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Achieving Personalized Privacy-Preserving Graph Neural
Network via Topology Awareness

Anonymous Author(s)

Abstract

Graph neural networks (GNNs) with differential privacy (DP) offer

a reliable solution for safeguarding sensitive information within

graph data. Nonetheless, existing DP-based privacy-preserving

GNN learning frameworks generally overlook the local topological

heterogeneity of graph nodes and tailor the same privacy budget for

all nodes, which may lead to either overprotection or underprotec-

tion of some nodes, potentially diminishing model utility or posing

privacy leakage risks. To address this issue, we propose a Topology-

aware Differential Privacy Graph Neural Network learning frame-

work, termed TDP-GNN, which can achieve personalized privacy

protection for each node with improved privacy-utility guarantees.

Specifically,TDP-GNN first identifies the topological importance of

each node via an adjacency information entropy method. Then, the

personalized topology-aware privacy budget is designed to quan-

tify the privacy sensitivity of each node and adaptively allocate

the privacy protection strength. Besides, a weighted neighborhood

aggregation mechanism is proposed during the message-passing

process of GNN training, which can eliminate the impact of the

introduced differentiated DP noise on the utility of the GNN model.

Since TDP-GNN is based on node-level local DP, it can be seam-

lessly integrated into any GNN architecture in a plug-and-play

manner while ensuring formal privacy guarantees. Theoretical

analysis indicates that TDP-GNN achieves 𝜖-differential privacy

over the entire graph nodes while providing personalized privacy

protection. Extensive experiments demonstrate that TDP-GNN

consistently yields better utilities when applied to various GNN

architectures (e.g., GCN and GraphSAGE) across a diverse set of

benchmarks.

CCS Concepts
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Figure 1: The illustration of topological heterogeneity of

each node in a graph. As shown in (a) and (b), due to the

heterogeneity in topological structures of nodes, their lo-

cal computational subgraphs during the message-passing

process of GNN training are different: (a) Node 1 needs to

aggregate feature data from four neighboring nodes {2, 3, 4,

5}, (b) while node 6 can only need aggregate feature data from

two neighboring nodes {3, 5}.

Web Conference 2024 (Conference acronym ’XX). ACM, New York, NY, USA,

9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

Graph Neural Networks (GNNs) have shown superior performance

in learning graph representations and have been applied in a vari-

ety of fields, such as intrusion detection, drug discovery, and social

recommendation systems [1–5]. However, most real-world graphs

linked to human activities, such as economic and social networks

[6, 7], often contain personal data and may involve sensitive infor-

mation. For instance, a user’s profile information, favorites, friend

lists, likes, and comments on social networks may be private to

the user. Direct learning from raw graph data may lead to the ex-

posure of private sensitive information, which may conflict with

the data protection legislation such as the General Data Protection

Regulation (GDPR) [8].

To mitigate potential privacy leakage [9, 10], a feasible approach

is to employ differential privacy (DP) technology [11]. By injecting

noise into sensitive information (e.g., node features and labels) , DP

can effectively safeguard user privacy against unauthorized expo-

sure. Recently, several DP-based privacy-preserving GNN learning

methods [12–18] have been proposed. For example, Sajadmanes

et al. [12] introduced a locally private GNN model in a distributed

learning framework, ensuring the confidentiality of node features

and labels. However, this framework does not apply to scenarios

where the graph edges must remain private. To protect the edge

privacy, Wu et al. [14] proposed an edge-level differentially pri-

vate GNN learning algorithm by perturbing the graph’s adjacency

matrix. However, this method exhibits suboptimal performance

and is frequently outperformed by multi-layer perceptron models

(MLPs) that are trained entirely without link information [19]. Fur-

thermore, Pei et al. [18] inject local differential privacy noise into

decentralized local graphs to protect both node feature privacy and

edge privacy in GNN learning.
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Nonetheless, existing methods overlooked the topological het-

erogeneity of different nodes and assumed that all nodes have the

same privacy sensitivities, i.e., setting a uniform privacy budget

for all nodes. This "one-size-fits-all" approach is not suitable for

real-world complex networks, as graph nodes in real-world net-

works typically display intricate topological structures with diverse

privacy sensitivity. As shown in Figure 1, there are topology het-

erogeneities in the local computational structure of different nodes,

which lead to the neighborhood information aggregated by GNN

in the message-passing process being different. Overlooking the

heterogeneity of node topological structures in privacy-preserving

graph learning may result in over-protection or under-protection of

certain nodes. This is because nodes with higher degrees typically

exhibit stronger network influence and usually require a higher

level of privacy protection. Using a uniform privacy budget may not

satisfy their privacy requirements. In addition, nodes with fewer

neighbors are more susceptible to DP noise from their neighboring

nodes. As a result, under the same privacy protection strength, the

data utility of lower-degree nodes is more easily compromised. In

light of this, it is necessary to design a topology-aware differential

privacy GNN learning framework to provide personalized privacy

protection for each node.

Challenges. Achieving effective GNN learning from complex

graph data while providing topology-aware personalized privacy

protection for each node is inherently challenging. On the one

hand, the topological importance of each node varies and is difficult

to measure with a specific value, hence accurately assessing the

required strength of privacy protection for each node is challenging.

On the other hand, the unique message-passing mechanism in

GNN requires each node to aggregate neighboring information to

update its representation, while the personalized perturbations of

neighboring features may introduce different degrees of DP noise.

Therefore, it is also challenging to obtain a high-accuracy GNN

model trained from differentiated noisy graph data.

To address the above challenges, we present a topology-aware dif-

ferential privacy graph neural network learning framework named

TDP-GNN, which can achieve personalized privacy protection

based on the topological properties of each node while maintaining

high model utility. Specifically, we first introduce a node importance
identification mechanism based on Adjacency Information Entropy

(AIE) [20]. This mechanism calculates the topological importance

of nodes based on the associations between the node and its direct

and indirect neighboring nodes. Then, a topology-aware privacy
budget allocation mechanism is designed to quantify the privacy

sensitivity of each node according to its topological importance

and adaptively allocate a specific privacy budget to each node to

provide corresponding privacy protection strength. Furthermore, to

improve the accuracy of the GNN model, a weighted neighborhood
aggregation mechanism is proposed, which can suppress noisy data

interference by assigning adaptive weights to each neighboring

node so as to obtain an effective representation of the central node.

The specific contributions of this work are as follows:

• We present a topology-aware differential privacy graph

neural network learning framework named TDP-GNN. To

the best of our knowledge, this is the first work that pro-

vides personalized privacy protection for nodes based on

their topological characteristics in graph learning.

• Wemeasure the importance of nodes with the consideration

of the local topological structure and allocate personalized

privacy budgets for each node. Additionally, we design a

weighted neighborhood aggregation mechanism during

the message-passing process in GNN, which can enhance

the accuracy of GNN models trained from noisy data with

different levels of perturbations.

• We provide a theoretical analysis demonstrating that TDP-

GNN can achieve 𝜖-differential privacy while offering per-

sonalized privacy protection for each node. Additionally,

extensive experiments show that TDP-GNN consistently

yields performance improvement when applied to various

GNN architectures across a diverse set of benchmarks. For

example, experiments show that plugging in TDP-GNN to

GCN and GraphSAGE improves by an average of 4.90% and

5.37% in terms of accuracy on Cora, Citeseer, Pubmed, and

Facebook.

2 BACKGROUND

2.1 Graph Neural Network

Let G = {N , E,A,X,Y} be an undirected and unweighted graph

dataset consisting of node set N and edge set E represented by a

binary adjacency matrix A ∈ {0, 1}𝑁×𝑁 , where 𝑁 = |N | denotes
the number of nodes, and A𝑢,𝑣 = 1 if there is an edge (𝑢, 𝑣) ∈ E
between node 𝑢 and node 𝑣 . The feature X𝑢 ∈ R𝑘 of node 𝑢 ∈ N is

a 𝑘-dimension vector. Y ∈ {0, 1}𝑁×𝐶 represents the label of nodes,

and 𝐶 is the class number.

A typical GNN with 𝑑 layers consists of 𝑑 graph convolution

layers arranged sequentially. The representation for a node 𝑢 at

the 𝑖-th layer initially involves aggregating the representations of

its neighboring nodes at the (𝑖 − 1)-th layer. Subsequently, it is

followed by a learnable transformation, as outlined below:

Φ
(𝑖 )
𝑢 = 𝑈𝑝𝑑𝑎𝑡𝑒 (𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 ({Φ(𝑖−1)𝑣 : ∀𝑣 ∈ N𝑢 }),Θ(𝑖 ) ) (1)

where N𝑢 = {𝑣 : A𝑢,𝑣 ≠ 0} denotes the neighboring set of node

𝑢, and Φ
(𝑖−1)
𝑣 denotes the representation of node 𝑣 at the 𝑖 − 1

layer. 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (·) is a (sub)differentiable, permutation-invariant

aggregator, which can be operations like MAX, MEAN, or SUM.

Additionally,𝑈𝑝𝑑𝑎𝑡𝑒 (·) is a learnable function, such as MLP [21],

parameterized by Θ(𝑖 ) that processes the aggregated vector to pro-

duce the new representation Φ
(𝑖 )
𝑛 .

Initially, we have Φ(0) = X (i.e., node features) as the input

to the first layer of the GNN. The final layer generates an output

representation vector for each node, which can be utilized in various

downstream tasks [22–24].

2.2 Differential Privacy

Differential privacy has proven to be a strong and rigorous privacy

framework for protecting privacy in data analysis across various ap-

plications. The formal definitions of differential privacy are stated

as follows:

2
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Figure 2: The workflow of TDP-GNN: a topology-aware differential privacy GNN learning framework.

Definition 1. (Differential Privacy [25]).
A randomized algorithm B that takes as input a dataset consist-

ing of individuals is (𝜖, 𝜉)-differential private (DP) if for any pair of
neighboring data 𝑎, 𝑏 that differ on one single record, and any Sets
S ∈ Range(B),

𝑃𝑟 [B(𝑎) ∈ S] ≤ 𝑒𝜖 · 𝑃𝑟 [B(𝑏) ∈ S] + 𝜉 (2)

and if 𝜉 = 0, we say that B is 𝜖-differential private.

The Laplace mechanism is a widely employed noise addition

mechanism in the field of differential privacy.

Definition 2. (Laplace Mechanism [26]). Let the sensitivity of
the fuction 𝑓 : Q → S be △(𝑓 ) = max |𝑓 (Q2) − 𝑓 (Q1) | for all
Q1,Q2 ∈ Q such that |Q2 − Q1 | ≤ 1. The mechanism B : Q → S
defined as follows satisfies 𝜖-differential privacy:

B(Q1) = 𝑓 (Q1) + 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0, △(𝑓 )/𝜖) (3)

2.3 Threat Model

As shown in Figure 2, the TDP-GNN includes two primary enti-

ties: the cloud server and the node users. In the threat model, the

cloud server is considered honest but curious, which is a common

assumption in many prior works [27, 28]. It has access to the node’s

adjacency matrix A, which provides the graph topology informa-

tion. However, the cloud server cannot directly access the feature

matrix X and labels Y, which are distributed among nodes and

remain private. The cloud server adheres to the TDP-GNN proto-

col, but it may be curious about nodes’ sensitive feature data and

attempt to infer private information from it. Similarly, node users

are regarded as honest but curious. They will follow the agreed

protocol but may try to compromise the data privacy of other node

users. In this scenario, it is crucial to ensure the confidentiality of

the features and labels of nodes, mitigating the risk of unintentional

disclosure to external entities.

3 Proposed METHOD

3.1 Overview of TDP-GNN

The goal of this paper is to design a topology-aware differential

privacy framework to provide personalized privacy protection for

each node during the GNN training process. Figure 2 illustrates the

TDP-GNN workflow, which includes the process of node impor-

tance identification, topology-aware privacy budget allocation, and

weighted neighborhood aggregation at the cloud server side, as

well as the personalized data perturbation process at each node side.

The node importance identification mechanism aims to measure

the node’s importance based on its local topological structure and

subsequently determines the node’s privacy sensitivity according

to its importance score. The higher the node’s importance score,

the higher the privacy sensitivity of the node. The topology-aware

budget allocation mechanism aims to allocate a specific privacy bud-

get to provide personalized privacy protection based on the node’s

privacy sensitivity. Finally, the weighted neighborhood aggregation

mechanism adjusts weights for neighborhood aggregation based

on the importance of neighboring nodes. The principle behind

this mechanism is that as the importance of a neighboring node

increases, its privacy sensitivity also rises, resulting in more DP

noise being injected into its feature data. Therefore, it is necessary

to assign a smaller weight to these nodes during the aggregation

phase. In doing so, the utility of the original node features can be

better preserved. The detailed implementations of TDP-GNN are

shown in Algorithm 1.

3.2 Node Importance Identification

In order to comprehensively measure the topological importance

of nodes in the graph, we aim to introduce a node importance

identification method based on Adjacency Information Entropy

(AIE) [20]. Compared with traditional identification approaches,

such as merely using node degree as the evaluation metric, this AIE-

based approach not only considers the association between a node

and its direct neighboring nodes but also considers the complex

3
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Algorithm 1: TDP-GNN

Input: Graph G = {N , E,A,X,Y}, privacy budget {𝜖𝑏 , 𝜖𝑒 , 𝜖𝑙 },
privacy protection sensitivity level𝑀

Output: Node’s predicted label

1: // Node importance identification:
2: for 𝑖 ∈ {1, 2, · · · , 𝑁 } do

3: Calculate 𝐴𝐼𝐸𝑖 for node 𝑖 ← Eq. (4), (5), and (6);

4: end for

5: // Topology-aware privacy budget allocation:
6: Divide nodes into𝑀 levels of privacy sensitivities according to

the value of 𝐴𝐼𝐸;

7: for 𝑖 ∈ {1, 2, · · · , 𝑁 } do

8: Allocate a personalized privacy budget 𝜀𝑖 for node 𝑖 based

on its privacy sensitivity;

9: end for

10: // Personalized data perturbation:
11: for each node 𝑖, 𝑖 ∈ {1, 2, · · · , 𝑁 } do

12: X̂𝑖 = 𝑓 (X𝑖 ) + 𝐿𝑎𝑝 (△𝑓 /𝜀𝑖 );
13: end for

14: Perturb the corresponding labels 𝑌𝑖 based on random response
mechanism under 𝜖𝑙 ← Eq. (12);

15: // Weighted neighborhood aggregation:
16: for 𝑘 ∈ {1, 2, · · · , 𝐾} do

17: Calculate the weight𝑊𝑖, 𝑗 of each neighbor of node 𝑖 and

performs weighted aggregation← Eq. (10) and (11);

18: end for

19: return predicted node label Y𝑖 ′;

relationship between a node and its indirect neighboring nodes,

thereby obtaining better node importance identification results.

Formally, let N be the node set of the graph G. The AIE of a

node 𝑢 ∈ N can be measured as follows:

(i) The Adjacency Degree 𝐴𝐷𝑢 of a node 𝑢 quantifies its influ-

ence on its neighboring nodes. We measure 𝐴𝐷𝑢 using the

following equation:

𝐴𝐷𝑢 =
∑︁
𝑣∈N𝑢

𝐷𝑣 . (4)

where 𝐷𝑣 represents the degree of the node 𝑣 and N𝑢 de-

notes the neighborhood set of node 𝑢.

(ii) The Probability Function 𝑝𝑢 of node 𝑢 defines the probabil-

ity of selecting node 𝑢 among its neighbors. It is expressed

as follows:

𝑝𝑢 =
𝐷𝑢

𝐴𝐷𝑣
, 𝑣 ∈ N𝑢 . (5)

(iii) The Adjacency Information Entropy 𝐴𝐼𝐸𝑢 of node 𝑢 quan-

tifies the topological importance of node 𝑢:

𝐴𝐼𝐸𝑢 = −
∑︁
𝑣∈N𝑢

(𝑝𝑢 log
2
𝑝𝑢 )𝑝𝑣 . (6)

3.3 Topology-aware Privacy Budget Allocation

The existing works generally overlook the topological heterogene-

ity of nodes and allocate a uniform privacy budget to all nodes.

However, due to the differences in privacy sensitivity of nodes in

the real-world graphs, this "one-size-fits-all" approach may lead to

overprotection or underprotection of some nodes. To address the

above issues, we design a topology-aware privacy budget allocation

mechanism to provide personalized privacy protection for each

node with DP. In real-world networks, important nodes typically

exhibit higher influence and thus require higher privacy protec-

tion strength. In DP techniques, a smaller privacy budget implies a

higher degree of noise disturbance and provides a higher privacy

protection strength. Thus, given the local topological heterogeneity

of nodes in the network, a node with greater importance should be

allocated a smaller privacy budget.

As studied in [29], the node distribution in real-world graphs

typically follows a power-law distribution, where the majority of

nodes possess relatively small social influence (i.e., low privacy

sensitivity), while a minority of nodes may have significant social

influence (i.e., high privacy sensitivity). Hence, we assume that the

node’s privacy budget is constrained within the range [𝜖𝑏 , 𝜖𝑒 ] and
follows an exponential distribution within the interval [𝜖𝑏 , 𝜖𝑒 ]. Con-
sequently, the node’s privacy budget could be sampled within the

exponential distribution interval corresponding to the distribution

of their privacy sensitivity.

However, due to the large scale of real-world graphs and the di-

verse privacy sensitivity of each node, it is difficult to efficientlymap

the privacy sensitivity to a specific privacy budget value. Therefore,

we design a hierarchy-based personalized privacy budget allocation

strategy. This strategy first divides the nodes’ privacy sensitiv-

ities into different levels based on their calculated node impor-

tance scores, and then establishes a mapping relationship between

the privacy sensitivity levels and the privacy budget sub-intervals,

thereby accelerating the privacy budget allocation process. Specif-

ically, suppose that the node privacy sensitivity can be divided

into 𝑀 levels. We allocate 𝜖𝑏 to nodes with the highest privacy

sensitivity level, and then the total privacy budget is divided into

𝑀 − 1 sub-intervals: (𝜖𝑏 , 𝜖1], (𝜖1, 𝜖2], ..., (𝜖𝑀−3, 𝜖𝑀−2], (𝜖𝑀−2, 𝜖𝑒 ].
Subsequently, the cloud server could sample a privacy budget for

each node from the corresponding sub-interval to match its privacy

sensitivity level.

Based on the hierarchy-based personalized privacy budget allo-

cation strategy, the crucial task is finding suitable boundary points

𝜖1, 𝜖2, · · · , 𝜖𝑀−2 to determine the length of each sub-interval. A

practical approach is to set the length of a sub-interval according to

the proportion of the number of nodes in the corresponding privacy

sensitivity level. Let the proportions of the number of nodes in the

𝑀 privacy sensitivity levels be: {𝛽1, · · · , 𝛽𝑀−1, 1−
∑𝑀−1
𝑖=1 𝛽𝑖 }. Given

an exponential distribution 𝑓 (𝑦, 𝜆) = 𝜆𝑒−𝜆𝑦 , the domain of 𝑦 can

be partitioned according to these proportions 𝛽1, 𝛽2, . . . , 𝛽𝑀−1. By
doing so, we can establish a mapping relationship between 𝑦 and 𝜖 .

In particular, assuming the domain of 𝑦 is divided into 𝑀 + 1
intervals [0, 𝑦𝑏 ), [𝑦𝑏 , 𝑦1), . . . , [𝑦𝑀−2, 𝑦𝑒 ), [𝑦𝑒 , +∞), when sampling

a value from the random variable 𝑦 on the exponential distribution,

the probability of it fallingwithin the interval [𝑦𝑏 , 𝑦1), . . . , [𝑦𝑀−2, 𝑦𝑒 )
should correspond to 𝛽1, 𝛽2, . . . , 𝛽𝑀−1. Let 𝐹 (𝑦, 𝜆) = 1−𝑒−𝜆𝑦 (𝑦 ≥ 0)

be the cumulative distribution function. Subsequently, 𝑦𝑒 should

be mapped to 𝜖𝑏 , 𝑦𝑖 to 𝜖𝑀−1−𝑖 for 𝑖 ∈ {1, . . . , 𝑀 − 2}, and 𝑦𝑏 to

𝜖𝑒 . In detail, the values of 𝑦1 and 𝑦𝑒 can be obtained through the
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following formula:

𝑦1 = 𝐸1−𝛽1−𝐹 (𝑦𝑏 ) , 𝑦𝑒 = 𝐸
1−∑𝑀−2

𝑖=1 𝛽𝑖−𝐹 (𝑦𝑏 ) (7)

where 𝐸
1−𝛽1−𝐹 (𝑦𝑏 ) denotes a 1 − 𝛽1 − 𝐹 (𝑦𝑏 )-quantile that satisfies

𝑃 (𝑦 > 𝑦1), and 𝐸
1−∑𝑀−2

𝑖=1 𝛽𝑖−𝐹 (𝑦𝑏 ) represents a 1−
∑𝑀−2
𝑖=1 𝛽𝑖 −𝐹 (𝑦𝑏 )-

quantile that fulfills 𝑃 (𝑦 > 𝑦𝑒 ) = 1 −∑𝑀−2
𝑖=1 𝛽𝑖 − 𝐹 (𝑦𝑏 ).

Considering 𝑦𝑏 as typically close to 0, we assume 𝐹 (𝑦𝑏 ) = 0.

Thus, we define the formula as follows:

𝑦1 = 𝐸1−𝛽1 , 𝑦𝑒 = 𝐸
1−∑𝑀−2

𝑖=1 𝛽𝑖
(8)

After obtaining the values of 𝑦1 and 𝑦𝑒 , along with establish-

ing the mapping between 𝑦 and 𝜖 , we can derive the relationship

(𝜖𝑒−𝜖𝑀−2 )
(𝜖𝑒−𝜖𝑏 ) =

𝑦1
𝑦𝑒
. Within a fixed privacy budget interval [𝜖𝑏 , 𝜖𝑒 ],

we can ascertain the value of 𝜖𝑀−2. Other boundary points can

be obtained using the same procedure. Once the boundary points

𝜖1, 𝜖2, . . . , 𝜖𝑀−2 are obtained, the overall privacy budget interval

division can be determined. Subsequently, the cloud server samples

a specific privacy budget 𝜀𝑖 for each node 𝑖 (𝑖 ∈ {1, 2, . . . , 𝑁 }) from
its corresponding privacy budget sub-interval.

3.4 Personalized Data Perturbation

To protect the node feature privacy, we inject DP noise to perturb

the node feature data. The personalized DP Perturbation is achieved

by using the allocated personalized privacy budget for each node.

The perturbed feature X𝑢 of node 𝑢 is outlined below:

X̂𝑢 = 𝑓 (X𝑢 ) + 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (△𝑓 /𝜀𝑢 ) (9)

3.5 Weighted Neighborhood Aggregation

Since the data utility will be degraded after injecting DP noise,

we propose a weighted neighborhood aggregation mechanism to

mitigate the impact of DP noise on the accuracy of the GNN model.

As described in the ?? section, the personalized privacy budget

depends on the importance of the node. When the node importance

is higher, the allocated privacy budget is smaller, that is, the more

perturbation noise is injected. Therefore, to suppress the injected

perturbation noise, a smaller aggregation weight should be assigned

to nodes with a higher importance.

Based on the above principle, the aggregation weight of a neigh-

bor 𝑣 for node 𝑢 in the neighborhood aggregation process is as

follows:

𝑊𝑢,𝑣 = 1 + 1

𝐷𝑢
− 𝐴𝐼𝐸𝑣∑𝑁𝑒𝑟𝑢

𝑖=1
𝐴𝐼𝐸𝑢,𝑖 +𝐴𝐼𝐸𝑢

(10)

where 𝑁𝑒𝑟𝑢 denotes the neighbor list of node 𝑢, 𝐴𝐼𝐸𝑢,𝑖 represents

the value of Adjacency Information Entropy for the 𝑖-th neighbor

of node 𝑢, and 𝐷𝑢 represents the degree of the node 𝑢.

After obtaining the node weight list {𝑊𝑢,𝑣}𝑁𝑒𝑟𝑢
𝑣=1

, the weighted

neighborhood aggregation rule for node 𝑢 is as follows:

X̂𝑖
𝑢 =

∑
𝑣∈𝑁𝑒𝑟𝑢𝑊𝑢,𝑣 · X̂𝑖−1

𝑣 +𝑊𝑢,𝑢 · X̂𝑖−1
𝑢 (11)

where X̂𝑖−1
𝑢 denotes the perturbed data uploaded by node 𝑢, while

X̂𝑖
𝑢 represents the representation of node 𝑢 in the 𝑖-th aggregation

layer.

In addition to protecting the node feature privacy, we also intro-

duce perturbations to the node labels to protect its privacy. Given

the graphs in the real world, such as those found in social networks,

are homophilic [30], whichmeans that nodes with similar structures

tend to possess similar labels [31]. Based on this characteristic, we

can estimate the label of node𝑢 by assessing the frequency of neigh-

bor node labels in its local neighborhood. Consequently, we use

random response [32] to perturb the node labels, which introduces

class-independent and symmetric noise to the labels. Specifically,

this method flips labels according to the following distribution:

𝑝

(
Ŷ | Y

)
=

{
𝑒𝜖𝑙

𝑒𝜖𝑙 +C−1 , 𝑖 𝑓 Ŷ = Y
1

𝑒𝜖𝑙 +C−1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12)

Where Ŷ and Y denote the perturbe and the clean labels, re-

spectively, 𝜖𝑙 is the privacy budget, and C denotes the number of

classes.

4 Security Analysis of TDP-GNN

In this section, we theoretically demonstrate that TDP- GNN can

achieve 𝜖-differential privacy while offering personalized privacy

protection for each node. We first present two compositional prop-

erties of differential privacy and then provide the security analysis

of TDP-GNN’s privacy guarantees.

Theorem 1. (Parallel Composition [33]). Let 𝑄1, 𝑄2, . . ., 𝑄𝜂 be
the disjoint subsets of dataset 𝑄 satisfying 𝑄 = ∪𝜂

𝑖=1
𝑄𝑖 and 𝑄𝑖 ∩

𝑄 𝑗 = ∅(∀𝑖 ≠ 𝑗). Let B1,B2, . . . ,B𝜂 be a set of mechanisms where
B𝑖 (𝑄𝑖 ) = 𝑓 (𝑄𝑖 ) + 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (△(𝑓 )/𝜖) provides 𝜖𝑖 -differential privacy.
Let B(𝑄) = ∪𝜂

𝑖=1
B𝑖 (𝑄𝑖 ) using independent randomness for each B𝑖

and 𝑓 (𝑄) = ∪𝜂
𝑖=1
𝑓 (𝑄𝑖 ). Then, B(𝑄) satisfies max{𝜖1, 𝜖2, . . . , 𝜖𝜂 }-

differential privacy.

Theorem 2. (Sequential Composition [33]). Let B1, B2, . . . ,B𝜏
be a set ofmechanismswhereB𝑖 , 𝑖 ∈ {1, 2, . . . , 𝜏} provides 𝜖𝑖 -differential
privacy. Let B be another mechanism that sequentially executes
B1,B2, . . . ,B𝜏 using independent randomness for each B𝑖 . Then, B
satisfies

∑
𝑖 𝜖𝑖 -differential privacy.

Theorem 3. TDP-GNN can offer personalized privacy guarantee
to each node.

Proof. LetQ1,Q2, . . . ,Q𝜂 be a set ofmechanismswhereQ𝑛 (𝑋𝑛)
= 𝑓 (𝑋𝑛) + Laplace (△(𝑓 )/𝜀𝑛) provides 𝜀𝑛-differential privacy. Ac-
cording to Theorem 2, since Q executes Q 𝑗 , Q 𝑗

(
𝑋 𝑗

)
provides 𝜀 𝑗 -

differential privacy. In TDP-GNN, for each node 𝑗 , the total per-

turbed data submitted to the server is 𝑋 𝑗 = Q 𝑗

(
𝑋 𝑗

)
, where Q 𝑗 is a

perturbation function that satisfies 𝜖 𝑗 -differential privacy. There-

fore, TDP-GNN can offer a personalized privacy guarantee to each

node. □

Theorem 4. TDP-GNN satisfies 𝜖-differential privacy in the per-
sonalized data perturbation computation.

Proof. LetQ1,Q2, . . . ,Q𝜂 be a set ofmechanismswhereQ𝑛 (𝑋𝑛)
= 𝑓 (𝑋𝑛)+Laplace (△(𝑓 )/𝜀𝑛) provides 𝜀𝑛-differential privacy. Since
𝑋1, 𝑋2, . . . , 𝑋𝜂 are the disjoint subsets of dataset 𝑋 satisfying 𝑋 =

∪𝜂
𝑛=1

𝑋𝑛 and 𝑋𝑖∩ 𝑋 𝑗 = ∅(∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝜂} and 𝑖 ≠ 𝑗),Q(𝑋 ) ={
Q1 (𝑋1) , . . . ,Q𝜂

(
𝑋𝜂

)}
. According to Theorem 1, we can get that

Q(𝑋 ) satisfies max

{
𝜀1, 𝜀2, . . . , 𝜀𝜂

}
-differential privacy. Since the

privacy budget assigned to nodes ranges from 𝜖𝑏 to 𝜖𝑒 , we have
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max

{
𝜀1, 𝜀2, . . . , 𝜀𝜂

}
= 𝜖𝑒 = 𝜖 . Thus, Q satisfies 𝜖𝑒 -differential pri-

vacy, namely, TDP-GNN satisfies 𝜖-differential privacy in the per-

sonalized data perturbation computation, where 𝜖 = 𝜖𝑒 .

□

Theorem 5. TDP-GNN satisfies (𝜖𝑒 + 𝜖𝑙 )-differential privacy.

Proof. According to Theorem 4, the personalized data pertur-

bation mechanism satisfies 𝜖𝑒 -differential privacy, and the random

response mechanism applied to node labels satisfies 𝜖𝑙 -differential

privacy, as described by Equation 12. In the threat model of this

paper, the cloud server can directly access the graph’s topology,

primarily aiming to protect the privacy of both node features and

labels. To achieve this goal, TDP-GNN employs personalized data

perturbation to process node features privately. Subsequently, the

weighted neighborhood aggregation mechanism does not disclose

node features. It only performs post-processing on the perturbed

node feature data and does not directly access private node fea-

tures and labels. Additionally, this paper guarantees differential

privacy during the training phase by perturbing node labels. Given

that TDP-GNN applies personalized data perturbation and random

response to each node only once, and leveraging both the basic

composition theorem and the robustness of post-processing algo-

rithms [25] for ensuring differential privacy, TDP-GNN satisfies

(𝜖𝑒 + 𝜖𝑙 )-differential privacy. □

5 EXPERIMENT

5.1 Experimental Initialization

Datasets. To evaluate the performance of TDP-GNN, we trained

GNN models on four classic real-world graph datasets, including

three citation networks (Cora
1
, Citeseer

2
, and Pubmed

3
) and one so-

cial network (Facebook
4
). The specific statistics of the four datasets

are shown in Table 1.

Baselines. Our topology-aware differential privacy (TDP)method

can be seamlessly integrated into any GNN architecture in a plug-

and-play manner. We trained the GNN models using the widely

adopted two-layer GCN [34] and GraphSAGE [35] architecture, re-

spectively. To verify the effectiveness of the TDPmethod in the GCN

architecture, we compared the model performance of Plaintext-

GCN, UDP-GCN, PDP-GCN, and our TDP-GCN. The Plaintext-

GCN denotes that the GNN model is trained on plaintext graph

data. UDP-GCN, PDP-GCN, and TDP-GCN are DP-based GNNmod-

els. UDP-GCN and PDP-GCN are two models trained using variant

DP mechanisms, where UDP-GCN is based on a uniform privacy

budget allocation mechanism [18], while PDP-GCN is based on

our proposed personalized privacy budget allocation mechanism.

Compared with PDP-GCN, the TDP-GCN adopts the additional

weighted neighborhood aggregation mechanism after the personal-

ized data perturbation. Similarly, the comparison methods to verify

the effectiveness of TDP methods in GraphSAGE architecture are

denoted as Plaintext-SAGE, UDP-SAGE, PDP-SAGE, and our TDP-

SAGE. The uniform privacy budget allocationmechanism employed

in UDP-SAGE is based on the method proposed in [16].

1
https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz

2
https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz

3
https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz

4
https://snap.stanford.edu/data/facebook_large.zip

Table 1: Dataset Statistics

Dataset Nodes Edges Classes Features

Cora 2,708 5,429 7 1,433

Citeseer 3,327 4,732 6 3,703

Pubmed 19,717 44,338 3 500

Facebook 22,470 171,002 4 4,714

Settings. We randomly split the nodes in the dataset into train-

ing, validation, and test sets in proportions of 60%, 20%, and 20%,

respectively. All models were trained using the Adam optimizer

and the training epochs are fixed at 500. All experiments were

implemented using PyTorch Geometric Library. The specific exper-

imental environment utilized a server equipped with two Nvidia

Tesla P40 GPUs. For evaluation metrics, we use the prediction accu-

racy (also known as node classification accuracy) on the test set to

assess the generalization ability of the trained GNNmodel. To avoid

randomness, each experiment is conducted 5 times. We measure

the model’s performance by taking the average value with a 95%

confidence interval. Additionally, we set the number of privacy

sensitivity levels 𝑀 = 5, categorized as very high, high, medium,

low, and very low. Furthermore, We report TDP-GNN’s accuracy

under two different privacy budget intervals.

5.2 Experimental Results and Analysis

5.2.1 Effect of Topology-aware Personalized Privacy Budget
Allocation Mechanism. To evaluate the effect of the privacy bud-

get allocation mechanism, we first conduct experiments to train the

GNN models with and without the topology-aware personalized

privacy budget allocation mechanism over four real-world datasets.

Table 2 reports the node classification accuracy under different

privacy budget intervals. It can be observed that DP-based GNN

models perform worse on the node classification task compared

with GNNmodels trained on plaintext data while providing privacy

protection for sensitive information. Additionally, the difference in

the performance between the UDP-GCN and PDP-GCN methods,

as well as that between the UDP-SAGE and PDP-SAGE methods,

illustrates that the personalized privacy budget allocation mech-

anism achieves higher accuracy than uniformly distributing the

total privacy budget. This is because, nodes with lower node im-

portance are more susceptible to data utility degradation under

the same privacy budget setting, thereby degrading the model’s

accuracy. Moreover, we investigated the influence of different val-

ues of privacy budget intervals on the model performance. The

results indicate that the GNN models trained with a higher privacy

budget interval consistently outperform those trained with a lower

privacy budget interval. This is because higher privacy budgets

lead to smaller injected DP noise.

5.2.2 Effect of Weighted Neighborhood Aggregation Mech-
anism. To evaluate the effect of the weighted neighborhood ag-

gregation mechanism, we conduct experiments to train the GNN

model with and without the weighted neighborhood aggregation

mechanism over four real-world datasets. The difference in the

performance between the PDP-GCN and TDP-GCN methods, as
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Table 2: Accuracy of compared methods on the four real-world datasets. The best results are in bold.

GNN Architecture

Privacy Budget Interval 𝐿𝑜𝑤 : [𝜖𝑏 , 𝜖𝑒 ] = [5, 10] 𝐻𝑖𝑔ℎ : [𝜖𝑏 , 𝜖𝑒 ] = [10, 15]
Dataset Cora Citeseer Pubmed Facebook Cora Citeseer Pubmed Facebook

GCN

Plaintext-GCN 87.9 ± 0.37 84.5 ± 0.32 83.4 ± 0.68 88.4 ± 0.73 88.4 ± 1.22 84.6 ± 0.38 83.2 ± 1.10 89.2 ± 0.86
UDP-GCN 79.3 ± 1.57 75.7 ± 0.61 69.1 ± 0.40 82.3 ± 0.27 86.7 ± 0.52 81.7 ± 0.32 71.3 ± 0.61 84.5 ± 0.20
PDP-GCN 84.1 ± 1.83 78.8 ± 0.51 72.1 ± 0.52 84.2 ± 0.10 87.2 ± 0.72 82.3 ± 0.57 77.0 ± 0.48 85.3 ± 0.79

TDP-GCN (Ours) 85.6 ± 1.27 80.1 ± 1.09 75.2 ± 0.37 85.1 ± 0.46 87.9 ± 1.08 83.6 ± 0.81 79.2 ± 0.23 86.4 ± 0.53

GraphSAGE

Plaintext-SAGE 97.1 ± 0.43 98.3 ± 0.57 86.1 ± 0.31 93.7 ± 0.36 97.1 ± 0.48 98.6 ± 0.42 96.0 ± 0.36 93.8 ± 0.19
UDP-SAGE 84.3 ± 0.86 77.6 ± 0.75 70.72 ± 0.85 89.8 ± 0.31 91.8 ± 0.27 88.9 ± 0.29 77.8 ± 0.70 90.1 ± 0.41
PDP-SAGE 88.8 ± 0.87 84.6 ± 0.71 73.5 ± 0.81 91.1 ± 0.31 93.2 ± 0.37 91.0 ± 0.32 77.6 ± 0.8 91.9 ± 0.28

TDP-SAGE (Ours) 90.2 ± 0.74 86.1 ± 0.80 76.1 ± 0.65 91.5 ± 0.25 96.1 ± 0.16 93.5 ± 0.37 80.3 ± 0.64 92.4 ± 0.22
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Figure 3: GCN Architecture. The effect of the number of privacy sensitivity levels 𝑀 and the number of aggregation hops 𝐾 on

the node classification accuracy of TDP-GNN.

well as that the PDP-SAGE and TDP-SAGE methods, illustrates

that the weighted neighborhood aggregation mechanism can im-

prove the accuracy of GNNmodel. This is because the perturbations

of different neighbor nodes are different. The proposed weighted

neighborhood aggregation mechanism can effectively distinguish

the differential DP noise and adaptively suppress it, resulting in a

more accurate aggregated representation.

5.2.3 Effect of the number of privacy sensitivity levels𝑀 . We

investigate how the number of privacy sensitivity levels𝑀 affects

the performance of TDP-GNN. We varied𝑀 within {3, 4, · · · , 10}
and reported the node classification accuracy on four datasets, as

shown in Figure 3(a) - Figure 3(d) and Figure 4(a) - Figure 4(d).

With the increase of 𝑀 , the accuracy of the GNN model exhibits

continuous improvement, eventually reaching a stable state. The

reason is that a larger 𝑀 enables the TDP-GNN to provide more

fine-grained personalized privacy protection for nodes in the graph,

thereby reducing additional noise caused by over-protection and

improving the utility of the GNN model.

5.2.4 Effect of the number of aggregation hops𝐾 . We analyze

the effect of 𝐾 (referring to the layers of the GNN model in this

paper) on the performance of TDP-GNN. We varied the parameter

𝐾 within {2, · · · , 8} and reported the node classification accuracy

on four real-world datasets, as shown in Figure 3(e) - Figure 3(h) and

Figure 4(e) - Figure 4(h). As can be seen, our method can effectively

benefit from allowing multiple hops, but there is a trade-off in

increasing the number of hops. With the increase of𝐾 , the accuracy

of the TDP-GNN generally ascends to a certain threshold before

stabilizing or declining. This is because as 𝐾 increases, the model

can incorporate information from more distant nodes (i.e., all nodes

within the 𝐾-hop neighborhood) to improve prediction accuracy.

However, as the number of hops 𝐾 increases, the noise introduced

by the aggregation operation also increases, thereby reducing the

utility of the GNN model.
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Figure 4: GraphSAGE Architecture. The effect of the number of privacy sensitivity levels𝑀 and the number of aggregation

hops 𝐾 on the node classification accuracy of TDP-GNN.

6 RELATEDWORKS

Due to the advanced performance of GNNs in structured data learn-

ing, they are widely used in various graph analysis tasks [36–39].

Graph data in the real world usually contains sensitive personal

information. Various privacy protection techniques have been pro-

posed to mitigate the potential privacy leakage issue, with differen-

tial privacy standing out due to its robust mathematical underpin-

ning. This section focuses on discussing privacy-preserving GNN

learning frameworks for edge privacy and node privacy, respec-

tively.

To protect the privacy of edges in graphs, Wu et al. [14] pro-

posed a novel GNN architecture to achieve edge-level differential

privacy. This method separates edge structures and employs only

MLP to model node features and graph structural information. Kol-

luri et al. [15] examined adversarial link inference attacks [40] on

GNNs and introduced DPGCN, a mechanism ensuring differential

privacy to safeguard edge-level privacy. Zhu et al. [19] proposed

Blink (Bayesian Estimation for Link-Local Privacy) to safeguard

link privacy in GNNs. This approach mitigates the adverse effects

of local differential privacy on GNN performance through Bayesian

estimation. However, unlike the above works, this paper focuses on

designing a set of mechanisms to address the privacy protection re-

quirements of private node features across distributed nodes. In this

setup, the cloud server can directly access the links between nodes,

i.e., possessing global topology information, but it lacks access to

the features and labels of all nodes.

To protect the privacy of nodes in graphs, Sajadmanesh et al.

[12] introduced a locally private GNN learning framework within

a distributed learning context. This work shares similar model

assumptions with ours and primarily focuses on the privacy pro-

tection of node features and node labels. Lin et al. [13] presented a

new framework named Solitude, comprising a set of mechanisms.

Their work introduces multi-mechanism protection of node feature

privacy by employing multi-dimensional feature perturbation and

optimizing noise through regularization terms. Chein et al. [17]

proposed a novel graph learning framework: Differential Private

Decoupled Graph Convolution (DPDGC), achieving a delicate bal-

ance between node attribute privacy, graph topology privacy, and

GNN utility. Pei et al. [18] proposed a privacy-preserving graph

neural network framework (LGA-PGNN) based on local graph en-

hancement. This method protects node privacy by applying local

differential privacy noise to decentralized local graphs held by dif-

ferent data holders. Furthermore, Sajadmanesh et al. [16] proposed

a differentially private GNN learning framework called GAP, which

utilizes aggregation perturbation to protect node-level and edge-

level privacy through the addition of noise to aggregation functions.

In summary, existing works fail to consider the inherent diversity

among nodes in graph learning’s topological structure. They uni-

formly allocate the privacy budget across all nodes, thus being

unable to cater to individualized privacy protection requirements

for each node. This paper aims to design a topology-aware differen-

tial privacy framework to provide personalized privacy protection

for each node during the GNN training process.

7 CONCLUSION

In this paper, we propose a personalized privacy-preserving graph

neural network learning framework via topology awareness, called

TDP-GNN. It can achieve accurate node representation while pro-

viding personalized privacy protection for each node. The key of

TDP-GNN is a set of novel mechanisms that can allocate personal-

ized privacy budgets based on the nodes’ topological importance to

satisfy their varying privacy sensitivities. In addition, a weighted

neighborhood aggregation mechanism is proposed to adaptively

suppress the differentiated injected DP noise, improving the utility

of the GNN model. We provide theoretical analysis to demonstrate

that TDP-GNN can offer personalized privacy protection for each

node while satisfying 𝜖-differential privacy. Experimental results

on four real-world graph datasets demonstrate that TDP-GNN can

improve accuracy across various GNN architectures.
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