
robust assessment without training.

When evaluated on ProcessBench and PRM-
Bench, our R-PRM achieves F1 score improve-
ments of 13.9 and 8.5 points, respectively, over the
strongest baseline trained on the same data. Further-
more, when used to guide policy model reasoning
via Best-of-N and Guided Search strategies, our
approach improves accuracy by average margins of
8.6 and 8.4 points over the Pass@1 baseline across
six challenging math datasets, outperforming both
majority voting and all existing PRM baselines.
Further analysis reveals our three key additional ad-
vantages: (1) comprehensive evaluation coverage
through multi-dimensional analysis, (2) enhanced
generalization capability across diverse datasets,
and (3) progressive accuracy improvement with in-
creased reasoning budgets, suggesting significant
potential for reasoning-system optimization.

2 Related Work

2.1 Mathematical Reasoning

Recent studies have demonstrated that LLMs ex-
hibit enhanced reasoning capabilities when gener-
ating step-by-step solutions before providing the
final answers (Wei et al., 2023). Building on this
insight, several pioneering works have focused on
developing large-scale mathematical datasets with
high-quality reasoning annotations for fine-tuning
of LLMs (Luo et al., 2025; Wang et al., 2023;
Shao et al., 2024; Yang et al., 2024). However,
even when models arrive at correct final answers,
their intermediate reasoning steps may contain crit-
ical errors. This discrepancy undermines the re-
liability of their problem-solving processes and
poses significant obstacles for future model im-
provements (Zheng et al., 2024).

Parallel advancements (Snell et al., 2024,
01, 2023; DeepSeek-Al, 2025; QwQ, 2023) in
inference-time have demonstrated that increasing

the computational budget to enable multiple reason-
ing attempts, coupled with majority voting mecha-
nisms for answer selection, can achieve remarkable
accuracy improvements.

2.2 Reward Modeling of Reasoning

Reward models are introduced to further improve
mathematical reasoning by enhancing training data
quality, guiding model learning (Lightman et al.,
2023; Cobbe et al., 2021; Uesato et al., 2022),
and guiding the policy model’s reasoning pro-
cess through Best-of-N and Guided-Search meth-
ods (Wang et al., 2024b; Zhang et al., 2025).
Currently, reward models are typically catego-
rized into Outcome Reward Models (ORMs) and
Process Reward Models (PRMs) (Lightman et al.,
2023). ORMs focus on providing an overall evalu-
ation based on whether the correct answer is ulti-
mately obtained (Cobbe et al., 2021). In contrast,
PRMs provide a fine-grained evaluation for each
reasoning step, and many works have shown that
they can achieve better results (Lightman et al.,
2023; Uesato et al., 2022). However, data for
PRMs is extremely scarce, and its annotation is
costly (Lightman et al., 2023; Wang et al., 2024b;
Luo et al., 2024b). Some studies explore automatic
synthesis strategies, such as using Monte Carlo
(MC) estimation methods (Wang et al., 2024b; Luo
et al., 2024b). However, MC methods incur a large
computational cost and inevitably introduce bias
and noise (Zheng et al., 2024). (Zhang et al., 2025)
propose combining MC with LLM as a judge, help-
ing to reduce noise. However, the quality and quan-
tity of step-level reasoning evaluation data are still
limited, and this remains an unsolved challenge.

3 Method

In this section, we propose a novel reasoning-
driven process-level reward modeling framework.
Its core objective is to fully leverage the inher-
ent reasoning capabilities of LLMs to evaluate
the given reasoning steps, achieved through three
stages: cold start with limited labeled data, data-
free self-evolution via preference optimization, and
inference-time-scaling.

3.1 Reasoning for Process Reward Modeling

Given a mathematical problem (), the policy model
generates a sequential chain-of-reasoning process
S ={s1, s2, ..., Sn }» Where each reasoning step s;
is generated conditioned on both the problem @

A

'
Now
t Step ‘
</

Evaluation Input

t Problem ‘

Previous Steps J

Collect response from LLM
to construct seed data

Previous Steps Analysis: This step starts by ...

Now Step Analysis: Now Step checks if 23 is ...
Verification: Is the step correct (Yes/No)? No /

’- @ — @
Calculation Analysis: The calculation in the... 4@ @p
Verification: Is the step correct (Yes/No)? Yes x J (HEHY

o I\ o

SFT Dataset

Preference l

Dataset

1
1
1
1
1
1
1
1
= 1
1
@ — @
...... g 1
Verification: Is the step correct (Yes/No)? No / - @ II 1
My 1
1
1
1
1
1
1
1
1
1
1
1
1

Evaluation Input ‘

¥

5
{ImD

¢ Sampling

...... t
Verification: Is the step correct
(Yes/No)? No

T
O @ @ gAverage

R-PRM SFT

ct

R-PRM DPO

Reward: 0.7

Figure 1: Illustration of our framework. For brevity, only partial analytical reasoning trajectories are shown. White
robots indicate initial models, while colored ones represent models after our training procedure.

and all preceding steps {s1, ..., s;i—1}. To evaluate
the quality of each reasoning step, current process-
level reward models employ a direct prediction
mechanism that assigns a score to each step. This
evaluation process can be formally expressed as:

Rz‘ = M(Q, Sy eeey 82‘>

where M (-) represents the reward model that out-
puts a scalar reward R; for the step s;. However,
evaluating reasoning steps on hard math questions
is quite challenging, and direct prediction is rela-
tively difficult for the reward model. Additionally,
scores generated directly often suffer from a lack
of explainability.

To solve these issues, we propose a reasoning-
driven process reward model G that performs two
phases within a single generation process as illus-
trated in Figure 1. First, G generates a comprehen-
sive analysis A; of each reasoning step s;, consist-
ing of multiple analytical dimensions: examining
historical reasoning steps, assessing the objective
and data sources of the current step, verifying its
coherence with preceding steps, and validating the
calculations involved. Then, G generates a natural
language judgment .J; indicating the correctness of
the step, expressed as “Yes” or “No”.

Ai = G(Q, Sy eeey Si)
Ji = G(Qa 815 -+45 Siy Az)
To help LLMs fully leverage their reasoning abil-
ities, we designed a quick cold-start phase. In this
phase, we prompt a stronger LLM with samples

from PRM8OOK to generate (Q, s1.;, 4;, J;) tu-
ples '. We retain only those evaluation analyses

'The prompt we used is listed in Appendix F

that produce a judgment consistent with human la-
bel. Subsequently, we concatenate the analysis and
judgment as the target sequence, which is then used
to fine-tune our PRM. Let Y; denote the evaluation
trajectory for s;:

V=A@ Ji ={y1,92,- -, ut}

t
Lsir = — > log p(y;]Q. 510, y1:5-1)
j=1

where y; denotes the j-th token in the output se-
quence Y;, and ¢ is the total length of the sequence.
This is equivalent to standard instruction tuning,
where the model learns to generate both the analy-
sis and the judgment in a single forward pass.

3.2 Process Reward Modeling
Meta-Optimization

Although cold start activates the model’s reason-
ing ability, it may still yield incorrect judgments.
Facing the challenge of data scarcity, we further
explore how our process reward model can self-
evolve without incorporating additional data. We
propose Meta-Optimization, which employs prefer-
ence optimization method to refine the reasoning
behavior of our R-PRM, thereby guiding it towards
making accurate judgments.

For simplicity, we implement our approach us-
ing Direct Preference Optimization (DPO, Rafailov
et al., 2024), one of the popular preference opti-
mization algorithms. DPO involves an input pair
(Y®,Y"), where Y is favored over Y. Accord-
ingly, multiple evaluation processes and their cor-
responding judgments are sampled and categorized
into two groups depending on whether the judg-

ments align with the annotated labels. We encour-
age our PRM to generate evaluation trajectory that
can yield correct judgments; therefore, we treat
consistent trajectories as Y and inconsistent ones
as Y to construct preference pairs. We copy and
freeze R-PRM-SFT as the reference policy 7. and
optimize it using the following loss function:

Lppo (o Trer) = —E gz yw yiyp
ro(Y" | 2) ro(Y! | 2))}
10 g 10 — < — 10 -7 1 N
[g <5 B (V0 [2) OB (VT)

3.3 Inference Time Scaling Strategy

Leveraging R-PRM’s capability to generate diverse
evaluation trajectories, we explore the scalable in-
ference strategy that enhances evaluation perfor-
mance without training. During inference, for each
reasoning step s;, we sample K independent ana-
lytical processes as follows:

(AW gy = q(Q, 51, ...

3 K3

,Si),k? S [I,K]

where each A% represents a distinct analytical
reasoning process and J(¥) is the corresponding
judgment. This multi-trajectory approach helps
mitigate potential reasoning inconsistencies and
stochastic variations inherent in LLMs. To aggre-
gate multiple evaluations, we calculate the average
probability of “Yes” judgments (using softmax with
“No” judgments) as the reward:

Q, S1yeeey Sz,AEk))

K
1 Z (k) _ cnpner
Ri = E 2 P(JZ = “Yes

4 Experiment

4.1 Experiment Settings

Tasks and Benchmarks: To validate the accu-
racy of our method in process reward modeling,
we conduct evaluations on two challenging bench-
marks ProcessBench (Zheng et al., 2024) and PRM-
Bench (Song et al., 2025).

* ProcessBench (Zheng et al., 2024) assesses a
model’s ability to detect the first incorrect step
in LLM-generated mathematical solutions. It
consists of 3,400 problems of varying diffi-
culty, each paired with a step-by-step solution
and human annotation of the earliest error.

* PRMBench (Song et al., 2025) constitutes
a comprehensive benchmark for evaluating
PRMs, with particular emphasis on granular
error diagnosis. It assesses evaluation capabil-
ities across three error dimensions: Simplicity,

Soundness, and Sensitivity, which are further
divided into nine specific aspects 2.
Furthermore, we validate the effectiveness of
our reward model by employing it to guide two
distinct test-time scaling methodologies for the pol-
icy model: Best-of-N and Greedy Guide Search.
Performance is evaluated on MATHS500 (Lightman
et al., 2023), Minerva Math (Lewkowycz et al.,
2022), OlympiadBench (He et al., 2024), College
Math (Tang et al., 2024) 3 AIME24, and AMC23.
Consistent with previous work (Zhang et al., 2025),
we used Qwen2.5-7B-Instruct to generate eight can-
didate steps with temperature 7=1.0.

* Best-of-N: selects the response with the high-
est score among N candidates, as evaluated
by a PRM.

* Greedy Guide Search: at each step, the
model generates N candidate continuations
and selects the one with the highest score, as
evaluated by the PRM, to extend the reason-
ing. This process repeats until the solution is
complete.

Baselines: We selected the following strong pro-
cess reward models as baselines.

* Math-Shepherd (Wang et al., 2024b): Auto-
matically obtaining the probability of reach-
ing the correct solution as step labels based
on Monte Carlo Tree Search (MCTYS).

* Math-PSA (Wang et al., 2024a): combining
existing automatic annotation techniques (Luo
et al., 2024a) and integrating data from Math-
Shepherd and PRM80OK datasets.

* RLHFlow-DeepSeek/Mistral (Dong et al.,
2024): Similar to Math-Shepherd, but trained
with iterative DPO.

* Skywork-PRM-7B (o1 Team, 2024): based
on Qwen2.5-Math-Instruct and recently re-
leased by Skywork.

¢ ReasonEval-7B (Xia et al., 2025): Evaluates
mathematical problem-solving step by step,
assessing validity and redundancy.

* Llemma-PRMS800K-7B (Sun et al., 2024):
Trained exclusively on PRM80OK from levels
1 through 3.

* Qwen2.5-Math-7B-PRMS800K (Zheng et al.,
2024): Qwen2.5-Math-7B-Instruct fine-tuned
on the PRM80OK dataset.

Implementation details: We prompt LLaMA3.3-

2See Appendix B for detailed description.

*Due to the large size of OlympiadBench and College
Math, we randomly select 200 samples from each for evalua-
tion.

MODEL GSMSK MATH OLYMPIADBENCH OMNIMATH Avg, F1
error correct F1 error correct F1 error correct F1 error correct F1
LLM-as-judge, Proprietary language models
GPT-40* 70.0 91.2 79.2 54.4 76.6 63.6 458 58.4 514 452 65.6 53.5 61.9
ol-mini* 88.9 97.9 93.2 83.5 95.1 88.9 80.2 95.6 872 748 91.7 82.4 87.9
LLM-as-judge, Open-source language models
Llama-3.3-70B-Instruct 71.0 97.9 82.3 42.8 95.3 59.0 307 94.1 46.3 27.4 88.8 41.9 57.4
Qwen2.5-Math-72B-Instruct 51.7 95.9 67.2 36.9 94.3 53.0 18.9 96.5 31.6 19.8 95.4 32.7 46.1
Qwen2.5-72B-Instruct 62.8 97.4 76.4 46.1 93.1 61.7 37.7 929 53.6 37.5 87.1 52.5 61.1
PRMs
Math-Shepherd-7B* 324 91.7 479 18.0 82.0 29.5 15.0 71.1 24.8 14.2 73.0 23.8 31.5
Math-PSA-7B 48.3 88.1 62.4 29.5 72.7 41.9 20.7 65.8 31.5 154 68.9 25.2 40.3
RLHFlow-Mistral-8B* 33.8 99.0 50.4 21.7 722 334 8.2 43.1 13.8 9.6 452 15.8 28.4
RLHFlow-DeepSeek-8B* 242 98.4 38.8 21.4 80.0 33.8 10.1 51.0 16.9 10.9 51.9 16.9 26.6
Llemma-PRM800K-7B 36.7 71.0 48.4 39.2 47.8 43.1 33.1 25.1 28.5 354 315 334 38.4
Skywork-PRM-7B* 61.8 82.9 70.8 438 62.2 53.6 17.9 31.9 229 14.0 41.9 21.0 42.1
ReasonEval-7B 26.1 95.3 41.0 35.7 71.6 48.9 27.5 55.2 36.7 27.0 60.6 374 41.0
Qwen2.5-Math-7B-PRM800K* 53.1 95.3 68.2 48.0 90.1 62.6 357 87.3 50.7 29.8 86.1 443 56.5
% R-PRM-7B-SFT 66.2 92.7 77.2 60.3 88.2 71.6 48.6 77.3 59.6 40.1 75.5 523 65.2
% R-PRM-7B-DPO 72.0 91.7 807 712 83.5 769 60.2 67.8 638 555 65.6 60.1 70.4

Table 1: Performance on ProcessBench. % indicates our models. Results marked with * are from Zhang et al.. Bold
indicates the best within PRMs. For LLM-as-judge baselines, we sample 10 trajectories and apply majority voting
to align with our method. The correct and error indicate accuracy on correct and incorrect samples, respectively.

Model Name Simplicity Soundness Sensitivity Overall
NR. NCL. Avg. ES SC. DC. CI Avg. PS DR. MS. Avg.
LLM-as-judge, Proprietary language models
GPT-40* 57.0 62.4 59.7 720 69.7 707 71.1 709 625 657 99.2 75.8 66.8
ol-mini* 65.6 63.7 646 745 677 738 723 72.1 61.8 648 100.0 755 68.8
PRMs
Math-Shepherd-7B* 44.0 50.3 47.1 494 445 413 477 457 472 486 86.1 60.7 47.0
Math-PSA-7B 47.6 55.1 51.3 56.5 494 47.1 54.2 51.8 51.7 54.1 88.9 64.9 52.3
RLHFlow-Mistral-8B* 46.1 47.3 46.7 56.6 551 544 638 575 515 562 97.9 68.5 54.4
RLHFlow-DeepSeek-8B* 46.4 489 476 557 550 532 662 575 49.0 554 99.8 68.1 54.2
Llemma-PRM800k-7B* 49.3 53.4 514 564 47.1 46.7 533 509 51.0 535 93.6 66.0 52.0
Skywork-PRM-7B* 35.7 41.2 384 367 29.1 306 344 327 368 374 88.8 54.3 36.2
ReasonEval-7B* 61.0 50.1 55.5 62.1 659 615 660 639 556 580 99.5 71.0 60.0
Qwen2.5-Math-7B-PRM800K ~ 48.6 47.8 482 62.1 594 587 685 622 529 64.0 99.8 72.2 58.3
% R-PRM-7B-SFT 52.7 64.7 58.7 70.1 62.7 63.4 69.5 66.4 61.4 67.4 98.3 75.7 64.9
% R-PRM-7B-DPO 522 58.2 552 721 691 689 750 712 612 695 99.1 76.6 66.8

Table 2: Performance on PRMBench. % represents the models we trained. Results marked with * come from Zhang

et al. Bold text denotes the best results within PRM.

70B-Instruct to generate four evaluation trajecto-
ries per PRM80OK case, yielding approximately
289k SFT and 269k DPO samples. Qwen2.5-Math-
7B-Instruct is fine-tuned for one epoch with batch
size 128 and learning rates of 5e-6 (SFT) and 5e-7
(DPO). We reserve 20k samples for validation and
select the checkpoint with the lowest validation
loss. Unless stated otherwise, results are reported
using ten evaluation trajectories per step.

4.2 Experiment Results

R-PRM achieves high evaluation accuracy effi-
ciently. As detailed in Table 1 and Table 2, our
SFT approach demonstrates strong performance,

achieving F1 scores of 65.2 on ProcessBench
and 64.9 on PRMBench. These results signifi-
cantly outperform state-of-the-art baselines, includ-
ing Qwen2.5-Math-7B-PRM800K (the strongest
PRMS800K-based method), by 8.7 and 6.6 points,
respectively. The model’s capabilities are further
elevated through meta-optimization, leading to re-
markable F1 scores of 70.4 on ProcessBench and
66.8 on PRMBench. These improvements high-
light the potential of our reasoning driven evalua-
tion paradigms and our training framework.

Impressively, R-PRM-DPO achieves F1 score
improvements of 13.0 points over LLaMA3.3-70B-
Instruct (used for generating our synthetic cold-

Olympiad College Minerva

Setting AIME24 AMC23 MATH Bench MATH MATH Avg.
pass@1 11.2 47.8 73.0 38.0 38.6 37.2 41.0
major@8 20.0 57.5 79.6 47.0 41.5 427 48.0
pass@8(Upper Bound) 333 82.5 88.8 58.5 47.5 57.7 61.4
Math-Shepherd-7B 133 52.5 74.6 38.5 36.5 41.2 42.8
Math-PSA-7B 6.7 57.5 79.8 42.5 41.0 39.3 44.5
RLHFlow-PRM-Mistral-8B 10.0 57.5 73.4 375 38.0 41.2 429
RLHFlow-PRM-DeepSeek-8B 13.3 52.5 74.8 39.5 37.0 40.8 43.0
Llemma-PRM800K-7B 133 57.5 73.8 40.0 36.5 38.2 43.2
Skywork-PRM-7B 10.0 57.5 77.8 41.5 39.0 43.4 44.9
ReasonEval-7B 3.3 55.0 73.0 375 355 37.9 40.4
Qwen2.5-Math-7B-PRM800K 23.3 45.0 78.2 42.0 35.5 38.6 43.8
% R-PRM-7B-DPO 16.7 70.0 80.0 46.5 395 43.4 49.4

Table 3: The performance of PRM guided greedy search with policy model Qwen2.5-7B-Instruct.

start data) and 8.5 points over GPT-40. Collectively,
these findings directly demonstrate that our method
extends beyond simple distillation and maximizes
the utility of human-annotated data.

We also conducted preliminary experiments to
validate continuous self-evolution through iterative
training. Results demonstrate that iterative DPO
further effectively enhances our model’s capabili-
ties, revealing significant potential of our method.
Please refer to Appendix A for more details.

R-PRM provides comprehensive evaluations in
multiple dimensions. In rigorous benchmark-
ing with PRMBench, R-PRM-DPO demonstrates
advantages over Qwen2.5-Math-7B-PRMS800K,
achieving improvements of 7.0, 9.0, and 4.4 points
across the three evaluation dimensions. Notably, it
surpasses GPT-4o in both soundness and sensitivity
metrics, establishing itself as a more comprehen-
sive assessment paradigm.

R-PRM especially excels in soundness evalua-
tion through its reasoning paradigm for empirical
validity, step consistency, and domain consistency.
This structural evaluation paradigm enables supe-
rior detection of logical errors by analyzing each
reasoning step in context of previous ones. More-
over, R-PRM even outperforms ol-mini in prereq-
uisite sensitivity, effectively identifying reasoning
steps that appear superficially valid but contain
logical flaws—precisely the type that conventional
evaluation systems frequently fail to detect.

R-PRM demonstrates superior generalization
capability. As shown in Table 1, all listed open-
source PRMs, except Skywork-PRM-7B for which
the training data sources is unknown, have been
trained exclusively on GSM8K and MATH. Among
these PRMs, only Math-PSA-7B and Qwen2.5-
Math-7B-PRMS800K achieve F1 scores above 60 on

certain ProcessBench subsets, while others perform
relatively poorly, particularly on out-of-domain
datasets such as OmniMATH and OlympiadBench.
By contrast, R-PRM not only performs well on the
MATH dataset but also achieves F1 scores above
60 on all out-of-domain datasets. This suggests that
R-PRM acquires a generalizable reasoning pattern,
enabling it to perform well across datasets with
varying difficulty.

R-PRM guides policy model to reach correct an-
swer effectively. As shown in Table 3 and Table 4,
our method achieves 8.4 and 8.6 average accu-
racy improvements over the Pass@1 baseline in the
Guide Search and Best-of-N settings, respectively.
It also achieves state-of-the-art performance by out-
performing Qwen2.5-Math-7B-PRMS800K by 5.6
and 1.9 points, and surpassing Majority Voting in
both settings. The experimental results directly
demonstrate that our method’s accurate reward eval-
uation at each reasoning step effectively guides the
policy model to arrive at correct solutions. Fur-
thermore, we believe our approach holds greater
potential for integration with backtracking-enabled
strategies like Monte Carlo Tree Search and multi-
candidate strategies such as Beam Search, which
further boost the performance of policy model.

S5 Analysis

In this section, we present an analysis of
our model’s impressive data efficiency, efficient
inference-time scaling, and robustness.

5.1 Effective Data Scaling

Figure 2 visualizes the F1 performance on Process-
Bench versus the data scale. With 12.8k training
samples, our R-PRM already surpasses most open-
source PRMs. Notably, with only 64k samples, R-

Olympiad College Minerva

Setting AIME24 AMC23 MATH Bench Math MATH Avg.
pass@1 11.2 47.8 73.0 38.0 38.6 37.2 41.0
maj@8 20.0 57.5 79.6 47.0 41.5 427 48.0
pass@8 333 82.5 88.8 58.5 47.5 57.7 61.4
Math-Shepherd-7B 16.7 425 76.0 42.0 37.0 39.3 423
Math-PSA-7B 20.0 55.0 80.8 47.5 39.5 40.1 47.2
RLHFlow-Mistral-8B 10.0 55.0 76.8 42.0 39.5 37.1 43.4
RLHFlow-DeepSeck-8B 13.3 57.5 76.2 40.0 39.0 39.7 443
Llemma-PRM800K-7B 10.0 525 76.6 425 39.0 427 439
Skywork-PRM-7B 16.7 55.0 81.2 44.0 40.5 44.5 47.0
ReasonEval-7B 6.7 55.0 75.2 41.0 40.0 40.4 431
Qwen?2.5-Math-7B-PRM800K 13.3 57.5 80.0 44.5 43.5 43.0 47.7
% R-PRM-7B-DPO 20.0 62.5 82.2 48.0 41.0 44.1 49.6

Table 4: Performance comparison on the Best-of-8 strategy of the policy model Qwen2.5-7B-Instruct.

70- *
*
1)
60+ © LLaMA3.3-70B-Instruct
x4
o ® Qwen2.5-PRM800K
S s0-
n
E ’ Math-Shepherd
o] B RLHFlow-DeepSeek
40-
A V RLHFlow-Mistral
A Llemma-PRM800OK
’ $8 Qwen2.5-PRM800K
30- @ ReasonEval
.v % R-PRM
i i i i i i i '
0 100 200 300 400 500 600 700

Training Data Amount (K)

Figure 2: Average F1 score on ProcessBench with dif-
ferent training data scales.

PRM outperforms Qwen2.5-Math-7B-PRM800K
(trained on 265k samples) by 3.6 points. While
further scaling the training data to the full set of
285k samples yields continued improvements, cul-
minating in an F1 score of 65.2,

Our proposed meta-optimization, without requir-
ing additional labeled data, further boosts perfor-
mance to an impressive 70.4 F1 score. Remarkably,
R-PRM also significantly surpasses the Llama3.1-
70B-Instruct model used for cold-start data con-
struction, demonstrating our method is not merely
a distillation of the teacher model.

5.2 Inference-Time-Scaling

We conducted an investigation into how R-PRM’s
performance scales with increasing inference-time
budgets. As shown in Figure 3, R-PRM demon-
strates consistent performance gains on Process-
Bench as the number of evaluation trajectories in-
creases. Notably, scaling from 2 to 4 samples leads
to a substantial F1 improvement from 62.8 to 67.6
on ProcessBench. Moreover, increasing the num-
ber of evaluation trajectories consistently yields
performance improvements across all four datasets,

2.4
—e————0° GSMSK
80 Pl - s
= ——— a "MATH
72.2 o -7 ¢”’_-—
- - .
00 57T et ey 108 T hernge
S 7067_.4__——" 67.6 ‘
S 2
»n
62/
i 61.3 " 60.8
60 he P ¢ OmniMATH
>——"
-
-
-
= 4
-
51.0_ —==""
30
50
1 2 4 8 16 32

Number of sampling trajectories

Figure 3: Efficient scaling inference-time compute on
ProcessBench. Results for R-PRM-DPO.

which demonstrates the robustness of our scaling
strategy and highlights a unique advantage of our
reasoning-driven approach.

5.3 Threshold Robustness in Model
Evaluation

During evaluations of ProcessBench and PRM-
Bench, we adopt a fixed threshold of 0.5 for binary
classification to determine whether each step is cor-
rect. We further analyze the model’s sensitivity
to threshold variations. As shown in Figure 4, R-
PRM demonstrates strong robustness to threshold
variation, with minimal performance fluctuations
on ProcessBench. In contrast, Qwen2.5-Math-7B-
PRMS8O00K exhibits greater sensitivity, showing a
noticeable rightward shift in its performance curve
on ProcessBench.

On the more challenging out-of-domain test sub-
set OlympiadBench, our method maintains its ro-
bustness to threshold variations, while Qwen2.5-
Math-7B-PRMS800K exhibits a larger threshold
shift, indicating its tendency to misclassify incor-
rect solutions as correct. This demonstrates that
our method has better generalization capability,

I Qwen2.5-Math-7B-PRM800K

[R-PRM-DPO

MATH

80 76.9 66.9
60
e
3
@ 40
-
iy
20
0
0.2 0.3 0.4 0.5 0.6 0.7 0.8
Threshold

OlympiadBench

80
64.0 58.2

0]J‘ii'IIIIIII

02 03 04 05 06 07 08

Threshold

D
o

N
o

N
o

Figure 4: Average F1 score on ProcessBench at different thresholds, with the overall performance on the left and

performance on the OlympiadBench dataset on the right.

Problem: An emirp is an integer that, when its digits are written in reverse order, is a prime number. For example, 73 is
an emirp because 37 is prime. What is the smallest two-digit prime number that is NOT an emirp?

Solution: ...

Step7: Continue to the next smallest two-digit prime number. 19 is prime.
Step 8: Check if 23 is an emirp. Reverse the digits of 23: 32. Check if 32 is prime: No, 32 is not prime (divisible by 2).
Since 23 is a prime number and its reverse, 32, is not a prime number, 23 is not an emirp. ...

Qwen2.5-Math-7B-PRM800K correctness score: 0.8594

R-PRM: Analysis: Previous Steps Analysis: ...

Calculation Analysis:

Verification: Is the step correct (Yes/No)? No

...... Upon reviewing, the mistake in the analysis is assuming 23 is the answer without
properly checking if there are smaller primes that are not emirps.
regarding the thorough checking of primes and their reversals, the conclusion that 23 is the smallest such prime
without properly validating against all primes in sequence is premature.

Conclusion: The Now Step incorrectly concludes that 23 is the smallest two-digit prime number

...... Given the oversight in the analysis

R-PRM (Majority Voting) score: 0.0547

Figure 5: A case study from ProcessBench MATH dataset. Red text denotes the error step and the scores of other
models, and the blue text highlights our model’s critique of the error and our score for that step.

maintaining more accurate evaluation even when
problem types and domains change. For detailed
performance analysis of scores and thresholds on
PRMBench, please refer to the Appendix C.

5.4 Case Study

As shown in Figure 5, the solution erroneously
skipped verifying the number 19 in Step 7 and di-
rectly proceeded to check number 23 in Step 8.
Unfortunately, strong baseline Qwen2.5-Math-7B-
PRMS8OOK failed to detect the omission, mistak-
enly assigning high reward scores to Step 8 (0.86).
In contrast, R-PRM first analyzed both the pre-
vious and current steps. Based on this analysis,
R-PRM concluded that the task required verifying
the numbers in ascending order, which showcases
its advanced logical reasoning capabilities. Subse-
quently, R-PRM resumed the reasoning process for
Step 7 to verify the correctness of number 19, thus
identifying the discrepancy between its own result
and the answer in Step 8. Through this reasoning
process, R-PRM assigned a reward score of 0.05
to Step 8, successfully detecting the error. Please

refer to the Appendix D for more cases.

6 Conclusion

In this paper, we present Reasoning-Driven Pro-
cess Reward Modeling (R-PRM), a novel frame-
work that advances the process reward modeling of
mathematical reasoning. Our framework consists
of three components. First, we leverage stronger
LLMs to construct seed data, enabling our model to
perform a comprehensive evaluation process. Sec-
ond, we use preference optimization to enhance per-
formance without requiring additional annotated
data. Third, we introduce inference-time scaling
to fully harness the model’s reasoning capabili-
ties. Extensive experiments demonstrate that our
method achieves significant performance improve-
ments on ProcessBench and PRMBench, while also
effectively guiding LLM reasoning. Further anal-
ysis shows that R-PRM exhibits more comprehen-
sive, robust, and generalizable evaluation capabili-
ties, as its performance continues to improve with
increased inference, highlighting its substantial po-
tential.

Limitations

Due to computational resource constraints, we have
not yet verified our approach on larger models such
as 70B, despite extensive experiments demonstrat-
ing its effectiveness on 7B models. We hypothesize
that larger models, given their enhanced reasoning
capabilities, could achieve higher modeling accu-
racy when combined with our methodology. Ad-
ditionally, while we have tested popular inference
strategies like Best-of-N and Guided Search, our
exploration of advanced search algorithms remains
limited. Sophisticated methods such as Monte
Carlo Tree Search (MCTS) and Beam Search re-
main underexplored, although they could poten-
tially better leverage the characteristics of PRM
and yield improved generation results.

References

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

DeepSeek-Al 2025. Deepseek-rl: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang,
Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. 2024. Rlhf work-
flow: From reward modeling to online rlhf. Preprint,
arXiv:2405.07863.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. 2024. Olympiad-
bench: A challenging benchmark for promoting agi
with olympiad-level bilingual multimodal scientific
problems. arXiv preprint arXiv:2402.14008.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843—
3857.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, Yansong Tang, and Dongmei

Zhang. 2025. Wizardmath: Empowering mathemat-
ical reasoning for large language models via rein-
forced evol-instruct. Preprint, arXiv:2308.09583.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei
Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav
Rastogi. 2024a. Improve mathematical reasoning in
language models by automated process supervision.
Preprint, arXiv:2406.06592.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024b. Improve mathemat-
ical reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

OpenAl Ol1. 2023. Learning to reason
with 1lms. https://openai.com/index/
learning-to-reason-with-11lms/. Accessed:

2025-02-08.

Skywork ol Team. 2024. Skywork-ol open series.
https://huggingface.co/Skywork.

QwQ. 2023. Qwq: Reflect deeply on the boundaries of
the unknown. https://qwenlm.github.io/blog/
gwq-32b-preview//. Accessed: 2025-02-08.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2024. Direct preference optimization: Your lan-

guage model is secretly a reward model. Preprint,
arXiv:2305.18290.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou,
and Yu Cheng. 2025. Prmbench: A fine-grained
and challenging benchmark for process-level reward
models. Preprint, arXiv:2501.03124.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang
Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. 2024. Easy-to-hard generalization: Scalable
alignment beyond human supervision. Preprint,
arXiv:2403.09472.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and
Furu Wei. 2024. Mathscale: Scaling instruction
tuning for mathematical reasoning. arXiv preprint
arXiv:2403.02884.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solving

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2405.07863
https://arxiv.org/abs/2405.07863
https://arxiv.org/abs/2405.07863
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://qwenlm.github.io/blog/qwq-32b-preview//
https://qwenlm.github.io/blog/qwq-32b-preview//
https://qwenlm.github.io/blog/qwq-32b-preview//
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2501.03124
https://arxiv.org/abs/2501.03124
https://arxiv.org/abs/2501.03124
https://arxiv.org/abs/2501.03124
https://arxiv.org/abs/2501.03124
https://arxiv.org/abs/2403.09472
https://arxiv.org/abs/2403.09472
https://arxiv.org/abs/2403.09472
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275

math word problems with process- and outcome-
based feedback. Preprint, arXiv:2211.14275.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen
Zhu, Anjie Liu, Ziqgin Gong, Yan Song, Lei Chen,
Lionel M. Ni, Linyi Yang, Ying Wen, and Weinan
Zhang. 2024a. Openr: An open source framework
for advanced reasoning with large language models.
Preprint, arXiv:2410.09671.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. 2024b. Math-shepherd: Verify and reinforce
llms step-by-step without human annotations. In
Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume

1: Long Papers), pages 9426-9439.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. Preprint,
arXiv:2212.10560.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and
Pengfei Liu. 2025. Evaluating mathematical reason-
ing beyond accuracy. Preprint, arXiv:2404.05692.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024. Qwen2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. Preprint, arXiv:2409.12122.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025. The lessons of
developing process reward models in mathematical
reasoning. Preprint, arXiv:2501.07301.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024. Processbench:
Identifying process errors in mathematical reasoning.
Preprint, arXiv:2412.06559.

A Iterative DPO Further Boosts
Performance

Surprisingly, our method can further improve per-
formance through iterative online DPO. Specif-
ically, we leverage the PRM800OK dataset, sam-
pling four trajectories per step using R-PRM-DPO.
Following similar data process procedure, we con-
struct 30k preference examples (with 2k reserved
for validation). Subsequently, we performed one

10

85

R-PRM-SFT
s R-PRM-DPO

801 EEE R-PRM-DPO-Iterl

78.8

75

704

F1 Score

65 1

60 1

554

50

GSM8K MATH OlympiadBench OmniMATH

Datasets

Figure 6: R-PRM Performance Comparison On Process-
Bench Datasets.

epoch of DPO training using this collected dataset,
resulting in R-PRM-DPO-Iter1.

As presented in Figure 6, R-PRM-DPO-Iterl
consistently demonstrates improved accuracy
across all evaluated benchmark datasets compared
to its predecessors (R-PRM-SFT and R-PRM-
DPO). For instance, this process resulted in an
average 2.2-point performance improvement on
ProcessBench. Notably, a 3.4-point improvement
is observed on OlympiadBench, where R-PRM-
DPO-Iter1 achieved 67.2, up from R-PRM-DPO’s
63.8. This indicates that R-PRM enhanced its rea-
soning capabilities through iterative training, fur-
ther mastering the evaluation of more challenging
problems.

B Detailed Description of PRMBench
Subcategories
* Non-Redundancy (NR): Evaluates the

model’s ability to identify and eliminate
unnecessary steps within the reasoning pro-
cess, ensuring efficiency without sacrificing
correctness.

Non-Circular Logic (NCL): Assesses
whether the model can detect circular reason-
ing, where conclusions are reintroduced as
premises, leading to logical loops.

Empirical Soundness (ES): Measures the
model’s capability to identify and reject rea-
soning steps that contradict established facts
or real-world knowledge.

https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2410.09671
https://arxiv.org/abs/2410.09671
https://arxiv.org/abs/2410.09671
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2404.05692
https://arxiv.org/abs/2404.05692
https://arxiv.org/abs/2404.05692
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2412.06559
https://arxiv.org/abs/2412.06559
https://arxiv.org/abs/2412.06559

¢ Step Consistency (SC): Evaluates whether
the reasoning steps maintain consistency with
each other, ensuring that all steps logically
flow from one to the next.

* Domain Consistency (DC): Assesses the
model’s ability to apply domain-specific
knowledge correctly, avoiding the misuse of
concepts or theories across different domains.

¢ Confidence Invariance (CI): Tests whether
the model maintains appropriate confidence
levels throughout the reasoning process, espe-
cially when errors are detected or uncertain-
ties arise.

Prerequisite Sensitivity (PS): Evaluates
whether the model detects missing prerequi-
sites or conditions essential for valid reason-
ing, ensuring the completeness of the logic.

Deception Resistance (DR): Measures the
model’s ability to detect and reject mislead-
ing information that might appear correct but
contains subtle errors.

Multi-Solution Consistency (MS): Assesses
the model’s ability to handle multiple valid
solutions to the same problem, ensuring con-
sistency across different reasoning paths.

C Threshold Robustness on PRMBench

As illustrated in Figure 7, the experimental results
of PRMBench show that R-PRM has significant
robustness advantages, while Qwen2.5-Math-7B-
PRMB800K exhibits a performance gap of 8.2 points
between the 0.5 threshold and its optimal perfor-
mance.

70

B R-PRM-DPO
Bl Qwen2.5-Math-7B-PRM800K

Max: 66.5%

0558EiIIIIII

Threshold

PRMBench Overall Score

Figure 7: PRMBench Overall Score with Different
Threshold

11

D Additional Case

As shown in this case, both Qwen2.5-Math-PRM-
7B and Qwen2.5-Math-7B-PRMS800K fail to de-
tect the calculation error in this step, yet they show
high confidence in their judgments with their cor-
rectness scores around 0.9. On the other hand, our
R-PRM shows its strong ability by explaining the
step, checking the calculation, and finding the error,
with a final score of around 0.3.

E Used Scientific Artifacts

Below are the scientific artifacts used in our work.
For the sake of ethics, our use of these artifacts is
consistent with their intended use.

* Transformers (Apache-2.0 license), a frame-
work to facilitate downloading and training
state-of-the-art pretrained models.

* trl (Apache-2.0 license), a full stack library
that provides a set of tools to train transformer
language models with Reinforcement Learn-
ing. The library is built on top of the Trans-
formers library.

* PRMSOOK(MIT license), a large-scale dataset
proposed by OpenAl, containing 800,000 step-
level correctness labels for model-generated
solutions to problems from the MATH dataset.

* PRMBench(Apache-2.0 license), a benchmark
designed to evaluate the ability of PRMs
to identify error-types in the solution pro-
cess, consisting of 6,216 fine-grained data in-
stances.

F Prompt for Construction Data

Problem: Suppose ¢ is a positive integer such that lem[12, ¢]* = (12¢)?. What is the smallest possible value for ¢? \

Solution:

To solve this problem, we can start by using the properties of the least common multiple (LCM). Given: lcm[12, t]3 =
(12t)2.

Step 1: Take the cube root of both sides of the equation. {/lem[12,¢]> = {/(12¢)2. This simplifies to: lem[12,¢] =
124273,

...Step 31: We can see that 13824 = 23042, so t = 48 satisfies the original equation. Therefore, the smallest possible
value for ¢ is .

Qwen2.5-Math-7B-PRM800K score: 0.8711 \

R-PRM (Ours): Analysis: Previous Steps Analysis: Step 1: This step states the problem and sets up the equation to be
solved, which is lem[12, t]* = (12t)2.This step is a correct restatement of the problem

Calculation Analysis: The calculation involves taking the cube root of (12t)2. By the properties of exponents, </(12t)2 =
/122 .42 = 122/3 . t2/3_ This is because the cube root of a product can be expressed as the product of the cube roots,
and the cube root of a power can be expressed as that power divided by 3. Therefore, the correct simplification should be
lem[12, 2] = 12%/% . £2/3 not 12t?/? as stated in the Now Step.

Conclusion: The Now Step incorrectly simplifies the expression {/(12¢)? to 12t%/3 The correct simplification should be
12%/3 . ¢2/3 which is different from what is presented. Therefore, the Now Step contains an error.

Verification: Is the step correct (Yes/No)? No"

R-PRM score: 0.2992 |

Figure 8: A case study from MATH subset of ProcessBench. Red text denotes the error step and the scores of other
models, and the blue text highlights our model’s critique of the error and our score for that step.

12

You are an excellent math teacher. Please verify the correctness of the Now Step.

You first need to analyze the Now Step and the Previous Steps and then summarize based on your analysis.

Analysis:

You need to analyze the following aspects.

Previous Steps Analysis: You need to analyze the Previous Steps step by step. For each step, you need to first explain
what the current step is doing, then you try to find any error in the current step.

Now Step Analysis: You first need to explain what the Now Step is doing, and then point out which part of the Question
it is trying to solve or which part of the information it states.

Data Source Analysis: First you need to find out what data are used in the Now Step, and then you need to determine
whether the source of the data is reasonable and correct. When you judge whether the source of a data is reasonable and
correct, you need to specify the specific source of this data: such as which part of the question, or which content of the
previous step; and then determine the source and current use is consistent, the Now Step is used correctly.

Consistency Analysis: You need to check that the Now Step is consistent with the contents of the Previous Steps, and
then you need to check that all the information inside the Now Step is consistent.

Calculation Analysis: If the Now Step involves any calculations, such as addition, subtraction, multiplication, division,
equations, modulo operations, etc., you will first need to perform a check on the calculation, such as a reverse operation, to
see if the calculation was done correctly, and then analyze the results of your check to see if there was an error in the
calculation.

Conclusion:

Please verity the correctness of the Now Step based on your analysis, if there is any error in the Now Step then the Now Step
is wrong and vice versa the Now Step is correct. At the end of the Conclusion, when you give your final answer, write it in
the form "Verification: Is the step correct (Yes/No)? X", where X is either Yes or No.

Question: [Math Problem]

Previous Steps: [Previous Steps]

Now Step: [Current Step]

Please carefully analyze the correctness of the Now Step.
Reply:

Table 5: The Prompt to Construct Data

13

	Introduction
	Related Work
	Mathematical Reasoning
	Reward Modeling of Reasoning

	Method
	Reasoning for Process Reward Modeling
	Process Reward Modeling Meta-Optimization
	Inference Time Scaling Strategy

	Experiment
	Experiment Settings
	Experiment Results

	Analysis
	Effective Data Scaling
	Inference-Time-Scaling
	Threshold Robustness in Model Evaluation
	Case Study

	Conclusion
	Iterative DPO Further Boosts Performance
	Detailed Description of PRMBench Subcategories
	Threshold Robustness on PRMBench
	Additional Case
	Used Scientific Artifacts
	Prompt for Construction Data

