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Abstract
Information extraction (IE) aims to extract001
structural knowledge from plain natural lan-002
guage texts. Recently, generative Large Lan-003
guage Models (LLMs) have demonstrated re-004
markable capabilities in text understanding and005
generation. As a result, numerous works have006
been proposed to integrate LLMs for IE tasks007
based on a generative paradigm. To conduct008
a comprehensive systematic review and explo-009
ration of LLM efforts for IE tasks, in this study,010
we survey the most recent advancements in this011
field. We first present an extensive overview012
by categorizing these works in terms of vari-013
ous IE subtasks and learning paradigms, and014
then we empirically analyze the most advanced015
methods and discover the emerging trend of016
IE tasks with LLMs. Based on a thorough re-017
view conducted, we identify several insights018
in technique and promising research directions019
that deserve further exploration in future stud-020
ies. We will maintain a public repository and021
consistently update related resources.022

1 Introduction023

Information Extraction (IE) is a crucial domain in024

natural language processing (NLP) that converts025

plain text into structured knowledge (e.g., entities,026

relations, and events), and serves as a foundational027

requirement for a wide range of downstream tasks,028

such as knowledge graph construction (Zhong et al.,029

2023), knowledge reasoning (Fu et al., 2019) and030

question answering (Srihari et al., 1999). Typi-031

cal IE tasks consist of Named Entity Recognition032

(NER), Relation Extraction (RE) and Event Ex-033

traction (EE). Meanwhile, the emergence of large034

language models (LLMs) (e.g., GPT-4 (Achiam035

et al., 2023)) has greatly promoted the develop-036

ment of NLP, due to their extraordinary capabilities037

in text understanding and generation. Therefore,038

there has been a recent surge of interest in genera-039

tive IE methods (Qi et al., 2023; Sainz et al., 2023)040

that adopt LLMs to generate structural information041
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Figure 1: LLMs have been extensively explored for
generative IE. These studies encompass various learn-
ing paradigms, specialized frameworks designed for a
single subtask, and universal frameworks capable of
addressing multiple subtasks simultaneously.

rather than extracting structural information from 042

plain text. These methods have been proven to be 043

more practical in real-world scenarios compared 044

to discriminated methods (Chen et al., 2023a; Lou 045

et al., 2023), as they efficiently handle schemas 046

containing millions of entities without significant 047

performance degradation (Josifoski et al., 2022). 048

On the one hand, LLMs have attracted signifi- 049

cant attention from researchers in exploring their 050

potentials for various scenarios of IE. In addition 051

to excelling in individual IE tasks, LLMs possess a 052

remarkable ability to effectively model various IE 053

tasks in a universal format. This is conducted by 054

capturing inter-task dependencies with instructive 055

prompts, and achieves consistent performance (Lu 056

et al., 2022; Sainz et al., 2023). On the other hand, 057

recent works have shown the outstanding general- 058

ization of LLMs to not only learn from IE training 059

data through fine-tuning (Paolini et al., 2021), but 060

also extract information in few-shot and even zero- 061

shot scenarios relying solely on in-context exam- 062

ples or instructions (Wei et al., 2023; Wang et al., 063

2023d). For above two groups of research works: 064

1) the universal frameworks for multiple tasks; 2) 065

deficiency of training data scenarios, existing sur- 066

veys (Nasar et al., 2021; Zhou et al., 2022a; Ye 067
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et al., 2022) do not fully explore them.068

In this survey, we provide a comprehensive ex-069

ploration of LLMs for generative IE, as illustrated070

in Figure 1. To achieve this, we categorize exist-071

ing methods mainly using two taxonomies: (1) a072

taxonomy of numerous IE subtasks, which aims073

to classify different types of information that can074

be extracted individually or uniformly, and (2) a075

taxonomy of learning paradigms, which catego-076

rizes various novel approaches that utilize LLMs077

for generative IE. Furthermore, we present stud-078

ies that focus on specific domains and analyze the079

performance of LLMs for IE. We also compare080

several representative methods to gain deeper un-081

derstanding of their potentials and limitations, and082

provide insightful analysis on future directions. To083

the best of our knowledge, this is the first survey084

on generative IE with LLMs.085

2 Preliminaries of Generative IE086

In this section, we provide a formal definition of087

generative IE and summarize the IE subtasks. This088

generative IE survey primarily covers the tasks of089

NER, RE, and EE (Wang et al., 2023c; Sainz et al.,090

2023). The three types of IE tasks are formulated091

in a generative manner. Given an input text (e.g.,092

sentence or document) with a sequence of n tokens093

X = [x1, ..., xn], a prompt P , and the target ex-094

traction sequence Y = [y1, ..., ym], the objective095

is to maximize the conditional probability in an096

auto-regressive formulation:097

pθ(Y|X ,P) =
m∏
i=1

pθ(yi|X ,P, y<i), (1)098

where θ donates the parameters of LLMs, which099

can be frozen or trainable. In the era of LLMs, sev-100

eral works have proposed appending extra prompts101

or instructions P to X to enhance the comprehen-102

sibility of the task for LLMs (Wang et al., 2023c).103

Even though the input text X remains the same, the104

target sequence varies for each task.105

Named Entity Recognition (NER) includes two106

tasks: Entity Identification and Entity Typing.107

The former task is concerned with identifying spans108

of entities, and the latter task focuses on assigning109

types to these identified entities.110

Relation Extraction (RE) may have different set-111

tings in different works. We categorize it using112

three terms following the literature (Lu et al., 2022;113

Wang et al., 2023c): (1) Relation Classification114

refers to classifying the relation type between two115

given entities; (2) Relation Triplet refers to identi- 116

fying the relation type and the corresponding head 117

and tail entity spans; (3) Relation Strict refers to 118

giving the correct relation type, the span, and the 119

type of head and tail entity. 120

Event Extraction (EE) can be divided into two 121

subtasks (Wang et al., 2022a): (1) Event Detec- 122

tion (also known as Event Trigger Extraction in 123

some works) aims to identify and classify the trig- 124

ger word and type that most clearly represents the 125

occurrence of an event. (2) Event Arguments Ex- 126

traction aims to identify and classify arguments 127

with specific roles in the events from the sentences. 128

3 LLMs for Different Information 129

Extraction Tasks 130

In this section, we first present a introduction to 131

the relevant LLM technologies for IE subtasks, in- 132

cluding NER (§3.1), RE (§3.2), and EE (§3.3). We 133

also conduct experimental analysis to evaluate the 134

performance of various methods on representative 135

datasets for three subtasks. Furthermore, we cate- 136

gorize universal IE frameworks into two categories: 137

natural language (NL-LLMs) and code language 138

(Code-LLMs), to discuss how they model the three 139

distinct tasks using a unified paradigm (§3.4). 140

3.1 Named Entity Recognition 141

NER is a crucial component of IE and can be seen 142

as a predecessor or subtask of RE and EE. It is also 143

a fundamental task in other NLP tasks, thus attract- 144

ing significant attention from researchers to explore 145

new possibilities in the era of LLMs. Considering 146

the gap between the sequence labeling and genera- 147

tion models, GPT-NER (Wang et al., 2023b) trans- 148

formed NER into a generative task and proposed a 149

self-verification strategy to rectify the mislabeling 150

of NULL inputs as entities. Xie et al. (2023b) 151

proposed a training-free self-improving framework 152

that uses LLM to predict on the unlabeled corpus to 153

obtain pseudo demonstrations, thereby enhancing 154

the performance of LLM on zero-shot NER. 155

Table 1 shows the comparison of NER on five 156

main datasets, which are obtained from their orig- 157

inal papers. We can observe that: 1) the models 158

in few-shot and zero-shot settings still have a huge 159

performance gap behind the SFT and DA. 2) Even 160

though there is little difference between backbones, 161

the performance varies greatly between methods 162

under the ICL paradigm. For example, GPT-NER 163

opens up at least a 6% F1 value gap with other 164
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Extraction
Tasks (§3)

Named Entity
Recognition
(§3.1)

Typing GET (Yuan et al., 2022), CASENT (Feng et al., 2023)

Identification
& Typing

Yan et al. (2021), TEMPGEN (Huang et al., 2021), Cui et al. (2021), Zhang et al. (2022),
Wang et al. (2022b), Xia et al. (2023b), Cai et al. (2023), EnTDA (Hu et al., 2023a), Amalvy et al. (2023),
GPT-NER (Wang et al., 2023b), Cp-NER (Chen et al., 2023b), LLMaAA (Zhang et al., 2023c),
PromptNER (Ashok and Lipton, 2023), Ma et al. (2023c), Xie et al. (2023b), UniNER (Zhou et al., 2023)

Relation
Extraction
(§3.2)

Classification
REBEL (Cabot and Navigli, 2021), Li et al. (2023b), GL (Pang et al., 2023), Xu et al. (2023),
QA4RE (Zhang et al., 2023b), LLMaAA (Zhang et al., 2023c), GPT-RE (Wan et al., 2023),
Ma et al. (2023c), STAR (Ma et al., 2023b), AugURE (Wang et al., 2023a)

Triplet TEMPGEN (Huang et al., 2021)

Strict REBEL(Cabot and Navigli, 2021)

Event
Extraction
(§3.3)

Detection Veyseh et al. (2021), DAFS (Xia et al., 2023a)

Argument
Extraction

BART-Gen (Li et al., 2021), Text2Event (Lu et al., 2021), ClarET (Zhou et al., 2022b), Huang et al. (2022),
PAIE (Ma et al., 2022), GTEE-DYNPREF (Liu et al., 2022), Cai and O’Connor (2023), Ma et al. (2023c),
GL (Pang et al., 2023), STAR (Ma et al., 2023b), Code4Struct (Wang et al., 2023d),
PGAD (Luo and Xu, 2023), QGA-EE (Lu et al., 2023)

Detection&
Argument
Extraction

BART-Gen (Li et al., 2021), Text2Event (Lu et al., 2021), Hsu et al. (2021), ClarET (Zhou et al., 2022b),
GTEE-DYNPREF (Liu et al., 2022), Ma et al. (2023c), GL (Pang et al., 2023), STAR (Ma et al., 2023b),
Cai and O’Connor (2023), DemoSG (Zhao et al., 2023)

Universal
Information
Extraction
(§3.4)

NL-LLMs
based

TANL (Paolini et al., 2021), DEEPSTRUCT (Wang et al., 2022a), GenIE (Josifoski et al., 2022),
UIE (Lu et al., 2022), LasUIE (Fei et al., 2022), ChatIE (Wei et al., 2023), Set (Li et al., 2023c),
GIELLM (Gan et al., 2023), InstructUIE (Wang et al., 2023c)

Code-LLMs
based

CODEIE (Li et al., 2023f), CodeKGC (Bi et al., 2023), GoLLIE (Sainz et al., 2023),
Code4UIE (Guo et al., 2023)

Learning
Paradigms
(§4)

Supervised
Fine-tuning
(§4.1)

Yan et al. (2021), TEMPGEN (Huang et al., 2021), REBEL(Cabot and Navigli, 2021), Text2Event (Lu et al., 2021),
Cui et al. (2021), TANL (Paolini et al., 2021), ClarET (Zhou et al., 2022b), DEEPSTRUCT (Wang et al., 2022a),
GTEE-DYNPREF (Liu et al., 2022), GenIE (Josifoski et al., 2022), PAIE (Ma et al., 2022), UIE (Lu et al., 2022),
Xia et al. (2023b), QGA-EE (Lu et al., 2023), InstructUIE (Wang et al., 2023c), PGAD (Luo and Xu, 2023),
UniNER (Zhou et al., 2023), GoLLIE (Sainz et al., 2023), Set (Li et al., 2023c), DemoSG (Zhao et al., 2023)

Few-shot
(§4.2)

Fine-tuning
Cui et al. (2021), TANL (Paolini et al., 2021), Wang et al. (2022b), LightNER (Chen et al., 2022b),
UIE (Lu et al., 2022), Cp-NER (Chen et al., 2023b), DemoSG (Zhao et al., 2023)

In-Context
Learning

GPT-NER (Wang et al., 2023b), Ma et al. (2023c), PromptNER (Ashok and Lipton, 2023),
Xie et al. (2023b), QA4RE (Zhang et al., 2023b), GPT-RE (Wan et al., 2023), Xu et al. (2023),
Code4Struct (Wang et al., 2023d), CODEIE (Li et al., 2023f), CodeKGC (Bi et al., 2023),
GL (Pang et al., 2023), Code4UIE (Guo et al., 2023), Cai et al. (2023), 2INER (Zhang et al., 2023a)

Zero-shot
(§4.3)

Zero-shot
Prompting

Xie et al. (2023b), QA4RE (Zhang et al., 2023b), Cai and O’Connor (2023), AugURE (Wang et al., 2023a),
Li et al. (2023b), Code4Struct (Wang et al., 2023d), CodeKGC (Bi et al., 2023), ChatIE (Wei et al., 2023)

Cross-Domain
Learning

DEEPSTRUCT (Wang et al., 2022a), (Huang et al., 2022), InstructUIE (Wang et al., 2023c),
UniNER (Zhou et al., 2023), GoLLIE (Sainz et al., 2023)

Cross-Type Learning BART-Gen (Li et al., 2021)

Data Augme-
ntation (§4.4)

Data Annotation
Veyseh et al. (2021), LLMaAA (Zhang et al., 2023c), AugURE (Wang et al., 2023a),
Xu et al. (2023), Li et al. (2023e), Tang et al. (2023), Meoni et al. (2023)

Knowledge Retrieval Amalvy et al. (2023), Chen and Feng (2023), PGIM (Li et al., 2023d)

Inverse Generation
EnTDA (Hu et al., 2023a), STAR (Ma et al., 2023b), QGA-EE (Lu et al., 2023),
SynthIE (Josifoski et al., 2023)

Specific
Domains
(§A)

Multimodal (Chen and Feng, 2023; Li et al., 2023d; Cai et al., 2023), Scientific (Dunn et al., 2022; Cheung et al., 2023),
Medical (Ma et al., 2023a; Tang et al., 2023; Li and Zhang, 2023; Meoni et al., 2023; Hu et al., 2023b; Bian et al., 2023),
Astronomical (Shao et al., 2023), Historical (González-Gallardo et al., 2023)

Evaluation
&Analysis
(§B)

Gutiérrez et al. (2022), GPT-3+R (Agrawal et al., 2022), Labrak et al. (2023), Xie et al. (2023a), Gao et al. (2023), Li and Zhang (2023),
InstructIE (Gui et al., 2023), Han et al. (2023), Katz et al. (2023), Wadhwa et al. (2023), González-Gallardo et al. (2023),
Yuan et al. (2023), Hu et al. (2023b), PolyIE (Cheung et al., 2023), Li et al. (2023a), Qi et al. (2023), XNLP (Fei et al., 2023)

Figure 2: Taxonomy of research in generative IE using LLMs.

methods on each dataset, and up to about 19%165

higher. 3) Compared to ICL, there are only minor166

differences in performance between different mod-167

els after SFT, even though the parameters in their168

backbones can differ by up to a few hundred times.169

3.2 Relation Extraction170

RE also plays an important role in IE, which usu-171

ally has different setups in different studies as men-172

tioned in Section 2. To address the poor perfor- 173

mance of LLMs on RE tasks due to the low inci- 174

dence of RE in instruction-tuning datasets, as indi- 175

cated by Gutiérrez et al. (2022), QA4RE (Zhang 176

et al., 2023b) introduced a framework that enhances 177

LLMs’ performance by aligning RE tasks with QA 178

tasks. Due to the large number of predefined rela- 179

tion types and uncontrolled LLMs, Li et al. (2023e) 180

proposed to integrate LLM with a natural language 181
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NER

RE

EE

Please list all entity words in the Text ... 
Option: location, person, organization, …
Answer: [Need to generate]

Find the phrases in the Text...
Option: work for, part of, compare, ... 
Answer: [Need to generate]

Extract the event information in the Text ... 
Option: Event type: start-position, …
Answer: [Need to generate]

…

Natural Language Prompts

(Person: Steve,
Organization: Apple)

(Steve, work for, Apple)

(Type: start-position,
Trigger: became, 
Employee: Steve,…)

Extracting from Text: Steve became CEO of Apple in 1997. 

NER

RE

EE

class Entity:
def __init__(self, name: str):

self.name = name
class Relation:

def __init__(self, name: str):
self.name = name

class Person(Entity):
‘’‘ docstring. ’‘
def __init__(self, name: str):

super().__init__(name=name)
class StartPosition(Event):

’‘’ docstring. ‘’
def __init__( self,

trigger: Trigger = "",
...):
self.trigger = trigger
...

class Work_for(Relation):
"'' Person self.head Work for 

Organization self.tail. ''
def __init__(

self,
head: Person = "",
tail: Organization = "",

):
self.head = head
self.tail = tail

Base Class

Sub Class

NER_result = [
Person(name = "Steve"),
Organization(name = 

"Apple") ]

RE_result = Work_for(
head = Person(name = 

"Steve"),
tail = Organization(name = 

"Apple"))

EE_result = StartPosition(
Trigger = "became",
Employee = "Steve",
Employer = "Apple",
Time = 1997)

…

Structural OutputNL-LLMs

Structural OutputCode-LLMsProgramming Language Prompts

class Event:
def __init__(self, name: str):

self.name = name
class Trigger:

def __init__(self, name: str):
self.name = name

Figure 3: The comparison of prompts of NL-LLMs and Code-LLMs for universal IE. Both NL-based and code-based
methods attempt to construct a universal schema, but they differ in terms of prompt format and the way they utilize
the generation capabilities of LLMs. This figure is adopted from (Wang et al., 2023c) and (Guo et al., 2023).

inference module to generate relation triples, en-182

hancing document-level relation datasets.183

As shown in the Table 2 and 3, we statistically184

found that universal IE models are generally bet-185

ter solving harder Relation Strict problems due186

to learning the dependencies between multi-tasks187

(Paolini et al., 2021; Lu et al., 2022), while the188

task-specific methods solve simpler RE subtasks189

(e.g. relation classification). In addition, compared190

with NER, it can be found that the performance dif-191

ferences between models in RE are more obvious,192

indicating that the potential of LLM in RE task.193

3.3 Event Extraction194

Events can be defined as specific occurrences or195

incidents that happen in a given context. Recently,196

many studies (Liu et al., 2022; Lu et al., 2023)197

aim to understand events and capture their corre-198

lations by extracting event triggers and arguments199

using LLMs, which is essential for various reason-200

ing tasks (Bhagavatula et al., 2020). For example,201

Code4Struct (Wang et al., 2023d) leveraged LLMs202

to translate text into code to tackle structured pre-203

diction tasks, using programming language fea-204

tures to introduce external knowledge and con-205

straints through alignment between structure and206

code. PGAD (Luo and Xu, 2023) employed a text207

diffusion model to create a variety of context-aware208

prompt representations, enhancing both sentence-209

level and document-level event argument extraction210

by identifying multiple role-specific argument span211

queries and coordinating them with the context. 212

As can be seen from results of recent studies in 213

Table 4, vast majority of current methods are based 214

on SFT paradigm, and only a few methods that 215

use LLMs for either zero-shot or few-shot learn- 216

ing. In addition, generative methods outperform 217

discriminative ones by a wide margin, especially in 218

metric for argument classification task, indicating 219

the great potential of generative LLMs for EE. 220

3.4 Universal Information Extraction 221

Different IE tasks vary a lot, with different opti- 222

mization objectives and task-specific schemas, re- 223

quiring separate models to handle the complexity 224

of different IE tasks, settings, and scenarios (Lu 225

et al., 2022). As shown in Fig. 2, many works 226

solely focus on a subtask of IE. However, recent 227

advancements in LLMs have led to the proposal 228

of a unified generative framework in several stud- 229

ies (Wang et al., 2023c; Sainz et al., 2023). This 230

framework aims to model all IE tasks, capturing 231

the common abilities of IE and learning the depen- 232

dencies across multiple tasks. The prompt format 233

for Uni-IE can typically be divided into natural 234

language-based LLMs (NL-LLMs) and code-based 235

LLMs (code-LLMs), as illustrated in Fig. 3. 236

NL-LLMs. NL-based methods unify all IE tasks in 237

a universal natural language schema. For instance, 238

UIE (Lu et al., 2022) proposed a unified text-to- 239

structure generation framework that encodes ex- 240

traction structures, and captured common IE abil- 241
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Representative Model Paradigm Uni. Backbone ACE04 ACE05 CoNLL03 Onto. 5 GENIA

DEEPSTRUCT (Wang et al., 2022a) CDL GLM-10B - 28.1 44.4 42.5 47.2
Xie et al. (2023b) ZS Pr GPT-3.5-turbo - 32.27 74.51 - 52.06
CODEIE (Li et al., 2023f) ICL

√
Code-davinci-002 55.29 54.82 82.32 - -

Code4UIE (Guo et al., 2023) ICL
√

Text-davinci-003 60.1 60.9 83.6 - -
PromptNER (Ashok and Lipton, 2023) ICL GPT-4 - - 83.48 - 58.44
Xie et al. (2023b) ICL GPT-3.5-turbo - 55.54 84.51 - 58.72
GPT-NER (Wang et al., 2023b) ICL Text-davinci-003 74.2 73.59 90.91 82.2 64.42
TANL (Paolini et al., 2021) SFT

√
T5-base - 84.9 91.7 89.8 76.4

Cui et al. (2021) SFT BART - - 92.55 - -
Yan et al. (2021) SFT BART-large 86.84 84.74 93.24 90.38 79.23
UIE (Lu et al., 2022) SFT

√
T5-large 86.89 85.78 92.99 - -

DEEPSTRUCT (Wang et al., 2022a) SFT
√

GLM-10B - 86.9 93.0 87.8 80.8
Xia et al. (2023b) SFT BART-large 87.63 86.22 93.48 90.63 79.49
InstructUIE (Gui et al., 2023) SFT

√
Flan-T5-11B - 86.66 92.94 90.19 74.71

UniNER (Zhou et al., 2023) SFT LLaMA-7B 87.5 87.6 - 89.1 80.6
GoLLIE (Sainz et al., 2023) SFT

√
Code-LLaMA-34B - 89.6 93.1 84.6 -

EnTDA (Hu et al., 2023a) DA T5-base 88.21 87.56 93.88 91.34 82.25

USM† (Lou et al., 2023) SFT
√

RoBERTa-large 87.62 87.14 93.16 - -
RexUIE† (Liu et al., 2023) SFT

√
DeBERTa-v3-large 87.25 87.23 93.67 - -

Mirror† (Zhu et al., 2023) SFT
√

DeBERTa-v3-large 87.16 85.34 92.73 - -

Table 1: Comparison of LLMs for named entity recognition (identification & typing) with the Micro-F1 metric
(%). † indicates that the model is discriminative. We demonstrate some universal and discriminative models for
comparison. Learning paradigms include Cross-Domain Learning (CDL), Zero-Shot Prompting (ZS Pr), In-Context
Learning (ICL), Supervised Fine-Tuning (SFT), Data Augmentation (DA). Uni. denotes whether the model is
universal. Onto. 5 denotes the OntoNotes 5.0. Details of datasets (§C) and backbones (§D) are presented in
Appendix. The settings for all subsequent tables are consistent with this format.

ities through a structured extraction language. In-242

structUIE (Wang et al., 2023c) enhanced UIE by243

constructing expert-written instructions for fine-244

tuning LLMs to consistently model different IE245

tasks and capture the inter-task dependency. Addi-246

tionally, ChatIE (Wei et al., 2023) explored the use247

of LLMs like ChatGPT (OpenAI, 2023) in zero-248

shot prompting, transforming the task into a multi-249

turn question-answering problem.250

Code-LLMs. On the other hand, code-based meth-251

ods unify IE tasks by generating code with a uni-252

versal programming schema (Wang et al., 2023d).253

Code4UIE (Guo et al., 2023) proposed a universal254

retrieval-augmented code generation framework,255

which leverages Python classes to define schemas256

and uses in-context learning to generate codes that257

extract structural knowledge from texts. Besides,258

CodeKGC (Bi et al., 2023) leveraged the structural259

knowledge inherent in code and employed schema-260

aware prompts and rationale-enhanced generation261

to improve performance. To enable LLMs to ad-262

here to guidelines out-of-the-box, GoLLIE (Sainz263

et al., 2023) enhanced zero-shot ability on unseen264

IE tasks by aligning with annotation guidelines.265

In general, NL-LLMs are trained on a wide range266

of text and can understand and generate human lan-267

guage, which allows the prompts and instructions268

to be conciser and easier to design. However, NL-269

LLMs may produce unnatural outputs due to the 270

distinct syntax and structure of IE tasks (Bi et al., 271

2023), which differ from the training data. Code, 272

being a formalized language, possesses the inher- 273

ent capability to accurately represent knowledge 274

across diverse schemas, which makes it more suit- 275

able for structural prediction (Guo et al., 2023). 276

But code-based methods often require a substantial 277

amount of text to define a Python class (see Fig. 3), 278

which in turn limits the sample size of the context. 279

Through experimental comparison in Table 1, 2, 280

and 4, we can observe that Uni-IE models after 281

SFT outperform task-specific models in the NER, 282

RE, and EE tasks for most datasets. 283

4 Learning Paradigms of LLMs for 284

Generative IE 285

In this section, we categorize methods based on 286

their learning paradigms, including Supervised 287

Fine-tuning (§4.1, refers to further training LLMs 288

on IE tasks using labeled data), Few-shot Learning 289

(§4.2, refers to the generalization from a small num- 290

ber of labeled examples by training or in-context 291

learning), Zero-shot Learning (§4.3, refers to gen- 292

erating answer without any training examples for 293

the specific IE tasks), and Data Augmentation 294

(§4.4, refers to enhancing information by apply- 295

ing various transformations to the existing data 296
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Representative Model Paradigm Uni. Backbone NYT ACE05 ADE CoNLL04 SciERC

CodeKGC (Bi et al., 2023) ZS Pr
√

Text-davinci-003 - - 42.8 35.9 15.3
CODEIE (Li et al., 2023f) ICL

√
Code-davinci-002 32.17 14.02 - 53.1 7.74

CodeKGC (Bi et al., 2023) ICL
√

Text-davinci-003 - - 64.6 49.8 24.0
Code4UIE (Guo et al., 2023) ICL

√
Text-davinci-002 54.4 17.5 58.6 54.4 -

REBEL (Cabot and Navigli, 2021) SFT BART-large 91.96 - 82.21 75.35 -
UIE (Lu et al., 2022) SFT

√
T5-large - 66.06 - 75.0 36.53

InstructUIE (Wang et al., 2023c) SFT
√

Flan-T5-11B 90.47 - 82.31 78.48 45.15
GoLLIE (Sainz et al., 2023) SFT

√
Code-LLaMA-34B - 70.1 - - -

USM† (Lou et al., 2023) SFT
√

RoBERTa-large - 67.88 - 78.84 37.36
RexUIE† (Liu et al., 2023) SFT

√
DeBERTa-v3-large - 64.87 - 78.39 38.37

Table 2: Comparison of LLMs for relation extraction with the “relation strict” (Lu et al., 2022) Micro-F1 metric
(%). † indicates that the model is discriminative.

Representative Model Paradigm Uni. Backbone TACRED Re-TACRED TACREV SemEval

QA4RE (Zhang et al., 2023b) ZS Pr Text-davinci-003 59.4 61.2 59.4 43.3
SUMASK (Li et al., 2023b) ZS Pr GPT-3.5-turbo-0301 79.6 73.8 75.1 -
GPT-RE (Wan et al., 2023) ICL Text-davinci-003 72.15 - - 91.9
Xu et al. (2023) ICL Text-davinci-003 31.0 51.8 31.9 -
REBEL (Cabot and Navigli, 2021) SFT BART-large - 90.36 - -
Xu et al. (2023) DA Text-davinci-003 37.4 66.2 41.0 -

Table 3: Comparison of LLMs for relation classification with the Micro-F1 metric (%).

using LLMs), to highlight the commonly used ap-297

proaches for adapting LLMs to IE.298

4.1 Supervised Fine-tuning299

Using all training data to fine-tune LLMs is the300

most common and promising method, which al-301

lows the model to capture the underlying struc-302

tural patterns in the data, and generalize well to303

unseen samples. For example, DeepStruct (Wang304

et al., 2022a) introduced structure pre-training on305

a collection of task-agnostic corpora to enhance306

the structural understanding of language models.307

UniNER (Zhou et al., 2023) explored targeted dis-308

tillation and mission-focused instruction tuning to309

train student models for broad applications, such310

as NER. GIELLM (Gan et al., 2023) fine-tuned311

LLMs using mixed datasets, which are collected to312

utilize the mutual reinforcement effect to enhance313

performance on multiple tasks.314

4.2 Few-shot Learning315

Few-shot learning has access to only a limited num-316

ber of labeled examples, leading to challenges like317

overfitting and difficulty in capturing complex re-318

lationships (Huang et al., 2020). Fortunately, scal-319

ing up the parameters of LLMs gives them amaz-320

ing generalization capabilities compared to small321

pre-trained models, allowing them to achieve ex-322

cellent performance in few-shot settings (Li and323

Zhang, 2023; Ashok and Lipton, 2023). Paolini324

et al. (2021) proposed the Translation between Aug-325

mented Natural Languages (TANL) framework; 326

Lu et al. (2022) proposed a text-to-structure gen- 327

eration framework (called UIE); and Chen et al. 328

(2023b) proposed collaborative domain-prefix tun- 329

ing for NER (called cp-NER). These methods 330

have achieved state-of-the-art performance and 331

demonstrated effectiveness in few-shot setting. De- 332

spite the success of LLMs, they face challenges 333

in training-free IE because of the difference be- 334

tween sequence labeling and text-generation mod- 335

els (Gutiérrez et al., 2022). To overcome these 336

limitations, GPT-NER (Wang et al., 2023b) intro- 337

duced a self-verification strategy, while GPT-RE 338

(Wan et al., 2023) enhanced task-aware represen- 339

tations and incorporates reasoning logic into en- 340

riched demonstrations. These approaches demon- 341

strate how to effectively leverage the capabilities 342

of GPT for in-context learning. CODEIE (Li et al., 343

2023f) and CodeKGC (Bi et al., 2023) showed 344

that converting IE tasks into code generation tasks 345

with code-style prompts and in-context examples 346

leads to superior performance compared to NL- 347

LLMs. This is because code-style prompts provide 348

a more effective representation of structured output, 349

enabling them to effectively handle the complex 350

dependencies in natural language. 351

4.3 Zero-shot Learning 352

The main challenges in zero-shot learning lie in en- 353

abling the model to effectively generalize for tasks 354

and domains that it has not been trained on, as well 355

6



Representative Model Paradigm Uni. Backbone Trg-I Trg-C Arg-I Arg-C

Code4Struct (Wang et al., 2023d) ZS Pr Code-davinci-002 - - 50.6 36.0
Code4UIE (Guo et al., 2023) ICL

√
GPT-3.5-turbo-16k - 37.4 - 21.3

Code4Struct (Wang et al., 2023d) ICL Code-davinci-002 - - 62.1 58.5
TANL (Paolini et al., 2021) SFT

√
T5-base 72.9 68.4 50.1 47.6

Text2Event (Lu et al., 2021) SFT T5-large - 71.9 - 53.8
BART-Gen (Li et al., 2021) SFT BART-large - - 69.9 66.7
UIE (Lu et al., 2022) SFT

√
T5-large - 73.36 - 54.79

GTEE-DYNPREF (Liu et al., 2022) SFT BART-large - 72.6 - 55.8
DEEPSTRUCT (Wang et al., 2022a) SFT

√
GLM-10B 73.5 69.8 59.4 56.2

PAIE (Ma et al., 2022) SFT BART-large - - 75.7 72.7
PGAD (Luo and Xu, 2023) SFT BART-base - - 74.1 70.5
QGA-EE (Lu et al., 2023) SFT T5-large - - 75.0 72.8
InstructUIE (Wang et al., 2023c) SFT

√
Flan-T5-11B - 77.13 - 72.94

GoLLIE (Sainz et al., 2023) SFT
√

Code-LLaMA-34B - 71.9 - 68.6

USM† (Lou et al., 2023) SFT
√

RoBERTa-large - 72.41 - 55.83
RexUIE† (Liu et al., 2023) SFT

√
DeBERTa-v3-large - 75.17 - 59.15

Mirror† (Zhu et al., 2023) SFT
√

DeBERTa-v3-large - 74.44 - 55.88

Table 4: Comparison of Micro-F1 Values for Event Extraction on ACE05. Evaluation tasks include: Trigger
Identification (Trg-I), Trigger Classification (Trg-C), Argument Identification (Arg-I), and Argument Classification
(Arg-C). † indicates that the model is discriminative.

as aligning the pre-trained paradigm of LLMs. Due356

to the large amount of knowledge embedded within,357

LLMs show impressive abilities in zero-shot sce-358

narios of unseen tasks (Kojima et al., 2022; Wei359

et al., 2023). To achieve zero-shot cross-domain360

generalization of LLMs in IE tasks, several works361

have been proposed (Sainz et al., 2023; Zhou et al.,362

2023; Wang et al., 2023c). These works offered a363

universal framework for modeling various IE tasks364

and domains, and introduced innovative training365

prompts, e.g., instruction (Wang et al., 2023c) and366

guidelines (Sainz et al., 2023), for learning and cap-367

turing the inter-task dependencies of known tasks368

and generalizing them to unseen tasks and domains.369

In terms of cross-type generalization, BART-Gen370

(Li et al., 2021) proposed a document-level neural371

model, by formulating EE task as conditional gener-372

ation, resulting in better performance and excellent373

portability on unseen event types.374

On the other hand, in order to improve the ability375

of LLMs under zero shot prompts (no need for fur-376

ther fine-tuning on IE tasks), QA4RE (Zhang et al.,377

2023b) and ChatIE (Wei et al., 2023) proposed378

to improve the performance of LLMs (like Flan-379

T5 (Chung et al., 2022) and GPT (Achiam et al.,380

2023)) on zero-shot IE tasks, by transforming IE381

into a multi-turn question-answering problem for382

aligning IE tasks with QA tasks. Li et al. (2023b)383

integrated the chain-of-thought approach and pro-384

posed the summarize-and-ask prompting to solve385

the challenge of ensuring the reliability of outputs386

from black box LLMs (Ma et al., 2023c).387

Knowledge
Retrieval

Data
Annotation

Inverse
Generation

Steven Jobs, was an American business 
magnate, industrial designer, and inventor. 
He was born on …

Steven Jobs was an businessman, inventor, 
and investor who co-founded Apple Inc.

Natural 
Language 

Text

(Steven Jobs, was, businessman) 
    (Steven Jobs, co-founded, Apple) 
     …

Related 
Knowledge

Structural 
Triplet

Figure 4: Comparison of data augmentation methods.

4.4 Data Augmentation 388

Data augmentation involves generating meaningful 389

and diverse data to effectively enhance the train- 390

ing examples or information, while avoiding the 391

introduction of unrealistic, misleading, and offset 392

patterns. Recent powerful LLMs also demonstrate 393

remarkable performance in data generation tasks 394

(Whitehouse et al., 2023), which has attracted the 395

attention of many researchers using LLMs to gener- 396

ate synthetic data for IE. It can be roughly divided 397

into three strategies as shown in Fig. 4. 398

Data Annotation. This strategy directly generates 399

labeled data using LLMs. For instance, Zhang et al. 400

(2023c) proposed LLMaAA to improve accuracy 401

and data efficiency by employing LLMs as anno- 402

tators within an active learning loop, thereby opti- 403

mizing both the annotation and training processes. 404

AugURE (Wang et al., 2023a) employed within- 405

sentence pairs augmentation and cross-sentence 406

pairs extraction to enhance the diversity of positive 407

pairs for unsupervised RE, and introduced margin 408
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loss for sentence pairs.409

Knowledge Retrieval. This strategy retrieves rel-410

evant knowledge from LLMs for IE. PGIM (Li411

et al., 2023d) presented a two-stage framework for412

multimodal NER, which leverages ChatGPT as an413

implicit knowledge base to heuristically retrieve414

auxiliary knowledge for more efficient entity pre-415

diction. Amalvy et al. (2023) proposed to improve416

NER on long documents by generating a synthetic417

context retrieval training dataset, and training a418

neural context retriever.419

Inverse Generation. This strategy prompts LLMs420

to produce natural text or questions based on struc-421

tural data provided as input, aligning with training422

paradigm of LLMs. For example, SynthIE (Josi-423

foski et al., 2023) showed that LLMs can create424

high-quality synthetic data for complex tasks by425

reversing the task direction, and train new models426

that outperformed previous benchmarks. Rather427

than relying on ground-truth targets, which limits428

generalizability and scalability, STAR (Ma et al.,429

2023b) generated structures from valid triggers and430

arguments, then generates passages with LLMs.431

Overall, these strategies have their own advan-432

tages and disadvantages. While data annotation433

can directly meet task requirements, the ability of434

LLMs for structured generation still needs improve-435

ment. Knowledge retrieval can provide additional436

information about entities and relations, but it suf-437

fers from the hallucination problem and introduces438

noise. Inverse generation is aligned with the QA439

paradigm of LLMs. However, it requires structural440

data and there exists a gap between the generated441

pairs and the domain that needs to be addressed.442

5 Future Directions443

The development of LLMs for generative IE is444

still in its early stages, and there are numerous445

opportunities for improvement.446

Universal IE. Previous generative IE methods and447

benchmarks are often tailored for specific domains448

or tasks, limiting their generalizability (Yuan et al.,449

2022). Although some unified methods (Lu et al.,450

2022) using LLMs have been proposed recently,451

they still suffer from certain limitations (e.g., long452

context input, and misalignment of structured out-453

put). Therefore, further development of universal454

IE frameworks that can adapt flexibly to different455

domains and tasks is a promising research direc-456

tion (such as integrating the insights of task-specific457

models to assist in constructing universal models).458

Low-Resource IE. The generative IE system with 459

LLMs still encounters challenges in resource- 460

limited scenarios (Li et al., 2023a). There is a 461

need for further exploration of in-context learn- 462

ing of LLMs, particularly in terms of improving 463

the selection of examples. Future research should 464

prioritize the development of robust cross-domain 465

learning techniques (Wang et al., 2023c), such as 466

domain adaptation or multi-task learning, to lever- 467

age knowledge from resource-rich domains. Ad- 468

ditionally, efficient data annotation strategies with 469

LLMs should also be explored. 470

Prompt Design for IE. Designing effective instruc- 471

tions is considered to have a significant impact on 472

the performance of LLMs (Qiao et al., 2022; Yin 473

et al., 2023). One aspect of prompt design is to 474

build input and output pairs that can better align 475

with pre-training stage of LLMs (e.g., code gener- 476

ation) (Guo et al., 2023). Another aspect is opti- 477

mizing the prompt for better model understanding 478

and reasoning (e.g., Chain-of-Thought) (Li et al., 479

2023b), by encouraging LLMs to make logical 480

inferences or explainable generation. Addition- 481

ally, researchers can explore interactive prompt de- 482

sign (such as multi-turn QA) (Zhang et al., 2023b), 483

where LLMs can iteratively refine or provide feed- 484

back on the generated extractions automatically. 485

Open IE. Open IE setting presents greater chal- 486

lenges for IE models, as it do not provide candidate 487

label set and rely solely on the models’ ability to 488

comprehend the task. LLMs, with their knowledge 489

and understanding abilities, have significant advan- 490

tages in some Open IE tasks (Zhou et al., 2023). 491

However, there are still instances of poor perfor- 492

mance in more challenging tasks (Qi et al., 2023), 493

which require further exploration by researchers. 494

6 Conclusion 495

In this survey, We first introduced the subtasks of 496

IE and discussed some universal frameworks aim- 497

ing to unify all IE tasks with LLMs. Additional 498

theoretical and experimental analysis provided in- 499

sightful exploration for these methods. Then we 500

delved into different learning paradigms that apply 501

LLMs for IE and demonstrate their potential for 502

extracting information in specific domains. Finally, 503

we analyzed the current challenges and presented 504

potential future directions. We hope this survey 505

can provide a valuable resource for researchers to 506

explore more efficient utilization of LLMs for IE. 507
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7 Limitations508

This survey provides a comprehensive summary509

and analysis of the use of LLMs for generative IE,510

and points out related research directions. However,511

due to page and time constraints, there are still512

some limitations to this work.513

Firstly, our work may have some omissions, such514

as some of the latest papers published on preprint515

websites. We will continue to update the latest516

related papers in our open-source repository. Fur-517

thermore, we summarized the prompt design of518

universal models based on code and natural lan-519

guage, but we have not summarized more prompt520

designs under few-shot and zero-shot scenarios.521

We actually discussed in the corresponding sec-522

tions (e.g., Section 4.2 and 4.3) that some papers523

have proposed intricate and effective prompt de-524

signs. Notably, the Chain-of-thought method (Li525

et al., 2023b) and the multi-turn question answering526

(Zhang et al., 2023b) have demonstrated promising527

results in IE tasks. However, there is a limited num-528

ber of such papers available, and their complexity529

does not support dedicating separate chapters to530

them. We have summarized the most common IE531

subtasks, but some similar technical directions are532

not included. For example, the settings of slot fill-533

ing task (Dong et al., 2023; Li et al., 2023g) and534

NER tasks are similar, both of which are forms535

of sequence labeling. What is more, this survey536

mainly focuses on IE models with autoregressive537

LLMs as the backbone (e.g., LLaMA (Touvron538

et al., 2023) and ChatGPT (OpenAI, 2023)), thus539

lacks a summary and induction of discriminative IE540

models, (e.g., based on BERT (Devlin et al., 2018)541

and RoBERTa (Liu et al., 2019)).542
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A Specific Domains1399

It is non-ignorable that LLMs have tremendous1400

potential for extracting information from some spe-1401

cific domains, such as mulitmodal (Chen and Feng,1402

2023; Li et al., 2023d), medical (Tang et al., 2023;1403

Ma et al., 2023a) and scientific (Dunn et al., 2022;1404

Cheung et al., 2023) information.1405

Multimodal. Chen and Feng (2023) introduced1406

a conditional prompt distillation method that en-1407

hances a model’s reasoning ability by combining1408

text-image pairs with chain-of-thought knowledge1409

from LLMs, significantly improving performance1410

in multimodal NER and multimodal RE.1411

Medical. Tang et al. (2023) explored the potential1412

of LLMs in the field of clinical text mining and pro-1413

posed a novel training approach, which leverages1414

synthetic data to enhance performance and address1415

privacy issues.1416

Scientific. Dunn et al. (2022) presented a sequence-1417

to-sequence approach by using GPT-3 for joint1418

NER and RE from complex scientific text, demon-1419

strating its effectiveness in extracting complex sci-1420

entific knowledge in material chemistry.1421

B Evaluation & Analysis1422

Despite the great success of LLMs in various natu-1423

ral language processing tasks, their performance in1424

the field of information extraction still have room1425

for improvement (Han et al., 2023). To alleviate1426

this problem, recent research has explored the capa-1427

bilities of LLMs with respect to the major subtasks1428

of IE, i.e., NER (Xie et al., 2023a; Li and Zhang,1429

2023), RE (Wadhwa et al., 2023; Yuan et al., 2023),1430

and EE (Gao et al., 2023). Considering the superior1431

reasoning capabilities of LLMs, Xie et al. (2023a)1432

proposed four reasoning strategies for NER, which1433

are designed to simulate ChatGPT’s potential on1434

zero-shot NER. Wadhwa et al. (2023) explored1435

the use of LLMs for RE and found that few-shot1436

prompting with GPT-3 achieves near SOTA per-1437

formance, while Flan-T5 can be improved with1438

chain-of-thought style explanations generated via1439

GPT-3. For EE task, Gao et al. (2023) showed that1440

ChatGPT still struggles with it due to the need for1441

complex instructions and a lack of robustness.1442

Along this line, some researchers performed a1443

more comprehensive analysis of LLMs by evaluat-1444

ing multiple IE subtasks simultaneously. Li et al.1445

(2023a) evaluated ChatGPT’s overall ability on IE, 1446

including performance, explainability, calibration, 1447

and faithfulness. They found that ChatGPT mostly 1448

performs worse than BERT-based models in the 1449

standard IE setting, but excellently in the OpenIE 1450

setting. Furthermore, Han et al. (2023) introduced 1451

a soft-matching strategy for a more precise eval- 1452

uation and identified “unannotated spans” as the 1453

predominant error type, highlighting potential is- 1454

sues with data annotation quality. 1455

C Benchmarks 1456

As shown in Table 5, we compiled a comprehensive 1457

collection of benchmarks covering various domains 1458

and tasks, to provide researchers with a valuable re- 1459

source that they can query and reference as needed. 1460

Moreover, we also summarized the download links 1461

for each dataset in our open source repository. 1462

D Backbones 1463

We briefly describe some backbones that are com- 1464

monly used in the field of generative information 1465

extraction, which is shown in Table 6. 1466
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Table 5: Statistics of common datasets for information extraction. ∗ denotes the dataset is multimodal. # refers to
the number of categories or sentences. The data in the table is partially referenced from InstructUIE (Gui et al.,
2023).

Task Dataset Domain #Class #Train #Val #Test

NER

ACE04 (Doddington et al., 2004) News 7 6,202 745 812
ACE05 (Walker et al., 2006) News 7 7,299 971 1,060

BC5CDR (Li et al., 2016) Biomedical 2 4,560 4,581 4,797
Broad Twitter Corpus (Derczynski et al., 2016) Social Media 3 6,338 1,001 2,000

CADEC (Karimi et al., 2015) Biomedical 1 5,340 1,097 1,160
CoNLL03 (Sang and De Meulder, 2003) News 4 14,041 3,250 3,453

CoNLLpp (Wang et al., 2019) News 4 14,041 3,250 3,453
CrossNER-AI (Liu et al., 2021) Artificial Intelligence 14 100 350 431

CrossNER-Literature (Liu et al., 2021) Literary 12 100 400 416
CrossNER-Music (Liu et al., 2021) Musical 13 100 380 465

CrossNER-Politics (Liu et al., 2021) Political 9 199 540 650
CrossNER-Science (Liu et al., 2021) Scientific 17 200 450 543
FabNER (Kumar and Starly, 2022) Scientific 12 9,435 2,182 2,064

Few-NERD (Ding et al., 2021) General 66 131,767 18,824 37,468
FindVehicle (Guan et al., 2023) Traffic 21 21,565 20,777 20,777

GENIA (Kim et al., 2003) Biomedical 5 15,023 1,669 1,854
HarveyNER (Chen et al., 2022a) Social Media 4 3,967 1,301 1,303

MIT-Movie (Liu et al., 2013) Social Media 12 9,774 2,442 2,442
MIT-Restaurant (Liu et al., 2013) Social Media 8 7,659 1,520 1,520

MultiNERD (Tedeschi and Navigli, 2022) Wikipedia 16 134,144 10,000 10,000
NCBI (Doğan et al., 2014) Biomedical 4 5,432 923 940

OntoNotes 5.0 (Pradhan et al., 2013b) General 18 59,924 8,528 8,262
ShARe13 (Pradhan et al., 2013a) Biomedical 1 8,508 12,050 9,009
ShARe14 (Mowery et al., 2014) Biomedical 1 17,404 1,360 15,850

SNAP∗ (Lu et al., 2018) Social Media 4 4,290 1,432 1,459
TTC (Rijhwani and Preotiuc-Pietro, 2020) Social Meida 3 10,000 500 1,500

Tweebank-NER (Jiang et al., 2022) Social Media 4 1,639 710 1,201
Twitter2015∗ (Zhang et al., 2018) Social Media 4 4,000 1,000 3,357

Twitter2017∗ (Lu et al., 2018) Social Media 4 3,373 723 723
TwitterNER7 (Ushio et al., 2022) Social Media 7 7,111 886 576

WikiDiverse∗ (Wang et al., 2022c) News 13 6,312 755 757
WNUT2017 (Derczynski et al., 2017) Social Media 6 3,394 1,009 1,287

RE

ACE05 (Walker et al., 2006) News 7 10,051 2,420 2,050
ADE (Gurulingappa et al., 2012) Biomedical 1 3,417 427 428
CoNLL04 (Roth and Yih, 2004) News 5 922 231 288

DocRED (Yao et al., 2019) Wikipedia 96 3,008 300 700
MNRE∗ (Zheng et al., 2021) Social Media 23 12,247 1,624 1,614

NYT (Riedel et al., 2010) News 24 56,196 5,000 5,000
Re-TACRED (Stoica et al., 2021) News 40 58,465 19,584 13,418

SciERC (Luan et al., 2018) Scientific 7 1,366 187 397
SemEval2010 (Hendrickx et al., 2010) General 19 6,507 1,493 2,717

TACRED (Zhang et al., 2017) News 42 68,124 22,631 15,509
TACREV (Alt et al., 2020) News 42 68,124 22,631 15,509

EE

ACE05 (Walker et al., 2006) News 33/22 17,172 923 832
CASIE (Satyapanich et al., 2020) Cybersecurity 5/26 11,189 1,778 3,208

GENIA11 (Kim et al., 2011) Biomedical 9/11 8,730 1,091 1,092
GENIA13 (Kim et al., 2013) Biomedical 13/7 4,000 500 500

PHEE (Sun et al., 2022) Biomedical 2/16 2,898 961 968
RAMS (Ebner et al., 2020) News 139/65 7,329 924 871

bart-gen (Li et al., 2021) Wikipedia 50/59 5,262 378 492
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Table 6: The common backbones for generative information extraction. We mark the commonly used base and large
versions for better reference.

Series Model Size Base
Model

Open
Source

Instruction
Tuning RLHF

BART BART 140M (base),
400M (large) -

√
- -

T5

T5 (Raffel et al., 2020) 60M, 220M (base),
770M (large), 3B, 11B -

√
- -

mT5 (Xue et al., 2021) 300M, 580M (base),
1.2B (large), 3.7B, 13B -

√
- -

Flan-T5 (Chung et al., 2022) 80M, 250M (base),
780M (large), 3B, 11B T5

√ √
-

GLM GLM (Du et al., 2022)
110M (base),
335M (large),

410M, 515M, 2B, 10B
-

√
- -

LLaMA

LLaMA (Touvron et al., 2023) 7B, 13B, 33B, 65B -
√

- -

Alpaca (Taori et al., 2023) 7B, 13B LLaMA
√ √

-

Vicuna (Chiang et al., 2023) 7B, 13B LLaMA
√ √

-

LLaMA2 (Hugo et al., 2023) 7B, 13B, 70B -
√

- -

LLaMA2-chat (Hugo et al., 2023) 7B, 13B, 70B LLaMA2
√ √ √

Code-LLaMA (Roziere et al., 2023) 7B, 13B, 34B LLaMA2
√

- -

GPT

GPT-2 (Radford et al., 2019) 117M, 345M, 762M,
1.5B -

√
- -

GPT-3 (Brown et al., 2020) 175B - - - -

GPT-J (Wang, 2021) 6B GPT-3
√

- -

Code-davinci-002 (Ouyang et al., 2022) - GPT-3 -
√

-

Text-davinci-002 (Ouyang et al., 2022) - GPT-3 -
√

-

Text-davinci-003 (Ouyang et al., 2022) - GPT-3 -
√ √

GPT-3.5-turbo series (OpenAI, 2023) - - -
√ √

GPT-4 series (Achiam et al., 2023) - - -
√ √
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