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a b s t r a c t

Ballistics (the linkage of bullets and cartridge cases to weapons) is a common type of evidence encountered 
in criminal cases around the world. The interest lies in determining whether two bullets were fired using 
the same firearm. This paper proposes an automated method to classify bullets from surface topography 
and Land Engraved Area (LEA) images of the fired pellets using machine and deep learning methods. The 
curvature of the surface topography was removed using loess fit and features were extracted using 
Empirical Mode Decomposition (EMD) followed by various entropy measures. The informative features 
were identified using minimum Redundancy Maximum Relevance (mRMR), finally the classification was 
performed using Support Vector Machines (SVM), Decision Tree (DT) and Random Forest (RF) classifiers. 
The results revealed a good predictive performance. In addition, the deep learning model DenseNet121 was 
used to classify the LEA images. DenseNet121 provided a higher predictive performance than SVM, DT and 
RF classifiers. Moreover, the Grad-CAM technique was used to visualise the discriminative regions in the 
LEA images. These results suggest that the proposed deep learning method can be used to expedite the 
linkage of projectiles to firearms and assist in ballistic examinations. 

In this work, the bullets that were compared were air pellets fired from both air rifles and a high velocity 
air pistol. Air guns were used to collect the data because they were more accessible than other firearms and 
could be used as a proxy, delivering comparable LEAs. The methods developed here can be used as a proof- 
of-concept and are easily expandable to bullet and cartridge case identification from any weapon.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Exploring linkages between fired bullets and/or cartridge cases 
recovered from a scene with each other or with exemplar bullets/ 
cartridge cases from a known (recovered) weapon can be very 
beneficial to an investigation where firearms have featured. The 
barrel of a gun leaves distinctive striations, or contour variations, in a 
fired bullet. If a bullet is not destroyed and still bears these striations, 
then they can be used to assess whether two bullets were fired by 
the same firearm and, if a firearm is recovered, explore whether the 
bullet was fired by that particular firearm. The sections of the bullet 
that bears the striations are called the engraved area. The section of 
the engraved area that makes high and low contact points inside the 
barrel are called Land Engraved Area (LEA) and Groove Engraved 
Area (GEA) respectively [1], Fig. 1.

Traditionally, bullet signatures are analysed and compared by an 
expert using a comparison microscope [3,4]. This assessment is 

subjective and time consuming [3,5,6]. More recently, machine 
learning is seeing a rapid development in image comparison pro
blems outside of forensic science but is increasingly attracting at
tention within the forensic science field.

The evaluation of bullet signatures is based on 3D scans of the 
LEA. The GEA tend to be less discriminative [1]. Some authors use the 
whole image while others use the topography of a representative 
line segment of the LEA. In either case, in a second step, features are 
extracted to which classification algorithms could be applied.

Banno et al. [7] developed a neural network to identify the simi
larity between two bullet striation signatures. The signals were ob
tained from striation images of unidentified bullets and reference 
bullets. The network was able to match the unidentified and reference 
bullets, however the model was developed using only ten images and 
the final matching decision was made by the forensic expert. 
Changmai et al. [8] used the whole image, and to focus on the stria
tions, the image was segmented (i.e. the selection of areas of interest 
in the image) using a fuzzy c-means algorithm followed by pre
processing (contrast enhancing, noise reduction and smoothing). Then 
shape features were extracted from the segments, and a K-nearest 
neighbour (kNN) classifier was applied. Vanderplas et al. [9] used the 
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whole LEA image and extracted their 3D topography which were then 
classified with a Random Forest (RF) score, cross-correlation and 
Consecutive Matching Striae (CMS), applied to same-source and dif
ferent-source bullets. Dutta et al. [10] developed a deep learning 
neural network (fully convolutional network) to extract striations from 
the fired bullets specifically for segmentation rather than classifica
tion. The Residual U-net and Inception U-net architectures were used 
for the segmentation of striations [11]. The performance of the two 
models were compared. The residual U-net delivered better training 
accuracy than the Inception U-net. Pisantanaroj et al. [12] used the 
whole image and proposed a deep learning framework for firearm 
identification where feature extraction and classification was per
formed simultaneously using three different deep neural networks: 
DenseNet121, ResNet50 and Xception. The model was trained with 718 
bullets from eight different firearms. Hamzah [13] used striation sig
natures followed by the extraction of surface topography line segment 
and the application of Principal Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA) for classification. Morrison et al. [14] used 
images of cartridge cases from which they extracted the Zernike- 
moment based features. The dimension of the data was reduced with 
PCA and LDA was used as a probabilistic approach to calculate a 
Likelihood Ratio (LR).

In this paper we explore machine learning algorithms on surface 
topography line segments within the LEAs, and also deep learning 
algorithms using automatic feature extraction directly from the 
images. The extraction of features from the surface topography is 
achieved using Empirical Mode Decomposition (EMD). We also use 
feature ranking by applying minimum Redundancy Maximum 
Relevance (mRMR) to select the most discriminant features. 
Classification is performed with Support Vector Machines (SVM), a 
Decision Tree (DT) and a RF. To our knowledge, EMD and mRMR have 
not been used before in this context. For the deep learning method, the 
process starts with preprocessing the LEA image to segment the pellet 
region and select the Region of Interest (ROI). Image augmentation is 

performed to increase the training samples and DenseNet121 is used 
to discriminate the sample set of pellets fired by two air rifles (Edgar 
and Baikal) and one air pistol (HW). Performance of the classifiers are 
evaluated using five-fold cross validation. Our classification method is 
similar to Pisantanaroj et al. [12], however, here we have chosen 
smaller number of training parameters. We also used the Grad-CAM 
technique [15] to visualise a heatmap of the influential features in the 
LEA to make our deep learning algorithm transparent. In addition, we 
compare the results from the two methods, one using SVM, DT and RF 
on LEA topography, and the other using deep learning on the whole 
image, both applied to the same dataset.

2. Materials and methods

2.1. Dataset

A dataset of 3D scans of pellets reported in [16] was used in this 
study. Two air rifles and one air pistol were used to generate the data. 
The air rifles (an Edgar Brother Model 35 and a Baikal 90042234–35) 
both had 12 right rifling with a break barrel design and spring piston 
mechanisms, Fig. 2(a) and (b). These air rifles were a number of years 
old and there were no records available of the number of air pellets the 
weapons may have fired. The breech of the rifles was opened in order 
to feed the pellet into the barrel and one pellet was loaded into the 
chamber at a time. The air pistol was a Weihrauch model HW45 which 
had a 12 right rifling and a spring piston [17], Fig. 2(c). It had two 
velocity settings depending on how the cocking mechanism is used. In 
this work, the high velocity setting was used. In all cases (both rifles 
and the air pistol) the ammunition used was RWS® superdome 4.5 mm 
(0.177 cal) round nosed unjacketed pellets [18], Fig. 2(d).

Each weapon was fired multiple times and the fired pellets col
lected. In total 50 pellets were fired using the air pistol and 5 pellets 
each using the two air rifles. All the fired pellets were scanned using 
an Alicona® infinite focus microscope [19] across each of the 12 LEAs. 
In each case the pellet was placed on a platform of the microscope 
that moved along the x, y and z axes in order to enable measurement 
of the 3D surface topography. The Alicona microscope software 
displayed the LEA image on a monitor and the primary profile of the 
LEA was selected following the ISO4287 standard [20]. The Alicona 
software was then used to transform the LEA striation image into 
surface topography [13]. Only LEA surfaces with clear striations were 
considered for the analysis. A total of 38, 34 and 600 LEA regions 
were imaged from the pellets recovered from the Baikal air rifle, the 
Edgar air rifle and the HW air pistol respectively.

2.2. Preprocessing and ROI Selection

Preprocessing was performed to remove background noise from 
the original LEA images, Fig. 3(a). The quality map, Fig. 3(b), generated 
by the Alicona microscope was used to obtain a segmentation mask, 
Fig. 3(c). Multilevel thresholding using Otsu’s method [21] was applied 

Nomenclature

EMD Empirical Mode Decomposition.
IMF Intrinsic Mode Function.
SD Standard Deviation.
AM Amplitude Modulated.
FM Frequency Modulated.
mRMR minimum Redundancy Maximum Relevance.
SVM Support Vector Machines.
SVM-Q Support Vector Machines-Quadratic.
DT Decision Tree.
LEA Land Engraved Area.

CMS Consecutive Matching Striae.
PCA Principal Component Analysis.
LDA Linear Discriminant Analysis.
kNN K-nearest neighbour.
FFT Fast Fourier Transform.
ROI Region of Interest.
FIS Feature Importance Score.
AUC Area Under the Receiver Operating Characteristic Curve.
LR Likelihood Ratio.
GEA Groove Engraved Area.
RF Random Forest.

Fig. 1. Image of a fired bullet; G denotes GEA and L denotes LEA (Image courtesy of 
Chen et al. [2]).
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on the quality map to identify the threshold to separate image fore
ground and background. Further, binarisation was performed using 
threshold and morphological operations were applied to remove noise 
after binarisation [22]. Finally, the segmented mask was used to ex
tract the LEA region, Fig. 3(d), from the original image. Note that the 
background regions in the segmented images are black, while the 
same regions in the original image contain grey patches which are 
features of the background and not features of the pellet images.

The preprocessed images were used to select the ROI for deep 
learning experiments. The ROI was selected from where the LEA 
surface topography was recorded. The red box was drawn between 
the LEA shoulders to select a single LEA or ROI. The deep learning 
algorithm uses the whole ROI and therefore areas that were de
formed during the pellet impact are not considered part of the ROI. 
In the first row of Fig. 4, the red rectangle indicates the selected ROI 
and the corresponding cropped region is shown in the second row. 
E.g., the ROI of Edgar pellet does not consider the deformed area in 
the right top corner of the pellet image.

2.3. Preprocessing of LEA Surface Topography

The curvature of LEA surface topography on the line segment was 
removed using locally estimated scatterplot smoothing (loess) 

[23,24]. In a nutshell, for a given point p * in the scatterplot, a subset 
of points near p * are selected and a linear regression is fitted with 
this subset of points. The predicted value associated with p * is cal
culated using this local regression. This is done for all points. A 
smoothing parameter controls the number of points that are se
lected near p * . The fewer points are selected near p * , the more the 
predicted curve follows the points in the scatterplot.

Examples of the loess fit for the images of pellets fired from each 
of the three firearms are shown in Fig. 5(a), (b) and (c). In each 
figure, the first row shows the LEAs and line segments, the second 
row shows the loess fit (in red) on the surface topography line 
segment (in blue), and the third row shows the residual signature. 
Hereafter, the residual signature is referred to as striation signature.

2.4. Striation signature decomposition

EMD is an adaptive and data driven method used for analysing 
nonlinear and non-stationary signals [25]. It decomposes the signal 
into Amplitude Modulated (AM) and Frequency Modulated (FM) 
signal components, called Intrinsic Mode Function (IMF) [26,27]. 
EMD generates a set of IMFs, {IMFi: i = 1, 2, …, N}, and a residual 
signal r(t), for a given striation signature x(t) which can be ex
pressed as:

Fig. 2. (a) Baikal air rifle, (b) Edgar air rifle, (c) HW air pistol, and (d) Air pellet (red rectangle represents pellet bearing striation marks). 

Fig. 3. Block diagram of preprocessing and ROI extraction. 
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The IMFs are extracted using a sifting algorithm given below [25].

(i) Find location of all maxima and minima of x(t).
(ii) Cubic spline interpolation is used to connect all maxima 

(minima) to obtain an upper (lower) signal envelop xu(t) (xl(t)).
(iii) The mean envelope, m1(t), between the upper and lower en

velopes is calculated as m1(t) = [xl(t) + xu(t)]∕2.
(iv) Subtract the local mean envelope from the original signal to 

obtain the AM and FM oscillation s1(t) = x(t) − m1(t)
(v) Verify if s1(t) satisfies the conditions of an IMF [25,26,28,29],

(a) The number of extrema and zero-crossings of s1(t) are the 
same, or differ by exactly one, with x(t), and

(b) The upper envelope is a symmetric reflection of the lower 
envelope with respect to m1(t)

If s1(t) satisfies the conditions above, then it is the first IMF of x 
(t), else repeat steps (i) to (v) on s1(t) until the newly calculated 
s1(t) satisfies the conditions of an IMF.

The successive IMFs were extracted by repeating steps (ii)–(vi) 
recursively to the residue signal r(t) = x(t) − s1(t) until the residual 
signal r(t) became a monotonic function where any more IMFs could 
be extracted [26]. This amplitude and instantaneous frequency 
combination is used for time-frequency analysis [29]. The IMFs 
captured the peaks and valleys of striations on the LEA from the 
surface topography profile [30]. The first five IMFs and residual of 
the pellet signatures are shown in Fig. 6.

2.5. Feature extraction using EMD

Skewness, Kurtosis, Energy, and entropy measures: Approximate, 
Shannon, Kapur, Renyi, and Yager, were extracted as features on the 
first four IMFs. The rest of the IMFs had low-frequency responses 
and largely contained noise. They are briefly described below, where 
IMF is used to represent one of the four IMFs.

Skewness and Kurtosis provides information about shape 
and distribution [31,32] of an IMF. They are calculated using the 
equations:
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N

IMF t m
Skewness

1 { ( ) }i
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3
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where N is number of data points, and m and σ are the mean and 
standard deviation of {IMF(ti): i = 1, 2, …, N}.

Energy is the amount of information present in the IMF [33] and 
can be calculated as follows,

=
=

IMF tEnergy { ( )}
i

N

i
1

2

(4) 

Approximate entropy is the logarithmic likelihood and is used to 
measure data regularity [34–36].

= +r rApproximate Entropy ( ) ( )m m 1 (5) 

where = + =
+r IMF r( ) ln[ ( )]m N m i

N m
i
m1

1 1
1 , and IMF r( )i

m is a corre
lation integral; m is series of patterns of length; r is a fixed para
meters, here r is to be 0.2 times the standard deviation of the 
data [36].

Shannon entropy can be used to measure the average informa
tion present in an IMF and is calculated using the equation,

=
=

p y p yShannon Entropy ( )log [ ( )]
j

M

j j
1

2
(6) 

where {yj: j = 1, …, M} and {p(yj): j = 1, …, M} are the bins and fre
quencies of a histogram of {IMF(ti): i = 1, …, N}.

Renyi entropy is a generalised entropy [37–40], computed using 
the equation,

= >
=

IMF tRenyi Entropy
1

1
log ( ) , for 1, 0,

i

N

i2
1 (7) 

Fig. 4. ROI extraction, first row: original LEA region with selected ROI (highlighted with red rectangle), second row: extracted ROI. 
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Fig. 5. Preprocessing of surface topography recorded from (a) Baikal air rifle, (b) Edgar air rifle and (c) HW air pistol. 
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where α is the diversity index. Here α = 3, taken from previous ex
periments which provided a high classification performance [37].

Kapur entropy is a generalised version of Renyi entropy [37–40]
and it can be computed using the equation,

=
= =

IMF t IMF tKapur Entropy
1

1
log ( ) log ( ) ,

i

N

i
i

N

i2
1

2
1 (8) 

for α ≠ 1, β  >  0, α + β − 1  >  0. Diversity indices α and β are set here to 
α = 0.5 and β = 0.7, selected based on previous experiments which 
provided a high classification performance [37].

Yager entropy is computed as follows [37],

= = IMF t

N
Yager Entropy 1

2 ( ) 1i
N

i1

(9) 

2.6. Ranking of features across the IMFs

Eight features were calculated for each of the four IMFs, 
amounting to a total of 32 features. The features associated with a 
particular IMF were denoted with a numerical suffix, e.g. Energy1, 
Energy2, Energy3 and Energy4 are the Energy features associated 
with IMF1 to IMF4. The features across IMFs were ranked using 
mRMR [41]. This method selects features that are highly relevant to 
the output (LEAs of the pellets produced by the Baikal, Edgar air 
rifles and the HW air pistol) with low correlation between the fea
tures [41]. Feature relevance was calculated using the F-statistic and 
redundancy was computed using Pearson correlation coefficient. 
These two criteria were combined to obtain a Feature Importance 
Score (FIS). The features were ranked by descending order of FIS, 
Fig. 7. The last ten features revealed a low FIS value and the classi
fication was undertaken with and without the last ten features to 
ascertain whether these features were informative.

2.7. Machine and deep learning methods

The classification across the three air weapons were performed 
using machine learning (SVM, DT and RF) and deep learning 
(DenseNet121) methods [42–44].

SVM is a statistical learning method, that constructs an optimal 
hyperplane to discriminate the air weapon classes using a structural 
risk minimisation algorithm [42]. In this work, multi-class classifi
cation was performed using one-vs-all SVM. This splits multi-class 

classification into multiple binary classifiers, where each model 
provides a probability score and a maximum class score, which were 
used to predict the air weapon class [45]. A similar approach was 
adapted to the DT classifier [43]. The DT split the complex solution 
into several simpler solutions using the nodes root, internal and leaf, 
deriving the final decision using the training data [46]. RF is an en
semble method [47], it combines predictions from other smaller DT 
models. Multiple DTs were created using different random subsets of 
the training data. AdaBoost [48] ensemble aggregation with five 
decision splits and two hundred ensemble learning cycles were used 
to obtain better classification performance.

The algorithms from sections 2.2 to 2.6 and machine learning 
algorithms in section 2.7 were implemented using MATLAB version 
2020a from Statistics and Predictive Maintenance toolboxes.

DenseNet is one of the convolutional neural networks, where 
each layer is connected with every other layer in a feed-forward 
nature. The feature maps are concatenated to get the maximum 
information between the layers while also reducing the vanishing- 
gradient problem [44]. This network consists of dense blocks and 
transition layers, where each dense block has two convolution units 
and the transition layers has batch normalisation, activation (ReLU), 
convolution and pooling, to reduce the number of channels by half 
from previous layers. In this work, we adapted the DenseNet121, 
which has 121 layers. The final fully connected layer was replaced 
with global average pooling, batch normalisation, dropout and two 
fully connected layers followed by another set of batch normal
isation and dropout, then a final fully connected layer (Fig. 8). The 
final classification was performed using the softmax classifier [44]. 
The block diagram of the deep learning approach used for the air gun 
pellet classification is shown in Fig. 8.

Both machine and deep learning models were evaluated using 
fivefold cross validation. In the DenseNet121, the dataset was di
vided into training, validation and testing. Image augmentation with 
horizontal flip, vertical flip, shear (range = 0.2) and zoom (range = 
0.2) were performed. The LEA images were resized into a standard 
size of 512 × 512 × 3. The deep network was trained to classify pellets 
fired using the Baikal and Edgar air rifles and the HW air pistol. 
Initially, Imagenet weights were initialised using the Glorot uniform 
technique. The last eight layers of the network was trained for 100 
epochs using categorical cross-entropy loss and all other layers were 
frozen to avoid over-fitting. ADAM optimisation was used to back- 
propagate the model error with 16 batch updates and a learning rate 
of 0.01. Network weights were saved at the minimum validation loss. 

Fig. 6. IMFs of surface topography for the pellets fired from (a) Baikal, (b) Edgar and (c) HW using EMD. 
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Training parameters (number of patches, batch size, learning rate 
and epochs) were chosen experimentally to avoid over-fitting. The 
trained model has 1.5 million trainable parameters and was im
plemented in Python 3 using Keras 2.2.4. The model ran on an Intel 
Core i7–8700 CPU with an NVIDIA TITAN Xp GPU. The training 
performance of DenseNet121 for all five folds are shown in Fig. A1. 
The accuracy and loss plots demonstrate that the model does not 
either over-fit or under-fit.

The classification performance of machine and deep learning 
models were evaluated using measures that take values between 0 
and 1, where larger values are associated with better performance. 
There are two groups of measures, one group focus on the 

performance of a specific class, e.g. whether HW pistol pellets were 
classified correctly or not, and consist of precision, recall, F1-score 
and Area Under the Receiver Operating Characteristic Curve (AUC). 
The other group measures the performance of the classifier for all 
three classes together and consists of micro and macro averages.

3. Results

3.1. Machine learning

Probability density plots of the twelve most discriminating fea
tures are shown in Fig. 9. A probability density plot shows the 

Fig. 7. EMD feature ranking using mRMR. 

Fig. 8. Block diagram of the deep learning approach. 
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densities, in the y-axis, of the values of a feature, in the x-axis. A 
density, in the statistical sense, is not a probability but a non-ne
gative number that encodes how likely this value is compared with 
other values. Thus, the most likely value has the highest density 
value, and an unlikely value has a density close to zero. The variation 
range, or range of likely values, are the values where the densities 
are greater than zero. E.g. in Fig. 9(b) the variation range of the 
Skewness4 feature for HW pistol pellets is between about -2 and 1.5. 
In the plots, we can see that the variation ranges of the pellets fired 
by the Baikal rifle and the HW pistol tend to be more separated than 
the variation ranges of the Edgar rifle and the HW pistol. E.g., in 
Fig. 9(a) the variation range of Baikal rifle contains a larger interval 
of values that are not in the variation range of HW pistol than the 
variation range of Edgar rifle. This contributes to better discrimina
tion of pellets from the Baikal rifle and the HW pistol. The variation 
ranges of the pellets from the Edgar rifle and HW pistol share more 
values.

The ranked features were sequentially fed to SVM, DT and RF 
classifiers. The classification was performed using (i) the first 22 
ranked features and (ii) all ranked features. The performance mea
sures for both experiments are summarised in Figs. 10 and 11, where 
micro and macro average denote the overall performance of the 
classifiers for all three classes. Numerical values are reported in 
Appendix A (Tables A1 and A2).

The results of the first 22 ranked features using SVM-Quadratic 
revealed that the classification performance for the HW air pistol 
was good (F1-Score: 0.96 and AUC: 0.82), while the performance for 
the Baikal air rifle was less promising in comparison to the HW air 
pistol (F1-Score: 0.63 and AUC: 0.80). The performance of the Edgar 

air rifle was poor (F1-Score: 0.34 and AUC: 0.66). Similar trends were 
observed for DT classifier with a slightly poorer classification per
formance, whereas the RF classifier with Adaboost ensemble ag
gregation provides a slightly higher F1-score for the Edgar air rifle 
(F1-Score: 0.35) and HW air pistol (F1-Score: 0.97) but a slightly 
worse score for the Baikal rifle, Fig. 10 and Table A1.

The results of all features revealed that the classification per
formance for the Baikal (F1-Score: 0.59 and AUC: 0.79) and Edgar 
(F1-Score: 0.33 and AUC: 0.66) air rifles was better using SVM-Q, 
while for the HW air pistol (F1-Score: 0.98 and AUC: 0.81) the 
classification performance was better using RF. However, DT pro
vides a slightly higher AUC for the Edgar air rifle (AUC: 0.27) and HW 
air pistol (AUC: 0.86) compared to RF. The trends in classification 
performance with all features and the first 22 ranked features are 
similar, however, the results also revealed that adding features re
duced the classification performance, Fig. 11 and Table A2.

3.2. Deep learning

The results of the deep learning approach are summarised in 
Fig. 12 and the numerical values are reported in Appendix A (Table 
A3). The pellet classification performance was considerably im
proved when compared to the machine learning methods. The best 
classification performance of the DenseNet121 returned F1-scores of 
0.97, 0.78 and 0.99 for pellets fired from the Baikal air rifle, the Edgar 
air rifle and the HW air pistol respectively. The F1-score for the 
pellets fired from the Edgar air rifle has a lower value compared to 
the Baikal air rifle and the HW air pistol, however it was notably 

Fig. 9. Probability density plots of ranked features. 
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improved when compared to the machine learning methods (Figs. 10
to 12 and Tables A1 to A3).

The Grad-CAM [15] output provided a visual explanation of the 
model. Fig. 13(c), (f) and (i) revealed the discriminating areas. The 
red, yellow, green and blue signify the degree of discrimination of 
the features from the highest (red) to the lowest (blue). The intensity 
of the color represents the degree of importance: a brighter red color 
indicates a higher importance for that region, while a darker blue 
color indicates a lower importance [15].

4. Discussion and conclusion

Striation marks observed on fired bullets are commonly used to 
generate a bullet signature to facilitate the linkage of bullets to
gether if they have been fired from the same firearm or link to 
bullets to specific firearms [49]. In this study we compared the 
classification performance of surface topography features using 
machine learning methods (SVM, DT and RF), and an automatic 
classification of LEA images using deep learning.

For the machine learning methods, the results revealed that the 
RF provided the highest classification performance for pellets fired 
from the HW air pistol (22 features, average F1-score: 0.97 and all 
features, F1-score: 0.98). However, DT provided the highest AUC (22 
features, average AUC: 0.84 and all features, AUC: 0.86), Tables A1

and A2. AUC often provides misleading results for imbalanced da
tasets, whereas F1-score is able to measure performance objectively 
when the class balance is skewed [50]. The classification perfor
mance for the pellets fired by both air rifles was lower on all fea
tures. In general, The classification performance using the first 22 
ranked features is better than using all features. The selected fea
tures not only reduce the dimension of the data but also improve the 
classification performance. Including low discriminating features 
reduced the classification performance. The features of the pellets 
fired by the HW air pistol was more separable from those produced 
by the air rifles, which can be inferred from the probability density 
plots, Fig. 9. One of the reasons is that the sample size for the HW 
pistol (600 scans) is much larger than those of the rifles (38 and 34 
scans for the Baikal and Edgar rifles), Appendix A.

The proposed deep learning model, DenseNet121, provided the 
highest average F1-scores of 0.97, 0.78 and 0.99 for classifications 
of the air pellets fired from the Baikal and Edgar air rifles and the 
HW air pistol respectively, Table A3. The average AUC to classify 
the three groups of fired pellets are considerably higher (≥0.99) as 
compared to the machine learning methods, Table A1 to Table A3. 
The advantages of using DenseNet121 are (i) enabling the transfer 
of learning from pre-trained networks (trained using large data
sets), and (ii) addressing the vanishing gradient problem which 
strengthens feature propagation and reduces the number of 

Fig. 10. Performance measures of Support Vector Machines-Quadratic (SVM-Q), DT and RF using the first 22 ranked features. 
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parameters [44]. Hence, it provided better classification perfor
mance than machine learning methods.

Further advantages of the proposed machine learning method 
are that it did not require signal alignment (of the LEA topography 
from the line segment), while for the deep learning approach, both 
signal alignment and feature extraction is not needed. Moreover, the 
proposed deep learning model required less training parameters 
(1.5 million) compared to other models reported in the literature 
[12]. Limitations of the proposed approach are: (i) limited dataset for 

the proof of concept study, i.e., 38, 34 and 600 LEA regions for the 
Baikal and Edgar air rifles and the HW air pistol respectively. Un
balanced sample size affects classification performance. A smaller 
sample size results in poor classification performance. E.g., the SVM 
with the quadratic kernel using 22 ranked features resulted in an F1- 
score of 0.63, 0.34 and 0.96 for Baikal, Edgar rifles and HW pistol, 
respectively, Table A1. A similar trend was observed for Den
seNet121, Table A3, (ii) the machine learning approach reported 
lower performance, and (iii) the experiment was conducted using air 

Fig. 11. Performance measures of SVM-Q, DT and RF using all ranked features. 

Fig. 12. Performance measures of DenseNet121. 
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pellets as a pilot study and would be expected to transfer to bullets 
fired from other firearms.

In summary, the efficiency of firearm classification was con
siderably improved using DenseNet121, Table A3, and supported by 
Grad-CAM visualisation, Fig. 13. This method can be easily trans
ferred to similar applications such as bullet comparison [51]. The 
methods presented here provide a contribution to the body of re
search on the application of machine learning and deep learning to 
forensic science, suggesting a viable deep learning approach to 
linking bullets to firearms.
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Appendix A. SVM, DT, RF and DenseNet121 classification performance

Tables A1, A2, A3, Figure A1.

Fig. 13. Grad-CAM visualization: (a), (d) and (g) Original LEA images; (b), (e) and (h) Class discriminative regions; and (c), (f) and (i) Class discriminative regions superimposed 
with original LEA image.

Table A1 
SVM, DT and RF performance measures using 22 ranked features. 

Classes Precision Recall F1-Score AUC

Support Vector Machine-Quadratic
Baikal 0.66  ±  0.28 0.62  ±  0.31 0.63  ±  0.27 0.80  ±  0.15
Edgar 0.34  ±  0.23 0.38  ±  0.07 0.34  ±  0.12 0.66  ±  0.04
HW 0.96  ±  0.02 0.95  ±  0.03 0.96  ±  0.01 0.82  ±  0.05
Micro Average 0.90  ±  0.03 0.90  ±  0.03 0.90  ±  0.03 0.93  ±  0.02
Micro Average 0.66  ±  0.15 0.65  ±  0.10 0.64  ±  0.11 0.76  ±  0.06
Decision Tree
Baikal 0.63  ±  0.04 0.60  ±  0.09 0.61  ±  0.05 0.79  ±  0.04
Edgar 0.27  ±  0.12 0.38  ±  0.19 0.31  ±  0.15 0.66  ±  0.10
HW 0.97  ±  0.01 0.95  ±  0.01 0.96  ±  0.01 0.84  ±  0.07
Micro Average 0.90  ±  0.01 0.90  ±  0.01 0.90  ±  0.01 0.93  ±  0.01
Macro Average 0.62  ±  0.04 0.64  ±  0.09 0.63  ±  0.06 0.76  ±  0.06
Random Forest with AdaBoost Ensemble Aggregation
Baikal 0.68  ±  0.06 0.44  ±  0.25 0.51  ±  0.16 0.71  ±  0.12
Edgar 0.41  ±  0.13 0.32  ±  0.16 0.35  ±  0.14 0.65  ±  0.08
HW 0.96  ±  0.02 0.99  ±  0.02 0.97  ±  0.01 0.80  ±  0.07
Micro Average 0.92  ±  0.02 0.92  ±  0.02 0.92  ±  0.02 0.94  ±  0.01
Macro Average 0.68  ±  0.04 0.59  ±  0.09 0.61  ±  0.06 0.72  ±  0.06
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Table A2 
SVM, DT and RF performance measures using all ranked features. 

Classes Precision Recall F1-Score AUC

Support Vector Machine-Quadratic
Baikal 0.59  ±  0.21 0.60  ±  0.22 0.59  ±  0.19 0.79  ±  0.12
Edgar 0.31  ±  0.11 0.36  ±  0.14 0.33  ±  0.12 0.66  ±  0.07
HW 0.96  ±  0.02 0.95  ±  0.02 0.95  ±  0.01 0.81  ±  0.07
Micro Average 0.90  ±  0.02 0.90  ±  0.02 0.90  ±  0.02 0.92  ±  0.02
Macro Average 0.62  ±  0.10 0.64  ±  0.11 0.62  ±  0.10 0.75  ±  0.08
Decision Tree
Baikal 0.52  ±  0.06 0.60  ±  0.09 0.55  ±  0.04 0.78  ±  0.04
Edgar 0.24  ±  0.14 0.30  ±  0.20 0.26  ±  0.15 0.63  ±  0.10
HW 0.97  ±  0.01 0.95  ±  0.02 0.96  ±  0.01 0.86  ±  0.07
Micro Average 0.90  ±  0.02 0.90  ±  0.02 0.90  ±  0.02 0.92  ±  0.01
Macro Average 0.58  ±  0.06 0.62  ±  0.07 0.59  ±  0.06 0.75  ±  0.05
Random Forest with AdaBoost Ensemble Aggregation
Baikal 0.68  ±  0.08 0.50  ±  0.23 0.54  ±  0.12 0.74  ±  0.11
Edgar 0.32  ±  0.24 0.24  ±  0.22 0.27  ±  0.23 0.61  ±  0.11
HW 0.96  ±  0.02 0.99  ±  0.01 0.98  ±  0.01 0.81  ±  0.06
Micro Average 0.93  ±  0.01 0.93  ±  0.01 0.93  ±  0.01 0.94  ±  0.01
Macro Average 0.65  ±  0.08 0.58  ±  0.08 0.60  ±  0.06 0.72  ±  0.05

Table A3 
DenseNet121 performance measures. 

Classes Precision Recall F1-Score AUC

Baikal 0.94  ±  0.09 1.00  ±  0.00 0.97  ±  0.05 1.00  ±  0.00
Edgar 0.94  ±  0.13 0.71  ±  0.24 0.78  ±  0.20 0.99  ±  0.01
HW 0.98  ±  0.01 0.99  ±  0.01 0.99  ±  0.01 0.99  ±  0.01
Micro Average 0.98  ±  0.01 0.98  ±  0.01 0.98  ±  0.01 1.00  ±  0.00
Macro Average 0.97  ±  0.05 0.90  ±  0.08 0.91  ±  0.08 0.99  ±  0.01

Fig. A1. Training and validation performance of DenseNet121 using 5-fold cross validation. 
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B. Effect of smaller sample size on classification performance

To study the effect of a smaller sample size, we selected 5 pellets from each of the air rifles and pistol. A total of 34, 34 and 34 LEA regions 
were considered from the Baikal air rifle, the Edgar air rifle and the HW air pistol respectively. A similar experiment from section 2.2 to section 
2.7 was repeated and the results are shown in Tables B1, B2 and B3.

The results revealed that the smaller sample size reduced the classification performance for both machine and deep learning methods 
(Tables B1, B2 and B3) compared to the results reported in Tables A1, A2 and A3.
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