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Abstract

Words are not static in their usage and mean-001
ing, but evolve over time. An interesting phe-002
nomenon in languages is slang, which is an in-003
formal language that is considered ephemeral004
and is often associated with contemporary005
trends. In this work, we study the semantic006
change and relative frequency shift of slang007
words and compare this change with standard,008
nonslang words. To measure semantic change,009
we obtain contextualized representations of010
words, reduce their dimensionality and pro-011
pose a metric to measure their average pair-012
wise distances between two time periods. We013
apply causal discovery algorithms and causal014
inference to uncover the dynamics of language015
evolution and measure the effect that word016
type (slang/nonslang) has on both semantic017
change and frequency shift, as well as its re-018
lationship to absolute frequency and polysemy.019
Our causal analysis shows that slang words un-020
dergo less semantic change even though they021
have larger frequency shifts over time.1022

1 Introduction023

Language is a continuously evolving system, con-024

stantly resculptured by its speakers. The forces that025

drive this evolution are many, ranging from pho-026

netic convenience to sociocultural changes (Blank,027

1999). In particular, the meanings of words and028

the frequency under which they are used are not029

static, but rather evolve over time. Consider for030

example the word “unicorn”, which in recent years031

has experienced a metaphorical semantic change032

(Bloomfield, 1933) from its traditional meaning033

to also encompass the rare occurrence of startup034

companies valued at over $1 billion.035

In this work, we study semantic change for036

slang words. Slang is colloquial and informal lan-037

guage commonly associated with particular groups038

(González, 1998; Bembe and Beukes, 2007), and039

1Our data and code will be released after acceptance.

Figure 1: We observe two very different change dy-
namics for the slang word “duckface” and the nonslang
word “inclusive”.

is characterized by innovation (Mattiello, 2005). 040

Due to these reasons, we believe that slang words 041

follow different change dynamics compared to 042

other words. We investigate the semantic change, 043

i.e. the shift in word meaning across time, as 044

well as frequency shifts and the degree of poly- 045

semy of slang words compared to nonslang words. 046

We formalize this comparison with a causal 047

framework, to establish that there is not just 048

an association, but a direct effect of word 049

type (slang/nonslang) on semantic and frequency 050

change. Examining word change dynamics through 051

a causal lens enables us to determine the interac- 052

tions between the different variables. For example, 053

it allows us to conclude whether word type directly 054

influences semantic change, or rather influences 055

polysemy, which in turn causes semantic change. 056

Our causal analysis follows two steps: (1) finding a 057

causal directed acyclic graph (DAG) (Spirtes et al., 058

1



2000; Pearl, 2009b) to represent the causal relation-059

ships between word type, frequency, polysemy and060

semantic change, and (2) using do-calculus (Pearl,061

1995) to evaluate the direct causal effect of word062

type on semantic change and frequency change.063

Such an analysis is novel in the semantic change064

literature, with causal inference being a newly065

emerging direction of research within the NLP066

community as a whole (Egami et al., 2018; Keith067

et al., 2020; Feder et al., 2021; Jin et al., 2021a,b).068

We measure both lexical semantic change and069

frequency change over a 10-year time span by lever-070

aging Twitter data from 2010 and 2020. From071

this data, we obtain representations using a bi-072

directional language model (Liu et al., 2019),073

which we fine-tune on a slang-dense corpus (Wil-074

son et al., 2020). The semantic change score is075

computed by taking the average pairwise distance076

(APD) (Sagi et al., 2009; Giulianelli et al., 2020)077

between dimensionality-reduced representations078

from the two time points, which we found to be079

the highest performing method based on experi-080

ments on the SemEval-2020 Task 1 benchmark081

for semantic change (Schlechtweg et al., 2020).082

We find that a word being slang causes it to un-083

dergo more rapid decreases in frequency and slower084

semantic changes. Moreover, we observe that slang085

words change faster overall, and polysemy causes086

words to have higher frequency. To illustrate, con-087

sider the slang word “duckface” and the nonslang088

word “inclusive” as shown in Figure 1. Duckface089

is the face pose made for photos by pouting the lips090

(Miller, 2011), often observed in profile pictures091

during the early 2010s. The semantic meaning of092

duckface has stayed constant since its inception093

and it was particularly attached to a trend, after094

which it mostly disappeared from usage. Indeed,095

we observe that duckface had a peak in frequency096

in 2012 and a subsequent rapid decrease, and it097

furthermore scores very low on semantic change098

by our model. In contrast, the nonslang word “in-099

clusive” has developed a new usage in recent years,100

to accommodate people who have historically been101

excluded (Merriam-Webster, 2019), which is re-102

flected by a high semantic change score, being103

among the highest in our sample of words.104

2 Related Work105

2.1 Semantic Change106

A typical method for measuring semantic change107

is by comparing word representations across time108

periods. For example, Dubossarsky et al. (2016) 109

compare word embeddings obtained using Google 110

n-gram data, to measure semantic change across 111

decades. They find that verbs change faster than 112

nouns, but do not observe an association between 113

word frequency and semantic change. Similarly, 114

Hamilton et al. (2016) measure the cosine distance 115

between word embeddings and discover that pol- 116

ysemous words change at a faster rate, while fre- 117

quent words change slower. They also note a higher 118

frequency among polysemous words. 119

These approaches rely on fixed word represen- 120

tations. Limited by assigning one vector to each 121

word, fixed embeddings do not distinguish between 122

multiple word meanings and hence may fail to cap- 123

ture polysemous words properly, as well as certain 124

contextual nuances. More recent approaches (Hu 125

et al., 2019; Giulianelli et al., 2020) have high- 126

lighted the limitations of using fixed representa- 127

tions and proposed unsupervised neural approaches 128

based on contextualized word embeddings (Peters 129

et al., 2018; Devlin et al., 2018). This has lead 130

to a further stream of work on semantic change 131

detection with contextualized embeddings (Mar- 132

tinc et al., 2020; Kutuzov and Giulianelli, 2020; 133

Montariol et al., 2021; Schlechtweg et al., 2020; 134

Giulianelli et al., 2021). 135

2.2 Characterization of Slang 136

Slang is an informal, unconventional part of the 137

language, often used in connection to a certain 138

group or societal trend (Dumas and Lighter, 1978). 139

It can reflect and establish a connection to a certain 140

group, (González, 1998; Bembe and Beukes, 2007; 141

Carter, 2011) as well as a sense of belonging to 142

a generation, and multiple papers have found age 143

differences in slang usage and knowledge (Citera 144

et al., 2020; Earl, 1972; Barbieri, 2008). 145

Mattiello (2005) highlights the innovative nature 146

of slang and the role it plays in enriching the lan- 147

guage with neologisms, and claims that it follows 148

unique word formation processes that are differ- 149

ent from standard language, such as word clipping 150

and blends. Inspired by this, (Kulkarni and Wang, 151

2018) propose simple data-driven model for gener- 152

ating slang words according to the processes sug- 153

gested by Mattiello (2005). 154

Others have described the ephermality of slang 155

words, which seem to come and disappear from us- 156

age more rapidly than standard language (González, 157

1998; Carter, 2011), however to the best of our 158

2



knowledge this has not been previously verified159

statistically.160

2.3 Causal Discovery and Inference161

Causality is the study of mining the cause and effect162

behind data and uncovering how variables influence163

each other. There are two main tasks in causality:164

causal discovery, which aims to discover causal165

relationships, often modeled in the form of a DAG,166

and causal inference, which concerns determining167

the effect that intervening on one variable will have168

on the others.169

Causal discovery can be broadly categorized into170

two main approaches: constraint-based methods171

and score-based methods. Constraint-based meth-172

ods rely on conditional independence tests, such as173

the Peter-Clark (PC) algorithm (Spirtes et al., 2000)174

as well as its extensions, e.g. the IDA algorithm175

(Maathuis et al., 2009) and the PC-stable algorithm176

(Colombo and Maathuis, 2014). Score-based meth-177

ods, on the other hand, identify the causal graph by178

optimizing a score function. A representative score-179

based method is the greedy equivalence search180

(GES) (Chickering, 2002), which greedily searches181

over Markov equivalence classes.182

The task of causal inference can be facilitated by183

do-calculus (Pearl, 1995), which estimates causal184

effects from observational data by establishing the185

equivalence of interventions and probability distri-186

butions estimated from observational data, through187

conditioning with methods such as backdoor ad-188

justment (Pearl, 1995) and the adjustment crite-189

rion (Shpitser et al., 2012).190

3 Data Collection191

3.1 Slang and Nonslang Word Selection192

We select 100 slang words and 100 nonslang words193

for our study. The slang words are randomly sam-194

pled from the Online Slang Dictionary,2 which pro-195

vides well-maintained and curated slang word def-196

initions as well as a list of 4,828 featured slang197

words as of June 2021. Since the scope of our198

study is mainly about single-word expressions, we199

filter out 2,169 multi-word expressions. To fur-200

ther clean the data, we also delete words with only201

one character and acronyms. Lastly, we limit the202

causal analysis to words that are exclusively ei-203

ther slang or nonslang, excluding “hybrid” words204

with both slang and nonslang meanings, such as205

“kosher”, “beef” or “tool”. Including words of this206

2http://onlineslangdictionary.com/

type would have created a hardcoded dependency 207

between word type and polysemy, as these words 208

by definition are polysemous. However, since a 209

substantial amount of slang words are hybrid, we 210

perform a separate analysis of these in Appendix C. 211

As for the reference set of nonslang words, we 212

sample 100 words uniformly at random from a 213

list of all English words, supplied by the wordfreq 214

library in Python (Speer et al., 2018). 215

3.2 Twitter Corpus 216

To measure the semantic change of slang and non- 217

slang words, we require a dataset that has frequent 218

occurrences of slang and that reflects the general 219

use of colloquial language, and we thus choose the 220

social media platform Twitter as our corpus. 221

We sample tweets from two different years, 2010 222

and 2020, which makes it possible to examine the 223

semantic change of words over a 10-year gap. For 224

every slang and nonslang word, and each of the two 225

years, we obtain 200-500 random tweets that con- 226

tain the word and were posted at one of the over 25 227

randomly sampled time points within the year. For 228

every tweet, we keep its text, corresponding slang 229

word, tweet ID, and date. As a post-processing 230

step, we remove all duplicate tweets as well as all 231

URLs and hashtags from the tweets. To protect 232

user privacy, we replace all user name handles with 233

the generic word “user.” 234

We obtain 170,135 tweets in total. On average 235

we have 370 slang and 333 nonslang tweets per 236

word from 2010, and 323 slang and 254 nonslang 237

tweets per word from 2020. 238

4 Collecting Causal Variables 239

We explore the potential causal effect of a word’s 240

type (slang/nonslang) on its semantic change. We 241

additionally test the hypothesis that slang words 242

appear and dissipate faster, and if so, whether this 243

is due to a causal effect. For these purposes, we 244

collect the following variables: 245

• Word type: Whether a word is slang or not 246

• Word frequency: The average number of 247

tweets containing the word per day in 2010 248

and 2020 (Section 4.1) 249

• Frequency Change: The relative difference 250

in frequency the word has undergone between 251

2010 and 2020 in the Twitter corpus (Sec- 252

tion 4.2) 253

3
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Year Slang Nonslang
2010 1, 931 1, 507
2020 13, 560 8, 802

Overall Increase ×7.0 ×5.8

Table 1: Average daily counts for both slang and non-
slang words, in 2010 and 2020

• Polysemy: The number of senses a word has254

(Section 4.3)255

• Semantic change: The semantic change256

score of the word from 2010 to 2020 in the257

Twitter corpus (Section 4.4)258

4.1 Word Frequency259

We approximate a word’s frequency by the average260

number of times it is tweeted within 24 hours. This261

average is calculated in practice over 40 randomly262

sampled time points in a given year, in each of263

which we retrieve the number of tweets containing264

the word. The frequencies are calculated separately265

for 2010 and 2020, and then averaged for the causal266

analysis. Due to the growing popularity of social267

media, the number of tweets has significantly in-268

creased throughout the decade. Therefore, we di-269

vide the tweet counts from 2020 by a factor of 6.4,270

which is the ratio between the average word counts271

in both years in our dataset. The average daily272

counts in both years can be seen in Table 1. This273

normalization factor is also justified by the fact that274

both the number of active daily users on Twitter and275

the number of tweets per day had approximately276

a 7-fold increase over this time (GDELT Project,277

2019; Internet Live Stats; Dean, 2021).278

4.2 Frequency Change279

We are now interested in analyzing the dynamics of280

frequency change. To evaluate the relative change281

in frequency for a given word w we take282

FreqChange(w) = log
x2020(w)

x2010(w)
(1)283

where, xk(w) is the frequency of word w in year k.284

This was proven to be the only metric for relative285

change that is symmetric, additive, and normed286

(Tornqvist et al., 1985). Importantly, this measure287

symmetrically reflects both increases and decreases288

in relative frequency. The mean relative changes in289

frequency were−0.48(±1.65) for slang words and290

0.53(±1.07) for nonslang words, where a negative291

Figure 2: Relative difference in frequency between
2020 and 2010, for slang and nonslang words, where a
positive score corresponds to an increase in frequency.
We see more slang words show a decrease in frequency
than nonslang ones.

score corresponds to a decrease in frequency. As 292

evident in Figure 2, not only did more slang words 293

exhibit a decrease in frequency than nonslang ones, 294

the words that showed the highest frequency in- 295

crease are also slang. Namely, the highest increase 296

in frequency was for the slang word "incel", which 297

went from being tweeted an average of 0.28 times 298

a day in 2010, to being tweeted about 3400 times 299

a day in 2020, whereas the steepest decreases in 300

frequency was for the slang word "celebutante". 301

We also examine the absolute value of the 302

change in frequency in equation (1) to evaluate 303

the degree of change, may it be a decrease or an in- 304

crease. We find that, as expected, slang words have 305

significantly higher changes in absolute frequency 306

than nonslang words (p < 0.05). See Appendix C 307

for more details. 308

4.3 Polysemy 309

We define a word’s polysemy score as the number 310

of distinct senses it has. This definition also encap- 311

sulates potential cases of homonymy; we choose 312

not to make a distinction between polysemy and 313

homonymy in this analysis. For nonslang words, 314

we take the number of senses the word has in Word- 315

Net (Fellbaum, 1998; Princeton University, 2010), 316

which was designed to group words into distinct 317

senses. If a word does not appear in the WordNet 318

database, we take the number of distinct definitions 319

it has on the Merriam Webster dictionary. For slang 320

words, polysemy score is determined by their num- 321

ber of definitions on the Online Slang Dictionary. 322
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We note a decreasing empirical probability mass323

function for the polysemy score, with mean 2.49324

and standard deviation 3.21. More polysemous325

words appear to also be more frequent in our dataset326

– the log transform of average frequency and pol-327

ysemy display a highly significant (p < 0.001)328

linear correlation coefficient of 0.34.329

4.4 Semantic Change Score330

In this section we explain in detail how we obtain331

the semantic change scores. We start by fine-tuning332

a bi-directional language model on a slang-dense333

corpus (Section 4.4.1), after which we survey the334

literature and propose metrics (Section 4.4.2) that335

we use to perform an extensive experimentation336

study to find the most suitable one (Section 4.4.3).337

Finally, we apply this metric to our sets of slang338

and nonslang words (Section 4.4.4).339

4.4.1 Obtaining Contextualized340

Representations341

As input for semantic change scoring, we leverage342

the contextualized representations obtained from343

a bi-directional language model. As a first step,344

we familiarize the model with slang words and the345

contexts in which they are used by fine-tuning it on346

the masked language modeling task. For this pur-347

pose we use a web-scraped dataset from the Urban348

Dictionary, previously collected by Wilson et al.349

(2020). Each entry contains a definition, examples350

in which the word occurs, number of upvotes &351

downvotes from website visitors, username of the352

submitter and a timestamp. After preprocessing353

and subsampling, the details of which can be found354

in Appendix A.1, we are left with a training set of355

200, 000 slang-dense text sequences.356

As our bi-directional language model we se-357

lect RoBERTa (Liu et al., 2019), which is based358

on Transformers (Vaswani et al., 2017) and pre-359

trained on the following datasets: BookCorpus360

(Zhu et al., 2015), CC-News (Nagel, 2016), Open-361

WebText (Gokaslan and Cohen, 2019) and Stories362

(Trinh and Le, 2018) – all presumably limited in363

the use of slang. Beyond performance gains com-364

pared to the original BERT (Devlin et al., 2018),365

we select this model since it uses byte-pair encod-366

ing with bytes instead of characters as sub-units,367

allowing for more subword units. We reason that368

this could be useful in the context of slang words369

since potentially some of the sub-units used in these370

words would not have been recognized by BERT.371

We choose the smaller 125M parameter version372

RoBERTa base for computational reasons. 373

We train the model using the Adam optimizer 374

(Kingma and Ba, 2017) with learning rates γ ∈ 375

{10−4, 10−5, 10−6, 10−7}. For semantic change 376

scoring we proceed to use the model with the low- 377

est loss on the test set, which is the one trained 378

with a learning rate γ = 10−6. For more details on 379

training configurations, we refer to Appendix A.2. 380

4.4.2 Quantifying Semantic Change 381

In order to find a change detection metric, we eval- 382

uate our model on the SemEval-2020 Task 1 on 383

Unsupervised Lexical Semantic Change Detection 384

(Schlechtweg et al., 2020). This task provides 385

the first standard evaluation framework for seman- 386

tic change detection, using a large-scale labeled 387

dataset for four different languages. We restrict 388

ourselves to English and focus on subtask 2, which 389

concerns ranking a set of 37 target words according 390

to their semantic change between two time peri- 391

ods. The ranking is evaluated using Spearman’s 392

rank-order correlation coefficient ρ.3 Our space 393

of configurations include layer representations, di- 394

mensionality reduction techniques and semantic 395

change metrics. In addition to the average pairwise 396

distance (APD) metrics, we also experiment with 397

distribution-based metrics (see Appendix B.1). 398

Layer Representations: Previous work (Etha- 399

yarajh, 2019) has shown that embeddings re- 400

trieved from bi-directional language models are 401

not isotropic, but are rather concentrated around 402

a high-dimensional cone, both when conditioning 403

on words and more surprisingly, when considering 404

all words. However, the level of isotropy may vary 405

according to the layer from which the represen- 406

tations are retrieved – it has been shown that the 407

word self-similarity of representations in BERT de- 408

creases with the layer index (Ethayarajh, 2019; Cai 409

et al., 2021), which would imply that deeper/higher 410

layers have a higher degree of isotropy. We hypoth- 411

esize that a more isotropic space lends itself better 412

to semantic change detection, since the distance 413

metrics will be more pronounced. This leads us to 414

experiment with three different representations of 415

our fine-tuned RoBERTa model: taking only the 416

first layer, only the last layer or summing all layers. 417

3We do keep in mind the caveat that our model is fine-tuned
on Urban Dictionary text, while the older of the two English
datasets of SemEval consists of text from 1810-1860. It might
therefore be that our model successfully detects change in
modern informal language, but fails to perform well on the
SemEval task.
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d2 APD dcos APD
First layer 0.22 0.234
Last layer 0.07 0.2

Sum of all layers 0.336∗ 0.332∗

Table 2: Spearman’s rank-order correlation coefficients
between our semantic change scores and the ground
truth across different layer representations (p < 0.05).

Dimensionality Reduction: To the best of our418

knowledge, only one previous semantic change419

detection approach (Rother et al., 2020) has incor-420

porated dimensionality reduction, more specifically421

UMAP (McInnes et al., 2018). UMAP works by re-422

ducing a high-dimensional graph to maintain local423

as well as global structure. While UMAP has been424

known to be able to find nicely separated clusters425

(Coenen et al., 2019), the Euclidean distances in the426

reduced space are very sensitive to hyperparame-427

ters and it does not retain an interpretable notion of428

absolute distances. Thus, UMAP is not suitable for429

pure distance-based metrics like APD. We there-430

fore also experiment with PCA, which in contrast431

finds and projects the data onto the directions with432

the largest variances.433

APD Metrics for Semantic Change: Given434

word representations Xt = {x1,t, ...,xnt,t} for435

time period t we define the APD between represen-436

tations of two periods as437

APD(Xt1 ,Xt2) =
1

nt1nt2

∑
xi,t1

∈Xt1
xj,t2

∈Xt2

d(xi,t1 ,xj,t2) ,

(2)

438

for some distance metric d(·, ·). We experi-439

ment with Euclidean distance d2(x1,x2), co-440

sine distance dcos(x1,x2) and Manhattan distance441

d1(x1,x2). Furthermore, we propose a novel com-442

bined metric. Note that d2(·, ·) ∈ [0,∞] and443

dcos(·, ·) ∈ [0, 2]. Further note that444

||x1 − x2||22 = ||x1||22 − 2xT
1 x2 + ||x2||22 (3)445

≤ ||x1||22 + ||x2||22 (4)446

Normalizing both metrics for a support in [0, 1], we447

get a combined metric with the same unit support448

to be the following average:449

d2,cos(x1,x2) =
0.5 · d2(x1,x2)√
||x1||2 + ||x2||2

+
dcos(x1,x2)

4

(5)

450

Reduction h APD Score
PCA 100 d2 and dcos 0.489∗∗

PCA 100 dcos 0.464∗∗

PCA 100 d2 0.298
None 768 d2 and dcos 0.345∗

Table 3: Spearman’s rank-order correlation coefficients
between our semantic change scores and the ground
truth across different dimensionality reduction tech-
niques for APD (*: p < 0.05, **: p < 0.01).

We argue that this provides a more complete met- 451

ric, capturing both absolute distance and the angle 452

between vectors. 453

4.4.3 Evaluating the Semantic Change Scores 454

We first present the results of three types of layer 455

representations for Euclidean and Cosine APD met- 456

rics. The results can be observed in Table 2. We 457

see that summing all layer representations give the 458

highest correlation with the true change scores. 459

Consequentially, we only present the results us- 460

ing these representations henceforth. As a side 461

observation we also note that the less isotropic first 462

layer representations seem to perform better than 463

the more isotropic last layer representations. 464

For both PCA and UMAP, we experiment 465

with projecting the representations down to h ∈ 466

{2, 5, 10, 20, 50, 100} dimensions. These combi- 467

nations are tested together with the APD met- 468

rics as presented in Section 4.4.2 as well as the 469

distribution-based metrics described in Appendix B. 470

The latter do not however in general display signif- 471

icant (p < 0.05) correlations. 472

We present a small subset of the scores resulting 473

from the APD configurations in Table 3, showing 474

that both combining the metrics and PCA dimen- 475

sionality reduction improve the performance. More 476

results and comparisons to baselines are presented 477

in Appendix B.3. From these we observe that 478

UMAP projections perform poorly with the APD 479

metrics and that projecting down to 50-100 dimen- 480

sions seems to be optimal, which maintains 70-85% 481

of the variance as we show in Appendix B.2. In 482

addition, both norm-based metrics perform worse 483

with dimensionality reduction. 484

4.4.4 Semantic Change Scores on the Twitter 485

Dataset 486

For evaluating semantic change on the Twitter 487

dataset we choose the best performing configura- 488

tion on SemEval, which is the Euclidean and cosine 489
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combined APD metric computed on the sum of all490

layer representations, being reduced to 100 dimen-491

sions with PCA. This is further justified seeing as492

the combined APD metric performs best across all493

dimensions except h = 2 and the dimension size494

of h = 100 performs well across all APD metrics.495

For the semantic change scores, we use words496

that have more than 150 tweets in each time pe-497

riod after the filtering step described in Section 3.2,498

in order to ensure that we get meaningful repre-499

sentations. This leaves us with 80 slang and 81500

nonslang words. The resulting semantic change501

scores are shown in Figure 3. The mean semantic502

change scores are 0.731(±0.011) for slang words503

and 0.739(±0.009) for nonslang words.504

Some of the slang words with the lowest seman-505

tic change scores were “whadja” (0.674), “dudette”506

(0.710) and “duckface” (0.714), while the slang507

words “skyrocket” (0.746) and “dogg” (0.749) dis-508

played a relatively high semantic change. Among509

the nonslang words, “anticlockwise” (0.774) and510

“inclusive” (0.752) undergo a large change, and the511

lowest scores are displayed by “terrifies” (0.720)512

and “underpainting” (0.721).513

5 Causal Analysis514

Previous works (Dubossarsky et al., 2016; Hamil-515

ton et al., 2016) have suggested causal factors in516

the context of semantic change, but none have how-517

ever applied a causal framework to analyze and518

confirm these relationships. Here, we inspect the519

underlying mechanisms of semantic change with520

causal discovery methods, which we use to infer521

the effect that word type has on semantic change522

and frequency shift.523

5.1 Causal Discovery524

We refer the reader to Appendix D.1 for a short525

preliminary on causal discovery. For learning the526

causal graph, we choose the constraint-based algo-527

rithm PC-stable (Colombo and Maathuis, 2014),528

which is an order-independent variant of the orig-529

inal PC algorithm (Spirtes et al., 2000). It evalu-530

ates causal links through conditional independence531

tests, which should be chosen according to the un-532

derlying data distribution. Since we are learning a533

mixed graphical model (Lauritzen, 1996; Lee and534

Hastie, 2015), consisting of both continuous and535

categorical data, this calls for tailoring the tests536

to each specific set of variables we are consider-537

ing. In the case of continuous Gaussian variables,538

Figure 3: Difference in semantic change score between
2010 and 2020 for slang and nonslang words, where a
larger score corresponds to a more pronounced seman-
tic change.

we can perform partial correlation tests to assess 539

conditional independence, since zero partial corre- 540

lation in this case is equivalent to conditional inde- 541

pendence (Baba et al., 2004). As word frequency 542

has been suggested to follow a lognormal distri- 543

bution (Baayen, 1992), we take the log transform 544

of it. The continuous variables semantic change 545

score, relative frequency change and log of word 546

frequency are then all assumed to be approximated 547

well by a Gaussian distribution, which is confirmed 548

by diagnostic density and Q-Q plots. 549

As for the the ordinal polysemy variable, we 550

discretize and treat it as a categorical variable, by 551

splitting it into three categories: one word sense 552

(monosemous), 2-5 word senses, or more than 553

five word senses. We also check for robustness 554

with respect to different categorizations, see Ap- 555

pendix D.2. Word type is categorical in nature. 556

For the two categorical variables and for mixes 557

of categorical and continuous variables, we per- 558

form chi-squared mutual information based tests 559

(Edwards, 2000), since the approximate null distri- 560

bution of the mutual information is chi-squared 561

(Brillinger, 2004). For all conditional indepen- 562

dence tests we experiment with significance levels 563

α ∈ {0.01, 0.03, 0.05}. 564

5.2 Resulting Causal Structure 565

In Figure 4 we see the result from the above ap- 566

proach, using a significance level of α = 0.03 or 567

α = 0.05 for the conditional independence tests, 568

both of which resulted in similar results across con- 569

figurations. See Appendix D.2 for a sensitivity 570
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Figure 4: DAG representing the causal relationships in
our dataset.

analysis.571

We first observe that word type has a direct572

causal effect on both the semantic change score and573

the frequency change, without any confounders.574

Between word type and polysemy we observe a575

weak dependence, as this edge was not present in576

all of our aforementioned configurations and could577

furthermore not be oriented by the PC-stable algo-578

rithm. We manually orient the edge as outgoing579

from type and ingoing to polysemy however, since580

an intervention on type should have a causal effect581

on the number of word senses and not vice versa.582

It is also interesting to note that polysemy does not583

seem to have a causal effect on semantic change. Its584

association with semantic change (p < 0.05, reject-585

ing the null hypothesis of independence between586

polysemy and semantic change) is instead weakly587

confounded by word type. In the case of absolute588

frequency, it is independent of semantic change589

(p > 0.05) both when conditioning on polysemy590

and/or word type, as well as in the empty condition-591

ing set. The faithfulness assumption would suggest592

the latter to be a dependency, which highlights the593

uncertainty of the link from word type to polysemy.594

5.3 Causal Effect of Word Type on Semantic595

Change and Frequency Change596

We evaluate the average causal effect of word type597

T on semantic change S as:598

E[S|do(T = nonslang)]− E[S|do(T = slang)]
(6)599

In our case there are no confounders, as presented600

in Figure 4, and this equation therefore reduces to601

the difference between the conditional distributions:602

603

E[S|T = nonslang]− E[S|T = slang] (7)604

See Appendix D.3 for a derivation. The case of605

frequency change is analogous.606

We estimate the expectations by the sample 607

means and get an average causal effect of 0.008, 608

which is a highly significant value (p < 0.001) 609

based on a permutation test (Edgington, 1969). 610

For the observed changes in relative frequency, 611

calculated according to Equation 1, we record an 612

average causal effect of 1.017 which is highly sig- 613

nificant (p < 0.001) via a permutation test. 614

6 Discussion 615

We analyze the dynamics of frequency and seman- 616

tic change in slang words, and compare them to 617

those of nonslang words. Our analysis shows that 618

slang words change slower in semantic meaning, 619

but adhere to more rapid frequency fluctuations, 620

and in particular are more likely to greatly decrease 621

in frequency. 622

To ensure that this effect is the result of a direct 623

causal effect, and not mediated through another 624

variable or subject to confounders, we model the 625

data with a causal graph, by also considering poten- 626

tial interacting variables such as a word’s polysemy 627

and average absolute frequency. We discover that 628

there is no influence of confounders, nor are there 629

mediators between a word’s type (slang/nonslang) 630

and its semantic change or its frequency change, 631

which confirms a direct causal effect. 632

Moreover, in the causal structure we discover 633

that word polysemy has a direct effect on word 634

frequency, which is in line with previous linguistic 635

studies showing that a word’s frequency grows in 636

an S-shaped curve when it acquires new meanings 637

(Feltgen et al., 2017; Kroch, 1989), as well as a 638

known positive correlation between polysemy and 639

frequency (Casas et al., 2019; Lee, 1990). How- 640

ever, we do not find a causal effect of polysemy or 641

absolute frequency on semantic change, in contrast 642

to suggestions made in previous works (Hamilton 643

et al., 2016). 644

7 Conclusion 645

In this paper, we analyze the change dynamics of 646

slang, a unique and informal part of language, and 647

compare it to that of standard, nonslang words. We 648

do so by applying a combined APD metric to con- 649

textualized representations obtained from Twitter 650

data, and further use causal discovery to model the 651

factors that influence word change dynamics. We 652

discover a causal relationship between a word be- 653

ing slang and having slower semantic change, as 654

well as more rapid decreases in frequency. 655
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Ethical Considerations656

Our dataset is comprised solely of English text,657

and our analysis therefore applies uniquely to the658

English language, and results may differ in other659

languages. Moreover, for the purpose of this study,660

we curated a dataset of 170, 135 tweets. To protect661

the anonymity of users, we remove author IDs from662

the data, and replace all usernames with the general663

token "user". In the Urban Dictionary dataset we664

received from Wilson et al. (2020), we similarly665

remove the author IDs and only consider the entry666

text.667
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A Appendix – Fine-tuning with Urban951

Dictionary data952

A.1 Preprocessing953

The full Urban Dictionary data contains 3, 534, 966954

word definitions. As the data is crowd-sourced,955

many of the definitions are noisy and of low qual-956

ity. Moreover, as fine-tuning RoBERTa is an ex-957

pensive task, we decided to filter out most of the958

definitions and fine-tune the model only on the best959

quality ones. After performing data exploration,960

we came up with two criteria that we found the961

most indicative of a definition’s quality: the num-962

ber of upvotes it got, and its upvote/downvote ratio.963

The distribution of upvotes, downvotes and the up-964

vote/downvote ratios in the dataset can be seen in965

Figure 6 below. We also note that the number of966

submissions to Urban Dictionary is relatively well-967

spread, see Figure 5. This implies that we do not968

have a strong bias towards more recently popular-969

ized slang terms in the dataset, and that we do have970

representation of the entire time span of interest;971

2010− 2020.972

Figure 5: Frequency counts over years in Urban Dictio-
nary data

We keep the entries having more than 20 up-973

votes and an upvote/downvote ratio of at least 2.974

This leaves us with 488, 010 Urban Dictionary en-975

tries, out of which we randomly sample 100, 000976

to reduce the computation time in the fine-tuning977

process. We use both the definitions and the word978

usage examples for fine-tuning, producing a final979

dataset of 200, 000 sequences.980

A.2 Training981

We randomly split the data into 80% train and 20%982

test, before training for 10 epochs with an early983

stopping with patience 3. The batch size was set to984

1 in the interest of memory constraints. Following985

the setup from the pre-training stage as explained986

in Liu et al. (2019), we use the Adam optimizer987

Figure 6: The distributions of (a) upvote/downvote ra-
tio, (b) number of upvotes and number of downvotes
among definitions in the dataset in log-scale.

(Kingma and Ba, 2017) with ε = 10−6, β1 = 0.9 988

& β2 = 0.98 and a linear learning rate decay. For 989

the learning rate, we argue that since the initial- 990

ized parameters should provide a solution which 991

is already close to the optimum when evaluating 992

on our dataset (our fine-tuning being the very same 993

masked language modeling task as RoBERTa has 994

already been trained on), the learning rate should be 995

smaller. Thus, instead of picking the learning rate 996

γ = 6 · 10−4 as was done by Liu et al. (2019), we 997

experiment with γ ∈ {10−4, 10−5, 10−6, 10−7}. 998
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B Appendix – Experiments on999

SemEval-20201000

B.1 Distribution-based Metrics1001

Method: In addition to the distance-based APD1002

metrics, we experiment with two distribution-based1003

ones, namely entropy difference (ED) & Jensen-1004

Shannon Divergence (JSD) (Giulianelli et al.,1005

2020).1006

We assume a categorical distribution over a set1007

of Kw word senses for word w and time period t.1008

The word sense swi of an occurrence i is then given1009

by:1010

swt
i ∼ Cat(αwt

1 , ..., αwt
Kw

) =: Pwt1011

Given two time periods of word sense distributions,1012

we define the ED metric as1013

|H(swt2)−H(swt1)|1014

with entropy H(·). The JSD is given as:1015

1

2
KL(Pwt1 ||M) +

1

2
KL(Pwt2 ||M)1016

with M = Pwt1+Pwt2

2 and KL(·||·) being the KL-1017

divergence.1018

We obtain the word sense distributions via a clus-1019

tering of the representations from both time periods.1020

We experiment with K-Means and Gaussian Mix-1021

ture Models (GMMs), the latter proposed due to1022

its ability to find more general cluster shapes. We1023

also experiment briefly with Affinity Propagation,1024

which has been used in previous semantic change1025

detection work (Martinc et al., 2020; Kutuzov and1026

Giulianelli, 2020; Montariol et al., 2021). How-1027

ever, we find it to be ill-suited for our purposes1028

since it results in an excessive amount of clusters in1029

comparison to how a human would classify word1030

senses.1031

For both K-means and GMM, we experiment1032

with selecting the optimal Kw ∈ [1, 10] through1033

two different procedures. The first one is a slight ex-1034

tension of the method from Giulianelli et al. (2020)1035

– we select the Kw which optimizes the silhouette1036

score (Rousseeuw, 1987) for a set of different ini-1037

tializations. Their approach does not consider the1038

single cluster case however, so we extend it by1039

setting Kw = 1 when the best silhouette score is1040

below a threshold of 0.1. For K-Means, we further1041

experiment with an automatic elbow method4 for1042

4See https://kneed.readthedocs.io/en/stable/index.html

the sum of squared distances to the cluster cen- 1043

troids, which decreases monotonically with the 1044

number of clusters. We again select the cluster 1045

assignments with the largest silhouette score for 1046

multiple random initalizations. For GMM, we fur- 1047

ther experiment with taking the model which corre- 1048

sponds to the best Bayesian Information Criterion 1049

(Schwarz, 1978). 1050

Clustering examples: In Figure 7 we see three 1051

clusters found for “gag.” They do not seem to 1052

correspond to word senses however: An example 1053

from the first cluster is “user i need a pic of you 1054

begging if i ’ m boiling these because boiled eggs 1055

make me gag . :d,” an example from the second 1056

cluster is “lmao rt user user user so i tried that tuna 1057

with cheese and my gag reflexes were in full affect 1058

!” and an example from the third cluster is “gag 1059

me with a spoon” – all seemingly referring to the 1060

sensation of being about to vomit. 1061

Figure 7: Clusters found with GMM from 2-
dimensional PCA representations of the word gag.

We show another example in Figure 8 of the 1062

word “gnarly,” this time reduced to 2 dimensions 1063

using UMAP. Gnarly has three meanings according 1064

to the Online Slang Dictionary: It can either mean 1065

very good / excellent / cool, gross / disgusting or 1066

painful / dangerous. These three word senses are 1067

not separated by UMAP and GMM, for instance 1068

both “its a good thing one of my roomies is a dude 1069

, who else would kill gnarly spiders in my room 1070

when i start to hyperventilate” and “rt user bro my 1071

wreck on the scooter was so gnarly like it was fun 1072

i love shit like that . i wish i could’ve been on 1073

jackass” are put in the first cluster. 1074
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Figure 8: Clusters found with GMM from 2-
dimensional UMAP representations of the word
gnarly.

B.2 Variance Explained by PCA components1075

Consider Figure 9 for example plots of how much1076

variance is preserved with PCA on the contextual-1077

ized representations.1078

B.3 Results1079

We further present more results of the experimen-1080

tation on the SemEval-2020 Task 1 Subtask 2. All1081

tables show the Spearman’s rank-order correlation1082

between the change metrics and the ground truths.1083

In Table 4 we compare our best performing setup1084

to the three best performing previous approaches1085

on SemEval-2020 Task 1 Subtask 2.1086

Baseline Score
Combined APD PCA100 0.489

Kutuzov and Giulianelli (2020) 0.605
Kaiser et al. (2020) 0.461
Rother et al. (2020) 0.440

Table 4: Comparison to the three highest performing
previous works on the SemEval-2020 Task 1 subtask 2
for the English dataset.

In Table 2 we present a comparison across differ-1087

ent layer representations for both APD-based and1088

distribution-based metrics. We observe that none1089

of the distribution-based metrics give significant1090

(p < 0.05) results, which dimensionality reduction1091

techniques do not manage to improve. While a few1092

of them do have a slight positive correlation, we1093

omit this approach altogether. The APD results on1094

the other hand show a high correlation for many1095

of the configurations, providing an indication of1096

the APD’s robustness in detecting semantic change.1097

We show a selection of these in Table 7.1098

Figure 9: Explained variance by number of compo-
nents used in PCA for the slang words bromance and
whadja

C Appendix – Hybrid Words and 1099

Absolute Change 1100

We compare the frequency and semantic change 1101

distributions of hybrid words, which we define to 1102

be words that have both slang and nonslang mean- 1103

ings, to those of exclusively slang and nonslang 1104

words. 1105

For the relative frequency changes, we present 1106

the results as histograms in Figure 10. The fre- 1107

quency change in hybrid words seems to fall be- 1108

tween those of the slang words and the nonslang 1109

words. We observe a mean and standard deviation 1110

of −0.154 and 0.608 respectively. 1111

In addition, we compare the absolute relative fre- 1112

quency changes as described in Section 4.2 across 1113

slang, nonslang and hybrid words. The histograms 1114

are presented in Figure 11. We observe, respec- 1115

tively, a mean and standard deviation of 1.246 & 1116

1.18 for the slang words, 0.950 & 0.724 for the 1117

nonslang words and 0.482 & 0.402 for the hybrid 1118
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Reps Clustering Metric Score p

First - APD d2 0.22 0.19
First - APD dcos 0.234 0.164
First K-Means ED −0.079 0.644
First K-Means JSD 0.059 0.73
First GMM ED 0.051 0.764
First GMM JSD 0.072 0.67

Last - APD d2 0.007 0.966
Last - APD dcos 0.2 0.236
Last K-Means ED −0.001 0.955
Last K-Means JSD 0.202 0.231
Last GMM ED −0.067 0.695
Last GMM JSD −0.096 0.571

All - APD d2 0.336 0.042
All - APD dcos 0.332 0.045
All K-Means ED 0.033 0.846
All K-Means JSD 0.089 0.599
All GMM ED −0.133 0.433
All GMM JSD 0.0 0.999

Table 5: Comparison across different layer represen-
tations with APDs and distribution metrics, with Kw

selected through silhouette scores.

APD Score p

d2 0.336 0.042
dcos 0.332 0.045
d1 0.409 0.012

d2 and dcos 0.345 0.037
d2, dcos and d1 0.398 0.015

Table 6: Comparison across APD metrics for original
representations. Representations are sums across all
layers.

words. The difference in mean is significant be-1119

tween the slang and nonslang words (p < 0.05),1120

indicating that slang words have undergone a larger1121

absolute change in frequency. Furthermore, we1122

note a highly significant difference (p < 0.001) in1123

the mean of the hybrid words compared to both the1124

slang and nonslang word means.1125

For the semantic change scores, 92 hybrid words1126

remain after the filtering step described in Sec-1127

tion 3.2. Histograms over the semantic change1128

scores are shown in Figure 12. We observe that1129

the distribution over hybrid change scores seem1130

again to be centered between the slang and non-1131

slang distributions, with mean and standard devi-1132

ation of 0.736 and 0.0074 respectively. Both the1133

difference in mean compared to slang words and1134

to nonslang words are significant according to per-1135

Dim APD Score p

PCA2 d2 −0.153 0.367
UMAP2 dcos −0.136 0.424
PCA5 dcos 0.209 0.215
PCA5 d2 and dcos 0.268 0.109

UMAP5 d2, dcos and d1 −0.146 0.39
PCA20 d2 and dcos 0.42 0.01
PCA50 d2, dcos and d1 0.344 0.037

UMAP50 d2 −0.158 0.35
PCA100 d1 0.297 0.074
PCA100 d2 and dcos 0.489 0.002

UMAP100 dcos −0.133 0.433

Table 7: Comparison across different dimensions with
PCA and UMAP for APD metrics. Representations are
sums across all layers.

Figure 10: Relative difference in frequency between
2020 and 2010, for slang, nonslang and hybrid words,
where a positive score corresponds to an increase in fre-
quency.

mutation tests (p < 0.001 for difference to slang 1136

words and p < 0.05 for difference to nonslang 1137

words). 1138
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Figure 11: Absolute value of relative difference in fre-
quency between 2020 and 2010, for slang, nonslang
and hybrid words, where a larger score corresponds to
a larger absolute increase in frequency.

Figure 12: Difference in semantic change score be-
tween 2010 and 2020 for slang, nonslang and hybrid
words, where a larger score corresponds to a more pro-
nounced semantic change.

D Appendix – Causal Analysis1139

D.1 Preliminary on Causal Discovery1140

The constraint-based causal discovery algorithms1141

make use of two main assumptions, namely the1142

global Markov property and the faithfulness as-1143

sumption. The global Markov property (Peters1144

et al., 2017) states that all d-separations (Geiger1145

et al., 1990) encoded in the causal graph imply con-1146

ditional independencies in the distribution over the1147

variables contained in the graph. More formally,1148

for a graph G = (V,E) and distribution P over the1149

variables XV it holds that for any disjoint subsets1150

A,B and C of V1151

XA ⊥d XB|XC , in G1152

1153
⇒ XA ⊥⊥ XB|XC , in P 1154

The faithfulness assumption is defined as the op- 1155

posite direction: All conditional independencies 1156

in the distribution are encoded by d-separations in 1157

the graph. Constraint-based algorithms use condi- 1158

tional independency tests and can, under certain as- 1159

sumptions, identify a Markov equivalence class of 1160

directed acyclic graphs that fulfill both conditions. 1161

Two DAGs are defined to be Markov equivalent if 1162

they have the same skeleton (edges omitting direc- 1163

tion) and v-structures. The three nodes A,B and 1164

C form a v-structre if A→ B ← C and A and C 1165

are not directly connected by an edge. 1166

D.2 Causal Discovery Sensitivity 1167

In Figure 13 we present the results of our sensitiv- 1168

ity analysis for the causal discovery with PC-stable. 1169

For each significance level, we apply ten different 1170

categorizations for the polysemy variable. Strat- 1171

ifying by test significance level (α = 0.05, α = 1172

0.03, α = 0.01), the edge appearances for word 1173

type to polysemy were 80%, 70% and 0%, for pol- 1174

ysemy to frequency change 20%, 10% and 0% and 1175

for polysemy to semantic change 30%, 20% and 1176

0%. We therefore discard the causal links from pol- 1177

ysemy to semantic change and frequency change, 1178

and label the link between word type and polysemy 1179

as "weak". 1180

D.3 Causal Inference 1181

Given the causal DAG in Figure 4, we derive the 1182

expression for the average causal effect of word 1183

type on semantic change. Define the following ran- 1184

dom variables: T = word type, X = polysemy, 1185

Y = frequency, Z = frequency change and S = 1186

semantic change, with respective probability mass 1187

functions PT & PX and probability density func- 1188

tions fY , fZ & fS . 1189

Note that t′ ∈ {slang, nonslang}. By the trun- 1190

cated factorization (Pearl, 2009a) for the causal 1191

DAG, we have that 1192

P(s, t, x, y, z|do(T = t′)) = 1193

1194
fY |X(y|x)fZ|T (z|t)fS|T (s|t)PX|T (x|t)1{t=t′} 1195

Marginalizing over T , we get 1196

P(s, x, y, z|do(T = t′)) = 1197

1198
= fY |X(y|x)fZ|T (z|t′)fS|T (s|t′)PX|T (x|t′) 1199

16



Figure 13: DAG of causal relationships, with the per-
centage of experiments that found each edge, across
different configurations of α and different categoriza-
tions of polysemy score. Solid edges appeared in 100%
of the output graphs.

Next, marginalize over the continuous random vari-1200

ables Y and Z to get1201

P(s, x|do(T = t′)) =1202

1203 ∫
y

∫
z
fY |X(y|x)fZ|T (z|t′)fS|T (s|t′)PX|T (x|t′)dzdy =1204

1205 ∫
y
fY |X(y|x)fS|T (s|t′)PX|T (x|t′)

(∫
z
fZ|T (z|t′)dz

)
︸ ︷︷ ︸

=1

dy =1206

1207

fS|T (s|t′)PX|T (x|t′)
∫
y
fY |X(y|x)dy︸ ︷︷ ︸

=1

=1208

1209
fS|T (s|t′)PX|T (x|t′)1210

Finally1211

P(s|do(T = t′)) =1212
1213 ∑

x

fS|T (s|t′)PX|T (x|t′) = fS|T (s|t′)1214

Taking the expectation, we get1215

E[S|do(T = t′)] = ES|T [S|t′]1216
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