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Abstract

Learning visual representations from natural language supervision has recently
shown great promise in a number of pioneering works. In general, these
language-augmented visual models demonstrate strong transferability to a va-
riety of datasets and tasks. However, it remains challenging to evaluate the
transferablity of these models due to the lack of easy-to-use evaluation toolk-
its and public benchmarks. To tackle this, we build ELEVATER [] , the first
benchmark and toolkit for evaluating (pre-trained) language-augmented visual
models. ELEVATER is composed of three components. (i) Datasets. As down-
stream evaluation suites, it consists of 20 image classification datasets and 35
object detection datasets, each of which is augmented with external knowledge.
(7i) Toolkit. An automatic hyper-parameter tuning toolkit is developed to facil-
itate model evaluation on downstream tasks. (4i7) Metrics. A variety of evalua-
tion metrics are used to measure sample-efficiency (zero-shot and few-shot) and
parameter-efficiency (linear probing and full model fine-tuning). ELEVATER is
platform for Computer Vision in the Wild (CVinW), and is publicly released at
https://computer-vision-in-the-wild.github.io/ELEVATER/.

1 Introduction

Visual recognition has become ubiquitous in our society [76], with applications in geo-
localization [66], action recognition [73], street number transcription [S8]], satellite remote sens-
ing [31]], medical imaging [80], self-driving cars [26]], efc. Core to these applications are visual
recognition tasks such as image classification (IC) and object detection (OD). It is of high value to
develop transferable visual models that perform well on a wide range of downstream applications.
By leveraging large web crawled image-text corpora, recent advances in language-augmented visual
models such as CLIP [66] and ALIGN [35] have demonstrated strong transfer performance, mak-
ing this direction one of the most practical visual learning approaches. The reason is twofold: ()
open-set recognition is made possible by reformulating classification tasks as retrieval; (i7) model
generalization is improved as language supervision significantly increases the coverage of visual
concepts for model training.

The success has immediately inspired many studies of large-scale model pre-training [88} (92} 189, 49|
57,127,147, 195]]. However, these studies use their own evaluation settings based on customized sets
of downstream tasks where the detailed process of adapting the models to these tasks is typically
not accessible to the public. Thus, it is extremely difficult for researchers to fairly compare models
and develop new models based on other people’s works. To fill this gap, we develop an open-
source benchmark and toolkit, ELEVATER, to make the research results (e.g., model’s task-level
transferability) more rigorous, and reproducible. ELEVATER is composed of three components.
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* Benchmark (Datasets and Knowledge). We build the first publicly available benchmark to
evaluate the large-scale task-level transferability of language-augmented visual models. The
benchmark consists of two challenges: Image Classification in the Wild (ICinW) with 20 IC
datasets and Object Detection in the Wild (ODinW) with 35 OD datasets. A collected external
knowledge base for each dataset which could be used for language data augmentation.

* Comprehensive Metrics. To measure the cost of deploying models for real-world applications,
we measure a model’s sample-efficiency in the zero-shot, few-shot and full-shot settings and
parameter-efficiency in the linear probing and full model fine-tuning settings.

* Reproducible Toolkit & Language-augmented Adaptation Methods. We develop an open-
source software toolkit to support model adaptation and evaluation. Automatic hyper-parameter
tuning is employed to avoid human-in-the-loop tuning, thus reducing human labor and ensuring
a fair comparison among different model checkpoints. We also present a set of new model
adaptation methods for pre-trained language-augmented visual models. Our methods significantly
outperform the traditional vision-only adaptation methods. These methods serve as baselines for
the development of more advanced adaptation methods.

In addition, our empirical study leads to interesting findings. (i) Leveraging both text and vision in
these models consistently yields better performance than vision-only in few-shot settings; In contrast,
random initialization of the linear head in language-augmented visual models is sub-optimal. We also
find that few-shot results are always better than zero-shot results, which is different from the results
reported in [66]. (i) For language-augmented visual models, linear probing performs better than full
model fine-tuning in the few-shot settings. As the task-specific training data increases, fine-tuning
outperforms linear probing. (ii¢) Our study shows that the use of external knowledge, including
explicit knowledge of human-compiled thesaurus/dictionaries/documents and implicit knowledge
stored in GPT3 [6], can improve zero-shot and few-shot learning performance. We summarize the
pipeline to use ELEVATER in Figure|l} and organize the paper to focus on the benchmark and toolkit.
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Figure 1: The illustrative pipeline to use ELEVATER to evaluate a model checkpoint.

2 Related Work: From Class-level to Task-level Transfer

Zero-shot learning in computer vision has been studied for decades. The research topic has witnessed
two distinctive notions of zero-shot: the traditional class-level zero-shot that usually refers to the
study of generalizing to unseen object categories [42], and the recently popular task-level zero-shot
that refers to the study of generalizing to unseen datasets/tasks [44, [66]. In Table|l} we compare
our benchmark against existing benchmarks. Existing zero-shot learning benchmarks are developed
for the class-level zero-shot setting. They are usually in a single domain, with a manual split of
categories to produce disjoint training and test categories, e.g., Animal with Attributes (AwA) [43],
Caltech-UCSD Birds-200 (CUB) [82], SUN [61]], aPY [21]], and ZS-ImageNet [67 [24]. For the OD
problem, COCO [50] and LVIS [29] represent two well established datasets to compare various OD
methods in a single domain, while UODB [86] is a multi-domain OD benchmark.

In contrast, our benchmark focuses on task-level transfer across domains, i.e., it aims to evaluate
the transferability of models, by pre-training from their own large corpus, then evaluating zero-shot
performance on a diverse set of downstream datasets. This setting has been recently studied [44,
66, 145,192]], and is arguably more practical for real-world applications, as it brings the convenience
towards the spirit of one-model-for-all. The well-known ImageNet-1K dataset [14] was originally
proposed as a large dataset for model training and testing. It has also recently been considered as
one downstream task to study zero-shot transfer [66} |45l |92]]. Our work presents the first public
benchmark to standardize the zero-shot task-level transfer setting. Note that visual task transfer
has been previously explored in VTAB [94], which measures good visual representations as those
that adapt to diverse, unseen tasks with an emphasis on few training examples. The pre-trained
models and task adaptation in VTAB are considered for vision backbones only, and no language
model/modality is involved. Our benchmark shares a similar spirit of task-level transfer to VTAB, but



Benchmark Statistics | Evaluation
Problem #Datasets ~ #Image  #Concepts Knowledge Source \ Zero Few  Full
AwA [43] 1 30337/6985 40/10 Attributes v
CUB [82] 1 8855/2933 150/50 Attributes v
Image SUN [6l1] 1 12900/ 1440 645/ 72 Attributes v
Classification aPY [21] 7 1 1269572644 20/12 Attributes v
(I0) ZS-ImageNet [67] 1 1.2M /54K 1K/360 WordNet v
ImageNet-1K [14] 1 1.2M /50K 1K WordNet v v
VTAB [94] 19 22M /- 940 - v v
ELEVATER (ICinW) 20 638K /193K 1151  WordNet, Wiki, GPT-3 | v/ v v
Object COCO [50] 1 83K /41K 80 - v
Detection LVIS [29] 1 120K / 40K 1723 WordNet v
(OD) UODB [86] 11 113K /40K 109 - v
ELEVATER (ODinW) 35 132K / 20K 314°  WordNet, Wiki, GPT-3 | v/ v v

Table 1: Comparison of dataset statistics and evaluation settings. For existing zero-shot datasets in
IC, the number of images and concepts are reported for development / evaluation stages separately. ¢
represents the total number of concepts in the benchmark to evaluate task-level transfer, and there is
no train-evaluation category split as in class-level transfer.

strives to analyze the vital role of language and knowledge in visual transfer. All of them are usually
evaluated in full-shot settings, without considering task-level transfer. We have further made several
novel contributions to consolidate the benchmark: (i) We add external knowledge for each dataset to
cultivate new research directions in knowledge-augmented visual models, inspired by the success
of knowledge in traditional class-level transfer. (ii) We consider the full spectrum in measuring the
sample-efficiency of task adaptation, including zero-shot, few-shot, and full-shot.

In this paper, we develop ELEVATER as a plat-
form for “computer vision in the wild”, whose
ultimate goal is to develop a transferable foun-
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distributions are consistent in both dimensions
for the traditional close-set recognition. Open-
set recognition allows new concepts in evalua-
tion, while typically remains the same visual domain [87,93]]; Domain shift allows new visual domain
in evaluation, while typically remains the same concept pool [63} 28]]. CVinW allows the flexibility
in both dimensions, where any new tasks/datasets in the wild essentially fall into.

Figure 2: Illustration of CVinW in comparison
with close-set, open-set and domain shift.

3 Benchmarks
3.1 A Suite of Datasets with Language/Knowledge Augmentations

As a proxy for performing unseen tasks in the wild, we collect a diverse set of public datasets from
various domains in computer vision, as the basis of our benchmark. Specifically, we consider 20
datasets for IC and 35 datasets for OD. We exhibit the dataset names in Figure[3|(a), and the detailed
statistics of each dataset in Table[5]and Table[6]in Appendix. It is recommended in [66] that studying
task-level zero-shot transfer is a way of measuring the task learning capabilities of machine learning
systems. The task definition of each downstream recognition dataset is typically specified using
category names. Adding user specification/note is a natural way to clarify the task definition e.g.,
the attribute or explanation of a visual concept. Importantly, a similar spirit has been implemented



Hatefullemes ChessPieces mr=BrackishUnderwater

F16WéFs102 DTD Food101 Opg‘h‘ggg‘t@\‘ejision PascalVOC e
: COUﬂtryZH RESISC45 WebsiteScreenshots ... PlanHt]g‘H] o
Eg\/qé\(i graft Aquariump; o BoggleBoardsm ‘
ittiDistance AmericanSignLanguageLetters momimmn
Stanfordcars VOC2007 UnoCards l‘\‘/‘ﬁhgtdes()pe%maggs

1Rabb1

OxfordPets CIFART OOCIFASR%% SelfDrivingCar “Oxfordpets(breed)

AerialMaritimeDrone(tiled)egoHand:
(a) Dataset names. The font size is proportional to the number of concepts in each dataset.

[ Concept name: risotto ) Concept name: starfish
A»,?A’ Def_wik: Any of various asteroids or other
*5% echinoderms (not in fact fish) with usually five
arms, many of which eat bivalves or corals by
everting their stomach.

774 Def_wik: An ltalian savoury dish made

s with rice and other ingredients
Def_wn: rice cooked with broth and
sprinkled with grated cheese
Path_wn: [risotto, dish, nutriment, food,
substance, matter, physical_entity, entity]

. GPT3: [“A rice dish made with arborio rice |§
and typically served with meat or fish.”,
“A rice dish made by stirring rice into a
simmering broth.”, “A dish of Italian
origin made of rice and vegetables.”, “A
rice dish made with arborio rice, saffron,
and broth.”, “A dish of rice cooked with
broth and usually sautéed vegetables."]

Def_wn: echinoderms characterized by five
arms extending from a central disk

¢ Path_wn: [starfish, echinoderm, invertebrate,
animal, organism, living_thing, whole, object,
physical_entity, entity]

GPT3: [*A marine animal of class Asteroidea,
typically having a central disk and five arms.”,
“Any of numerous marine invertebrates of
the class Asteroidea, having a central disk
and five or more radiating arms.”, ...]

(b) Examples of collected external knowledge.
Figure 3: Illustration of our benchmark. Left: Image classification, Right: Object detection.

in traditional class-level zero-shot by adding individual domain-specific knowledge (see Table[T)),
and demonstrated promising zero-shot performance gains. In this paper, we generalize the notion of
“zero-shot” to task-level, collecting external knowledge from general sources for our benchmark.

* WordNet Hierarchy (def_path). The words along the traversal path from the query node in
WordNet [56] to the highest parent node is recorded as the hierarchy knowledge.

 WordNet Definition (def _wn). The definition in WordNet synsets [56] is used to explain the query.
» Wiktionary Definition (def _wik). The definition of a query in Wiktionary is used.

* GPT3 Knowledge (gpt3). For the above three knowledge sources, it is not always feasible to retrieve
valid knowledge for any query. To enable full knowledge coverage, we propose to use GPT3 [6]
to generate “pseudo” knowledge using in-context-learning, where prompts are constructed with
multiple pairs of class names and their Wiktionary definitions. We generate five GPT3 knowledge
sequences for each class name, by constructing different context prompts with randomly sampled
pairs. See details in Section[C.4]

In Fig.[3](b), we show examples to illustrate the knowledge sources. In practice, there is a trade-off
between the knowledge quality and its coverage. For example, WordNet has relatively rich and precise
knowledge, but the coverage is low; GPT3 knowledge has the full coverage (as it is generated via
prompting a pre-trained neural language model), but it is hard to assess its quality. In the experiment
section, we provide baseline results to demonstrate the benefits of external knowledge, and encourage
the community to design advanced prompting techniques to leverage these knowledge sources.

3.2 Pre-trained Models for Transfer Learning

Industry Track and Academic Track. Our benchmark is an evaluation platform for pre-trained
models, whose performance largely depends on the scale of the pre-training corpus. Larger corpus
typically yields higher performance, but unfortunately results in a barrier to many participants,
especially a majority of researchers from university labs. To increase inclusivity, we create two
tracks with restrictions on the pre-training data scale: (i) Academic track is a setting that limits
the data in established public large datasets (i.e., ImageNet-21K [14], GCC3M [70] & 12M [8]],
YFCCI15M [[78]]). This track is more academic-friendly, aiming to encourage the exploration in
data-efficient pre-training methodologies. (i¢) Industry track has no limit on pre-training data scale,
except that images in our benchmark are not allowed in pre-training when reporting zero-/few-shot
performance. This track aims to explore the scaling limit. We encourage participants to report the
pre-training datasets to enable reproducible research.

Pre-trained Models. To establish baseline results on ELEVATER, we evaluate the pre-trained
model checkpoints in Table 2] More details of the checkpoints are described in Appendix. Most
existing visual models are language-free, where no text is used in model training. Till recently, visual



| Taxonomy | Pre-training Settings | Network Architecture

Checkpoints

| Language Knowledge| Training Objective Dataset | Vision Language Others

Image Classification
MoCo-v3 [10] X X Self-Supervised ImageNet-1K (1.2M) ViT-B - -
MAE [30] X X Self-Supervised ImageNet-1K (1.2M) ViT-B - -
DeiT [79] X X Supervised ImageNet-1K (1.2M) ViT-B - -
ViT [18] X X Supervised ImageNet-22K (14M) ViT-B - -
CLIP [66] 4 X Image-Text Contrast ~ WebImageText (400M) ViT-B T-B -
UniCL [88] v X Image-Text Contrast ImageNet-21K (13M) Swin-T T-B -
K-LITE [71} v v Image-Text Contrast ImageNet-21K (13M) Swin-T T-B -
Object Detection

DyHead [13] X X Supervised Object365 Swin-T - -
GLIP [47] v X Supervised Object365 & Grounding | Swin-T Bert-B Fusion
GLIP-A [47] v X Supervised Object365 Swin-T Bert-B -
K-LITE [71] v v Supervised Object365 Swin-T Bert-B -

Table 2: The pre-trained models evaluated in ELEVATER as baselines. In terms of taxonomy, v indi-
cates the model checkpoint is pre-trained with the use of language / knowledge, while X indicates
language- / knowledge-free. For image classification, the number of images in pre-training is reported.
T-B indicate a Base-size Transformer architecture, using a 63M-parameter 12-layer 512-wide model
with 8 attention heads. Swin-T is a Tiny-size Swin Transformer [52]], Bert-B is a Base-size Bert [16]],
and Fusion indicates a cross-attention module to fuse the image-text features [47].

models are trained in a language-augmented and/or knowledge-augmented manner using a language
model [[66} 88|71, 47], among which CLIP [66] represents a strong baseline in the industry track.
Please see the detailed taxonomy in Appendix Section|[G.1]

3.3 Evaluation Settings: Efficiency Considerations

One major advantage of pre-trained ~  Fine-Tuning High
models is the promise that they can H N
transfer to downstream tasks effort-
lessly. The cost is considered in

: : . _  Parameter-
two orthogonal dimensions: sample Effciency Cost

Linear Probing/

efficiency and parameter-efficiency, as
Prompt Tuning

illustrated in Figure ] The bottom-
left corner and top-right corner is
the most inexpensive and expensive \_Prompt with
adaptation strategy, respectively. One Frozen Models -
may interpolate and make combina- feroshot  Few.shot  Full-shot
tions in the 2D space, to get different
model adaptation methods with differ-
ent cost.

v
Sample-Efficiency
Figure 4: The model adaptation cost chart.

Sample-efficiency: Zero-, Few-, and Full-shot. Due to the high cost of annotating data, it is often
desired to provide a small number of labeled image-label pairs in downstream datasets. Transferable
models should be able to reach high performance in this data-limited scenario. To assess this
ability, we vary the number of training set size /N per category in the downstream dataset. For IC,
N = 0,5,20,50. For O]fl, N = 0,1,3,5,10. Three random seeds are chosen, each of which
identifies a subset of samples from the full dataset in a deterministic manner. Once the random seed
is given, the indices of training samples in few-shot settings are fixed to encourage reproducible
research. We also consider the full-shot setting, where all samples of a given dataset are used.

Parameter-efficiency: Linear Probing vs Full Model Fine-tuning. Maintaining a small number
of dataset-specific model parameters is often favored for model maintenance, as it can be expensive
to maintain a unique copy of large model checkpoints for each of the thousands of downstream
applications. In IC, linear probing provides a simple strategy for training a dataset-specific linear
embedding matrix, while keeping the pre-trained visual backbone frozen. It arguably represents the
minimum cost solution for parameter-efficiency. In contrast, fine-tuning often updates the entire
weights in backbone and linear head, representing the most expensive solution to model adaptation.

?For OD, N-shot means providing at least N images per category[83] 47|
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Figure 5: Illustrative comparison of different model evaluation and adaption methods.

In OD [85]], linear probing means updating the linear heads for classification and localization tasks
only, while fine-tuning means updating all model weights including the backbone and the detectors.

4 Toolkits

To ease the process to onboard new checkpoints for evaluation, we provide a software toolkit,
including () automatic hyper-parameter tuning and (%) various strategies for model adaptation to
downstream tasks. First, automatic hyper-parameter tuning pipeline is developed to avoid human-
in-the-loop tuning, thus reducing human labor and ensuring fair comparisons of different model
checkpoints. We follow CLIP [66] to implement a simple grid-search style tuning pipeline, and leave
more sophisticated methods like BOHB [20] and DEHB [3]] as future work. Details are provided in
Appendix. Second, we provide several model adaptation methods as strong baselines, which allow
effective transfer learning of pre-trained visual models. The ideas are illustrated in Figure[5] For a
downstream dataset, we first represent it in a triplet-wise data format D = {(x,,, t,, yn) }\_,, where
x € X is the image, t € T is its corresponding language description, and y € ) is a label indicating
the index of the unique language description in the dataset. |B]| is batch size. In IC, the number of
labels | Y| = K, i.e., the number of category names.

Language-free Visual Models. Most existing visual models are language-free, as language is
often not considered in training, e.g., supervised and self-supervised methods. Such models can not
be directly used for zero-shot transfer, and model adaptation is often enabled by adding additional
weights. For each image «, an image encoder fg parameterized by 0 first represents x as a visual
feature vector h € RP*1: h = fg(x). One randomly initialized linear projection layer with
W,,, € RP*K (we absorb the bias b in W, for simplicity) is used as the classifier; see Figure(a).

Language-augmented Visual Models. Recent works [66} [35] that learn visual models with lan-
guage supervision often employ a two-encoder architecture. Besides the image encoder model fyg, a
text encoder fy(t) parameterized by ¢ is also used to encode text t. Additional projection layers
W, and W, are introduced for image and language features, embedding them into a joint space with
dimension P, with projected features as u and v respectively. Note that lowercase v and v are single
feature vectors while U and V are a batch with multiple feature vectors. As in Figure[3](b), zero-shot
learning can be directly performed in this space: the mean text feature v is first obtained for each
category, by averaging text features of the category name in different language prompts. The image is
predicted as the category yielding the highest similarity u " v.

* Random initialized Adaptation. In the original CLIP paper [66], one randomly initialized linear
projection layer W € RP*X (similarly, we absorb the bias b in W for simplicity) is added on the
pre-retained visual projection, which is shown as the two-projection method in Figure 3] (c).

» Language-initialized Adaptation. We argue that the full capacity of language-augmented visual
models is not leveraged in [66]]. The power of pre-trained language encoder and text inputs must
play a vital role in model adaptation. Hence, we propose two language-initialized adaption methods,
each of which is ensured as a fair comparison variant for language-augmented and language-free
models, respectively. (i) Two-Projection. For the linear head W € R”*X added on the projection
space, we initialize W with V (bias terms are initialized as zeros), as shown in Figure[5|(d). In
this way, the visual and text heads are separated. Note that the language-initialized Two-Projection



scheme is also basically equivalent to Figure[5](b) in zero-shot settings. Please see Appendix Section
[Hfor discussions. (ii) One-Projection. To fairly compare with language-free model adaptation in
Figure 5] (a), one linear projection head should directly be added on the backbone (before the visual
projection) to ensure that the same number of trainable parameters are updated. Therefore, we
propose to initialize W,,, € RP*¥ in this case with the multiplication result of two linear matrices
W, V, as shown in Figure[5](e).

Discussion. We highly recommend the proposed language-initialized methods as the standard to
adapt language-augmented visual models for two reasons: (7) This simple method yields surprisingly
superior empirical performance, as demonstrated in our experiments. (i7) It provides an effective
mechanism to leverage the external knowledge that is collected for a downstream task in our bench-
mark. Specifically, the knowledge can be concatenated with the original language prompt (with
a simple *“;” in our experiments), then encoded into contextualized text features. When multiple
knowledge items exist (e.g., the case of GPT-3) for each concept, we concatenate one of its prompts
and one of its knowledge items, and get the encoded text embedding of the concatenated sequence via
the language encoder. This is performed for all the combinations between all prompts and knowledge
items for this concept, then the averaged embedding is computed to represent the concept. In contrast,
random initialization would ignore this knowledge source. The language-initialized method can serve
as a strong baseline to encourage more effective knowledge-augmented adaptation methods.

In OD, GLIP is a language-augmented detector, whose overall architecture can be simply considered
as adding a cross-modal module over the CLIP-like dual-encoder. In GLIP [47]], its linear probing has
been implemented via updating W, and W,. A prompt-tuning strategy was proposed, by initializing
the language input of the cross-modal module as V, and only updating V during adaptation. This is
similar to our language-initialized strategy.

5 Empirical Results and Findings

We present the experimental results with our benchmark to illustrate two points. Q1: The importance
of language in visual model transfer in the adaptation stage. Q2: We present three playgrounds that
our benchmark can help to cultivate research in, including sample-efficiency, parameter-efficiency
and external knowledge for visual transfer. We also present novel empirical findings.

5.1 The Role of Language for Vision

Effectiveness of Language-initialized Adaptation Methods. In Table|3] we compare the effec-
tiveness of the proposed language-initialization methods with the checkpoint CLIP ViT-B32. The one-
projection scheme is consistently better than two-projection scheme in all settings (though the gain is
minor). This is because the former often has less parameters than the latter, as D = 768 > P = 512.
To ensure fair comparisons with the random initialization of linear head in CLIP [66] (i.e., # trainable
parameters is the same), in the ensuing experiments, we consider the two-projection language-
initialization scheme as the default, unless the one-projection scheme is specified.

As shown in Fig. @, under both linear probe (LP)
and fine-tuning (FT) settings, language-based ini-
tialization significantly outperforms random ini-
tialization. Notably, we show that even with very
few shots (e.g., 2-shots), both our LP and FT is 60.0 1 F

80.0 1

70.0 1

able to outperform the zero-shot CLIP. This is con- 4 54.8 {5

tradictory to the finding in the original CLIP pa-  § 50.0 {/ ro-sh&f

per [66], where zero-shot outperforms linear prob-

ing in the fewer shot (less than 4) settings. With 40.0 1 ~B- Language-Init (LP)
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that few-shot performance is always better than 30.01 T T _g_ ;Zr;zz;gf;')'t FD
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init method. Moreover, we also find that with ) # Shots

random initialization, FT performs significantly ~Figure 6: Comparison of random- and language-
worse than LP under few-shot settings. However, 1nitialized adaptation.

with language-init, FT starts to outperform LP with more than 20 shots. Both findings demonstrate
the proposed language-based initialization is consistently effective, suggesting that it is an important



Settings 20 IC datasets
g

Checkpoint
| Adaptation Initialization | Zero-shot'  Few-shot (5, 20, 50) Full
Industry Track (No pre-train data scale limit)
LP Random-2P 58.09 +2.80,69.97 + 130, 74.09 +069 78.38
CLIP LP Language-2P 65.35 + 124, 71.69 + 093, 74.89 +079  78.40
(VIT-B32) LP Language-1P 56.64 65.88 +0.79, 72.05 + 0385, 75.08 +073  78.96
FT Random-2P 29.75 +664,46.76 £ 119, 61.70 + 997  77.77
FT Language-2P 63.29 +3.8,72.19 +£131,75.70 + 114 80.35
Supervised LP Random-1P ) 56.00 +267,67.23 + 166, 71.35 + 1.17  75.29
(ViT-B32) FT Random-1P 58.55 +258,71.27 +125,75.36 + 142 80.39
Academic Track (Pre-trained on large established public datasets)
UniCL LP Language-2P 2715 54.31 +4.15,66.42 +208,70.49 + 1.1 74.75
(Swin-Tiny) FT Language-2P ’ 44.75 +£5.42,56.53 £537,67.90 £531  78.48
K-LITE LP Language-2P 33.44 55.06 + 236, 66.26 + 1.56, 70.16 + 1.00  74.47
(Swin-Tiny) FT Language-2P ’ 48.41 +2:84, 58.06 +£430, 71.66 £202  78.05

Table 3: Averaged results on 20 IC datasets using linear probing (LP) and fine-tuning (FT). Random-
1P, Random-2P, Language- 1P and Language-2P indicates the initialization method in Figure[5](a),
(¢), (e) and (d), respectively. T Note that one zero-shot result is reported for each model checkpoint
using the method in Figure E] (b), which is independent from adaptation/initialization methods.

35 OD datasets

Checkpoint  Adaptation ‘

| Zero-shot  Few-shot (1,3, 5, 10) Full

GLIP Prompt 29.7+04,36.5+06,39.0+1.1,41.8+12 544
(Swin-Tiny) LP 19.7 22.2+01,24.4+02,25.1+02,25.6+06 352
win-iny) - pr 32.2:+07,39.2+03,42.5£09,49.1x06  63.2

DyHead LP . 152+ 06, 19.2+ 09, 19.8+10,20.6+ 1.1 314
(Swin-Tiny) FT 25.6+04,37.1+05,40.1+15,44.6+07 63.9

Table 4: Averaged results on 35 OD datasets.

technique, and should be the standard adaptation method for language-augmented visual models
like CLIP. Further, the correct adaptation methods for language-augmented visual models should
leverage both the pre-trained visual and text encoder. It is not sufficient to solely transfer from the
visual encoder, pre-trained language encoder plays an important role in task transfer.

The Competition of Pre-trained Models: Language-free vs Language-augmented. We sum-
marize the transfer performance of pre-trained models for IC in Table[3]and OD in Table[d For IC, we
also compare CLIP against other language-free visual models including MoCov3, MAE, ViT, DeiT
in Appendix. We see that the language-augmented model (CLIP) outperforms language-free model
(Supervised ViT) in the limited data settings. The gap is closed when more training examples are
observed (e.g., , 50-shot and full-shot). This is probably because the pre-training power is gradually
dominated by larger-scale downstream training. Further, language-augmented models are able to
perform zero-shot task transfer, while traditional language-free models cannot. Similar conclusions
can be drawn for OD in Table[d] Hence, we recommend the use of language-augmented visual models
for task-level transfer.

5.2 Playground I: Sample Efficiency

We explore sample efficiency in Fig.[/|(a) for IC. First, we find that CLIP consistently outperforms
supervised ViT (Sup-ViT), yielding a significant 5~10% gain in the 5-shot settings. This suggests that
CLIP is more sample-efficient than supervised ViT . Furthermore, we find that fine-tuning CLIP yields
better performance than linear probing in >20-shot settings, while being worse in the 5-shot setting.
This is a bit surprising, as it is contradictory to the common convention that fine-tuning is always
better than linear probing. We hypothesize this is because fine-tuning tends to over-fit in the scenarios
with a large number of trainable parameters and a small number of training samples. Overall, it
suggests that fine-tuning CLIP potentially has a better sample efficiency than linear probing, and a
better adaptation strategy on fewer-shot settings can be explored in the future. For supervised ViT, FT
is always better than LP, the performance gap becomes larger when more samples are used. In 5-shot
settings, the gap is minor, which is similar to observations made for supervised CNNs [91} 137} 38]].
To compare pre-trained models, we suggest to report the evaluation results on the entire spectrum of
sample-efficiency to fully study the behaviors of a pre-trained model. If compute resource is limited,
zero-shot or few-shot evaluation can be used as a quick assessment.
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Figure 7: Adaptation efficiency considerations. For IC, comparison of adaptation efficiency between
CLIP and supervised ViT (Sup-ViT). For OD, comparison of adaptation efficiency between GLIP
and DyHead.

We explore sample efficiency for OD in Fig. [7] (b). The conclusion is similar to IC in that the
language-augmented visual model (GLIP) is more sample-efficient than the language-free visual
model (DyHead), when the models are adapted using either LP or FT settings. The performance
gap is large in the fewer-shot settings and is small in the full-shot settings. The difference is that FT
consistently outperforms LP in all settings for OD. This is probably because there are a lot of boxes
(training instances) per image in OD, which makes OD less likely to over-fit compared to IC.

5.3 Playground II: Parameter Efficiency

We study the parameter efficiency in Fig.[7](c) for IC. For CLIP, we experiment with two different
settings of linear probing on whether to merge the last two linear projection layers (W, and V in
Fig.[B). Merging these two layers in CLIP allows 1.5x trainable parameters in the linear probe
classifier as keeping them separated. First, it shows a trend that a larger number of trainable parameters
leads to better performance, as demonstrated by three curves/scenarios: full-shot CLIP, full-shot
Sup-ViT and 5-shot Sup-ViT. This also verifies that LP and FT provide the lower bound and upper
bound, respectively, in terms of both #parameter and performance. Most existing parameter-efficient
adaptation methods play a trade-off game. However, in the scenario of 5-shot CLIP, we do notice a
slight drop in performance when we further increase the number of trainable parameters to full-model
fine-tuning. It suggests that the scenario of adapting language-augmented visual models for data-
limited settings is a more meaningful playground to explore the line of research in parameter-efficient
adaptation methods, as the best performance may require an optimal number of trainable parameters,
which has been less explored.

We study the parameter efficiency in Fig.[/|(d) for OD. The overall trend is similar in that better
performance comes with more parameters. It turns out that prompt tuning an language-augmented
OD model is an effective parameter-efficient approach. For example, prompting is better than linear
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In (a) and (b), a varying number of generated GPT-3 knowledge sequences is utilized for inference,
and “Wiki-and-GPT3” indicates both Wiktionary and GPT3 knowledge are used simultaneously. The
bottom table summarizes the prediction result for each knowledge source.

probing in GLIP. Further, prompt tuning GLIP outperforms fine-tuning DyHead in the 1-shot setting,
where the former has less than 0.1% parameters of the latter.

5.4 Playground III: The Benefit of External Knowledge for Vision

We investigate the effectiveness of external knowledge in Fig. [§] measured by zero-shot task transfer
performance. The model K-LITE is evaluated, as its pre-training is knowledge-augmented. We
find that leveraging external knowledge improves upon the knowledge-free pre-training counterparts
(UniCL and GLIP). For example, UniCL is improved from 27.15 to 29.92~33.93, and GLIP-A is
improved from 11.53 to 11.70~13.30. Further, for GPT3 knowledge, a larger number of generated
knowledge items often leads to higher performance. When combining GPT3 knowledge with
Wiktionary knowledge, we see a further performance boost. With an increasing number of GPT3
knowledge items, the gain is consistently improved for IC, but not for OD. In Table[3] we study the
role of knowledge for task transfer in model adaptation. Initializing the linear head using features
encoded with knowledge is an effective way to leverage the collected knowledge sources, especially
for the fewer-shot settings.

One may wonder if the collected knowledge in ELEVATER benchmark can also benefit knowledge-free
pre-trained models such as CLIP during model adaptation? We confirm its effectiveness in Appendix.
In zero-shot transfer, external knowledge improves the baseline on four datasets. In few- and full-shot
transfer, one may selectively choose whether to update the model using external knowledge, by
observing the best performance in the auto-tuning stage. This selective strategy with the availability
of external knowledge demonstrates a consistent improvement (or tie) on 15+ out of 20 datasets.

6 Conclusions

We have presented ELEVATER, a platform to evaluate the recently emerging language-augmented
visual models for task-level transfer. It consists of 20 image classification datasets and 35 object
detection datasets. All of them are collected from public domains, and are enriched with various
external knowledge sources to enhance the language modality. We have developed open-source
toolkits with an auto hyper-parameter pipeline and novel language-initialized adaptation methods
to ensure easy utilization and fair comparisons. Strong baseline results are produced from the
toolkit to cultivate research in a variety of topics, e.g., more transferable language-augmented
visual models, advanced model adaption methods (sample-efficiency and parameter-efficiency), and
external knowledge for task-level transfer. The question of how to design general-purpose task-level
transferable visual models remains largely unanswered. Given benchmarks and tookits we have
developed from the perspective of language-augmented visual models, we believe that ELEVATER
can provide fertile soil for addressing this challenge.
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