
Published in Transactions on Machine Learning Research (01/2025)

The RealHumanEval: Evaluating Large Language Models’
Abilities to Support Programmers

Hussein Mozannar* hmozannar@microsoft.com
Microsoft Research

Valerie Chen* vchen2@andrew.cmu.edu
Carnegie Mellon University

Mohammed Alsobay mosobay@mit.edu
Massachusetts Institute of Technology

Subhro Das subhro.Das@ibm.com
MIT-IBM Watson AI Lab
IBM Research

Sebastian Zhao sebbyzhao@berkeley.edu
University of California, Berkeley

Dennis Wei dwei@us.ibm.com
MIT-IBM Watson AI Lab
IBM Research

Manish Nagireddy manish.nagireddy@ibm.com
MIT-IBM Watson AI Lab
IBM Research

Prasanna Sattigeri psattig@us.ibm.com
MIT-IBM Watson AI Lab
IBM Research

Ameet Talwalkar atalwalkar@gmail.com
Carnegie Mellon University

David Sontag dsontag@csail.mit.edu
Massachusetts Institute of Technology

*: Equal contribution.

Reviewed on OpenReview: https: // openreview. net/ forum? id= M7SO74I9mo

Abstract

Evaluation of large language models for code has primarily relied on static benchmarks, in-
cluding HumanEval (Chen et al., 2021), or more recently using human preferences of LLM
responses. As LLMs are increasingly used as programmer assistants, we study whether gains
on existing benchmarks or more preferred LLM responses translate to programmer produc-
tivity when coding with LLMs, including time spent coding. We introduce RealHumanEval,
a web interface to measure the ability of LLMs to assist programmers, through either au-
tocomplete or chat support. We conducted a user study (N=243) using RealHumanEval in
which users interacted with seven LLMs of varying base model performance. Despite static
benchmarks not incorporating humans-in-the-loop, we find that improvements in benchmark
performance lead to increased programmer productivity; however gaps in benchmark ver-

1

https://openreview.net/forum?id=M7SO74I9mo

Published in Transactions on Machine Learning Research (01/2025)

sus human performance are not proportional—a trend that holds across both forms of LLM
support. In contrast, we find that programmer preferences do not correlate with their actual
performance, motivating the need for better proxy signals. We open-source RealHumanEval
to enable human-centric evaluation of new models and the study data to facilitate efforts to
improve code models.

1 Introduction

Coding benchmarks such as HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) play a key role in
evaluating the capabilities of large language models (LLMs) as programming becomes a valuable application
through products such as GitHub Copilot (Github, 2022) and ChatGPT (OpenAI, 2022). These benchmarks
quantify LLM abilities by measuring how well a model can complete entire coding tasks. As LLMs are in-
creasingly adopted as programmer assistants—providing chat responses or autocomplete suggestions, rather
than full code generations—prior works have argued for bringing humans-in-the-loop to evaluate LLMs (Lee
et al., 2023; Chiang et al., 2024). A predominant human-centric approach collects human preference judg-
ments of intermediate LLM outputs, whether between pairs of LLM responses (e.g., Chatbot Arena (Chiang
et al., 2024)) or, for coding in particular, using programmer acceptance rates of LLM suggestions (e.g., in
products such as Github Copilot (Bird et al., 2022)). However, such evaluation may not capture the LLM’s
downstream impact on programmer productivity.

Evaluating the utility of LLMs on downstream productivity requires conducting user studies where program-
mers code with LLM assistance. While a set of small-scale user studies have been conducted to primarily
build a qualitative understanding of how programmers use LLM assistance, they are typically restricted to
evaluations on one model and one form of LLM support, primarily relying on commercial tools like Github
Copilot or ChatGPT (Barke et al., 2023; Mozannar et al., 2024; Vaithilingam et al., 2022; Ross et al., 2023;
Liang et al., 2023; Peng et al., 2023). To enable evaluations of a broader set of LLMs and lower the barrier
to conducting these studies, we introduce an online evaluation platform, RealHumanEval1 (Figure 1). The
platform consists of a code editor where programmers can solve coding tasks with two common forms of
LLM assistance: programmers can either ask questions to the LLM through a chat window or receive code
completion suggestions through an autocomplete system inside the editor. The interface also supports ex-
ecuting and testing code and logging telemetry which can be used to compute productivity metrics, which
we operationalize as the time to complete a task or number of tasks completed, and preference metrics,
including average acceptance rates of suggestions and the likelihood of copying code from chat responses.

Using RealHumanEval, we conduct a user study with 243 participants to understand the effect of a model’s
benchmark performance and the form of LLM assistance on time to complete a task and number of tasks
completed. Each participant was assigned to one of seven conditions: a control condition with no LLM
support, three conditions with autocomplete support from either CodeLlama-7b (Rozière et al., 2023),
CodeLlama-34b (Rozière et al., 2023), or GPT-3.5-turbo-instruct(Brown et al., 2020), and finally three
conditions where the editor is equipped with a chat window powered by the chat variants of the previous
models in addition to GPT-4o (OpenAI, 2022). We deliberately select model families with increasingly higher
benchmark performance and consider model pairs within each family with similar benchmark performance
to understand the effect of autocomplete versus chat assistance. Through the study, we collected a dataset
of interactions on 888 coding total tasks, where 5204 autocomplete suggestions were shown and 1055 chat
messages were sent.

Overall, we find that improving a model’s base performance on existing coding benchmarks leads to improve-
ments in the time spent completing tasks. These trends were present across both chat and autocomplete
interactions, validating the potential “generalizability” of benchmarks to more realistic contexts. However,
we observe that gaps in benchmark versus human performance are not necessarily proportional, suggesting
that further gains in benchmark performance do not necessarily translate into equivalent gains in human task
completion. We also investigated whether human preference metrics, such as the average acceptance rate

1The choice of naming our platform RealHumanEval is to imply that the evaluation is done with the help of real humans. It
does not imply that it is a real evaluation while other benchmarks are not real, nor does it imply that this is the real version
of the HumanEval benchmark.

2

Published in Transactions on Machine Learning Research (01/2025)

Define Tasks:

Set-up LLMs:

LoggingResearcher Interface Metrics

RealHumanEval

Recruit
participants:

Autocomplete suggestions Chat responses

Distribute into
experimental conditions

Productivity
metrics include...

Preference
metrics include...

Time to
complete

task

tasks
completed

% suggestions
accepted

% chats copied

Code
Telemetry:

Autocomplete
interactions:

Chat
interactions:

Benchmark performance Human preferences Human productivity

No human involvement

RealHumanEval
In-depth human involvement

GPT-3.5
34B

Our study using RealHumanEval

GPT-4o
7B

GPT-3.5
34B

GPT-4o
7B

GPT-3.5
34B

GPT-4o
7B

Figure 1: We introduce RealHumanEval, an end-to-end online evaluation platform of LLM-assisted coding
through autocomplete suggestions and chat support. The goal of RealHumanEval is to facilitate human-
centric evaluation of code-generating LLMs, simplifying the workflow for researchers to conduct user stud-
ies to measure the effect of LLM assistance on downstream human productivity and preferences. We se-
lected 4 families of LLMs of varying sizes (GPT-4o, GPT-3.5, CodeLlama-34b, CodeLlama-7b) for use with
RealHumanEval to study the alignment between static benchmark performance, subjective programmer pref-
erence judgments, and programmer productivity.

of suggestions and the likelihood of copying code from chat responses, are aligned with human performance
metrics. While these preference metrics are readily available in real deployments of LLM systems compared
to task completion time and thus can be attractive proxy metrics (Ziegler et al., 2022), we find that they are
only correlated with programmer perceptions of LLM helpfulness but not necessarily with actual program-
mer performance. The dissimilar findings between benchmarking and human preference metrics highlight
the importance of careful evaluation to disentangle which metrics are indicative of downstream performance.

In summary, our contributions are as follows:

1. An open-source platform RealHumanEval to encourage more human-centric evaluations of code LLMs

2. An evaluation of 7 code LLMs of varying performance using RealHumanEval to provide insights into
the alignment and discrepancies between benchmark performance and human preferences with down-
stream human performance. Our findings emphasize the importance of studying how programmers
interact with code LLMs through user studies to identify nuances in programmer-LLM interactions.

3. We release the dataset of interactions collected from this study to guide the development of better
coding assistants.

3

Published in Transactions on Machine Learning Research (01/2025)

2 Related Work

Table 1: A comparison of our study against prior studies understanding programmer-LLM interactions in
terms of the number of participants, models, types of LLM interaction, and tasks. Note that Cui et al.
(2024) was a field experiment and thus not a controlled user study with a fixed number of tasks.

Study # participants # models Autocomplete? Chat? # tasks
Vaithilingam et al. (Vaithilingam et al., 2022) 24 1 ✓ ✗ 3
Peng et al. (Peng et al., 2023) 95 1 ✓ ✗ 1
Barke et al. (Barke et al., 2023) 20 1 ✓ ✗ 4
Prather et al. (Prather et al., 2023) 19 1 ✓ ✗ 1
Mozannar et al. (Mozannar et al., 2024) 21 1 ✓ ✗ 8
Vasconcelos et al. (Vasconcelos et al., 2023) 30 1 ✓ ✗ 3
Cui et al. (Cui et al., 2024) 1974 1 ✓ ✗ *
Ross et al. (Ross et al., 2023) 42 1 ✗ ✓ 4
Chopra et al. (Chopra et al., 2023) 14 1 ✗ ✓ 4
Gu et al. (Gu et al., 2024) 22 1 ✗ ✓ 10
Kazemitabaar et al. (Kazemitabaar et al., 2023) 69 1 ✗ ✓ 45
Nam et al. (Nam et al., 2024) 32 1 ✗ ✓ 2
Ours 243 7 ✓ ✓ 17

Coding Benchmarks. Benchmarks are essential for tracking the progress of LLMs, and coding benchmarks are
a key piece (Achiam et al., 2023; Laskar et al., 2023; Zan et al., 2023; Hou et al., 2023). Moreover, the coding
ability of an LLM can be informative of its reasoning abilities (Madaan et al., 2022); thus, performance on
coding benchmark is of broader interest. While HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
2021) are the most commonly used coding benchmarks, many extensions and further benchmarks have been
proposed (Lu et al., 2021; Nijkamp et al., 2023; Zhu et al., 2022; Liu et al., 2023; Jimenez et al., 2023;
Khan et al., 2023; Yang et al., 2024; Yan et al., 2023), we highlight a few: EvalPlus extends HumanEval’s
test cases (Liu et al., 2023), MultiPL-E (Cassano et al., 2023) to other languages, ReCode with robustness
checks (Wang et al., 2023), HUMANEVALPACK (Muennighoff et al., 2023) with code repair and explanation
tasks, and buggy-HumanEval (Dinh et al., 2023) with bugs in the reference code. Relatedly, the DS-1000 (Lai
et al., 2023) benchmark evaluates models’ abilities on data science problems that require using external
libraries. More involved evaluations include the multi-turn program evaluation benchmark (Nijkamp et al.,
2023) and SWE-bench (Jimenez et al., 2023), which requires the LLM to resolve GitHub issues. While
existing benchmarks evaluate a diverse set of LLM behaviors across models, these benchmarks do not,
however, include a programmer-in-the-loop, as would be the case in the increasingly common use case of
programming with AI assistance. Our evaluation complements this existing line of work by conducting a user
study, where programmers put the utility of these models to the test as assistants, rather than independent
code generators.

Preference Metrics. Instead of relying solely on coding benchmarks’ pass@k metrics, which consider only
the functional correctness of LLM-generated code, recent work has advocated for incorporating human
preferences, which may better reflect how LLM code could be useful to a programmer without necessarily
being functionally correct (Dibia et al., 2023). Preferences are generally collected after a single turn (e.g.,
after a single LLM response or suggestion) and thus can be collected at scale (Bird et al., 2022; Chiang et al.,
2024) or even simulated with LLMs (Dubois et al., 2023; Zheng et al., 2023). Given that preferences are
only a form of intermediate feedback, in this study, we evaluate whether human preferences provide a signal
for downstream productivity gains when coding with LLMs.

Programmer-LLM Interaction. Prior work conducting user studies where programmers code with LLM
assistance has primarily focused on two forms of LLM support, autocomplete suggestions (Vaithilingam
et al., 2022; Peng et al., 2023; Barke et al., 2023; Prather et al., 2023; Mozannar et al., 2024; Vasconcelos
et al., 2023; Cui et al., 2024) and chat dialogue (Ross et al., 2023; Chopra et al., 2023; Kazemitabaar
et al., 2023; Gu et al., 2024; Nam et al., 2024). While these studies have made progress in understanding
programmer-LLM interactions, all studies only consider one LLM—often Copilot or ChatGPT—and one

4

Published in Transactions on Machine Learning Research (01/2025)

Your goal is to
implement the
build_vocabulary method in the
provided Tokenizer class.

A tokenizer is an object that
converts words to numerical IDs.
The objective of the
build_vocabulary method is as
follows:
• The method's primary goal is

to create two dictionaries:
self.word_to_id and
self.id_to_word.

• self.word_to_id should map
each unique word in your
corpus to a unique numerical
identifier (ID).

• self.id_to_word is the reverse
mapping, where each unique ID
corresponds to a word.

The method should only consider
the most frequent words in the
corpus, up to a limit specified by
max_vocab_size.

class Tokenizer:
 def __init__(self, max_vocab_size=200):
 self.max_vocab_size = max_vocab_size
 self.word_to_id = {}
 self.id_to_word = {}
 def tokenize(self, text):
 eturn text.lower().split()
 def build_vocabulary(self, corpus):
 word_freq = Counter()

for sentence in corpus:
word_freq.update(sentence)

Type your message….

User
How do I count occurrence of each
word in a list of strings

Chabot

You can use the ngram function in the nltk
library to count the occurrence of each word
in a list of strings. Here's an example:

import nltk
List of strings
texts = ["This is an example sentence",
"Another example sentence"]
ngrams = nltk.ngrams(texts, 1)
for ng in ngrams:
 # print(ng[0], ng[1])
 print(ng[0], ng[1].count())

Output: Run
Output and errors will appear here

Submit

Copy

Clear Chat

2/7 tasks completed

Reset Code Change Theme Show Instructions Time left: 15:02

(a) (b) (c)

Autocomplete suggestion

Figure 2: We introduce RealHumanEval, an online evaluation platform for LLM-assisted coding. The plat-
form consists of (a) a customizable task description, (b) the code editor which shows autocomplete suggestions
in grey, and (c) the chat assistant. Above the editor, users can check their task progress and the amount of
time left, reset the editor, change the editor theme, and view study instructions. Below the editor, they can
run and submit their code.

form of LLM support—either autocomplete or chat, making it difficult to compare outcomes and metrics
across models and across forms of support. In Table 1, we compare the aspects of our study with prior
works that have conducted user studies where programmers code with LLM support. To our knowledge,
ours is the first study to consider models of varying performance capabilities and multiple forms of support.
Additionally, we note that the majority of studies have similar participant profiles as ours (i.e., students
with some programming experience and industry professions), though a few focus exclusively on novice
programmers (Kazemitabaar et al., 2023; Prather et al., 2023). Finally, multiple studies have limited scope
in terms of the number and types of coding tasks that are considered (e.g., focusing on one minesweeper
game (Prather et al., 2023) or simple plotting tasks (Ross et al., 2023)), which differ from the breadth of tasks
that have been evaluated in benchmarks and are We contribute a web platform RealHumanEval to enable ease
of human-centric evaluation of more models and forms of support. Beyond applications of coding assistance,
our study contributes to the broader literature studying human interactions with LLMs (Lee et al., 2023;
Collins et al., 2023; Lee et al., 2022; Dang et al., 2022; Jakesch et al., 2023; Köpf et al., 2023; Jo et al., 2023;
Brynjolfsson et al., 2023).

3 RealHumanEval

We introduce RealHumanEval, a web-based platform to conduct human-centric evaluation of LLMs for
programming through the workflow shown in Figure 1. We created RealHumanEval to facilitate large-scale
studies of programmers coding with LLMs, eliminating the need for participants to perform any additional
installation of a bespoke IDE or study-specific extension or to have access to special hardware to serve
study-specific models.

Interface. As shown in Figure 2, RealHumanEval incorporates many basic features of common code editors
and the functionality of programming interview sites such as LeetCode. Given a coding task that consists of

5

Published in Transactions on Machine Learning Research (01/2025)

a natural language description, partial code (e.g., a function signature), and unit tests that evaluate the task,
RealHumanEval allows the programmer to write code with assistance from an LLM to complete the task.
The platform has a panel that displays the natural language description of a task, as shown in Figure 2(a),
alongside partial code to solve the task. Participants then write their code for the task in the code editor
and can test their code with a button that checks the code against test cases and runs their code directly.
The editor displays any errors, if available, and whether the code passes the unit test. Once the programmer
completes the task, a new task can be loaded into the interface. For our user study, we only use a single
code editor file, however, RealHumanEval can support multiple-file projects.

Forms of LLM Assistance. RealHumanEval supports two forms of LLM assistance: autocomplete-based
and chat-based. Examples of autocomplete and chat assistants include GitHub’s Copilot (Github, 2022),
Replit’s Ghostwriter (replit, 2023), Amazon CodeWhisperer (Amazon, 2022), and ChatGPT (OpenAI, 2022).
In autocomplete-based assistance, the programmer writes code in an editor, and the LLM displays a code
suggestion inline, which is greyed out as shown in Figure 2(b). The LLM is assumed to be able to fill in
code given a suffix and prefix. A suggestion, based on the current code body in the editor, appears whenever
the programmer pauses typing for more than two seconds or when the programmer requests a suggestion by
pressing a hotkey. The programmer can accept the suggestion by pressing the tab key or reject it by pressing
escape or continuing to type.

In chat-based assistance, the programmer writes code in an editor and has access to a side chat window
where the programmer can ask questions and get responses from the LLM, as illustrated in Figure 2(c). The
LLM is assumed to be a chat model. The programmer can copy and paste code from the LLM’s responses
into the editor. Currently, the interface supports any LLM invoked via an online API. Further information
on the implementation of both forms of assistance is in Appendix A and Appendix C.

Telemetry logging. RealHumanEval logs all user behavior, including interactions with LLM support. For
each autocomplete suggestion, we log the following tuple {(Pi, Si), Ri, Ai}n

i=1 where (Pi, Si) is the prefix and
suffix of the code based on cursor position at the time of suggestion i, Ri is the LLM suggestion, and Ai is a
binary variable indicating whether the suggestion was accepted. All the logs are stored in a dataset Dac. For
chat-assistance, we log for each user message the following tuple {Xi, Mi, Ri, Ci}n

i=1 where Xi is the code
at the time of message i, Mi is the user message (including prior chat history), Ri is the response from the
LLM for the message, and Ci is the number of times code was copied from the LLM’s response. All the logs
are stored in a dataset Dchat. Moreover, every 15 seconds, the interface saves the entire code the user has
written.

Metrics. From the telemetry logs, RealHumanEval provides multiple metrics to analyze programmer be-
haviors: the number of tasks completed (completion is measured by whether the submitted code passes a set
of private test cases), time to task success (measured in seconds), acceptance rate (fraction of suggestions
shown that are accepted, for autocomplete), and number of chat code copies (counting when user copies code
from LLM response, for chat) among other metrics.

4 Study Design

Using RealHumanEval, we conducted a user study to evaluate (1) the impact of LLM assistance on pro-
grammer performance as a function of the LLM’s performance on static benchmarks and (2) whether human
preference metrics correlate with programmer productivity metrics.

Overview. For the entire duration of the study, participants are randomly assigned either to a control
group, where they experienced the no LLM condition, or to the LLM-assisted group, where they experienced
the autocomplete or chat support condition. For autocomplete-based support, the window in Figure 2(c) is
hidden. For chat-based support, no autocomplete suggestions are shown in Figure 2(b). Participants are
only assigned to one condition to minimize context switching, given the relatively short duration of the study.
The study was conducted asynchronously using the RealHumanEval platform; participants were told not to
use any outside resources (e.g., Google), and cannot paste any text originating outside the app into the
editor. Specific instructions are in Appendix A. The first problem was a simple task (i.e., compute the sum
and product of a list) for participants to familiarize themselves with the interface. Participants are given 35

6

Published in Transactions on Machine Learning Research (01/2025)

Name Task Type Description

is_bored Algorithmic Given a string of words, write a function to count the number of boredoms, where
boredom is a sentence that starts with the word ‘I’.

event_scheduler Algorithmic Given a list of events represented as a tuple (start time, end time, score), write a
function that schedules the events to maximize total importance score.

order_by_points Algorithmic Write a function which sorts the given list of integers in ascending order according
to the sum of their digits.

encode_message Algorithmic Write a function that encodes a message by swapping the case of all letters and
replaces all vowels in the message with the letter that appears 2 places ahead of
that vowel in the English alphabet.

triple_sum_zero Algorithmic Given a list of integers as an input, write a function that determines if there are
three distinct elements in the list that sum to zero.

even_odd_count Algorithmic Given a number, write a function that computes both the number of even and
odd digits.

sum_product Algorithmic Given a list of numbers, write a function that returns a tuple consisting of a sum
and a product of all the integers.

is_multiply_prime Algorithmic Given a number, write a function that determines if the number is the multipli-
cation of 3 prime numbers.

count_nums Algorithmic Given an array of integers, write a function that returns the number of elements
which has a sum of digits > 0.

table_transform_named Data manipulation Given a dataframe with features (age, color, dates, height), write a function to
transform it exactly to the following output dataframe.

table_transform_unnamed
(2)

Data manipulation Given a dataframe with unnamed features (col1, col2, col3, col4), write a function
to transform it exactly to the following output dataframe.

t_test Data manipulation Given two arrays of numbers, write a function that compares the means of two
populations.

retriever Edit & Augment Fill out this class which retrieves similar vectors from a collection of vectors,
which supports calculating distances from a query vector, retrieving the most
similar vectors to a query, and generating a similarity matrix for multiple queries.

login_authenticator Edit & Augment Fill out this class which manages user authentication, which supports password
hashing, adding users, removing users, and changing passwords with verification.

calculator Edit & Augment Fill out this class which is a special calculator that keeps track of the previous
operations performed and fix a set of bugs with the existing implementation.

tokenizer Edit & Augment Implement the build_vocabulary method, which creates dictionaries mapping
words to unique IDs and vice versa and considers only the most frequent words,
in the provided Tokenizer class.

Table 2: Task descriptions for 17 tasks evaluated in study which comprise algoirthmic problems, data
manipulation problems, and problems that require editing and augmenting existing code. See supplementary
material for full task specification and starter code.

minutes to complete as many tasks as possible. If 10 minutes pass and the participant has not completed
the task, a button appears to provide the option to skip the task.

Tasks. We designed 17 coding tasks for the platform that can be categorized into three categories: (a)
algorithmic problems from HumanEval (e.g., solve interview-style coding), (b) data manipulation problems
(e.g., wrangle input dataframe into desired output), and (c) editing and augmenting code tasks (e.g., fill in
provided code scaffold to achieve desired behavior). While the set of tasks does not evaluate all types of
coding problems exhaustively, they do capture tasks of varying difficulty and solutions of varying length, as
well as the use of different programming skills, leading to varying opportunities to benefit from LLM support.
A short description of each task can be found in Table 2. We chose 17 tasks to build diversity across tasks
while being able to collect enough samples per task. We ensured that no LLM model considered in the
study, in addition to GPT-4o, could solve all tasks perfectly, so that programmers would not simply accept
all LLM suggestions and that each task could be solved in under 20 minutes by an experienced programmer
(validated through pilots with the authors and volunteer participants), to ensure that these were reasonable
questions to consider for a user study. These 17 tasks are distributed into five sets, where each set consists
of a different mix of task types in varying orders but shares the first two tasks. Each participant is randomly
assigned to one of these sets. The LLMs are not aware of the task descriptions unless the programmer types

7

Published in Transactions on Machine Learning Research (01/2025)

them in the editor or chat window; this is to simulate the real world where the task description represents
the programmer’s hidden true intent. We provide examples of the coding tasks in Appendix B and in full in
the supplementary materials.

Conditions. For the autocomplete conditions, we chose base LLM models that naturally generate
next-word predictions, whereas the “chatty” variants of the base models are employed for the chat con-
ditions. To evaluate the effect of LLM capabilities, we selected three types of models that demon-
strate clear gaps in performance on existing benchmarks (as shown in Figure 11). In total, we se-
lected 7 LLMs for our study: 4 from the Code Llama family (Rozière et al., 2023) (CodeLlama-7b,
CodeLlama-7b-instruct, CodeLlama-34b, CodeLlama-34b-instruct), along with three models from the
GPT series (Brown et al., 2020) (GPT-3.5-turbo, GPT-3.5-turbo-instruct and GPT-4o). To avoid confu-
sion, we refer to the autocomplete conditions by the base name of the model: CodeLlama-7b, CodeLlama-34b
and GPT-3.5 (refers to GPT-3.5-turbo-instruct); and the chat conditions by the base name of the model
with chat: CodeLlama-7b (chat) (refers to CodeLlama-7b- instruct), CodeLlama-34b (chat) (refers
to CodeLlama-34b- instruct), GPT-3.5 (chat) (refers to GPT-3.5-turbo) and GPT-4o (chat). Specific
choices of parameters, system prompts, and other considerations are provided in Appendix C.

Participants. We recruited 263 total participants from university mailing lists and social media to capture
a range of coding experiences. We verified that participants were above 18 years of age, resided in the United
States, and correctly completed a simple Python screening question. Out of the 263 participants, we filtered
out those who did not complete any task or did not write code for a period of 15 minutes during the study to
arrive at 243 final participants. Of the 243 participants, 35% identify as Female. In terms of occupation, 80%
are Undergraduate or Graduate Students studying computer science, 11% work in Software Development
and 7% work in AI. While a majority of our participants were students, only 35% of participants had less
than 2 years of professional programming experience. We ensured that participants were roughly equally
distributed across experimental conditions based on programming experience. 11% had never used any form
of AI for coding while 66% of participants use AI at least once a week for coding. Participants were provided
with a $15 Amazon gift card as compensation. This study was approved by institutional IRB review.

User study metrics. To quantify the benefits of LLM assistance on the number of tasks completed and time
to task success, we report the gap between each condition where some form of LLM assistance was provided
and the control no LLM condition, which we denoted as ∆. For example, for time to task success, ∆ < 0
for LLM support indicates that participants took less time to complete tasks with the LLM. In addition
to the quantitative metrics, we also ask post-study questions to obtain participants’ subjective measures of
their interactions with the LLM: we ask participants to rate the helpfulness of the LLM on a scale of [1, 10]
and to describe how the LLM support provided (if any) was helpful and how it could be improved. We also
measure two preference metrics, suggestion acceptance rate and percentage of chat code copies.

5 Results

We report results for data collected from 243 participants split across the seven conditions; since condition
assignment is random2, each condition has around 25 to 35 participants (except for No LLM, which has 39
participants). Participants completed a total of 888 coding tasks (mean of 3.6 tasks per person) on average
in 358 seconds (std=153 seconds), were shown 5204 autocomplete suggestions (|Dac|), with an average 11.3%
acceptance rate, and received 1055 messages from the chat LLMs (|Dchat|), with 35.8% of messages having at
least one copy event. In the following analyses, we conduct ordinary least squares regressions with Benjamini-
Hochberg correction and use a significance level of 0.05. A more in-depth analysis of both datasets and results
is in Appendix D.

Providing LLM assistance reduces the amount of time spent coding. To measure the productiv-
ity gains of LLM assistance to programmers, we look at two metrics: the amount of time spent coding (in
seconds) and the number of tasks completed. We first distill our observations for each metric by comparing
performance for each model type (i.e., combining autocomplete and chat models) against the No LLM condi-

2The assignment is random across all conditions except the GPT-4o condition, as that was performed individually at a later
date once GPT-4o was released.

8

Published in Transactions on Machine Learning Research (01/2025)

100 50 0 50 100
 in Avg Task Duration (better)

GPT-3.5

CodeLlama-34b

CodeLlama-7b

GPT-4

No LLM

(a) Difference in task completion time (in seconds) com-
paring LLMs to the No LLM condition.

2 1 0 1 2
 in Num Tasks Completed (better)

(b) Difference in number of tasks completed compared
to the No LLM condition.

Condition
100

150

200

250

300

350

400

450

500

Ta
sk

 D
ur

at
io

n
(s

)

-7%

+12%

-19%
-14%

-18% -21%
-15%

(c) Average task completion time (in
seconds) by condition.

Condition
0

1

2

3

4

5

Ta
sk

s C
om

pl
et

ed
-12%

-18%

-6% -10%

+7%
+13%

+5%

(d) Average number of tasks completed
by condition. Condition

0

1

2

3

4

5
Ta

sk
s C

om
pl

et
ed

-12%
-18%

-6% -10%

+7%
+13%

+5%
No LLM
CodeLlama7b
CodeLlama7b (chat)
CodeLlama34b
CodeLlama34b (chat)
GPT-3.5
GPT-3.5 (chat)
GPT-4o (chat)

Figure 3: We measure the effect of LLM support on user study performance on mean task duration in
seconds (a,c) and number of tasks completed across model type (b,d). In (a) and (b), we compute ∆, the
difference between each model type—aggregating conditions corresponding to the same model type, e.g.,
Codellama7b and Codellama7b (chat)—and the No LLM condition for each metric. In (c) and (d), we break
down the same metrics for each of the seven conditions and mark the percentage improvement over the No
LLM condition. We observe that better LLM support can improve task completion time, but not necessarily
increase the number of tasks completed. Error bars denote standard errors—the standard deviation divided
by the square root of the sample size (i.e., across participants), where each participant contributes a single
data point.

tion.3 As shown in Figure 3(a), we find that compared to the No LLM setting where participants spent an
average of 400 seconds per task, GPT-3.5, CodeLlama-34b, and GPT-4o models reduce the amount of time
spent per task by an average of 78, 64, and 60 seconds respectively (p = 0.04, p = 0.12, and p = 0.10). In
contrast, CodeLlama-7b models slightly increase the average time spent on a task by 10 seconds. However,
we do not observe statistical differences across any of the conditions in the number of tasks completed, as
shown in Figure 3(b), meaning no form of LLM support allowed programmers to solve more problems than
they otherwise would have on their own. We hypothesize that benefits in task completion were not observed
because of the short duration of the user study (35 minutes) and the amount of time it takes to complete
each task, though we do observe an increase in the number of tasks attempted.

We now consider how our observations using RealHumanEval implicate the broader code LLM evaluation
landscape, specifically the use of static benchmarks and human preference metrics.

Are LLM performance on static benchmarks informative of user productivity with LLM as-
sistance? We find that improvements in model-specific evaluations on benchmarks tends to also improve
human performance on both productivity metrics in the user study (i.e., CodeLlama-7b models led to the

3In Appendix D, we repeated the same analyses controlling for task difficulty and observed the same trends.

9

Published in Transactions on Machine Learning Research (01/2025)

0.0 0.1 0.2 0.3 0.4 0.5
Chat: % Code Copied

GPT-3.5

CodeLlama-34b

CodeLlama-7b

GPT-4o

(a) Percentage of chat messages copied
for chat conditions.

0.00 0.05 0.10 0.15 0.20
Autocomplete: % Suggestion Accepted

(b) Percentage of autocom-
plete suggestions accepted.

0 2 4 6 8
AI Helpfulness()

Autocomplete
Chat

(c) Rating of LLM helpfulness across both
autocomplete and chat conditions.

Figure 4: Measuring participant preferences of different models by the amount of interaction with chat (a) or
autocomplete systems (b), with standard error. We find that preference judgments align with the reported
helpfulness of the LLM assistant post-study (c); however, these preferences do not necessarily align with
their actual task performance.

40 50 60 70 80 90
HumanEval score

300

350

400

450

500

M
ea

n
ta

sk
co

m
pl

et
io

n
tim

e
(s

)

CodeLlama7b

CodeLlama7b (chat)

CodeLlama34b
CodeLlama34b (chat)

GPT-3.5
GPT-3.5 (chat)

GPT-4 (chat)

40 50 60 70 80 90
MBPP score

CodeLlama7b

CodeLlama7b (chat)

CodeLlama34b
CodeLlama34b (chat)

GPT-3.5

GPT-3.5 (chat)

GPT-4 (chat)

Figure 5: Average task completion time (in seconds) plotted against LLM performance on static benchmarks
(HumanEval and MBPP) for each of the LLMs evaluated in RealHumanEval. Error bars denote 95%
confidence intervals.

least number of tasks completed, while GPT-3.5 models led to the most). Interestingly, this trend holds even
when considering metrics with chat and autocomplete separately, in Figure 3(c-d). However, significant gaps
in benchmark performance result in relatively indistinguishable differences in terms of human performance.
In Figure 5, we plot task completion time against static benchmark score. While we do not necessarily expect
performance gaps to be consistent, we find that, after a certain point, additional gains on static benchmarks
may not translate to practical utility. The Pearson correlation between RealHumanEval average completion
time (in seconds) and HumanEval benchmark score is -0.60 (p=0.15) and for MBPP it is -0.65 (p=0.11),
which suggests a non-significant correlation, however, looking at the raw data in Figure 5 reveals the nature
of the correlation. For instance, CodeLlama-34b (chat) is 19% better over CodeLlama-7b (chat) models
on HumanEval, and participants are 22.8% (95% CI [2.8, 38.7]) faster on average to complete a task with
34b vs 7b. Yet, GPT-3.5 (chat) model outperforms CodeLlama-34b (chat) by 85% on HumanEval, and
yet participants equipped with GPT-3.5 (chat) models are only 8.3% (95% CI [-11.2, 24.6]) faster than
those with CodeLlama-34b (chat). Surprisingly, we also find no statistically significant difference between
GPT-4o (chat) and GPT-3.5 (chat) in terms of task completion time.

Do human preferences align with productivity? We also consider programmer preferences for the LLM
assistant’s suggestions on autocomplete and chat: the average suggestion acceptance rate and the average
copies-per-response respectively. While GPT-4o, GPT-3.5, and CodeLlama-34b models reduced the amount
of time spent coding over CodeLlama-7b, we do not find the same trends reflected in human preferences.
As shown in Figure 4(a), we find that suggestions from CodeLlama-34b are less likely to be accepted at 5%

10

Published in Transactions on Machine Learning Research (01/2025)

300 400 500
Avg task duration (s)

Algorithmic Problems

Data Manipulation

Edit/Augment Code

LLM-assisted
False
True

Figure 6: Average task duration with and without LLM assistance with standard error by task category.

compared to 15% and 9% for GPT-3.5 and CodeLlama-7b (p < 0.001 and p = 0.19). The same ordering occurs
for the percentage of chat messages copied (27% versus 35% and 29%, though not significant) in Figure 4(b).
By analyzing the participants’ qualitative responses, discussed in Section E, we identify potential factors
that may have contributed to these preferences, including a perceived lack of context in CodeLlama-34b
suggestions and a slight increase in latency in CodeLlama-34b (chat) responses. These results suggest that
various external factors that might be difficult to anticipate a priori can easily affect human preferences even
if they do not impact downstream productivity.

5.1 Additional User Study Observations

Findings on the effect of the form of LLM support and task type further illustrate the importance of evaluation
with humans in the loop.

Chat support is perceived to be more helpful than autocomplete support. Even though autocom-
plete and chat variants obtained similar performance on static benchmarks and participant performance in
both conditions conditioned on a model type was relatively similar, we observe that chat models are rated by
participants in the post-study questions as significantly more helpful than autocomplete models (p < 0.001),
as shown in Figure 4(c). Again, we observe that CodeLlama-34b models tend to be rated as less helpful
(3.3 out of 10), than the other two models (4.19 and 5.09 out of 10 for CodeLlama-7b and GPT-3.5). To no
surprise, GPT-4o (chat) is rated as the most helpful with 6.9 out of 10 followed closely by GPT-3.5 (chat)
with 6.3 out of 10.

The benefits of LLM assistance can vary by task type. We also analyze the time spent on each
task category, comparing when participants have access to LLM assistance versus the control condition. As
shown in Figure 6, we find suggestive evidence that LLM assistance was particularly effective in reducing the
time programmers needed to solve data manipulation tasks, by 26.3%, and slightly less so for problems that
required editing and augmenting existing code, by 17.1%. In contrast, we found that LLMs were unhelpful
on algorithmic problems, increasing the amount of time spent by 11.4%. A breakdown by individual task is
in Appendix D.

Alternative Measures of Autocomplete Suggestion Quality. The fraction of suggestions accepted by
programmers in the autocomplete conditions is a myopic measure of the interaction between the program-
mer and the LLM. Programmers often accept suggestions to see them with code styling and then delete
them promptly or verify them at a later time (Mozannar et al., 2024). On the other hand, programmers
may reject suggestions inadvertently. A measure that is less myopic than a fraction of accepted sugges-
tions, is the persistence of an accepted suggestion in a programmer’s code. In Figure 7, we track each
accepted suggestion over time to see if it remains in the programmer’s code. We find that suggestions from
GPT-3.5 and CodeLlama34b persist more frequently compared to suggestions from CodeLlama7b confirming
our productivity assessments.

11

Published in Transactions on Machine Learning Research (01/2025)

20 30 40 50 60
Time after Acceptance (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

St
ill

in
 C

od
e

Fr
ac

tio
n

Models
GPT-3.5
CodeLlama34b
CodeLlama7b

Figure 7: For each accepted suggestion across the three models for autocomplete conditions, we track after
15 seconds, 30s, and 60s whether the accepted suggestion was still found exactly in the user’s code. We track
the fraction of the accepted suggestions that persisted across the three time points.

6 Discussion

In this work, we introduce RealHumanEval, a human-centric evaluation platform for code LLMs, and conduct
a user study using the platform to measure programmer productivity, as measured by time to complete a
task and number of tasks completed, assisted by different LLMs. We now discuss how the platform can be
easily used for future studies to evaluate new models and interactions as well as how the data collected from
our study can be used to improve coding assistants.

An open platform to support interactive model evaluation. We believe RealHumanEval can be
adopted to evaluate newly released LLM models in a more meaningful way and become a standard for eval-
uation. As demonstrated across several studies of AI-assisted programming, the effects of coding assistance
show considerable heterogeneity by task, model, language, and user population, among other factors. Re-
alHumanEval was built with this heterogeneity in mind, as a toolkit to enable a systematic exploration of
these factors within the research community. Specifically, researchers can add their own models by providing
an API endpoint, add new tasks as JSON files, and configure their own values of LLM parameters (e.g.,
temperature, time to trigger, etc.) through a centralized configuration file. As an open-source project, the
platform is also designed to be extensible, allowing researchers to also add their own custom components to
the interface with minimal friction. We will also release tutorials with the open-source platform to make it
as easy as possible for others to get started.

Improving coding assistants and leveraging study data. We summarize participant suggestions on
how coding assistants could be improved (more detail in Appendix E). Participants overwhelmingly felt that
LLMs struggled to infer the appropriate context to provide the most useful support from the information
available, highlighting the need for benchmarks that capture settings where LLMs need to infer intent from
partial or fuzzy instructions. There are also opportunities to improve autocomplete and chat assistants to
be better programming partners (Wu et al., 2023). For example, autocomplete systems might benefit from
personalization of when participants would benefit from suggestions and dynamically adjusting the length,
while chat-based systems could be improved to have better, more tailored dialogue experience and better
integration with the editor. Toward these goals, we release the datasets of user interactions that can be
leveraged as signals of user preferences and behavior patterns. For example, the data collected in our study
presents an opportunity to build and evaluate simulation environments that mimic how programmers write
code with an LLM. The data can also be used to fine-tune the models; the dataset of interactions with
autocomplete models Dac reveals which suggestions programmers accept and which they reject, which can

12

Published in Transactions on Machine Learning Research (01/2025)

be used to update the LLM and generate suggestions that maximize the probability of being accepted by
the programmer.

Limitations. Firstly, we acknowledge that a set of 17 coding tasks does not span the entire set of tasks a
professional programmer might encounter in their work and may limit the generalizability of our evaluations
of the 7 models. We encourage future work to leverage RealHumanEval to conduct further studies with a
more extensive set of tasks and with more models. We included the seven models chosen to be representative
of different scales of LLMs, notably we did not evaluate models from the Claude series Anthropic (2024)
but we expect GPT-4o to have relatively similar performance. Our goal is not to benchmark all available
LLMs, but to look at trends between human productivity and LLM performance. Furthermore, our work
includes more studied models than prior work with human (Table 1). Second, the coding tasks we used are
of short duration, while real-world programming tasks can take hours to months. This presents a trade-off
in study design: short tasks allow us to evaluate with more participants and models in a shorter period but
give us a less clear signal compared to longer-term tasks. Third, RealHumanEval does not fully replicate
all functionality existing products such as GitHub Copilot may have so the study may underestimate exact
productivity benefits. Such products are complex systems comprising more than a single LLM, where many
details are hidden and thus not easily replicable. We release RealHumanEval to enable others to build more
functionality in an open-source manner.

Societal implications. While our evaluations focused on productivity metrics, there are additional metrics
of interest that may be important to measure when studying programmer interactions with LLM support. On
the programmer side, further evaluations are needed to understand whether programmers appropriately rely
on LLM support (Spiess et al., 2024) and whether LLM support leads to potential de-skilling (Bommasani
et al., 2021). Further, our metrics do not consider potential safety concerns, where LLMs may generate
harmful or insecure code (Pearce et al., 2022; Perry et al., 2023).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo

Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Amazon. Ml-powered coding companion – amazon codewhisperer, 2022. URL https://aws.amazon.com/
codewhisperer/.

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic.com/news/
claude-3-family.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Shraddha Barke, Michael B James, and Nadia Polikarpova. Grounded copilot: How programmers interact
with code-generating models. Proceedings of the ACM on Programming Languages, 7(OOPSLA1):85–111,
2023.

Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini Kalliamvakou, Travis Lowder-
milk, and Idan Gazit. Taking flight with copilot: Early insights and opportunities of ai-powered pair-
programming tools. Queue, 20(6):35–57, 2022.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

13

https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

Published in Transactions on Machine Learning Research (01/2025)

Erik Brynjolfsson, Danielle Li, and Lindsey R Raymond. Generative ai at work. Technical report, National
Bureau of Economic Research, 2023.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e: a scalable and
polyglot approach to benchmarking neural code generation. IEEE Transactions on Software Engineering,
2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li, Hao
Zhang, Banghua Zhu, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open platform for
evaluating llms by human preference. arXiv preprint arXiv:2403.04132, 2024.

Bhavya Chopra, Ananya Singha, Anna Fariha, Sumit Gulwani, Chris Parnin, Ashish Tiwari, and Austin Z
Henley. Conversational challenges in ai-powered data science: Obstacles, needs, and design opportunities.
arXiv preprint arXiv:2310.16164, 2023.

Katherine M Collins, Albert Q Jiang, Simon Frieder, Lionel Wong, Miri Zilka, Umang Bhatt, Thomas
Lukasiewicz, Yuhuai Wu, Joshua B Tenenbaum, William Hart, et al. Evaluating language models for
mathematics through interactions. arXiv preprint arXiv:2306.01694, 2023.

Kevin Zheyuan Cui, Mert Demirer, Sonia Jaffe, Leon Musolff, Sida Peng, and Tobias Salz. The productivity
effects of generative ai: Evidence from a field experiment with github copilot. 2024.

Hai Dang, Karim Benharrak, Florian Lehmann, and Daniel Buschek. Beyond text generation: Supporting
writers with continuous automatic text summaries. In Proceedings of the 35th Annual ACM Symposium
on User Interface Software and Technology, pp. 1–13, 2022.

Victor Dibia, Adam Fourney, Gagan Bansal, Forough Poursabzi-Sangdeh, Han Liu, and Saleema Amershi.
Aligning offline metrics and human judgments of value for code generation models. In Findings of the
Association for Computational Linguistics: ACL 2023, pp. 8516–8528, 2023.

Tuan Dinh, Jinman Zhao, Samson Tan, Renato Negrinho, Leonard Lausen, Sheng Zha, and George Karypis.
Large language models of code fail at completing code with potential bugs. Advances in Neural Information
Processing Systems, 36, 2023.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for methods that learn
from human feedback. Advances in Neural Information Processing Systems, 36, 2023.

Github. Github copilot - your ai pair programmer, 2022. URL https://github.com/features/copilot.

Ken Gu, Ruoxi Shang, Tim Althoff, Chenglong Wang, and Steven M Drucker. How do analysts under-
stand and verify ai-assisted data analyses? In Proceedings of the CHI Conference on Human Factors in
Computing Systems, pp. 1–22, 2024.

Sandra G Hart. Nasa-task load index (nasa-tlx); 20 years later. In Proceedings of the human factors and
ergonomics society annual meeting, volume 50, pp. 904–908. Sage publications Sage CA: Los Angeles, CA,
2006.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John Grundy,
and Haoyu Wang. Large language models for software engineering: A systematic literature review. arXiv
preprint arXiv:2308.10620, 2023.

Maurice Jakesch, Advait Bhat, Daniel Buschek, Lior Zalmanson, and Mor Naaman. Co-writing with opinion-
ated language models affects users’ views. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, pp. 1–15, 2023.

14

https://github.com/features/copilot

Published in Transactions on Machine Learning Research (01/2025)

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth In-
ternational Conference on Learning Representations, 2023.

Eunkyung Jo, Daniel A Epstein, Hyunhoon Jung, and Young-Ho Kim. Understanding the benefits and
challenges of deploying conversational ai leveraging large language models for public health intervention.
In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–16, 2023.

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J Ericson, David Weintrop, and Tovi Gross-
man. Studying the effect of ai code generators on supporting novice learners in introductory programming.
In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–23, 2023.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan Parvez, and
Shafiq Joty. xcodeeval: A large scale multilingual multitask benchmark for code understanding, generation,
translation and retrieval. arXiv preprint arXiv:2303.03004, 2023.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant conversations-
democratizing large language model alignment. Advances in Neural Information Processing Systems, 36,
2023.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science code generation.
In International Conference on Machine Learning, pp. 18319–18345. PMLR, 2023.

Md Tahmid Rahman Laskar, M Saiful Bari, Mizanur Rahman, Md Amran Hossen Bhuiyan, Shafiq Joty, and
Jimmy Huang. A systematic study and comprehensive evaluation of chatgpt on benchmark datasets. In
Findings of the Association for Computational Linguistics: ACL 2023, pp. 431–469, 2023.

Mina Lee, Percy Liang, and Qian Yang. Coauthor: Designing a human-ai collaborative writing dataset for
exploring language model capabilities. In CHI Conference on Human Factors in Computing Systems, pp.
1–19, 2022.

Mina Lee, Megha Srivastava, Amelia Hardy, John Thickstun, Esin Durmus, Ashwin Paranjape, Ines Gerard-
Ursin, Xiang Lisa Li, Faisal Ladhak, Frieda Rong, Rose E Wang, Minae Kwon, Joon Sung Park, Hancheng
Cao, Tony Lee, Rishi Bommasani, Michael S. Bernstein, and Percy Liang. Evaluating human-language
model interaction. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=hjDYJUn9l1.

Jenny T Liang, Carmen Badea, Christian Bird, Robert DeLine, Denae Ford, Nicole Forsgren, and
Thomas Zimmermann. Can gpt-4 replicate empirical software engineering research? arXiv preprint
arXiv:2310.01727, 2023.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chatgpt
really correct? rigorous evaluation of large language models for code generation. Advances in Neural
Information Processing Systems, 36, 2023.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano,
MING GONG, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie LIU.
CodeXGLUE: A machine learning benchmark dataset for code understanding and generation. In Thirty-
fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1),
2021. URL https://openreview.net/forum?id=6lE4dQXaUcb.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models of code are
few-shot commonsense learners. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 1384–1403, 2022.

15

https://openreview.net/forum?id=hjDYJUn9l1
https://openreview.net/forum?id=hjDYJUn9l1
https://openreview.net/forum?id=6lE4dQXaUcb

Published in Transactions on Machine Learning Research (01/2025)

Hussein Mozannar, Valerie Chen, Dennis Wei, Prasanna Sattigeri, Manish Nagireddy, Subhro Das, Ameet
Talwalkar, and David Sontag. Simulating iterative human-ai interaction in programming with llms. In
NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following, 2023.

Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. Reading between the lines: Modeling
user behavior and costs in ai-assisted programming. In Proceedings of the CHI Conference on Human
Factors in Computing Systems, pp. 1–16, 2024.

Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack: Instruction tuning code large
language models. In The Twelfth International Conference on Learning Representations, 2023.

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers. Using an llm to help
with code understanding. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, pp. 1–13, 2024.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. Codegen: An open large language model for code with multi-turn program synthesis. In The
Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=iaYcJKpY2B_.

OpenAI. Chatgpt: Optimizing language models for dialogue, 2022. URL https://openai.com/blog/
chatgpt/.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. Asleep at
the keyboard? assessing the security of github copilot’s code contributions. In 2022 IEEE Symposium on
Security and Privacy (SP), pp. 754–768. IEEE, 2022.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of ai on developer productivity:
Evidence from github copilot. arXiv preprint arXiv:2302.06590, 2023.

Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. Do users write more insecure code with
ai assistants? In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, pp. 2785–2799, 2023.

James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen, Andrew Luxton-Reilly,
Garrett Powell, James Finnie-Ansley, and Eddie Antonio Santos. “it’s weird that it knows what i want”:
Usability and interactions with copilot for novice programmers. ACM Trans. Comput.-Hum. Interact., 31
(1), nov 2023. ISSN 1073-0516. doi: 10.1145/3617367. URL https://doi.org/10.1145/3617367.

replit. Meet ghostwriter, your partner in code., 2023. URL https://replit.com/site/ghostwriter.

Steven I Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D Weisz. The programmer’s
assistant: Conversational interaction with a large language model for software development. In Proceedings
of the 28th International Conference on Intelligent User Interfaces, pp. 491–514, 2023.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. An analysis of the automatic bug fixing
performance of chatgpt. arXiv preprint arXiv:2301.08653, 2023.

Claudio Spiess, David Gros, Kunal Suresh Pai, Michael Pradel, Md Rafiqul Islam Rabin, Susmit Jha, Prem
Devanbu, and Toufique Ahmed. Quality and trust in llm-generated code. arXiv preprint arXiv:2402.02047,
2024.

Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. Expectation vs. experience: Evaluating the
usability of code generation tools powered by large language models. In CHI Conference on Human
Factors in Computing Systems Extended Abstracts, pp. 1–7, 2022.

16

https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://doi.org/10.1145/3617367
https://replit.com/site/ghostwriter

Published in Transactions on Machine Learning Research (01/2025)

Helena Vasconcelos, Gagan Bansal, Adam Fourney, Q Vera Liao, and Jennifer Wortman Vaughan. Generation
probabilities are not enough: Exploring the effectiveness of uncertainty highlighting in ai-powered code
completions. arXiv preprint arXiv:2302.07248, 2023.

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar, Samson
Tan, Baishakhi Ray, Parminder Bhatia, et al. Recode: Robustness evaluation of code generation models.
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 13818–13843, 2023.

Tongshuang Wu, Kenneth Koedinger, et al. Is ai the better programming partner? human-human pair
programming vs. human-ai pair programming. arXiv preprint arXiv:2306.05153, 2023.

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan Zhao,
Li Zhu, Shuiguang Deng, et al. Codescope: An execution-based multilingual multitask multidimensional
benchmark for evaluating llms on code understanding and generation. arXiv preprint arXiv:2311.08588,
2023.

John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing and
benchmarking interactive coding with execution feedback. Advances in Neural Information Processing
Systems, 36, 2024.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Wang Yongji, and Jian-Guang
Lou. Large language models meet nl2code: A survey. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 7443–7464, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging LLM-as-a-
judge with MT-bench and chatbot arena. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023. URL https://openreview.net/forum?id=uccHPGDlao.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravindran, Sindhu Tipirneni, and Chandan K. Reddy.
Xlcost: A benchmark dataset for cross-lingual code intelligence, 2022. URL https://arxiv.org/abs/
2206.08474.

Albert Ziegler, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin, Shawn Simister, Ganesh Sit-
tampalam, and Edward Aftandilian. Productivity assessment of neural code completion. In Proceedings
of the 6th ACM SIGPLAN International Symposium on Machine Programming, pp. 21–29, 2022.

17

https://openreview.net/forum?id=uccHPGDlao
https://arxiv.org/abs/2206.08474
https://arxiv.org/abs/2206.08474

Published in Transactions on Machine Learning Research (01/2025)

Appendix

A User study details

A.1 RealHumanEval interface screenshots

We show examples of the RealHumanEval web interface used in the study: autocomplete conditions (Figure 8
and Figure 9) and chat conditions (Figure 10). Note that the interface is the same as that of the autocomplete
conditions for the no LLM condition, except there is no LLM to provide any inline code suggestions.

Figure 8: Screenshot of the autocomplete LLM-assistance interface in our user study.

Figure 9: Another screenshot of the autocomplete LLM-assistance interface in our user study.

18

Published in Transactions on Machine Learning Research (01/2025)

Figure 10: Screenshot of the chat LLM-assistance interface in our user study.

A.2 User Study Instructions

Before participants enter the main interface, they are provided with the following text:

After you fill out the information here, click the Start Experiment button to proceed.
Please DO NOT refresh or press back as you may lose a fraction of your progress, if needed
you can refresh while coding but you will lose your code.
Your name and email will NOT be shared with anyone or used in the study.
Note that there is a chance the interface may not have AI, that is not a bug.
By performing this task, you consent to share your study data.

In all conditions, a pop-up is displayed with the following instruction:

Welcome to the user study! You will first complete a tutorial task to make you familiar with the study.

• You will be writing code in Python only and use only standard python libraries and only numpy
and pandas.

• After the tutorial task, you will have 35 minutes total where you will try to solve as many coding
tasks as possible one at a time.

• It is NOT allowed to use any outside resources to solve the coding questions (e.g., Google, Stack-
Overflow, ChatGPT), your compensation is tied to effort only.

A.2.1 Autocomplete Condition

You will write code in the interface above: a code editor equipped with an AI assistant that provides
suggestions inline.

• The AI automatically provides a suggestion whenever you stop typing for more than 2 seconds.

19

Published in Transactions on Machine Learning Research (01/2025)

• You can accept a suggestion by pressing the key [TAB] or reject a suggestion by pressing [ESC].

• You can also request a suggestion at any time by pressing [CTRL+ENTER] (Windows) or [CMD+ENTER]
(Mac).

• You can run your code by pressing the run button and the output will be in the output box at the
bottom in grey.

• Press the submit button to evaluate your code for correctness. You can submit your
code as many times as you wish until the code is correct.

• If you cannot solve one of the tasks in 10 minutes, a button “Skip Task”, only press this button if
you absolutely cannot solve the task.

Note: please be aware that the AI assistant is not perfect and may provide incorrect suggestions. Moreover,
the AI may generate potentially offensive suggestions especially if prompted with language that is offensive.

A.2.2 Chat Condition

You will write code in the interface above: a code editor equipped with an AI assistant chatbot in the right
panel.

• The AI chatbot will respond to messages you send and incorporate previous messages in its response.
The AI does not know what the task is or the code in the editor.

• When the AI generates code in its response, there is a COPY button that will show up above the
code segment to allow you to copy.

• You can test your code by pressing the run button and the output will be in the output box at the
bottom in grey.

• Press the submit button to evaluate your code for correctness. You can submit your
code as many times as you wish until the code is correct.

• If you cannot solve one of the tasks in 10 minutes, a button “Skip Task”, only press this button if
you absolutely cannot solve the task.

Note: please be aware that the AI assistant is not perfect and may provide incorrect suggestions. Moreover,
the AI may generate potentially offensive suggestions especially if prompted with language that is offensive.

A.2.3 No LLM Condition

You will write code in the interface above: a code editor.

• You can run your code by pressing the run button and the output will be in the output box at the
bottom in grey.

• Press the submit button to evaluate your code for correctness. You can submit your
code as many times as you wish until the code is correct.

• If you cannot solve one of the tasks in 10 minutes, a button “Skip Task”, only press this button if
you absolutely cannot solve the task.

20

Published in Transactions on Machine Learning Research (01/2025)

A.2.4 Post-Study Questionnaire

• Thinking of your experience using AI tools outside of today’s session, do you think that your session
today reflects your typical usage of AI tools?

• How mentally demanding was the study? (1-20)

• How physically demanding was the study? (1-20)

• How hurried or rushed was the pace of the study? (1-20)

• How successful were you in accomplishing what you were asked to do? (1-20)

• How hard did you have to work to accomplish your level of performance? (1-20)

• How insecure, discouraged, irritated, stressed, and annoyed were you? (1-20)

• Overall, how useful/helpful was the AI assistant? (1-10)

• In which ways was the AI assistant helpful? What did it allow you to accomplish? (free-text)

• How could the AI suggestions be improved? (free-text)

• Additional comments (Optional): anything went wrong? any feedback? (free-text)

To ensure consistency in responses to scale-based questions, we labeled 1 with “low” and either 10 or 20 with
“high” depending on the question.

A.3 Data release considerations

We took the following measures to mitigate potential ethical concerns regarding the release of the study.
First, the study protocol was approved by institutional IRB review. Second, before participating in the
actual study, all participants were provided with a consent form outlining the study and the data that would
be collected as part of the study (including interaction data with LLMs) and provided with the option to
opt out of the study if they so choose. Finally, after data collection and prior to public data release, the
authors carefully checked all participant interactions with LLMs, particularly chat dialogue, to ensure that
no personally identifiable information was revealed.

B Task Design

B.1 Task categories

Algorithmic coding problems: Many coding tasks require programmers to implement algorithmic think-
ing and reasoning and are widely used to evaluate programmers in coding interviews. To identify algorith-
mic coding problems, we sample representative problems from the HumanEval dataset Chen et al. (2021).
Given gpt-3.5-turbo’s high performance on this type of problem, we ensure that we also include problems
where it fails to solve the problem on its own. We evaluated each question using test cases from the Hu-
manEval dataset. We included the following problem ids from HumanEval: is_bored 91, is_multiply_prime
75, encode_message 93, count_nums 108, order_by_points 145, even_odd_count 155, sum_product 8,
triple_sum_to_zero 40. In addition, we created a custom problem called event_scheduler. All tasks with
unit tests will be released.

Editing and augmenting existing code: When working with existing repositories, programmers will
often need to edit and build on code that may have been written by others (Sobania et al., 2023). We designed
questions where participants are either provided with either code scaffold to fill in or with code body that
they are asked to modify the functionality of. When designing such questions, we take care to avoid common
implementations (e.g., a traditional stack and queue) that would have appeared in LLM training data. We

21

Published in Transactions on Machine Learning Research (01/2025)

also constructed a set of test cases for each question. The four problem names are calculator, tokenizer, login
authenticator and retriever.

For example, here is the login authenticator problem description:

Your goal is to implement the LoginAuthenticator class, which will be used to authenticate
users of a system. The class will include the following methods:

_hash_password (Private Method): Creates a hash of a given password. Accepts a password
(string) and returns the hashed password using any hashing technique.

add_user Method: Adds a new user to the system with a username and a password. It checks if
the username already exists, hashes the password if it does not, and stores the credentials.
Returns True if successful.

remove_user Method: Removes a user from the system by deleting their username entry from
self.user_credentials if it exists. Returns True if successful.

change_password Method: Changes a user’s password after authenticating the user with
their old password. If authenticated, it hashes the new password and updates
self.user_credentials. Returns True if successful.

The programmer is given the following initial code:

class LoginAuthenticator :
def __init__ (self):

DO NOT CHANGE
self. user_credentials = {} # dictionary for username : hashed_password

def _hash_password (self , password):
WRITE CODE HERE
return

def add_user (self , username , password):
WRITE CODE HERE
return

def authenticate_user (self , username , password):
DO NOT CHANGE
Checks if the given username and password are valid
if username not in self. user_credentials :

return False
return self. user_credentials [username] == self. _hash_password (password)

def remove_user (self , username):
WRITE CODE HERE
return

def change_password (self , username , old_password , new_password):
WRITE CODE HERE
return

Data science tasks: Given the increased usage of data in many engineering disciplines, programmers
are often involved in data science problems. We design data science problems inspired by the DS-1000
dataset Lai et al. (2023), where participants need to perform multiple data manipulation and wrangling
operations and return a resulting Pandas dataframe. To ensure that an LLM cannot achieve perfect accu-
racy on its own, we only show an example of the input and target dataframes without providing specific
instructions on each operation. The code will be evaluated based on the correctness of the dataframe in an
element-wise fashion. The four problem names are table_transform_named, table_transform_unnamed1,
table_transform_unnamed2 and t_test.

Here is for example the problem table_transform_unnamed1:

22

Published in Transactions on Machine Learning Research (01/2025)

Given the input pandas DataFrame:

col1 col2 col3 col4 col5
0 6 1 5.38817 3 2
1 9 2 4.19195 5 8
2 10 8 6.8522 8 1
3 6 7 2.04452 8 7
4 1 10 8.78117 10 10

Transform this DataFrame to match the following output structure, recognizing the rela-
tionship between the input and output DataFrames:

col1 col2 col3
0 6 2 8.38817
1 15 3 9.19195
2 25 9 14.8522
3 31 8 10.0445
4 32 11 18.7812
0 0 0 0
0 0 0 0

Implement a function named transform_df that takes the input DataFrame and returns
the transformed DataFrame, discovering and applying the patterns between them.

The programmer is given the following initial code:

import pandas as pd
from io import StringIO

Original dataset
data = ’’’
col1 ,col2 ,col3 ,col4 , col5
6,1,5. 3881673400335695 ,3,2
9,2,4. 191945144032948 ,5,8
10 ,8,6. 852195003967595 ,8,1
6,7,2. 0445224973151745 ,8,7
1,10 ,8. 781174363909454 ,10 ,10
’’’

Read the dataset into a DataFrame
df = pd. read_csv (StringIO (data))

def transform_df (df):
Your code here

print (transform_df (df))

B.2 Task organization

We created five task sets where we fixed the first task (in addition to the tutorial sum_product task) and
varied the remaining tasks randomly ensuring a split across the categories. The five sets are:

1. Task Set 1: even_odd_count, triple_sum_to_zero, table_transform_named, tokenizer, en-
code_message, t_test, event_scheduler.

23

Published in Transactions on Machine Learning Research (01/2025)

2. Task Set 2: even_odd_count, is_bored, login_authenticator, is_multiply_prime, count_nums,
table_transform_named, calculator.

3. Task Set 3: even_odd_count, count_nums, calculator, table_transform_unnamed2, lo-
gin_authenticator, encode_message, is_bored.

4. Task Set 4: even_odd_count, order_by_points, retriever, triple_sum_to_zero, tokenizer,
event_scheduler, encode_message.

5. Task Set 5: even_odd_count, is_multiply_prime, table_transform_unnamed1, t_test, is_bored,
order_by_points, triple_sum_to_zero.

C LLM Details

HumanEval MBPP20

30

40

50

60

70

80

90

Pa
ss

@
1

CodeLlama7b
CodeLlama7b (chat)
CodeLlama34b

CodeLlama34b (chat)
GPT-3.5

GPT-3.5 (chat)
GPT-4 (chat)

Figure 11: Pass@1 of LLM models and their chat variants on two canonical benchmarks, HumanEval and
MBPP (results from (Rozière et al., 2023; Liu et al., 2023)), showing that CodeLlama-7b models perform
worse than CodeLlama-34b models, which are less performant than GPT-3.5 models.

We select three models of varying benchmark performance as shown in Figure 11. Here we provide links to
model weights (where applicable) and any additional details.

• CodeLlama (7b, 34b) and CodeLlama Instruct (7b, 34b). Accessed from https://api.
together.xyz/. Note that the base model variants are no longer available from this source.
The license for the CodeLlama models is at https://github.com/meta-llama/llama/blob/main/
LICENSE.

• GPT-3.5-turbo. Specific model version is gpt-3.5-turbo-0613. Accessed through the OpenAI
API. This is a closed model and does not have an associated license.

• GPT-3.5-turbo-instruct. Accessed through the OpenAI API. This is a closed model and does
not have an associated license.

• GPT-4o. Accessed through the OpenAI API. This is a closed model and does not have an associated
license.

LLM parameters. For all LLMs, we used a temperature setting of 1 to ensure varied responses. For
autocomplete LLMs, we needed a way to set the the length of the suggestions with a fixed number since
base LLMs are not trained with an EOS token and thus do not know when to stop generating code. We first
looked at how current open-source Copilot systems determine the suggestion length for the autocomplete
suggestions. We found that all open-source systems (such as Fauxpilot and HuggingFace’s personal Copilot
4) use a fixed-length suggestion, and each with a different length parameter. We experimented in initial study
pilots with different choices and found that a token length of 64 made the suggestions more likely to be correct

4https://huggingface.co/blog/personal-copilot

24

https://api.together.xyz/
https://api.together.xyz/
https://github.com/meta-llama/llama/blob/main/LICENSE
https://github.com/meta-llama/llama/blob/main/LICENSE
https://huggingface.co/blog/personal-copilot

Published in Transactions on Machine Learning Research (01/2025)

while not being too short. However, to allow future systems to more smartly pick the suggestion length, we
decided to make the suggestion length random (truncated Gaussian) on the interval [10,120] with mean 64
so that we can learn from this data in an unbiased manner. If we were to use model confidence, we would
have to use an arbitrary threshold to know when to stop generation, which may be problematic in unforeseen
ways. Equipped with our study data and interface, future work can pick this confidence threshold in a more
sound manner by trying to maximize acceptance rate. Since the design of RealHumanEval was modular, it
should be easy to plug in future mechanisms. For the chat LLMs, we set the max_token parameter to 512
tokens constant.

Why we did not select other model candidates. Of the CodeLlama models available to use at the
time of the study, we omitted CodeLlama-13b. We did not select CodeLlama-13b as its performance on
HumanEval is very similar to the 7b variant. Additionally, CodeLlama-70b and Claude-3.5-sonnet had not
been released when we conducted the study.

C.1 Prompts used

We used the following system prompt for all chat-based LLMs:

You are an expert Python programmer, be helpful to the user and return code
only in Python.

For autocomplete-based LLMs, the first line of the prompt is always the following:

file is main.py, ONLY CODE IN PYTHON IN THIS FILE

These prompts help to ensure that LLM responds in Python.

D Additional Results

D.1 Pre-registration

We pre-registered our study design prior to data collection but not the analysis plan https://aspredicted.
org/blind.php?x=K3P_K1J. We deviated from the initial plan by adding a condition with GPT-4o as a post-
hoc exploration when GPT-4o was released. Due to the limit on the number of participants who completed
the task within the timeframe of the study, we thus ended up with fewer participants in the final dataset
than we originally anticipated being able to collect (i.e., 30 per condition instead of 50 per condition). As
a result, we opted to pool together data from the same model class to study both hypotheses. All other
additional analyses in this work are exploratory and were not pre-registered.

D.2 Dataset Analysis

We post-processed both datasets to ensure they did not reveal any identifying information about participants
or contain harmful language.

Autocomplete dataset. Recall that users had the option to request suggestions via hotkey or were
provided the suggestion after some time. As shown in Figure 12, participants are much more likely to accept
suggestions if they request them. Interestingly, CodeLlama-34b suggestions seemed to be more preferred
than CodeLlama-7b when requested.

Chat dataset. We analyze the 1055 chat messages participants sent across the three conditions, as shown
in Figure 13. On average 2.7 messages were sent per task with a length of 104.8 characters. We note
that there is a particularly long tail in terms of words appearing in chat messages because many questions
contained implementation-specific variables. In accordance with our findings that LLMs were most useful
for data manipulation tasks, we also find that participants engaged with LLM support the most for those
tasks.

25

https://aspredicted.org/blind.php?x=K3P_K1J
https://aspredicted.org/blind.php?x=K3P_K1J

Published in Transactions on Machine Learning Research (01/2025)

0.0 0.1 0.2 0.3 0.4 0.5
Non-requested: % Suggestion Accepted

GPT-3.5

CodeLlama-34b

CodeLlama-7b

0.0 0.1 0.2 0.3 0.4 0.5
Requested: % Suggestion Accepted

Figure 12: Comparing the acceptance rate for when participants requested suggestions with when they were
automatically provided with suggestions by the autocomplete system.

5 10
Number of messages per task

0

50

100

150

200

Fr
eq

ue
nc

y

0 1000 2000 3000
Length of Chat Message

0

250

500

750

1000
Fr

eq
ue

nc
y

2.5 3.0 3.5 4.0
Number of messages

Algorithmic Problems

Data Manipulation

Edit/Augment Code

Words appearing in chat msgs
0

200

400

600

Fr
eq

ue
nc

y

Figure 13: Analysis of the number of messages sent per task (top left), the length of chat messages (top
right), the number of messages sent per task category (lower left), and the frequency of words appearing in
chat messages (lower right).

D.3 Accounting for task difficulty

To facilitate comparisons between different sets of tasks, which may have varying difficulty, the value of each
metric is z-scored within the task set:

Mz
i,t = Mi,t − µM,t

σM,t

26

Published in Transactions on Machine Learning Research (01/2025)

where Mz
i,t is the value of metric M achieved by participant i, z-scored within task set t; µM,t and σM,t are

the mean and standard deviation of metric M for task set t, across all participants. We rerun our analysis
for performance metrics and present results in Figure 14.

1.0 0.5 0.0 0.5 1.0
 in Avg Task Duration (z-score)

GPT-3.5-Turbo-Instruct
CodeLlama-34b
CodeLlama-7b
GPT-3.5-Turbo

GPT-4o
CodeLlama-34b-Instruct
CodeLlama-7b-Instruct

No LLM
1.0 0.5 0.0 0.5 1.0
 in Num Tasks Completed (z-score)

GPT-3.5-Turbo-Instruct
CodeLlama-34b
CodeLlama-7b
GPT-3.5-Turbo

GPT-4o
CodeLlama-34b-Instruct
CodeLlama-7b-Instruct

No LLM

Figure 14: Performance results across models, z-scored to account for potential variation in task difficulty
across sets.

D.4 Task completion time

In Figure 3, we find the most significant differences between models in terms of task completion time. We
further analyze task completion time across multiple axes.

By task type. When comparing when participants have access to LLM assistance versus the control
condition, as shown in Figure 6, we find suggestive evidence that LLM assistance was particularly effective in
reducing the time programmers needed to solve data manipulation tasks and problems that required editing
and augmenting existing code, but not for algorithmic problems. We also analyze whether participants
benefited from LLM assistance on an individual task level in Figure 15. We observe that trends for individual
tasks within a category are similar, indicating the importance of understanding how programmers interact
with LLMs for different types of tasks.

Verifying outlier behavior. We plot a histogram of task completion times in Figure 16 to verify that
across participants, there were not a significant number of outliers. We also performed a similar check by
plotting across conditions in Figure 18 to ensure that there was not differing behavior across participants
(e.g., no bimodal behavior within a given condition).

D.5 Code Quality Metrics

Code Comments. Code written with the assistance of the LLM will inherit some of the characteristics of
the writing style of the LLM. One instance of that is comments in the code written. We investigate the number
of comments written by participants for the different types of interaction with the LLM: autocomplete, chat,
or no LLM. We count how many additional comments are in the code participants write compared to the
number of comments in the provided code participants complete. Participants in the autocomplete conditions
wrote 0.85 ± 0.1 additional comments, in the chat condition wrote 0.59 ± 0.08 comments and those in the
No LLM condition wrote 0.41 ± 0.13 comments. Participants writing code with autocomplete LLM write
twice as many comments as those without an LLM (p = 3e−6). There are two possible explanations for this
increase: first, programmers usually prompt the LLM with inline comments to get a suggestion they desire,
and second, we often observe that code generated by LLMs is often heavily commented. This indicates
that we can potentially differentiate code written by programmers with LLM assistance by the number of
comments in the code.

D.6 TLX Results

We measure cognitive load via a series of questions from the NASA Task Load Index (TLX) Hart (2006),
summarized in Table 3.

27

Published in Transactions on Machine Learning Research (01/2025)

0 200 400 600 800
Avg task duration (s)

sum_product

t_test

table_transform_named

table_transform_unnamed1

table_transform_unnamed2

tokenizer

calculator

login_authenticator

retriever

even_odd_count

triple_sum_to_zero

encode_message

is_bored

is_multiply_prime

count_nums

order_by_points

LLM-assisted
False
True

Figure 15: Time to task completion with and without LLM assistance, reported by task and grouped by
task category, with standard error.

Model Frustration Performance Temporal Demand Physical Demand Effort Mental Demand
GPT-4 9.83 8.40 13.00 3.60 11.33 12.00
GPT3.5 8.11 9.11 12.74 4.71 11.80 11.37
CodeLlama-34b 13.54 7.96 11.18 5.18 10.86 10.93
CodeLlama-7b 11.88 6.50 13.88 4.88 10.65 14.50
GPT3.5 (chat) 10.09 9.28 12.19 4.94 10.88 12.09
CodeLlama-34b (chat) 11.04 8.00 13.44 5.16 11.40 12.88
CodeLlama-7b (chat) 9.54 7.43 12.57 6.75 11.93 11.82
No LLM 9.62 7.56 13.51 5.95 11.79 12.10

Table 3: TLX scores across conditions.

28

Published in Transactions on Machine Learning Research (01/2025)

0 250 500 750 1000 1250 1500 1750
Time to Complete a Task (seconds)

0

20

40

60

80

100

120
Fr

eq
ue

nc
y

Mean
Median

Figure 16: Histogram depicting the distribution of task completion times across all participants and condi-
tions. The histogram is overlaid with dashed lines representing key statistical measures: the mean (red) and
the median (green).

400 200 0 200 400 600 800
 in Avg Task Duration (better)

GPT-3.5

CodeLlama34b

CodeLlama7b

GPT-3.5 (chat)

GPT-4o (chat)

CodeLlama34b (chat)

CodeLlama7b (chat)

No LLM

Figure 17: Violin plot of the difference in average task duration times (in seconds) between the No-LLM
condition and all other conditions.

29

Published in Transactions on Machine Learning Research (01/2025)

tutorial 1 2 3 4 5
Task Index Solved

200

300

400

500

600

700
Ti

m
e

to
 C

om
pl

et
e

Ta
sk

 (s
)

GPT-3.5
CodeLlama34b
CodeLlama7b
GPT-3.5 (chat)
GPT-4o (chat)
CodeLlama34b (chat)
CodeLlama7b (chat)
No LLM

Figure 18: For each of the seven conditions, we plot the average time for participants to complete the tutorial
task, the first task they solved, the second task they solved, and so on.

Figure 19: Average number of submissions by a participant per task across condition. We do not observe a
difference in the number of attempted runs, indicating that participants did not try to brute force solutions.

30

Published in Transactions on Machine Learning Research (01/2025)

User
how would I get the day from this 2019-03-06
where I want the number 6

 Chatbot
You can use the `day` attribute of the
`datetime.date` class to get the day of the month.
Here's an example:

import datetime
date = datetime.date(2019, 3, 6)
day = date.day
print(day) # prints 6

Examples of helpful interactions

def even_odd_count(num):
 even_count = 0
 odd_count = 0
 whi le num > 0:
 remainder = num % 10
 i f remainder % 2 == 0:
 even_count += 1
 else:
 odd_count += 1
 num = num // 10

 return even_count, odd_count

print(even_odd_count(2468))
print(even_odd_count(1357))
print(even_odd_count(111))

User
Write python code to determine whether a
number is the product of 3 prime numbers

 Chatbot
To determine whether a number is the product of 3 prime
numbers, we can follow the steps below:
1. Create a function `is_product_of_3_primes(num)` that
accepts an integer `num` as a parameter.
2. Initialize a variable `count` to 0 to keep track of
the number of prime factors.
3. Create a helper function `is_prime(n)` that accepts an
integer `n` and checks whether it is a prime number.
...

Verbose explanation, no code Incomplete, illogical generation

Actionable response to question Brainstorm test cases

Examples of unhelpful interactions

def i s_multiply_prime(a):
 primes =
 cond = True

i f len(str(a))%2!=0:
return False

for i in range(len(str(a))):
primes = 0
start = i
whi le(a%int(str(a)[start

Figure 20: Examples from of helpful and unhelpful chat and autocomplete interactions from the user study.
While these examples showcase how LLM assistance can improve programmer productivity (e.g., by providing
actionable responses and generating test cases), they also highlight how programmer-LLM interactions can
be improved. We discuss design opportunities collected from post-task participant responses in Section E
and provide more examples in Appendix F.

E Design Opportunities

To understand the design opportunities around improving the coding assistance provided through
RealHumanEval, we analyzed a post-study question on how coding assistants could be improved. Answers
to the question were collected in free response format and were optional, though it was answered by the
majority of participants. We summarize participant suggestions into general comments that could apply to
both types of interactions and identify autocomplete- and chat-specific suggestions.5

Both autocomplete and chat models need improved context. A theme that spanned both types of
interactions and model types was the perceived lack of context that the LLM had about the general task when
providing either suggestions or chat responses (example shown in Figure 20). While one might expect that a
more performant model might mitigate these concerns, we do not observe a significant decrease in mentions
regarding this issue for GPT-3.5 models compared to both CodeLlama-7b and CodeLlama-34b models. In
general, it may not be obvious how to concisely specify the full “context”—recall that we intentionally
considered a set-up where the LLM is unaware of task T to mimic realistic constraints—but the development
of new interfaces to facilitate context specification and mechanisms to prompt for additional task-specific
information could improve LLM generations. Additionally, further baseline checks can be implemented to
minimize concerns mentioned by participants (e.g., ensuring that the LLM responses are provided in the
correct programming language, beyond prompting-based approaches implemented in our study). We note

5We omit the obvious, blanket suggestion for replacing the assistant with a better LLM, as model-only performance is one of
the independent variables in our experiment and a more performant model would undoubtedly improve the assistance provided.

31

Published in Transactions on Machine Learning Research (01/2025)

that issues surrounding context control have also been highlighted in prior work (Chopra et al., 2023; Barke
et al., 2023).

Autocomplete-specific suggestions. We highlight the three most commonly mentioned avenues of im-
provement across all three model types. (1) Minimize suggestion frequency: Participants noted that the
frequency of suggestions appearing in the code editor could disrupt their train of thought. To address this
issue, it may be preferable to allow participants to turn off the LLM model when they are brainstorming the
next steps or to modify the LLM to detect when participants may not need as frequent suggestions based on
their current coding behavior. Moreover, we observe quantitatively that participants are between 3 − 10×
more likely to accept an assistant’s suggestion if they requested it, as shown in Figure 12. (2) Dynamic
suggestion length: A common issue with autocomplete interactions noted by participants was the presence of
“incomplete variable definitions or function implementations” and “fragmented code” (e.g., Figure 21 (left)).
As this behavior is a product of the fixed length of LLM generations, autocomplete assistants can be im-
proved by ensuring the suggestion is complete before terminating generation. (3) More concise suggestions:
Finally, participants also noted that code completions could be more concise, as “it was overwhelming” and
“large chunks of code... start deviating from the task question” (e.g., Figure 21 (right)). It is an open
question to determine the appropriate length for how much code to generate in a context-aware manner.

Chat-specific suggestions. There were three common suggestions shared across models. (1) Responses
should focus on code, rather than explanation: It is well known that chat LLMs tend to generate verbose
responses, which could be detrimental when used as programming assistants. An example of a lengthy re-
sponse is in Figure 23. In particular, participants noted the additional time required to read large blocks of
texts and suggested to “get rid of all explanations and stick to code only, unless the user specifies they want
explanations.” Additionally, when focusing on code, participants suggested that the chat assistant could
anticipate alternative implementations (2) Improved dialogue experience: First, instead of making assump-
tions about potentially ambiguous points in a programmer’s question (e.g., as in Figure 22), a participant
suggested that the LLM “could ask clarifying questions or provide multiple suggestions.” Additionally, in
particular for CodeLlama-7b, participants asked for better consistency across multiple chat messages (e.g.,
“It wasn’t able to refer back to previous messages that I had sent when answering a question.”). (3) Better
integration with code editor: Currently, the burden is on the programmer to appropriately prompt the chat
assistant with questions and then to integrate chat suggestions into the code body in the editor. This onus
can be reduced by more readily incorporating “the code and the most recent error, if any, as well as the test
case that generated it in the context for the assistant” and “autocorrect code” based on its suggestions.

Why was CodeLlama-34b less preferred by users? Based on participants’ survey responses, we identify
two potential reasons that might qualitatively explain why CodeLlama-34b was less preferred for both au-
tocomplete and chat. For autocomplete, the lack of context was a particularly prevalent issue in responses
for CodeLlama-34b, mentioned by 54% of responses, as compared to 32% and 28% of CodeLlama-7b and
GPT-3.5 responses respectively. In particular, participants noted that the generated suggestions were often
irrelevant to the prior code and in the wrong programming language. We show examples of rejected sugges-
tions that illustrate a lack of context from participants who interacted with the CodeLlama-34b model in
Figure 24. For chat, while there were no exceptional concerns about lack of context, CodeLlama-34b had the
most mentions of latency as a point of improvement (6 mentions as compared to only 2 and 1 mentions for
CodeLlama-7b and GPT-3.5 respectively). For example, one participant noted that “the responses are slow
so sometimes it was faster to go off of my memory even if I wasn’t sure if it would work.” Indeed, we found
that CodeLlama-34b response time (about 10 seconds) was on average twice as slow as either CodeLlama-7b
or GPT-3.5 (about 5 seconds). We note that this slight delay did not significantly impact any participant’s
performance metrics.

E.1 Opportunities to use data

Simulating programmer-LLM interaction. The data collected in our study presents an opportunity
to build and evaluate simulation environments that mimic how programmers write code with an LLM.
Essentially, the simulator could be used to more efficiently replicate the results of RealHumanEval and
evaluate a wider set of models. However, despite initial work on simulating programmer-LLM interaction
(Mozannar et al., 2023), building a useful simulator requires significant training and validation. Our dataset

32

Published in Transactions on Machine Learning Research (01/2025)

provides training data for both chat and autocomplete interactions: The dataset of interactions with the
chat models Dchat allows us to simulate the queries programmers make to the chat assistant given the code
they have currently written. The dataset of interactions with the autocomplete models Dac can allow us
to simulate finer-grain interactions with LLM suggestions such as verifying and editing suggestions, among
other activities outlined in (Mozannar et al., 2023). To validate a proposed simulator, one should test
whether it faithfully replicates the trends observed in RealHumanEval before it can be used as an evaluation
benchmark.

Optimizing suggestions from human feedback. In addition to using the human feedback data to
simulate the interaction, one can use it to fine-tune the models. For instance, the dataset of interactions
with autocomplete models Dac reveals which suggestions programmers accept and which they reject, which
can be used to update the LLM and generate suggestions that maximize the probability of being accepted
by the programmer. Moreover, the dataset also captures how accepted suggestions were edited over time,
which can be used to generate suggestions that are more likely to persist in the programmer’s code. Finally,
an LLM that is not instruction-tuned usually requires specifying a maximum generation length parameter to
stop the generation of a code suggestion. In our autocomplete implementation, we intentionally randomized
the maximum suggestion length of the generated suggestion to be between the range [10, 120] with a mean
token length of 64. This design decision can provide yet another signal about when the LLM should stop
generating code.

F Example user interactions

import pandas as pd
from io import StringIO

Original dataset
data = '''
col1,col2,col3,col4,col5
6,1,5.3881673400335695,3,2
9,2,4.191945144032948,5,8
10,8,6.852195003967595,8,1
6,7,2.0445224973151745,8,7
1,10,8.781174363909454,10,10
'''

Read the dataset into a DataFrame
df = pd.read_csv(StringIO(data))

def transform_df(df):
 # Add col3 col4 and col5
 new_col = df['col3'] + df['col4'] + df['col5']
 #use insert() to add new column at position 3

df.insert(3,"col6",new_col)
Create new column by taking the square root of col6
df["col7"] = [round((x ** (1/2)),

def even_odd_count(num):
 str_num = str(num)
 even = 0
 odd = 0

 for k in str_num:
if int(k) % 2 == 0:

even += 1
else:

odd += 1
return [even, odd]

def pairs(lst):
cnt = 0
for i, ele in enumerate(lst):

if not

Figure 21: Examples of problematic autocomplete suggestions: incomplete suggestion (left) and starting new
irrelevant function (right).

33

Published in Transactions on Machine Learning Research (01/2025)

User
Do you see any errors in this function?

 Chatbot
Yes, there is an error in the provided function. When sorting the `ans` list, it uses the
default sorting order, which is ascending based on the sum of the split digits.
However, the desired behavior is to sort in descending order based on the sum.

To fix this, you can pass a lambda function as the ̀ key` argument to the `.sort()`
method, which specifies that the list should be sorted based on the negated sum.

def order_by_points(nums):
 ans = []
 for number in nums:
 split = [int(x) for x in str(number) if x != '-']
 if number < 0:
 split[0] = -split[0]
 ans.append((sum(split), number))
 ans.sort()
 return [x[1] for x in ans]

User
The goals is to be sorted in ascending order based on the sum of the split digits

 Chatbot
Apologies for the confusion. If the goal is to sort the list in ascending order based on
the sum of the split digits, the original code is correct. The `.sort()` method, without
any additional arguments, sorts the list in ascending order.

Figure 22: Example of a chat interaction where the chat assistant could have proactively asked more clarifying
questions. Note that the chat agent response is shortened (by excluding code snippet) for brevity.

User
Write python code to determine whether a number is the product of 3 prime numbers

 Chatbot
To determine whether a number is the product of 3 prime numbers, we can follow
the steps below:

1. Create a function `is_product_of_3_primes(num)` that accepts an integer ̀ num`
as a parameter.
2. Initialize a variable ̀ count` to 0 to keep track of the number of prime factors.
3. Create a helper function `is_prime(n)` that accepts an integer ̀ n` and checks
whether it is a prime number. This function will return True if `n` is prime, and False
otherwise.
4. Iterate from 2 up to the square root of `num` (inclusive) using a for loop. Check if
each number is a prime factor of `num`.
- If the current number is a prime factor, increment the `count` by 1.
- If the ̀ count` exceeds 3, break the loop as there can't be more than 3 prime factors.
5. After the loop, check if the `count` is equal to 3.
- If it is equal to 3, return True as `num` is the product of 3 prime numbers.
- If it is not equal to 3, return False.

Here is the implementation of the above steps:

You can now use the function `is_product_of_3_primes(num) ̀to check if a number
`num` is the product of 3 prime numbers. The function will return True if it is, and
False otherwise.

def i s_product_of_3_primes(num):
 count = 0

 def i s_prime(n):
i f n < 2:

return Fa lse
for i in range(2, int(math.sqrt(n)) + 1):

i f n % i == 0:
return Fa lse

return True
for i in range(2, int(math.sqrt(num)) + 1):

i f num % i == 0 and is_prime(i):
count += 1
i f count > 3:

break
return count == 3

Figure 23: Example of an overly lengthy response from a chat interaction.

34

Published in Transactions on Machine Learning Research (01/2025)

class Tokenizer:
 def __init__(self, max_vocab_size=200):
 self.max_vocab_size = max_vocab_size
 self.word_to_id = {}
 self.id_to_word = {}

 def tokenize(self, text):
 # do not change
 # Split

 return self.id_to_word.get(word_id)
<POST> # End of file main.py
의외로간단

import pandas as pd
from io import StringIO

[excluding code to define dataframe]

def transform_df(df):
 # Your code here
 print(df["height"].astype("int" </PRE> # file is a cell, NOT CODE IN PYTHON IN THIS
FILE

import pandas as pd
from io import StringIO

Original dataset

Figure 24: Examples of rejected suggestions from CodeLlama-34b, which failed to consider the context of
existing code: (left) the suggested code tried to import the same packages that are already present and
(right) the suggested code trails off into irrelevant, non-Python text.

35

	Introduction
	Related Work
	RealHumanEval
	Study Design
	Results
	Additional User Study Observations

	Discussion
	User study details
	RealHumanEval interface screenshots
	User Study Instructions
	Autocomplete Condition
	Chat Condition
	No LLM Condition
	Post-Study Questionnaire

	Data release considerations

	Task Design
	Task categories
	Task organization

	LLM Details
	Prompts used

	Additional Results
	Pre-registration
	Dataset Analysis
	Accounting for task difficulty
	Task completion time
	Code Quality Metrics
	TLX Results

	Design Opportunities
	Opportunities to use data

	Example user interactions

