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Abstract

Words are not static in their usage and mean-
ing, but evolve over time. An interesting phe-
nomenon in languages is slang, which is an in-
formal language that is considered ephemeral
and is often associated with contemporary
trends. In this work, we study the semantic
change and relative frequency shift of slang
words and compare this change with standard,
nonslang words. To measure semantic change,
we obtain contextualized representations of
words, reduce their dimensionality and pro-
pose a metric to measure their average pair-
wise distances between two time periods. We
apply causal discovery algorithms and causal
inference to uncover the dynamics of language
evolution and measure the effect that word
type (slang/nonslang) has on both semantic
change and frequency shift, as well as its re-
lationship to absolute frequency and polysemy.
Our causal analysis shows that slang words un-
dergo less semantic change even though they
have larger frequency shifts over time.'

1 Introduction

Language is a continuously evolving system, con-
stantly resculptured by its speakers. The forces that
drive this evolution are many, ranging from pho-
netic convenience to sociocultural changes (Blank,
1999). In particular, the meanings of words and
the frequency under which they are used are not
static, but rather evolve over time. Consider for
example the word “unicorn”, which in recent years
has experienced a metaphorical semantic change
(Bloomfield, 1933) from its traditional meaning
to also encompass the rare occurrence of startup
companies valued at over $1 billion.

In this work, we study semantic change for
slang words. Slang is colloquial and informal lan-
guage commonly associated with particular groups
(Gonzalez, 1998; Bembe and Beukes, 2007), and
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Figure 1: We observe two very different change dy-
namics for the slang word “duckface” and the nonslang
word “inclusive”.
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is characterized by innovation (Mattiello, 2005).
Due to these reasons, we believe that slang words
follow different change dynamics compared to
other words. We investigate the semantic change,
i.e. the shift in word meaning across time, as
well as frequency shifts and the degree of poly-
semy of slang words compared to nonslang words.

We formalize this comparison with a causal
framework, to establish that there is not just
an association, but a direct effect of word
type (slang/monslang) on semantic and frequency
change. Examining word change dynamics through
a causal lens enables us to determine the interac-
tions between the different variables. For example,
it allows us to conclude whether word type directly
influences semantic change, or rather influences
polysemy, which in turn causes semantic change.
Our causal analysis follows two steps: (1) finding a
causal directed acyclic graph (DAG) (Spirtes et al.,



2000; Pearl, 2009b) to represent the causal relation-
ships between word type, frequency, polysemy and
semantic change, and (2) using do-calculus (Pearl,
1995) to evaluate the direct causal effect of word
type on semantic change and frequency change.
Such an analysis is novel in the semantic change
literature, with causal inference being a newly
emerging direction of research within the NLP
community as a whole (Egami et al., 2018; Keith
et al., 2020; Feder et al., 2021; Jin et al., 2021a,b).

We measure both lexical semantic change and
frequency change over a 10-year time span by lever-
aging Twitter data from 2010 and 2020. From
this data, we obtain representations using a bi-
directional language model (Liu et al., 2019),
which we fine-tune on a slang-dense corpus (Wil-
son et al., 2020). The semantic change score is
computed by taking the average pairwise distance
(APD) (Sagi et al., 2009; Giulianelli et al., 2020)
between dimensionality-reduced representations
from the two time points, which we found to be
the highest performing method based on experi-
ments on the SemEval-2020 Task 1 benchmark
for semantic change (Schlechtweg et al., 2020).

We find that a word being slang causes it to un-
dergo more rapid decreases in frequency and slower
semantic changes. Moreover, we observe that slang
words change faster overall, and polysemy causes
words to have higher frequency. To illustrate, con-
sider the slang word “duckface” and the nonslang
word “inclusive” as shown in Figure 1. Duckface
is the face pose made for photos by pouting the lips
(Miller, 2011), often observed in profile pictures
during the early 2010s. The semantic meaning of
duckface has stayed constant since its inception
and it was particularly attached to a trend, after
which it mostly disappeared from usage. Indeed,
we observe that duckface had a peak in frequency
in 2012 and a subsequent rapid decrease, and it
furthermore scores very low on semantic change
by our model. In contrast, the nonslang word “in-
clusive” has developed a new usage in recent years,
to accommodate people who have historically been
excluded (Merriam-Webster, 2019), which is re-
flected by a high semantic change score, being
among the highest in our sample of words.

2 Related Work

2.1 Semantic Change

A typical method for measuring semantic change
is by comparing word representations across time

periods. For example, Dubossarsky et al. (2016)
compare word embeddings obtained using Google
n-gram data, to measure semantic change across
decades. They find that verbs change faster than
nouns, but do not observe an association between
word frequency and semantic change. Similarly,
Hamilton et al. (2016) measure the cosine distance
between word embeddings and discover that pol-
ysemous words change at a faster rate, while fre-
quent words change slower. They also note a higher
frequency among polysemous words.

These approaches rely on fixed word represen-
tations. Limited by assigning one vector to each
word, fixed embeddings do not distinguish between
multiple word meanings and hence may fail to cap-
ture polysemous words properly, as well as certain
contextual nuances. More recent approaches (Hu
et al., 2019; Giulianelli et al., 2020) have high-
lighted the limitations of using fixed representa-
tions and proposed unsupervised neural approaches
based on contextualized word embeddings (Peters
et al., 2018; Devlin et al., 2018). This has lead
to a further stream of work on semantic change
detection with contextualized embeddings (Mar-
tinc et al., 2020; Kutuzov and Giulianelli, 2020;
Montariol et al., 2021; Schlechtweg et al., 2020;
Giulianelli et al., 2021).

2.2 Characterization of Slang

Slang is an informal, unconventional part of the
language, often used in connection to a certain
group or societal trend (Dumas and Lighter, 1978).
It can reflect and establish a connection to a certain
group, (Gonzdlez, 1998; Bembe and Beukes, 2007;
Carter, 2011) as well as a sense of belonging to
a generation, and multiple papers have found age
differences in slang usage and knowledge (Citera
et al., 2020; Earl, 1972; Barbieri, 2008).

Mattiello (2005) highlights the innovative nature
of slang and the role it plays in enriching the lan-
guage with neologisms, and claims that it follows
unique word formation processes that are differ-
ent from standard language, such as word clipping
and blends. Inspired by this, (Kulkarni and Wang,
2018) propose simple data-driven model for gener-
ating slang words according to the processes sug-
gested by Mattiello (2005).

Others have described the ephermality of slang
words, which seem to come and disappear from us-
age more rapidly than standard language (Gonzdlez,
1998; Carter, 2011), however to the best of our



knowledge this has not been previously verified
statistically.

2.3 Causal Discovery and Inference

Causality is the study of mining the cause and effect
behind data and uncovering how variables influence
each other. There are two main tasks in causality:
causal discovery, which aims to discover causal
relationships, often modeled in the form of a DAG,
and causal inference, which concerns determining
the effect that intervening on one variable will have
on the others.

Causal discovery can be broadly categorized into
two main approaches: constraint-based methods
and score-based methods. Constraint-based meth-
ods rely on conditional independence tests, such as
the Peter-Clark (PC) algorithm (Spirtes et al., 2000)
as well as its extensions, e.g. the IDA algorithm
(Maathuis et al., 2009) and the PC-stable algorithm
(Colombo and Maathuis, 2014). Score-based meth-
ods, on the other hand, identify the causal graph by
optimizing a score function. A representative score-
based method is the greedy equivalence search
(GES) (Chickering, 2002), which greedily searches
over Markov equivalence classes.

The task of causal inference can be facilitated by
do-calculus (Pearl, 1995), which estimates causal
effects from observational data by establishing the
equivalence of interventions and probability distri-
butions estimated from observational data, through
conditioning with methods such as backdoor ad-
justment (Pearl, 1995) and the adjustment crite-
rion (Shpitser et al., 2012).

3 Data Collection
3.1 Slang and Nonslang Word Selection

We select 100 slang words and 100 nonslang words
for our study. The slang words are randomly sam-
pled from the Online Slang Dictionary,> which pro-
vides well-maintained and curated slang word def-
initions as well as a list of 4,828 featured slang
words as of June 2021. Since the scope of our
study is mainly about single-word expressions, we
filter out 2,169 multi-word expressions. To fur-
ther clean the data, we also delete words with only
one character and acronyms. Lastly, we limit the
causal analysis to words that are exclusively ei-
ther slang or nonslang, excluding “hybrid” words
with both slang and nonslang meanings, such as
“kosher”, “beef” or “tool”. Including words of this

http://onlineslangdictionary.com/

type would have created a hardcoded dependency
between word type and polysemy, as these words
by definition are polysemous. However, since a
substantial amount of slang words are hybrid, we
perform a separate analysis of these in Appendix C.

As for the reference set of nonslang words, we
sample 100 words uniformly at random from a
list of all English words, supplied by the wordfreq
library in Python (Speer et al., 2018).

3.2 Twitter Corpus

To measure the semantic change of slang and non-
slang words, we require a dataset that has frequent
occurrences of slang and that reflects the general
use of colloquial language, and we thus choose the
social media platform Twitter as our corpus.

We sample tweets from two different years, 2010
and 2020, which makes it possible to examine the
semantic change of words over a 10-year gap. For
every slang and nonslang word, and each of the two
years, we obtain 200-500 random tweets that con-
tain the word and were posted at one of the over 25
randomly sampled time points within the year. For
every tweet, we keep its text, corresponding slang
word, tweet ID, and date. As a post-processing
step, we remove all duplicate tweets as well as all
URLSs and hashtags from the tweets. To protect
user privacy, we replace all user name handles with
the generic word “user.”

We obtain 170,135 tweets in total. On average
we have 370 slang and 333 nonslang tweets per
word from 2010, and 323 slang and 254 nonslang
tweets per word from 2020.

4 Collecting Causal Variables

We explore the potential causal effect of a word’s
type (slang/nonslang) on its semantic change. We
additionally test the hypothesis that slang words
appear and dissipate faster, and if so, whether this
is due to a causal effect. For these purposes, we
collect the following variables:

* Word type: Whether a word is slang or not

* Word frequency: The average number of
tweets containing the word per day in 2010
and 2020 (Section 4.1)

* Frequency Change: The relative difference
in frequency the word has undergone between
2010 and 2020 in the Twitter corpus (Sec-
tion 4.2)
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Year Slang Nonslang

2010 1,931 1,507

2020 13,560 8,802
Overall Increase ~ x7.0 x5.8

Table 1: Average daily counts for both slang and non-
slang words, in 2010 and 2020

* Polysemy: The number of senses a word has
(Section 4.3)

* Semantic change: The semantic change
score of the word from 2010 to 2020 in the
Twitter corpus (Section 4.4)

4.1 Word Frequency

We approximate a word’s frequency by the average
number of times it is tweeted within 24 hours. This
average is calculated in practice over 40 randomly
sampled time points in a given year, in each of
which we retrieve the number of tweets containing
the word. The frequencies are calculated separately
for 2010 and 2020, and then averaged for the causal
analysis. Due to the growing popularity of social
media, the number of tweets has significantly in-
creased throughout the decade. Therefore, we di-
vide the tweet counts from 2020 by a factor of 6.4,
which is the ratio between the average word counts
in both years in our dataset. The average daily
counts in both years can be seen in Table 1. This
normalization factor is also justified by the fact that
both the number of active daily users on Twitter and
the number of tweets per day had approximately
a 7-fold increase over this time (GDELT Project,
2019; Internet Live Stats; Dean, 2021).

4.2 Frequency Change

We are now interested in analyzing the dynamics of
frequency change. To evaluate the relative change
in frequency for a given word w we take

902020(“’)

FreqChange(w) = log
Z2010(W)

(D

where, x(w) is the frequency of word w in year k.
This was proven to be the only metric for relative
change that is symmetric, additive, and normed
(Tornqvist et al., 1985). Importantly, this measure
symmetrically reflects both increases and decreases
in relative frequency. The mean relative changes in
frequency were —0.48(+1.65) for slang words and
0.53(£1.07) for nonslang words, where a negative
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Figure 2: Relative difference in frequency between
2020 and 2010, for slang and nonslang words, where a
positive score corresponds to an increase in frequency.
We see more slang words show a decrease in frequency
than nonslang ones.

score corresponds to a decrease in frequency. As
evident in Figure 2, not only did more slang words
exhibit a decrease in frequency than nonslang ones,
the words that showed the highest frequency in-
crease are also slang. Namely, the highest increase
in frequency was for the slang word "incel", which
went from being tweeted an average of (.28 times
a day in 2010, to being tweeted about 3400 times
a day in 2020, whereas the steepest decreases in
frequency was for the slang word "celebutante".

We also examine the absolute value of the
change in frequency in equation (1) to evaluate
the degree of change, may it be a decrease or an in-
crease. We find that, as expected, slang words have
significantly higher changes in absolute frequency
than nonslang words (p < 0.05). See Appendix C
for more details.

4.3 Polysemy

We define a word’s polysemy score as the number
of distinct senses it has. This definition also encap-
sulates potential cases of homonymy; we choose
not to make a distinction between polysemy and
homonymy in this analysis. For nonslang words,
we take the number of senses the word has in Word-
Net (Fellbaum, 1998; Princeton University, 2010),
which was designed to group words into distinct
senses. If a word does not appear in the WordNet
database, we take the number of distinct definitions
it has on the Merriam Webster dictionary. For slang
words, polysemy score is determined by their num-
ber of definitions on the Online Slang Dictionary.



We note a decreasing empirical probability mass
function for the polysemy score, with mean 2.49
and standard deviation 3.21. More polysemous
words appear to also be more frequent in our dataset
— the log transform of average frequency and pol-
ysemy display a highly significant (p < 0.001)
linear correlation coefficient of 0.34.

4.4 Semantic Change Score

In this section we explain in detail how we obtain
the semantic change scores. We start by fine-tuning
a bi-directional language model on a slang-dense
corpus (Section 4.4.1), after which we survey the
literature and propose metrics (Section 4.4.2) that
we use to perform an extensive experimentation
study to find the most suitable one (Section 4.4.3).
Finally, we apply this metric to our sets of slang
and nonslang words (Section 4.4.4).

4.4.1 Obtaining Contextualized
Representations

As input for semantic change scoring, we leverage
the contextualized representations obtained from
a bi-directional language model. As a first step,
we familiarize the model with slang words and the
contexts in which they are used by fine-tuning it on
the masked language modeling task. For this pur-
pose we use a web-scraped dataset from the Urban
Dictionary, previously collected by Wilson et al.
(2020). Each entry contains a definition, examples
in which the word occurs, number of upvotes &
downvotes from website visitors, username of the
submitter and a timestamp. After preprocessing
and subsampling, the details of which can be found
in Appendix A.1, we are left with a training set of
200, 000 slang-dense text sequences.

As our bi-directional language model we se-
lect RoBERTa (Liu et al., 2019), which is based
on Transformers (Vaswani et al., 2017) and pre-
trained on the following datasets: BookCorpus
(Zhu et al., 2015), CC-News (Nagel, 2016), Open-
WebText (Gokaslan and Cohen, 2019) and Stories
(Trinh and Le, 2018) — all presumably limited in
the use of slang. Beyond performance gains com-
pared to the original BERT (Devlin et al., 2018),
we select this model since it uses byte-pair encod-
ing with bytes instead of characters as sub-units,
allowing for more subword units. We reason that
this could be useful in the context of slang words
since potentially some of the sub-units used in these
words would not have been recognized by BERT.
We choose the smaller 125M parameter version

RoBERTa base for computational reasons.

We train the model using the Adam optimizer
(Kingma and Ba, 2017) with learning rates v €
{1074,107°,107%,10~7}. For semantic change
scoring we proceed to use the model with the low-
est loss on the test set, which is the one trained
with a learning rate v = 10~%. For more details on
training configurations, we refer to Appendix A.2.

4.4.2 Quantifying Semantic Change

In order to find a change detection metric, we eval-
uate our model on the SemEval-2020 Task 1 on
Unsupervised Lexical Semantic Change Detection
(Schlechtweg et al., 2020). This task provides
the first standard evaluation framework for seman-
tic change detection, using a large-scale labeled
dataset for four different languages. We restrict
ourselves to English and focus on subtask 2, which
concerns ranking a set of 37 target words according
to their semantic change between two time peri-
ods. The ranking is evaluated using Spearman’s
rank-order correlation coefficient p.> Our space
of configurations include layer representations, di-
mensionality reduction techniques and semantic
change metrics. In addition to the average pairwise
distance (APD) metrics, we also experiment with
distribution-based metrics (see Appendix B.1).

Layer Representations: Previous work (Etha-
yarajh, 2019) has shown that embeddings re-
trieved from bi-directional language models are
not isotropic, but are rather concentrated around
a high-dimensional cone, both when conditioning
on words and more surprisingly, when considering
all words. However, the level of isotropy may vary
according to the layer from which the represen-
tations are retrieved — it has been shown that the
word self-similarity of representations in BERT de-
creases with the layer index (Ethayarajh, 2019; Cai
et al., 2021), which would imply that deeper/higher
layers have a higher degree of isotropy. We hypoth-
esize that a more isotropic space lends itself better
to semantic change detection, since the distance
metrics will be more pronounced. This leads us to
experiment with three different representations of
our fine-tuned RoBERTa model: taking only the
first layer, only the last layer or summing all layers.

3We do keep in mind the caveat that our model is fine-tuned
on Urban Dictionary text, while the older of the two English
datasets of SemEval consists of text from 1810-1860. It might
therefore be that our model successfully detects change in
modern informal language, but fails to perform well on the
SemEval task.



dy APD  doo. APD

First layer 0.22 0.234
Last layer 0.07 0.2
Sum of all layers 0.336*  0.332*

Table 2: Spearman’s rank-order correlation coefficients
between our semantic change scores and the ground
truth across different layer representations (p < 0.05).

Dimensionality Reduction: To the best of our
knowledge, only one previous semantic change
detection approach (Rother et al., 2020) has incor-
porated dimensionality reduction, more specifically
UMAP (Mclnnes et al., 2018). UMAP works by re-
ducing a high-dimensional graph to maintain local
as well as global structure. While UMAP has been
known to be able to find nicely separated clusters
(Coenen et al., 2019), the Euclidean distances in the
reduced space are very sensitive to hyperparame-
ters and it does not retain an interpretable notion of
absolute distances. Thus, UMAP is not suitable for
pure distance-based metrics like APD. We there-
fore also experiment with PCA, which in contrast
finds and projects the data onto the directions with
the largest variances.

APD Metrics for Semantic Change: Given
word representations Xy = {x1,..., 2, +} for
time period ¢ we define the APD between represen-
tations of two periods as

1
APD(X;,, &X,) = d<wi7t17wj1t2) )
M1 Mty T ¢, €EX
i,tq t1
Tty EXty
2
for some distance metric d(-,-). We experi-

ment with Euclidean distance da(x1,x2), co-
sine distance dcos(1, 2) and Manhattan distance
dy (x1, x2). Furthermore, we propose a novel com-
bined metric. Note that da(+,-) € [0, 00] and
deos(+,-) € [0, 2]. Further note that

o1 — @23 = ||21]|3 — 2] @2 + [|22|5  (3)

< et I3 + |23 @)

Normalizing both metrics for a support in [0, 1], we
get a combined metric with the same unit support
to be the following average:

0.5- dg(:lil, EBQ)

dCOS(mlv :]32)

d9 cos =
2,cos($1;332) /—HQIHHQ—I-H%QHQ + 1
5)

Reduction h APD Score
PCA 100 do and deos 0.489**
PCA 100 deos 0.464**
PCA 100 da 0.298
None 768 doand d.os  0.345*

Table 3: Spearman’s rank-order correlation coefficients
between our semantic change scores and the ground
truth across different dimensionality reduction tech-
niques for APD (*: p < 0.05, **: p < 0.01).

We argue that this provides a more complete met-
ric, capturing both absolute distance and the angle
between vectors.

4.4.3 Evaluating the Semantic Change Scores

We first present the results of three types of layer
representations for Euclidean and Cosine APD met-
rics. The results can be observed in Table 2. We
see that summing all layer representations give the
highest correlation with the true change scores.
Consequentially, we only present the results us-
ing these representations henceforth. As a side
observation we also note that the less isotropic first
layer representations seem to perform better than
the more isotropic last layer representations.

For both PCA and UMAP, we experiment
with projecting the representations down to h €
{2,5,10,20, 50,100} dimensions. These combi-
nations are tested together with the APD met-
rics as presented in Section 4.4.2 as well as the
distribution-based metrics described in Appendix B.
The latter do not however in general display signif-
icant (p < 0.05) correlations.

We present a small subset of the scores resulting
from the APD configurations in Table 3, showing
that both combining the metrics and PCA dimen-
sionality reduction improve the performance. More
results and comparisons to baselines are presented
in Appendix B.3. From these we observe that
UMAP projections perform poorly with the APD
metrics and that projecting down to 50-100 dimen-
sions seems to be optimal, which maintains 70-85%
of the variance as we show in Appendix B.2. In
addition, both norm-based metrics perform worse
with dimensionality reduction.

4.4.4 Semantic Change Scores on the Twitter
Dataset

For evaluating semantic change on the Twitter
dataset we choose the best performing configura-
tion on SemEval, which is the Euclidean and cosine



combined APD metric computed on the sum of all
layer representations, being reduced to 100 dimen-
sions with PCA. This is further justified seeing as
the combined APD metric performs best across all
dimensions except h = 2 and the dimension size
of h = 100 performs well across all APD metrics.

For the semantic change scores, we use words
that have more than 150 tweets in each time pe-
riod after the filtering step described in Section 3.2,
in order to ensure that we get meaningful repre-
sentations. This leaves us with 80 slang and 81
nonslang words. The resulting semantic change
scores are shown in Figure 3. The mean semantic
change scores are 0.731(+0.011) for slang words
and 0.739(£0.009) for nonslang words.

Some of the slang words with the lowest seman-
tic change scores were “whadja” (0.674), “dudette”
(0.710) and “duckface” (0.714), while the slang
words “skyrocket” (0.746) and “dogg” (0.749) dis-
played a relatively high semantic change. Among
the nonslang words, “anticlockwise” (0.774) and
“inclusive” (0.752) undergo a large change, and the
lowest scores are displayed by “terrifies” (0.720)
and “underpainting” (0.721).

5 Causal Analysis

Previous works (Dubossarsky et al., 2016; Hamil-
ton et al., 2016) have suggested causal factors in
the context of semantic change, but none have how-
ever applied a causal framework to analyze and
confirm these relationships. Here, we inspect the
underlying mechanisms of semantic change with
causal discovery methods, which we use to infer
the effect that word type has on semantic change
and frequency shift.

5.1 Causal Discovery

We refer the reader to Appendix D.1 for a short
preliminary on causal discovery. For learning the
causal graph, we choose the constraint-based algo-
rithm PC-stable (Colombo and Maathuis, 2014),
which is an order-independent variant of the orig-
inal PC algorithm (Spirtes et al., 2000). It evalu-
ates causal links through conditional independence
tests, which should be chosen according to the un-
derlying data distribution. Since we are learning a
mixed graphical model (Lauritzen, 1996; Lee and
Hastie, 2015), consisting of both continuous and
categorical data, this calls for tailoring the tests
to each specific set of variables we are consider-
ing. In the case of continuous Gaussian variables,

Semantic change between 2010 and 2020

B nonslang
50 slang

40
30

204

. |H
ol L, : H i1

0.68 0.70 0.72 0.74 0.76

Figure 3: Difference in semantic change score between
2010 and 2020 for slang and nonslang words, where a
larger score corresponds to a more pronounced seman-
tic change.

we can perform partial correlation tests to assess
conditional independence, since zero partial corre-
lation in this case is equivalent to conditional inde-
pendence (Baba et al., 2004). As word frequency
has been suggested to follow a lognormal distri-
bution (Baayen, 1992), we take the log transform
of it. The continuous variables semantic change
score, relative frequency change and log of word
frequency are then all assumed to be approximated
well by a Gaussian distribution, which is confirmed
by diagnostic density and Q-Q plots.

As for the the ordinal polysemy variable, we
discretize and treat it as a categorical variable, by
splitting it into three categories: one word sense
(monosemous), 2-5 word senses, or more than
five word senses. We also check for robustness
with respect to different categorizations, see Ap-
pendix D.2. Word type is categorical in nature.
For the two categorical variables and for mixes
of categorical and continuous variables, we per-
form chi-squared mutual information based tests
(Edwards, 2000), since the approximate null distri-
bution of the mutual information is chi-squared
(Brillinger, 2004). For all conditional indepen-
dence tests we experiment with significance levels
a € {0.01,0.03,0.05}.

5.2 Resulting Causal Structure

In Figure 4 we see the result from the above ap-
proach, using a significance level of & = 0.03 or
a = 0.05 for the conditional independence tests,
both of which resulted in similar results across con-
figurations. See Appendix D.2 for a sensitivity
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Figure 4: DAG representing the causal relationships in
our dataset.

analysis.

We first observe that word type has a direct
causal effect on both the semantic change score and
the frequency change, without any confounders.
Between word type and polysemy we observe a
weak dependence, as this edge was not present in
all of our aforementioned configurations and could
furthermore not be oriented by the PC-stable algo-
rithm. We manually orient the edge as outgoing
from type and ingoing to polysemy however, since
an intervention on type should have a causal effect
on the number of word senses and not vice versa.
It is also interesting to note that polysemy does not
seem to have a causal effect on semantic change. Its
association with semantic change (p < 0.05, reject-
ing the null hypothesis of independence between
polysemy and semantic change) is instead weakly
confounded by word type. In the case of absolute
frequency, it is independent of semantic change
(p > 0.05) both when conditioning on polysemy
and/or word type, as well as in the empty condition-
ing set. The faithfulness assumption would suggest
the latter to be a dependency, which highlights the
uncertainty of the link from word type to polysemy.

5.3 Causal Effect of Word Type on Semantic
Change and Frequency Change

We evaluate the average causal effect of word type
T on semantic change S as:

E[S|do(T = nonslang)] — E[S|do(T" = slang)]
(6)
In our case there are no confounders, as presented
in Figure 4, and this equation therefore reduces to
the difference between the conditional distributions:

E[S|T = nonslang] — E[S|T = slang]  (7)

See Appendix D.3 for a derivation. The case of
frequency change is analogous.

We estimate the expectations by the sample
means and get an average causal effect of 0.008,
which is a highly significant value (p < 0.001)
based on a permutation test (Edgington, 1969).

For the observed changes in relative frequency,
calculated according to Equation 1, we record an
average causal effect of 1.017 which is highly sig-
nificant (p < 0.001) via a permutation test.

6 Discussion

We analyze the dynamics of frequency and seman-
tic change in slang words, and compare them to
those of nonslang words. Our analysis shows that
slang words change slower in semantic meaning,
but adhere to more rapid frequency fluctuations,
and in particular are more likely to greatly decrease
in frequency.

To ensure that this effect is the result of a direct
causal effect, and not mediated through another
variable or subject to confounders, we model the
data with a causal graph, by also considering poten-
tial interacting variables such as a word’s polysemy
and average absolute frequency. We discover that
there is no influence of confounders, nor are there
mediators between a word’s type (slang/nonslang)
and its semantic change or its frequency change,
which confirms a direct causal effect.

Moreover, in the causal structure we discover
that word polysemy has a direct effect on word
frequency, which is in line with previous linguistic
studies showing that a word’s frequency grows in
an S-shaped curve when it acquires new meanings
(Feltgen et al., 2017; Kroch, 1989), as well as a
known positive correlation between polysemy and
frequency (Casas et al., 2019; Lee, 1990). How-
ever, we do not find a causal effect of polysemy or
absolute frequency on semantic change, in contrast
to suggestions made in previous works (Hamilton
et al., 2016).

7 Conclusion

In this paper, we analyze the change dynamics of
slang, a unique and informal part of language, and
compare it to that of standard, nonslang words. We
do so by applying a combined APD metric to con-
textualized representations obtained from Twitter
data, and further use causal discovery to model the
factors that influence word change dynamics. We
discover a causal relationship between a word be-
ing slang and having slower semantic change, as
well as more rapid decreases in frequency.



Ethical Considerations

Our dataset is comprised solely of English text,
and our analysis therefore applies uniquely to the
English language, and results may differ in other
languages. Moreover, for the purpose of this study,
we curated a dataset of 170, 135 tweets. To protect
the anonymity of users, we remove author IDs from
the data, and replace all usernames with the general
token "user". In the Urban Dictionary dataset we
received from Wilson et al. (2020), we similarly
remove the author IDs and only consider the entry
text.
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A Appendix - Fine-tuning with Urban
Dictionary data

A.1 Preprocessing

The full Urban Dictionary data contains 3, 534, 966
word definitions. As the data is crowd-sourced,
many of the definitions are noisy and of low qual-
ity. Moreover, as fine-tuning RoOBERTa is an ex-
pensive task, we decided to filter out most of the
definitions and fine-tune the model only on the best
quality ones. After performing data exploration,
we came up with two criteria that we found the
most indicative of a definition’s quality: the num-
ber of upvotes it got, and its upvote/downvote ratio.
The distribution of upvotes, downvotes and the up-
vote/downvote ratios in the dataset can be seen in
Figure 6 below. We also note that the number of
submissions to Urban Dictionary is relatively well-
spread, see Figure 5. This implies that we do not
have a strong bias towards more recently popular-
ized slang terms in the dataset, and that we do have
representation of the entire time span of interest;
2010 — 2020.

Distribution of years in which the definitions were posted
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Figure 5: Frequency counts over years in Urban Dictio-
nary data

We keep the entries having more than 20 up-
votes and an upvote/downvote ratio of at least 2.
This leaves us with 488, 010 Urban Dictionary en-
tries, out of which we randomly sample 100, 000
to reduce the computation time in the fine-tuning
process. We use both the definitions and the word
usage examples for fine-tuning, producing a final
dataset of 200, 000 sequences.

A.2 Training

We randomly split the data into 80% train and 20%
test, before training for 10 epochs with an early
stopping with patience 3. The batch size was set to
1 in the interest of memory constraints. Following
the setup from the pre-training stage as explained
in Liu et al. (2019), we use the Adam optimizer
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Figure 6: The distributions of (a) upvote/downvote ra-
tio, (b) number of upvotes and number of downvotes
among definitions in the dataset in log-scale.

(Kingma and Ba, 2017) with e = 1075, 3; = 0.9
& (B2 = 0.98 and a linear learning rate decay. For
the learning rate, we argue that since the initial-
ized parameters should provide a solution which
is already close to the optimum when evaluating
on our dataset (our fine-tuning being the very same
masked language modeling task as RoBERTa has
already been trained on), the learning rate should be
smaller. Thus, instead of picking the learning rate
7 = 6-10~* as was done by Liu et al. (2019), we
experiment with v € {1074,107°,1075,107"}.



B Appendix - Experiments on
SemEval-2020

B.1 Distribution-based Metrics

Method: In addition to the distance-based APD
metrics, we experiment with two distribution-based
ones, namely entropy difference (ED) & Jensen-
Shannon Divergence (JSD) (Giulianelli et al.,
2020).

We assume a categorical distribution over a set
of K,, word senses for word w and time period .
The word sense s of an occurrence ¢ is then given
by:

wt wt wt . wt
si ~ Cat(ay”,...,ay )= P

Given two time periods of word sense distributions,
we define the ED metric as

[H(s"") — H(s"")]

with entropy H(-). The JSD is given as:

SKL(PU(|M) + JKL(PY | M)
with M = P4P"2 and K [(-||-) being the KL-
divergence.

We obtain the word sense distributions via a clus-
tering of the representations from both time periods.
We experiment with K-Means and Gaussian Mix-
ture Models (GMMs), the latter proposed due to
its ability to find more general cluster shapes. We
also experiment briefly with Affinity Propagation,
which has been used in previous semantic change
detection work (Martinc et al., 2020; Kutuzov and
Giulianelli, 2020; Montariol et al., 2021). How-
ever, we find it to be ill-suited for our purposes
since it results in an excessive amount of clusters in
comparison to how a human would classify word
senses.

For both K-means and GMM, we experiment
with selecting the optimal K,, € [1,10] through
two different procedures. The first one is a slight ex-
tension of the method from Giulianelli et al. (2020)
— we select the K, which optimizes the silhouette
score (Rousseeuw, 1987) for a set of different ini-
tializations. Their approach does not consider the
single cluster case however, so we extend it by
setting K,, = 1 when the best silhouette score is
below a threshold of 0.1. For K-Means, we further
experiment with an automatic elbow method* for

“See https://kneed.readthedocs.io/en/stable/index.html

the sum of squared distances to the cluster cen-
troids, which decreases monotonically with the
number of clusters. We again select the cluster
assignments with the largest silhouette score for
multiple random initalizations. For GMM, we fur-
ther experiment with taking the model which corre-
sponds to the best Bayesian Information Criterion
(Schwarz, 1978).

Clustering examples: In Figure 7 we see three
clusters found for “gag.”” They do not seem to
correspond to word senses however: An example
from the first cluster is “user i need a pic of you
begging if i > m boiling these because boiled eggs
make me gag . :d,” an example from the second
cluster is “Imao rt user user user so i tried that tuna
with cheese and my gag reflexes were in full affect
I” and an example from the third cluster is “gag
me with a spoon” — all seemingly referring to the
sensation of being about to vomit.

cluster labels for representations of gag in 2d with pca
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Figure 7: Clusters found with GMM from 2-

dimensional PCA representations of the word gag.

We show another example in Figure 8§ of the
word “gnarly,” this time reduced to 2 dimensions
using UMAP. Gnarly has three meanings according
to the Online Slang Dictionary: It can either mean
very good / excellent / cool, gross / disgusting or
painful / dangerous. These three word senses are
not separated by UMAP and GMM, for instance
both “its a good thing one of my roomies is a dude
, who else would kill gnarly spiders in my room
when i start to hyperventilate” and “rt user bro my
wreck on the scooter was so gnarly like it was fun
i love shit like that . i wish i could’ve been on
jackass” are put in the first cluster.



cluster labels for representations of gnarly in 2d with umap
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Figure 8: Clusters found with GMM from 2-

dimensional UMAP representations of the word
gnarly.

B.2 Variance Explained by PCA components

Consider Figure 9 for example plots of how much
variance is preserved with PCA on the contextual-
ized representations.

B.3 Results

We further present more results of the experimen-
tation on the SemEval-2020 Task 1 Subtask 2. All
tables show the Spearman’s rank-order correlation
between the change metrics and the ground truths.
In Table 4 we compare our best performing setup
to the three best performing previous approaches
on SemEval-2020 Task 1 Subtask 2.

Baseline Score

Combined APD PCA100 0.489
Kutuzov and Giulianelli (2020) 0.605
Kaiser et al. (2020) 0.461
Rother et al. (2020) 0.440

Table 4: Comparison to the three highest performing
previous works on the SemEval-2020 Task 1 subtask 2
for the English dataset.

In Table 2 we present a comparison across differ-
ent layer representations for both APD-based and
distribution-based metrics. We observe that none
of the distribution-based metrics give significant
(p < 0.05) results, which dimensionality reduction
techniques do not manage to improve. While a few
of them do have a slight positive correlation, we
omit this approach altogether. The APD results on
the other hand show a high correlation for many
of the configurations, providing an indication of
the APD’s robustness in detecting semantic change.
We show a selection of these in Table 7.
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Figure 9: Explained variance by number of compo-
nents used in PCA for the slang words bromance and
whadja

C Appendix - Hybrid Words and
Absolute Change

We compare the frequency and semantic change
distributions of hybrid words, which we define to
be words that have both slang and nonslang mean-
ings, to those of exclusively slang and nonslang
words.

For the relative frequency changes, we present
the results as histograms in Figure 10. The fre-
quency change in hybrid words seems to fall be-
tween those of the slang words and the nonslang
words. We observe a mean and standard deviation
of —0.154 and 0.608 respectively.

In addition, we compare the absolute relative fre-
quency changes as described in Section 4.2 across
slang, nonslang and hybrid words. The histograms
are presented in Figure 11. We observe, respec-
tively, a mean and standard deviation of 1.246 &
1.18 for the slang words, 0.950 & 0.724 for the
nonslang words and 0.482 & 0.402 for the hybrid



Reps Clustering  Metric Score p Dim APD Score p
First - APD dy 0.22 0.19 PCA2 da —0.153 0.367
First - APDd.,s 0.234 0.164 UMAP2 deos —0.136 0.424
First  K-Means ED —0.079 0.644 PCA5S deos 0.209 0.215
First  K-Means JSD 0.059 0.73 PCAS do and dos 0.268  0.109
First GMM ED 0.0561 0.764 UMAPS do,decos and dy —0.146  0.39
First GMM JSD 0.072 0.67 PCA20 do and dcog 0.42 0.01
Last - APD dy 0.007  0.966 PCA50 do,decos and dq 0.344  0.037
Last - APD d o 0.2 0.236 UMAPS0 da —0.158 0.35
Last K-Means ED —0.001 0.955 PCA100 dy 0.297 0.074
Last K-Means JSD 0.202 0.231 PCA100 do and dcog 0.489  0.002
Last GMM ED —0.067 0.695 UMAPI100 deos —0.133 0.433
Last GMM JSD —0.096 0.571

All _ APD d» 0.336 0.042 Table 7: Comparison across different dimensions with
All _ APD dos 0.332 0.045 PCA and UMAP for APD metrics. Representations are
Al K-Means  ED  0.033 0.84¢ Sumsacrossalllayers.

All K-Means ISD 0.089  0.599

All GMM ED —0.133 0.433 Frequency change between 2010 and 2020

All GMM JSD 0.0 0.999 40 == nonslang

Table 5: Comparison across different layer represen-
tations with APDs and distribution metrics, with K,
selected through silhouette scores.

APD Score p
da 0.336  0.042
deos 0.332  0.045
dy 0.409 0.012
ds and dog 0.345 0.037
do,deos and d; - 0.398  0.015

Table 6: Comparison across APD metrics for original
representations. Representations are sums across all
layers.

words. The difference in mean is significant be-
tween the slang and nonslang words (p < 0.05),
indicating that slang words have undergone a larger
absolute change in frequency. Furthermore, we
note a highly significant difference (p < 0.001) in
the mean of the hybrid words compared to both the
slang and nonslang word means.

For the semantic change scores, 92 hybrid words
remain after the filtering step described in Sec-
tion 3.2. Histograms over the semantic change
scores are shown in Figure 12. We observe that
the distribution over hybrid change scores seem
again to be centered between the slang and non-
slang distributions, with mean and standard devi-
ation of 0.736 and 0.0074 respectively. Both the
difference in mean compared to slang words and
to nonslang words are significant according to per-

15

slang
hybrid

. ll“‘}i‘llll ‘
4 -2 0 2 4 6

354

304

254

204

154

101

v
L

o

log(2020 frequency/2010 frequency)

Figure 10: Relative difference in frequency between
2020 and 2010, for slang, nonslang and hybrid words,
where a positive score corresponds to an increase in fre-
quency.

mutation tests (p < 0.001 for difference to slang
words and p < 0.05 for difference to nonslang
words).



Frequency change between 2010 and 2020
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Figure 11: Absolute value of relative difference in fre-
quency between 2020 and 2010, for slang, nonslang
and hybrid words, where a larger score corresponds to
a larger absolute increase in frequency.

Semantic change between 2010 and 2020
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Figure 12: Difference in semantic change score be-
tween 2010 and 2020 for slang, nonslang and hybrid
words, where a larger score corresponds to a more pro-
nounced semantic change.

D Appendix — Causal Analysis

D.1 Preliminary on Causal Discovery

The constraint-based causal discovery algorithms
make use of two main assumptions, namely the
global Markov property and the faithfulness as-
sumption. The global Markov property (Peters
et al., 2017) states that all d-separations (Geiger
et al., 1990) encoded in the causal graph imply con-
ditional independencies in the distribution over the
variables contained in the graph. More formally,
for a graph G = (V, E') and distribution PP over the
variables Xy it holds that for any disjoint subsets
A,Band C of V

XA J_d XB’XC, in G
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The faithfulness assumption is defined as the op-
posite direction: All conditional independencies
in the distribution are encoded by d-separations in
the graph. Constraint-based algorithms use condi-
tional independency tests and can, under certain as-
sumptions, identify a Markov equivalence class of
directed acyclic graphs that fulfill both conditions.
Two DAGs are defined to be Markov equivalent if
they have the same skeleton (edges omitting direc-
tion) and v-structures. The three nodes A, B and
C form a v-structre if A — B <— C'and A and C
are not directly connected by an edge.

D.2 Causal Discovery Sensitivity

In Figure 13 we present the results of our sensitiv-
ity analysis for the causal discovery with PC-stable.
For each significance level, we apply ten different
categorizations for the polysemy variable. Strat-
ifying by test significance level (a« = 0.05, ¢ =
0.03,a = 0.01), the edge appearances for word
type to polysemy were 80%, 70% and 0%, for pol-
ysemy to frequency change 20%, 10% and 0% and
for polysemy to semantic change 30%, 20% and
0%. We therefore discard the causal links from pol-
ysemy to semantic change and frequency change,
and label the link between word type and polysemy
as "weak".

D.3 Causal Inference

Given the causal DAG in Figure 4, we derive the
expression for the average causal effect of word
type on semantic change. Define the following ran-
dom variables: T' = word type, X = polysemy,
Y = frequency, Z = frequency change and .S =
semantic change, with respective probability mass
functions Pr & Px and probability density func-
tions fy, fz & fs.

Note that ¢ € {slang, nonslang}. By the trun-
cated factorization (Pearl, 2009a) for the causal
DAG, we have that

P(s,t,x,y, z|do(T = t))

Tyix Wlw) fz77(21t) fsir(s[t) Pxr(w[t) Lp—py
Marginalizing over T, we get

P(s, 2y, z|do(T = t'))

= fyixWle) fzirI1E) foir(slt) Pxyr(zlt)
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Figure 13: DAG of causal relationships, with the per-
centage of experiments that found each edge, across
different configurations of o and different categoriza-
tions of polysemy score. Solid edges appeared in 100%
of the output graphs.

Next, marginalize over the continuous random vari-
ables Y and Z to get

P(s,z|do(T =t")) =
/ / Frix 1) Fzyr (1) fsyr (sl Py (2t dzdy =

T st P x|t z|tNdz ) dy =
/y Py (vl Fr (61 P |t>< [ ftalty ) y

=1

Fsyr(s1t) Py (x]t) / Frix (yle)dy =
)

| —
=1

fsir(s]t") Pxp(z|t)

Finally
P(s|do(T =t")) =

> Fsir(slt) Pxr(alt’) = for(slt))
T
Taking the expectation, we get

E[S|do(T = t)] = Eg/7[S[t'
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