

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON THE EFFECT OF POSITIONAL ENCODING FOR IN- CONTEXT LEARNING IN TRANSFORMERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformer models have demonstrated a remarkable ability to perform a wide range of tasks through in-context learning (ICL), where the model infers patterns from a small number of example prompts provided during inference. However, empirical studies have shown that the effectiveness of ICL can be significantly influenced by the order in which these prompts are presented. Despite its significance, this phenomenon has been largely unexplored from a theoretical perspective. In this paper, we theoretically investigate how positional encoding (PE) affects the ICL capabilities of Transformer models, particularly in tasks where prompt order plays a crucial role. We examine two distinct cases: linear regression, which represents an order-equivariant task, and dynamic systems, a classic time-series task that is inherently sensitive to the order of input prompts. Theoretically, we evaluated the change in the model output when positional encoding (PE) is incorporated and the prompt order is altered. We proved that the magnitude of this change follows a convergence rate of $\mathcal{O}(k/N)$, where k is the degree of permutation to the original prompt and N is the number of in-context examples. Furthermore, for dynamical systems, we demonstrated that PE enables the Transformer to perform approximate gradient descent (GD) on permuted prompts, thereby ensuring robustness to changes in prompt order. These theoretical findings are experimentally validated.

1 INTRODUCTION

Large language models (LLMs) have shown remarkable in-context learning (ICL) capabilities (Brown et al., 2020). When provided with a few prompts as examples, these models can accurately predict outcomes for new tasks without requiring any parameter updates. This intriguing ability has sparked significant interest, prompting a recent wave of research aimed at developing a white-box theoretical understanding of ICL (Xie et al., 2022; Akyürek et al., 2022; Von Oswald et al., 2023; Ahn et al., 2023; Wu et al., 2023; Guo et al., 2023; Bai et al., 2024; Wang et al., 2024).

Despite the advantages of this remarkable phenomenon, Lu et al. (2021) found that the ICL ability of LLMs, such as GPT-3, is highly sensitive to prompt order. This sensitivity can result in performance ranging from near state-of-the-art to almost random guessing, depending on the prompt arrangement. This finding is surprising given that the Transformer architecture (Vaswani, 2017) is inherently permutation invariant (Yun et al., 2019; Lee et al., 2019), suggesting that changing the order of prompts should not affect the model’s output. However, positional encoding (PE), a mechanism designed to incorporate order information into the otherwise permutation-invariant architecture, disrupts this invariance. Since the introduction of the Transformer, numerous PE variants (Vaswani, 2017; Brown et al., 2020; Zhang et al., 2022; Chowdhery et al., 2023; Touvron et al., 2023; Le Scao et al., 2023; Su et al., 2024) have been developed. While positional encoding has been extensively studied in tasks such as language modeling and machine translation, its specific impact on ICL remains an underexplored area of research.

In this paper, we aim to investigate how PE affects the ICL capabilities of Transformer models. We focus on two representative cases: linear regression, an order-insensitive task, and a simple dynamical system, which is highly order-sensitive. Our findings indicate that positional encoding (PE) does not statistically harm ICL performance in order-invariant tasks, such as linear regression, while enhancing order robustness in order-sensitive tasks, such as dynamical systems.

054 The key contributions of this paper are summarized as follows:
 055

- 056 • We provide a sufficient condition on the weight matrices of the Transformer (section 3.1)
 057 that ensures it maintains permutation invariance, regardless of the input task type.
- 058 • For linear regression tasks, where predictions are ideally invariant to prompt order, we
 059 theoretically demonstrate that the change in ICL predictions caused by prompt order shifts
 060 is bounded by $\mathcal{O}(k/N) \cdot \epsilon$ for Transformers with positional encoding (PE) (section 3.2).
 061 This indicates minimal impact on ICL performance by PE.
- 062 • For dynamical systems, which closely resemble natural language processing tasks, we show
 063 that the theoretical bounds are consistent with those for linear regression, highlighting ro-
 064 bustness to prompt order changes. Moreover, we find that PE enables Transformers to
 065 perform approximate gradient descent (GD) on permuted prompts, further proving the ro-
 066 bustness of Transformers’ ICL capabilities (section 3.3).
- 067 • We also validate our theoretical findings through experiments (section 4). The absolute
 068 differences in outputs between differently ordered prompts closely match our theoretical
 069 predictions (figs. 1 and 4) for both linear regression and dynamical systems.

071 2 PRELIMINARIES

072 2.1 TRANSFORMERS

073 A Transformer layer contains two sub-layers, the attention layer and the MLP layer. We denote the
 074 input sequence to the transformer as $\mathbf{h} = [\mathbf{h}_1, \dots, \mathbf{h}_N] \in \mathbb{R}^{D \times N}$.

075 **Definition 2.1.** (Attention layer) *An attention layer with M heads is denoted as $\text{Attn}_{\theta}(\cdot)$, where
 076 $\theta = \{V_m, Q_m, K_m\}_{m \in [M]}$. The output of this layer on the input matrix H is:*

$$077 \text{Attn}_{\theta}(H) = H + \frac{1}{N} \sum_{m=1}^M (V_m H) \times \bar{\sigma}((Q_m H)^\top (K_m H)),$$

078 where $\bar{\sigma} : \mathbb{R} \rightarrow \mathbb{R}$ is an activation function. For each column, we denote $\mathbf{h}_i^+ := [\text{Attn}_{\theta}(H)]_i$ and
 079 get:

$$080 \mathbf{h}_i^+ = \mathbf{h}_i + \frac{1}{N} \sum_{m=1}^M \sum_{j=1}^N \bar{\sigma}(\langle Q_m \mathbf{h}_i, K_m \mathbf{h}_j \rangle) V_m \mathbf{h}_j.$$

081 In this paper we consider the linear self attention (LSA) layer following previous works (Dai et al.,
 082 2023; Mahankali et al., 2023; Ahn et al., 2023; Von Oswald et al., 2023). The attention layer is
 083 followed by the MLP layer.

084 **Definition 2.2.** (MLP layer) *An MLP layer with hidden dimension D' is denoted as $\text{MLP}_{\theta}(\cdot)$,
 085 where $\theta = (W_1, W_2) \in \mathbb{R}^{D' \times D} \times \mathbb{R}^{D \times D'}$. The output of this layer on input \mathbf{h} is*

$$086 \text{MLP}_{\theta}(H) = H + W_2 \sigma(W_1 H),$$

087 where $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ is an activation function. For each column:

$$088 [\text{MLP}_{\theta}(\mathbf{h})]_i = \mathbf{h}_i + W_2 \sigma(W_1 \mathbf{h}_i).$$

089 In the MLP layer $\sigma(t) = \max\{t, 0\}$ is the ReLU activation. A Transformer layer (block) contains
 090 one attention layer followed by one MLP layer, and we denote it as TF_i , with i indicating the i -th
 091 layer of a Transformer. We also denote a full Transformer by TF without specifying the number of
 092 layers.

104 2.2 POSITIONAL ENCODING

105 **Absolute positional encoding.** The absolute positional encoding (APE) which is used in the orig-
 106 107 inal Transformer paper (Vaswani, 2017), where positional encoding vectors (\mathbf{p}_i) are added to the
 108 corresponding word embeddings, resulting in a new hidden state at position i :

108
109
110

$$\mathbf{h}'_i = \mathbf{h}_i + \mathbf{p}_i.$$

111 Throughout this paper, we consider the one-hot positional encoding which allows precise study of
112 how prompt order changes affect predictions, independent of complex encoding schemes. The one-
113 hot PE is of the form

$$114 \quad \mathbf{p}_i = \begin{bmatrix} \mathbf{0}_{i-1} \\ 1 \\ \mathbf{0}_{N-i} \end{bmatrix} \in \mathbb{R}^N, \\ 115 \\ 116$$

117 where N is the number of columns of the input matrix. We also concatenate the positional encoding
118 with the input matrix H instead of adding it directly to H (see eq. (1)), following previous works
119 (Guo et al., 2023; Bai et al., 2024; Wang et al., 2024).

120 **Rotary positional embedding.** Rotary Positional Encoding (RoPE) (Su et al., 2024) is an alter-
121 native positional encoding scheme that incorporates relative position information through rotation
122 operations in the vector space. Unlike absolute positional encodings that are added to or concate-
123 nated with token embeddings, RoPE encodes positional information by rotating the query and key
124 vectors in the self-attention mechanism using rotation matrices. The rotation matrix \mathcal{R}_m is a block-
125 diagonal matrix defined as:

$$126 \quad \mathcal{R}_m = \begin{bmatrix} \cos(m\theta_0) & -\sin(m\theta_0) & 0 & 0 & \cdots & 0 & 0 \\ 127 \quad \sin(m\theta_0) & \cos(m\theta_0) & 0 & 0 & \cdots & 0 & 0 \\ 128 \quad 0 & 0 & \cos(m\theta_1) & -\sin(m\theta_1) & \cdots & 0 & 0 \\ 129 \quad 0 & 0 & \sin(m\theta_1) & \cos(m\theta_1) & \cdots & 0 & 0 \\ 130 \quad \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 131 \quad 0 & 0 & 0 & 0 & \cdots & \cos(m\theta_{d/2-1}) & -\sin(m\theta_{d/2-1}) \\ 132 \quad 0 & 0 & 0 & 0 & \cdots & \sin(m\theta_{d/2-1}) & \cos(m\theta_{d/2-1}) \\ 133 \end{bmatrix}$$

134 where $\theta_i = 10000^{-2i/d}$ for $i = 0, 1, \dots, d/2 - 1$, and d is the dimension of the query/key vectors.
135 For each dimension pair $(2i, 2i + 1)$ in the query/key vectors, we apply the rotation:

$$136 \quad \begin{bmatrix} q_{2i}^m \\ q_{2i+1}^m \end{bmatrix} = \begin{bmatrix} \cos m\theta_i & -\sin m\theta_i \\ \sin m\theta_i & \cos m\theta_i \end{bmatrix} \begin{bmatrix} q_{2i} \\ q_{2i+1} \end{bmatrix} \\ 137$$

138 The attention score between position m and n becomes:

$$139 \quad a_{m,n} = \frac{(\mathcal{R}_m Q \mathbf{h}_m)^\top (\mathcal{R}_n K \mathbf{h}_n)}{\sqrt{d_k}} = \frac{\mathbf{h}_m^\top Q^\top \mathcal{R}_{n-m} K \mathbf{h}_n}{\sqrt{d_k}}, \\ 140 \\ 141$$

142 where \mathcal{R}_{n-m} is the block-diagonal rotation matrix for relative position $n - m$. This formulation
143 ensures that the attention scores between queries and keys depend only on their relative distance
144 m-n, providing inherent relative position awareness in the self-attention computation.

145

146 2.3 IN-CONTEXT LEARNING

147
148
149
150
151
152
153
154
155
156

A complete in-context learning (ICL) process contains two stages: pretraining and inference. In the pretraining stage, a Transformer is trained on meta-data generated from n different tasks, where each data point (\mathbf{x}, y) is sampled from a task-specific distribution P_i , where $i = 1, \dots, n$ indexes the tasks. During the inference stage, the prompts are sampled from a distribution P'_k corresponding to task k . Here P'_k during inference can differ from P_k in pretraining. For example, let the k -th task denote a linear regression problem $y = \mathbf{w}^\top \mathbf{x}$, the weight $\mathbf{w}_{\text{pretrain}}$ used during pretraining could be different from $\mathbf{w}_{\text{inference}}$ used during inference. We denote the prompts consisting of in-context examples as $\mathcal{D} = (\mathbf{x}_i, y_i)_{i \in [N]}$, representing N examples sampled from the task distribution. A novel input \mathbf{x}_{N+1} is sampled from P_x , forming the input to the Transformer as a pair $(\mathcal{D}, \mathbf{x}_{N+1})$. Here $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$.

157
158

More specifically, we denote the input to the transformer as

$$159 \quad H = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ 160 \quad y_1 & y_2 & \cdots & y_N & 0 \\ 161 \quad \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_N & \mathbf{p}_{N+1} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{D \times (N+1)}, \quad (1)$$

162 where $\mathbf{p}_i \in \mathbb{R}^{N+1}$ is the one-hot positional encoding, and $\mathbf{0} \in \mathbb{R}^{D-N-d-2}$ is the zero padding. As
 163 mentioned in section 2.2, here we concatenated the positional encoding with the input matrix, rather
 164 than adding them, to highlight the impact of positional encoding while preserving its fundamental
 165 characteristics.

166 A Transformer processes the input prompt H and generates a prediction for the label corresponding
 167 to \mathbf{x}_{N+1} . The prediction value \hat{y}_{N+1} is stored in the output matrix \tilde{H} at the position immediately
 168 following y_N . We say in-context learning succeeds if \hat{y}_{N+1} and y_N is close enough, or ϵ -close,
 169 under a certain metric associated with task k (In this work we set the metric as the MSE loss).
 170

171 3 MAIN RESULTS

172 In this section, we first provide a high level approach towards understanding how the positional en-
 173 coding could maintain the permutation invariance of Transformers. Then we examine two types of
 174 in-context learning (ICL) tasks: linear regression and first-order difference equations. Linear regres-
 175 sion, a well-established ICL task extensively studied in prior works (Bai et al., 2024; Wang et al.,
 176 2024), serves as a lens to explore the underlying mechanisms of Transformers' ICL capabilities. This
 177 task is permutation invariant, so the order of prompts does not influence the predictions. In contrast,
 178 first-order difference equations, a time-series task studied by Li et al. (2023); Guo et al. (2023), are
 179 highly sensitive to prompt order, making them an ideal test case for assessing the effectiveness of
 180 positional encoding in ICL.
 181

182 3.1 HIGH LEVEL APPROACH

183 The objective is to analyze how positional encoding affects the output of a Transformer when the
 184 input prompts are permuted. To formalize this, we first define the raw input matrix (without con-
 185 catenated positional encoding) as

$$186 H' = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ y_1 & y_2 & \cdots & y_N & 0 \\ \mathbf{0}_{D-d-1} & \mathbf{0}_{D-d-1} & \cdots & \mathbf{0}_{D-d-1} & \mathbf{0}_{D-d-1} \end{bmatrix},$$

187 where $\{\mathbf{x}_i\}_{i \in [N+1]} \in \mathbb{R}^d$ are the feature vectors, $\{y_i\}_{i \in [N+1]} \in \mathbb{R}$ are the corresponding labels, and
 188 $\mathbf{0}_{D-d-1}$ represents zero-padding to align the dimensions. The positional encoding matrix is defined
 189 as:

$$190 E = \begin{bmatrix} \mathbf{0}_{d+1} & \cdots & \mathbf{0}_{d+1} & \mathbf{0}_{d+1} \\ \mathbf{p}_1 & \cdots & \mathbf{p}_N & \mathbf{p}_{N+1} \\ \mathbf{0}_{D-d-N-2} & \cdots & \mathbf{0}_{D-d-N-2} & \mathbf{0}_{D-d-N-2} \end{bmatrix},$$

191 where $\{\mathbf{p}_i\}_{i \in [N+1]} \in \mathbb{R}^{N+1}$ are the positional encoding vectors. Consequently, the full input to the
 192 Transformer becomes $H = H' + E$.
 193

200 3.1.1 POSITIONAL ENCODING AFFECTS ATTENTION OUTPUT

201 For the attention layer, let the attention operation be denoted by $f := \text{Attn}$. If P is any permutation
 202 matrix, it is known that $f(H'P) = f(H')P$. When positional encoding is added, the difference
 203 between the attention outputs becomes

$$\begin{aligned} 204 & f(H'P + E) - f(H' + E) \\ 205 &= f(H'P + E) - f(H'P + EP) + f((H' + E)P) - f(H' + E) \\ 206 &= f(H'P + E) - f(H'P + EP). \end{aligned}$$

207 Denote $g_A(B) = f(A + B) - f(A)$, then we can rewrite the above equation as

$$\begin{aligned} 208 & f(H'P + E) - f(H' + E) \\ 209 &= f(H'P + E) - f(H'P + EP) \\ 210 &= f(H'P + E) - f(H'P) - (f(H'P + EP) - f(H'P)) \\ 211 &= g_{H'P}(E) - g_{H'P}(EP) \\ 212 &= (g_{H'P}(E) - g_{H'P}(E)P) + (g_{H'P}(E)P - g_{H'P}(EP)). \end{aligned}$$

216 Since we are interested only in the last column of the output, the first term vanishes since the permutation
 217 matrix P doesn't affect the last column, so we only need to study $g_{H'P}(E)P - g_{H'P}(EP)$.
 218 This implies that in the presence of positional encoding, the effect of permutation on the Transformer
 219 output depends on whether the function g is permutation invariant. Expanding the definition of f ,
 220 we find that

$$221 \quad g_A(B) \approx B + \frac{1}{N} \sum_{m=1}^M V_m (AB^\top R_m A + BA^\top R_m A + AA^\top R_m B),$$

224 where $R_m = Q_m^\top K_m$. Next we compute

$$226 \quad g_A(BP) - g_A(B)P \approx \frac{1}{N} \sum_{m=1}^M V_m (A(P^\top B^\top R_m A - B^\top R_m AP) + B(PA^\top R_m A - A^\top R_m AP)),$$

229 where we omit the higher order terms of B . This difference term is generally non-zero, indicating
 230 that positional encoding impacts the attention output and compromises its permutation invariance.
 231 While this property hinders performance on permutation-invariant tasks like in-context linear re-
 232 gression (where input order should be irrelevant), it could potentially be beneficial for tasks where
 233 sequence ordering carries meaningful information, such as time-series prediction or language mod-
 234 eling. In the following, we first demonstrate that under a specific assumption, permutation invariance
 235 can still be preserved.

236 3.1.2 ATTENTION LAYER PRESERVES PERMUTATION INVARIANCE

238 By substituting $A = H'P$ and $B = E$, a sufficient condition for g to be permutation invariant is

239 **Condition 3.1.** R_m is a symmetric matrix of the form

$$241 \quad R_m = \left[\begin{array}{c|c} S_m & \\ \hline \mathbf{0} & U_m \\ T_m & \end{array} \right],$$

245 with the dimension of block matrices satisfying: $S_m \in \mathbb{R}^{(d+1) \times (d+1)}$, $\mathbf{0} \in \mathbb{R}^{(N+1) \times (d+1)}$, $T_m \in$
 246 $\mathbb{R}^{(D-N-d-2) \times (d+1)}$ and $U_m \in \mathbb{R}^{D \times (D-d-1)}$.

247 When Condition 3.1 holds, it follows that $B^\top R_m A = \mathbf{0} \in \mathbb{R}^{(N+1) \times (N+1)}$, and $A^\top R_m A$ becomes
 248 symmetric. This symmetry ensures that $PA^\top R_m A = A^\top R_m AP$, thereby preserving the permuta-
 249 tion invariance of g . The above condition can be further loosened if we don't require both terms in
 250 the decomposition of $g_A(BP) - g_A(B)P$ to be zero matrices for each head.

251 **Remark 3.1.** If the positional encoding is not one-hot, Condition 3.1 should be tightened to require
 252 $\mathbf{0} \in \mathbb{R}^{(N+1) \times D}$. Note that the matrix $R_m \in \mathbb{R}^{D \times D}$, so this is a rather strong restriction, especially
 253 when N is large.

255 3.1.3 MLP LAYER PRESERVES PERMUTATION INVARIANCE

256 Let ϕ denote the MLP layer, then

$$258 \quad \phi(H) = H + W_2 \sigma(W_1 H).$$

260 Similarly we can compute how the positional encoding affects the output of the MLP layer.

$$261 \quad \phi(H'P + E) - \phi(H' + E) = H' - H + W_2(\sigma(W_1(H'P + E)) - \sigma(W_1(H' + E))),$$

263 where the first term need not be considered provided that the permutation P doesn't affect the the
 264 last column in H . By the property of σ and the structure of H' , E , we have $\sigma(W_1(H'P + E)) -$
 265 $\sigma(W_1(H' + E)) = \sigma(W_1 H')P - \sigma(W_1 H')$, thus the last column is also unaffected. This shows
 266 that the MLP layer still maintains permutation invariance after adding the positional encoding.

267 Now we summarize the result reached so far as:

268
 269

270
271
272
273
274
275

Proposition 1. *There exists pretrained Transformers (satisfying Condition 3.1), such that positional encoding does not compromise the permutation-invariance property of Transformers.*

The proposition implies that positional encoding can interfere with the Transformer architecture's inherent permutation invariance. This disruption presents challenges when applying Transformers to permutation-invariant in-context learning (ICL) tasks. However, the findings suggest that specialized pretraining on such tasks may enable the model to compensate for these effects. Specifically, a Transformer pretrained on permutation-invariant ICL tasks could potentially learn to overcome the limitations introduced by positional encoding, effectively mitigating its adverse impacts on model performance.

3.2 PE EFFECT ON LINEAR REGRESSION

In this section we consider linear regression tasks, which is the most common setting in ICL analysis studied by many (Akyürek et al., 2022; Von Oswald et al., 2023; Ahn et al., 2023; Wu et al., 2023; Gatmiry et al., 2024).

3.2.1 ONE-HOT PE

We first state a mild condition which bounds the Transformer's weight matrices.

Assumption 3.1. *Consider a transformer pretrained on a task $y = f(\mathbf{x})$, where $\mathbf{x} \in \mathbb{R}^d$, with N in-context examples in each data point. The pretrained Transformer satisfies*

$$\max\{|\mathbf{(Q}^\top \mathbf{K})_{d+N+1,d+2} - (\mathbf{Q}^\top \mathbf{K})_{d+N+1,d+3}|, |V_{d+1,d+2} - V_{d+1,d+3}|\} \leq \epsilon,$$

where ϵ is a small quantity.

The assumption only requires two elements in the matrices $\mathbf{Q}^\top \mathbf{K}$ and V to be close enough, which is a rather loose assumption in that it doesn't require the specific $\mathbf{Q}, \mathbf{K}, V$ construction in previous works (Von Oswald et al., 2023; Li et al., 2023; Ahn et al., 2023; Wang et al., 2024; Bai et al., 2024).

Theorem 3.1. *Under Assumption 3.1, assume that each element of \mathbf{x}_i , denoted as \mathbf{x}_i^k , follows a normal distribution $\mathcal{N}(0, 1/2)$. For linear regression tasks $y_i = \mathbf{w}^\top \mathbf{x}_i$, let $\Delta y_{N+1} = \hat{y}_{N+1} - y_{N+1}$, where \hat{y}_{N+1} represents a Transformer block's prediction after applying a k -degree permutation to the prompt, and y_{N+1} is the prediction based on the original prompt. Then, the following result holds:*

$$\sup \mathbb{E}[|\Delta y_{N+1}|] \longrightarrow C_1 \frac{k\sqrt{d}}{N} \epsilon + \frac{2k}{N} \epsilon^2 \quad (d, N \rightarrow \infty),$$

where C_1 is a constant that depends on $\mathbf{x}_{N+1}, \mathbf{Q}, \mathbf{K}, V$.

The core proof techniques include transforming the change in the output position caused by a permutation into a random variable with well-defined statistical properties and leveraging group theory to systematically extend the result for a single transposition to the general case of a k -degree permutation. The detailed proof is in Appendix B. To the best of our knowledge, this is the first formal result that explicitly demonstrates how positional encoding influences the Transformer's output in the context of in-context learning (ICL) predictions.

Remark 3.2. *Our analysis introduces two key innovations in understanding Transformers' permutation sensitivity. First, we develop a novel probabilistic framework that characterizes positional encoding effects by modeling permutation-induced output changes as random variables with provable statistical properties. Second, we employ group-theoretic techniques to generalize from single transpositions to arbitrary k -degree permutations, establishing a complete theoretical characterization. To the best of our knowledge, this approach yields the first formal proof (section B) quantifying how positional encoding systematically affects Transformer outputs in in-context learning scenarios.*

324 The previous theorem is the result for a single Transformer layer with only one attention head. Now
 325 we provide the result for a more general multiple attention head, L -layer setting.
 326

327 **Corollary 3.1.** *There exist pretrained L -layer Transformers for which the difference bound
 328 in Theorem 3.1 remains valid, up to a factor of L .*

330 **Remark 3.3.** *Although Corollary 3.1 seems like a more general version of Theorem 3.1, it actually
 331 requires stricter conditions on the Transformer weight matrices (ϵ must be 0 in Assumption 3.1) to
 332 maintain the same input format.*

334 3.2.2 ROPE

336 For the widely used Rotary Position Embedding (RoPE), we derive a theorem parallel to Theorem
 337 3.1 by utilizing the notation in section 2.2.

338 **Theorem 3.2.** *Assume that each element of \mathbf{x}_i , denoted as \mathbf{x}_i^k , follows a normal distribution
 339 $\mathcal{N}(0, 1/2)$. For linear regression tasks $y_i = \mathbf{w}^\top \mathbf{x}_i$, let $\Delta y_{N+1} = \hat{y}_{N+1} - y_{N+1}$, where
 340 \hat{y}_{N+1} represents a Transformer block's prediction using RoPE after applying a k -degree
 341 permutation to the prompt, and y_{N+1} is the prediction based on the original prompt. Then,
 342 the following result holds:*

$$344 \sup \mathbb{E}[|\Delta y_{N+1}|] \longrightarrow C_{RoPE} \frac{kd^3}{N},$$

346 where C_{RoPE} is a constant that depends on $\mathbf{x}_{N+1}, Q, K, V, \Theta = \{\theta_i\}_i$.

349 The proof is deferred to section B. Theorem 3.2 doesn't rely on any assumptions for the weight
 350 parameter of the transformer, this is because the rotary embedding doesn't intervene with the hidden
 351 dimension. However, the reliance on the input dimension d does grow to d^3 due to the dimension
 352 dependent Frobenius norm of the rotation matrix \mathcal{R}_n . Unlike absolute positional encodings, RoPE's
 353 rotational structure introduces additional dimensional dependencies through the pairwise rotation
 354 operations across embedding dimensions.

355 **Remark 3.4.** *Our analysis follows a similar technical framework to Theorem 3.1, with the key
 356 distinction lying in how RoPE modulates attention scores between permuted input columns. Theorem
 357 3.2 reveals that, compared to one-hot positional encoding, transformers utilizing RoPE exhibit
 358 heightened sensitivity to the input dimension d . This manifests as a d^3 scaling factor in the error
 359 bound, suggesting that RoPE-based models may experience greater instability in in-context learning
 360 performance, particularly in high-dimensional settings.*

361 3.3 PE EFFECT ON FIRST ORDER DIFFERENCE EQUATIONS

363 We consider the first order difference equation in this section. This is a more realistic setting since
 364 modern large language models are next-token predictors, and the dynamic of the first order differ-
 365 ence equation resembles the essence of the next-token prediction pattern.

366 For this scenario we consider the input to the Transformer as:

$$368 H = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ 369 0 & 0 & \cdots & 0 & 0 \\ 370 \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_N & \mathbf{p}_{N+1} \end{bmatrix} \in \mathbb{R}^{D \times (N+1)}, \quad (2)$$

371 where p_i is the one-hot positional encoding, and

$$373 \mathbf{x}_{i+1} = A\mathbf{x}_i + \mathbf{b}.$$

378

379

380

381

382

383

384

385

386

387

388

389

Theorem 3.3. *Under Assumption 3.1, assume $\mathbf{x}_0^k \sim \mathcal{N}(0, 1/2)$. For first order difference equation $\mathbf{x}_{i+1} = A\mathbf{x}_i + \mathbf{b}$, define $\Delta\mathbf{x}_{N+1} = \hat{\mathbf{x}}_{N+1} - \mathbf{x}_{N+1}$, where $\hat{\mathbf{x}}_{N+1}$ represents the transformer's prediction after applying a k -degree permutation to the prompt, and \mathbf{x}_{N+1} corresponds to the prediction based on the original prompt. Then the following result holds:*

$$\sup \mathbb{E}[\|\Delta\mathbf{x}_{N+1}\|_2] \longrightarrow C_2 \frac{kd}{N} \epsilon + \frac{2k\sqrt{d}}{N} \epsilon^2 \quad (d, N \rightarrow \infty),$$

where C_2 is a constant dependent on $\mathbf{x}_{N+1}, Q, K, V$.

It is important to note that Theorem 3.3 demonstrates the stability of positional encoding's effect on the shifted prompt and suggests that prediction accuracy could remain comparable to the original prompt. However, it does not explain why positional encoding might improve the robustness of a Transformer to changes in prompt order compared to the scenario without positional encoding. Building on the findings of Guo et al. (2023), we derive the ICL prediction error for a Transformer learning the dynamics system.

Lemma 3.1. *For any $\epsilon > 0$, there exists a Transformer with $\mathcal{O}(\epsilon^{-1})$ blocks such that for the input \tilde{H} of the form*

$$\tilde{H} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ \mathbf{0}_d & \mathbf{0}_d & \cdots & \mathbf{0}_d & \mathbf{0}_d \\ \mathbf{0}_d & \mathbf{x}_1 & \cdots & \mathbf{x}_{N-1} & \mathbf{x}_N \\ \mathbf{0}_d & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_N & \mathbf{p}_{N+1} \end{bmatrix},$$

the prediction of the Transformer $\hat{\mathbf{y}}_i = [\text{TF}(\tilde{H})]_{(d+1):2d, i}$ ($i \in [N+1]$) satisfies

$$\|\hat{\mathbf{y}}_i - A\mathbf{x}_i\|_2 \leq \sqrt{d}\epsilon,$$

with d being the dimension of \mathbf{x} .

Lemma 3.1 provides a bound on the error of the ICL output prediction based on a specific input format. By utilizing the above lemma, we get

Theorem 3.4. *For any $\epsilon > 0$, there exists a Transformer with $\mathcal{O}(\epsilon^{-1})$ layers such that for an input structured as described in eq. (2), it implements approximate GD on the input with shifted prompt order and the prediction for \mathbf{x}_i ($i \in [N]$) satisfies the following upper bound:*

$$\|\hat{\mathbf{x}}_{i+1} - A\mathbf{x}_i\|_2 \leq (\sqrt{kd} + \sqrt{d})\epsilon,$$

where k, d represents the degree of permutation and the dimension of \mathbf{x} respectively.

This demonstrates that, despite input permutations, a Transformer with positional encoding can still perform in-context learning with a certain level of accuracy.

4 EXPERIMENTS

We conduct experiments on the two settings discussed in section 3, namely linear regression and first order difference equation. We pretrained several 12-layer, 8-head encoder transformer models with hidden space $D_{\text{hid}} = 256$, following settings in previous works (Garg et al., 2022; Li et al., 2023; Bai et al., 2024; Guo et al., 2023). We used ADAM optimizer with a learning rate of 1e-4. For linear regression, the data points are sampled from $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$, $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$, where $d = 20$; for first order difference equation, $\{\mathbf{x}_i\}_{i \in [N+1]} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ and $\{A_j\}_{j \in [d]} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ (A_j denotes the j -th row of A) with $\mathbf{b} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$, where $d = 2$. N denotes the number of in-context examples during pretraining and $N = 40$ for linear regression, $N = 10$ for first order difference equation.

432 These experiments show that the negative effect PE brings decays in an $\mathcal{O}(N^{-1})$ order and increases
 433 in an $\mathcal{O}(k)$ order (fig. 1), which strongly supports our theorem. What's more, PE is important in
 434 preserving the robustness of transformers in tackling order-sensitive ICL tasks such as dynamic
 435 systems (fig. 3), which also supports our theoretical findings.

436 **Linear Regression.** To evaluate in-context learning (ICL) performance on linear regression tasks,
 437 we pretrained two Transformer models (with or without PE). The models were trained with a batch
 438 size of 64 for 150,000 steps. During inference, we sampled 10,000 instances to estimate the expected
 439 mean squared error (MSE) loss.
 440

441 We measured the expectation of the absolute difference in the output of a Transformer model with
 442 both one-hot PE and RoPE (figs. 1 and 2) pretrained with PE under increasing degrees of prompt
 443 permutation k . Specifically, the first k prompts were flipped, and we sampled 10,000 instances over
 444 a batch size of 64 to approximate the expectation. The experimental results (figs. 1 and 2, left)
 445 showed that the increase in the absolute difference follows an order of $\mathcal{O}(k)$, consistent with our
 446 theoretical prediction in Theorems 3.1 and 3.2.
 447

448 Next, we evaluated the effect of increasing the number of in-context examples while keeping the
 449 prompt permutation fixed (figs. 1 and 2 right). In this setup, we only swapped the order of the first
 450 two columns of the input matrix. The results demonstrated that the absolute difference decays at a
 451 rate of $\mathcal{O}(N^{-1})$, again matching our theoretical analysis in Theorems 3.1 and 3.2.
 452

463 Figure 1: Experimental results on linear regression tasks. *Left*: The absolute difference of the
 464 prediction is proportional to the degree of permutation to the prompt. *Right*: The absolute difference
 465 of the prediction with swapped prompt order by a pretrained PE transformer can be fitted by an
 466 inverse proportional function.
 467

481 Figure 2: Experimental results on linear regression tasks for RoPE.
 482

483 **First Order Difference Equation.** For the first order difference equations, we also pretrained two
 484 transformers following the experiment setting in the linear regression experiment. Note that the
 485 default number of in-context examples is 10 because the solution to the equation will converge
 486 to a constant quickly, resulting in the last few columns of the input matrix to be practically the

486 same. Therefore, too many in-context examples will make the transformers learn to merely copy
 487 the previous column during ICL inference, which is not intended. In fig. 3 left, as the number of
 488 in-context examples grows, the MSE loss tend to converge for both models. However, once the order
 489 of the in-context examples is swapped, fig. 3 right demonstrates that the performance of the model
 490 with PE is still robust but the model without PE predicts worse.

491

503

504 Figure 3: Experimental results on first order difference equation tasks. *Left*: The comparison of the
 505 ICL ability of two pretrained transformers (with or without PE). *Right*: The prediction with swapped
 506 prompt order by two pretrained transformers (with or without PE).

507

508 We also evaluated the absolute difference similar the linear regression setting for increasing
 509 permutation degree k (fig. 4 left) and increasing in-context example number N (fig. 4 right), and the
 510 relationship between the MSE loss and $\mathcal{O}(N^{-1})$, $\mathcal{O}(k)$ matches Theorem 3.3.

511

523

524 Figure 4: Experimental results on first order difference equation tasks. *Left*: The absolute difference
 525 of the prediction the fitted curve. *Right*: The absolute difference of the prediction with swapped
 526 prompt order by a pretrained PE transformer and the fitted curve.

527

5 CONCLUSION

529

530 This work provides both theoretical and empirical insights into how positional encoding influences
 531 the in-context learning (ICL) capabilities of Transformers on linear regression and dynamical
 532 systems tasks. For the linear regression task, we theoretically demonstrate that one-hot positional
 533 encoding can lead to instability in predictions with respect to prompt order. The prediction difference
 534 scales linearly with the permutation degree k of the prompt, but diminishes at a rate of $\mathcal{O}(N^{-1})$ as
 535 the number of in-context examples N increases. For the dynamical system task, we focus on a simple
 536 first-order difference equation, which mimics a natural language next-token prediction process
 537 with a context window size of one. Our theoretical analysis shows that the prediction difference
 538 caused by positional encoding follows the same order as in the linear regression task. Our Empirical
 539 results corroborate these theoretical findings, validating the predicted relationship between prompt
 order and prediction stability for both tasks.

540 REFERENCES
541

542 Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
543 ment preconditioned gradient descent for in-context learning. *Advances in Neural Information
544 Processing Systems*, 36:45614–45650, 2023.

545 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
546 algorithm is in-context learning? investigations with linear models. In *The Eleventh International
547 Conference on Learning Representations*, 2022.

548 Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
549 Provable in-context learning with in-context algorithm selection. *Advances in neural information
550 processing systems*, 36, 2024.

551 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
552 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
553 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

554 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
555 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
556 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):
557 1–113, 2023.

558 Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
559 gpt learn in-context? language models secretly perform gradient descent as meta-optimizers. In
560 *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 4005–4019, 2023.

561 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
562 in-context? a case study of simple function classes. *Advances in Neural Information Processing
563 Systems*, 35:30583–30598, 2022.

564 Khashayar Gatmiry, Nikunj Saunshi, Sashank J Reddi, Stefanie Jegelka, and Sanjiv Kumar. Can
565 looped transformers learn to implement multi-step gradient descent for in-context learning? *arXiv
566 preprint arXiv:2410.08292*, 2024.

567 Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
568 transformers learn in-context beyond simple functions? a case study on learning with representa-
569 tions. *arXiv preprint arXiv:2310.10616*, 2023.

570 Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
571 Reddy. The impact of positional encoding on length generalization in transformers. *Advances
572 in Neural Information Processing Systems*, 36, 2024.

573 Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
574 Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
575 parameter open-access multilingual language model. *arXiv preprint arXiv:2211.05100*, 2023.

576 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
577 transformer: A framework for attention-based permutation-invariant neural networks. In *Inter-
578 national conference on machine learning*, pp. 3744–3753. PMLR, 2019.

579 Yingcong Li, M Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as al-
580 gorithms: generalization and stability in in-context learning. In *Proceedings of the 40th Interna-
581 tional Conference on Machine Learning*, pp. 19565–19594, 2023.

582 Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
583 makes good in-context examples for gpt-3? *arXiv preprint arXiv:2101.06804*, 2021.

584 Yinpeng Liu, Jiawei Liu, Xiang Shi, Qikai Cheng, Yong Huang, and Wei Lu. Let’s learn step by step:
585 Enhancing in-context learning ability with curriculum learning. *arXiv preprint arXiv:2402.10738*,
586 2024.

587 Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
588 prompts and where to find them: Overcoming few-shot prompt order sensitivity. *arXiv preprint
589 arXiv:2104.08786*, 2021.

594 Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
 595 provably the optimal in-context learner with one layer of linear self-attention. *arXiv preprint*
 596 *arXiv:2307.03576*, 2023.

597 Sewon Min, Xinxin Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
 598 Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
 599 *EMNLP*, 2022.

600 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 601 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

602 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 603 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 604 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

605 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

606 Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
 607 intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
 608 descent. In *International Conference on Machine Learning*, pp. 35151–35174. PMLR, 2023.

609 Zhijie Wang, Bo Jiang, and Shuai Li. In-context learning on function classes unveiled for transform-
 610 ers. In *Forty-first International Conference on Machine Learning*, 2024.

611 Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L Bartlett.
 612 How many pretraining tasks are needed for in-context learning of linear regression? *arXiv*
 613 *preprint arXiv:2310.08391*, 2023.

614 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
 615 learning as implicit bayesian inference. In *International Conference on Learning Representations*,
 616 2022.

617 Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
 618 Are transformers universal approximators of sequence-to-sequence functions? *arXiv preprint*
 619 *arXiv:1912.10077*, 2019.

620 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
 621 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
 622 language models. *arXiv preprint arXiv:2205.01068*, 2022.

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A RELATED WORK
649

650 **In-context Learning.** In-context learning (ICL) has been studied both empirically and theoretically.
 651 Garg et al. (2022) empirically shows that Transformers can learn linear functions, two-layer ReLU
 652 neural networks, and decision trees in context. Min et al. (2022) studies what aspects of demonstra-
 653 tions impact the performance of ICL. As for the theoretical part, Xie et al. (2022) explains ICL as
 654 implicit Bayesian inference despite the difference between pretraining and inference distributions,
 655 while many other works (Akyürek et al., 2022; Von Oswald et al., 2023; Dai et al., 2023) interpret
 656 ICL as Transformers performing gradient descent (GD). These works mainly focus on linear models
 657 or their variants. Bai et al. (2024) investigates gradient descent on a wider range of functions, like
 658 2-layer neural networks, and demonstrates the algorithm selection ability of Transformers. Wang
 659 et al. (2024) extends their work to n -layer neural network setting for more general function approx-
 660 imation. Besides those that study ICL mechanism, Lu et al. (2021) proves that order sensitivity is
 661 a common problem in ICL, which can result in performance ranging from near state-of-the-art to
 662 almost random guessing, depending on the prompt arrangement. To address this issue, Liu et al.
 663 (2021) and Liu et al. (2024) suggest arranging input in a particular way similar to curriculum learn-
 664 ing to enhance in-context learning.

665 **Positional Encoding.** Vaswani (2017) proposed a sinusoidal positional encoding (PE) to capture
 666 the word order in the input. There are mainly two types of PE: *absolute*, where positions are repre-
 667 sented explicitly as numbers or vectors (e.g., 1, 2, 3, . . .), or *relative*, where positional information is
 668 based on the distance between tokens (Kazemnejad et al., 2024). Below, we provide a brief overview
 669 of the common positional encoding methods used in Transformers.

670 *Absolute Position Embedding (APE)* assigns each position i a position vector \mathbf{p}_i , which is added
 671 to the corresponding word embeddings. Non-parametric APE uses sinusoidal functions to generate
 672 embeddings for any position (Vaswani, 2017), while learned APE, as used in GPT-3 (Brown et al.,
 673 2020) and OPT (Zhang et al., 2022), trains position embeddings with the model parameters but
 674 cannot handle unseen positions, limiting the context window to a fixed length.

675 *T5’s Relative Bias* maps the relative distance $(i - j)$ between tokens to a scalar bias $b = f(i - j)$
 676 using a lookup table. This bias, learned during training, is added to the query-key dot product in
 677 the self-attention mechanism. Distances beyond a threshold are mapped to the same parameter to
 678 generalize to unseen distances.

679 *Rotary*, employed in models like PaLM (Chowdhery et al., 2023) and LLaMA (Touvron et al., 2023),
 680 applies a position-dependent rotation to the query and key representations before computing the
 681 attention dot product. This rotation ensures that the attention depends only on the relative distance
 682 between tokens, functioning as a form of relative positional encoding (Su et al., 2024).

683 *ALiBi*, utilized in BLOOM (Le Scao et al., 2023), subtracts a scalar bias from the attention score.
 684 This bias increases linearly with the distance between query and key tokens, introducing a recency
 685 bias that favors more recent tokens.

687 B PROOFS FOR SECTION 3.2
688

689 **Theorem 3.1.** Under Assumption 3.1, assume that each element of \mathbf{x}_i , denoted as \mathbf{x}_i^k , follows a
 690 normal distribution $\mathcal{N}(0, 1/2)$. For linear regression tasks $y_i = \mathbf{w}^\top \mathbf{x}_i$, let $\Delta y_{N+1} = \hat{y}_{N+1} - y_{N+1}$,
 691 where \hat{y}_{N+1} represents a Transformer block’s prediction after applying a k -degree permutation to
 692 the prompt, and y_{N+1} is the prediction based on the original prompt. Then, the following result
 693 holds:

$$694 \sup \mathbb{E}[|\Delta y_{N+1}|] \longrightarrow C_1 \frac{k\sqrt{d}}{N} \epsilon + \frac{2k}{N} \epsilon^2 \quad (d, N \rightarrow \infty),$$

695 where C_1 is a constant that depends on \mathbf{x}_{N+1} , Q , K , V .

696 *Proof.* We first consider the case where only two adjacent columns are permuted and then generalize
 697 to random permutation between k columns.

701 1. Permutation between two adjacent columns

702 The original input is
 703

704

$$705 H_O = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ y_1 & y_2 & \cdots & y_N & 0 \\ \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_N & \mathbf{p}_{N+1} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{D \times (N+1)}.$$

706

707 After the permutation (WLOG, we assume the permutation happens between column 1 and 2) the
 708 input becomes
 709

710

$$711 H_P = \begin{bmatrix} \mathbf{x}_2 & \mathbf{x}_1 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ y_2 & y_1 & \cdots & y_N & 0 \\ \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_N & \mathbf{p}_{N+1} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{D \times (N+1)}.$$

712

713 Now consider the impact of the permutation on the output of the last column h_{N+1} . From defini-
 714 tion 2.1 we know that
 715

$$716 h_{N+1}^+ = h_{N+1} + \frac{1}{N+1} \sum_{m=1}^M \sum_{j=1}^{N+1} \sigma(\langle Q_m h_{N+1}, K_m h_j \rangle) V_m h_j.$$

717

718 For ease of calculation we set $M = 1$ and remove the activation σ to consider a single-head linear
 719 self attention (LSA) layer:
 720

721

$$722 h_{N+1}^+ = h_{N+1} + \frac{1}{N+1} \sum_{j=1}^{N+1} \langle Q h_{N+1}, K h_j \rangle V h_j.$$

723

724 Now we have
 725

$$726 [H_O]_{N+1}^+ - [H_P]_{N+1}^+ \\ 727 = \frac{\mathbf{h}_{N+1}^\top Q^\top K (\mathbf{h}_1^O V \mathbf{h}_1^O + \mathbf{h}_2^O V \mathbf{h}_2^O - \mathbf{h}_1^P V \mathbf{h}_1^P - \mathbf{h}_2^P V \mathbf{h}_2^P)}{N+1}.$$

728

729 Denote
 730

$$731 R = Q^\top K = \begin{bmatrix} r_{11} & \cdots & r_{1D} \\ \vdots & & \vdots \\ r_{D1} & \cdots & r_{DD} \end{bmatrix} \in \mathbb{R}^{D \times D}, \quad (3)$$

$$732 R_i(d) = \begin{bmatrix} r_{1i} \\ \vdots \\ r_{di} \end{bmatrix} \in \mathbb{R}^d.$$

733

734 Then we have
 735

$$736 \mathbf{h}_{N+1}^\top Q^\top K \mathbf{h}_1^O \\ 737 = \sum_{i=1}^d (\mathbf{x}_{N+1}^\top R_i(d) + r_{d+N+1,i}) \mathbf{x}_1^i \\ 738 + (\mathbf{x}_{N+1}^\top R_{d+1}(d) + r_{d+N+1,d+1}) y_1 \\ 739 + (\mathbf{x}_{N+1}^\top R_{d+2}(d) + r_{d+N+1,d+2}),$$

740

741 and similarly
 742

$$743 \mathbf{h}_{N+1}^\top Q^\top K \mathbf{h}_2^P \\ 744 = \sum_{i=1}^d (\mathbf{x}_{N+1}^\top R_i(d) + r_{d+N+1,i}) \mathbf{x}_1^i \\ 745 + (\mathbf{x}_{N+1}^\top R_{d+1}(d) + r_{d+N+1,d+1}) y_1 \\ 746 + (\mathbf{x}_{N+1}^\top R_{d+2}(d) + r_{d+N+1,d+3}).$$

747

756 So we get
 757

$$\begin{aligned} 758 \quad & \mathbf{h}_{N+1}^\top Q^\top K \mathbf{h}_1^O - \mathbf{h}_{N+1}^\top Q^\top K \mathbf{h}_2^P \\ 759 \quad & = r_{d+N+1,d+2} - r_{d+N+1,d+3}. \end{aligned}$$

760 Similarly we can compute
 761

$$\begin{aligned} 762 \quad & V \mathbf{h}_1^O - V \mathbf{h}_2^P = \begin{bmatrix} v_{1,d+2} - v_{1,d+3} \\ \vdots \\ v_{D,d+2} - v_{D,d+3} \end{bmatrix}. \\ 763 \quad & \end{aligned}$$

764 Notice that
 765

$$\begin{aligned} 766 \quad & \mathbf{h}_{N+1}^\top Q^\top K (\mathbf{h}_1^O V \mathbf{h}_1^O - \mathbf{h}_2^P V \mathbf{h}_2^P) \\ 767 \quad & = \mathbf{h}_{N+1}^\top Q^\top K \mathbf{h}_2^P (V \mathbf{h}_1^O - V \mathbf{h}_2^P) \\ 768 \quad & \quad + (\mathbf{h}_{N+1}^\top Q^\top K \mathbf{h}_1^O - \mathbf{h}_{N+1}^\top Q^\top K \mathbf{h}_2^P) V \mathbf{h}_2^P \\ 769 \quad & \quad + (\mathbf{h}_{N+1}^\top Q^\top K \mathbf{h}_1^O - \mathbf{h}_{N+1}^\top Q^\top K \mathbf{h}_2^P) (V \mathbf{h}_1^O - V \mathbf{h}_2^P). \\ 770 \quad & \end{aligned}$$

771 So the value change at the $d+1$ -th row of the last column (where the output of the transformer
 772 should be stored) is $\mathbf{h}_{N+1}^\top Q^\top K \mathbf{h}_2^P (v_{d+1,d+2} - v_{d+1,d+3}) + v_{d+1} \mathbf{h}_2^P (r_{d+N+1,d+2} - r_{d+N+1,d+3}) +$
 773 $(v_{d+1,d+2} - v_{d+1,d+3})(r_{d+N+1,d+2} - r_{d+N+1,d+3})$, where v_{d+1} is the $d+1$ -th row of the matrix
 774 V .
 775

776 Similarly we can compute the result for $\mathbf{h}_{N+1}^\top Q^\top K (\mathbf{h}_2^O V \mathbf{h}_2^O - \mathbf{h}_1^P V \mathbf{h}_1^P)$. If Assumption 3.1 stands,
 777 we have
 778

$$\begin{aligned} 779 \quad & |[\mathbf{h}_{N+1}^\top Q^\top K (\mathbf{h}_1^O V \mathbf{h}_1^O + \mathbf{h}_2^O V \mathbf{h}_2^O - \mathbf{h}_1^P V \mathbf{h}_1^P - \mathbf{h}_2^P V \mathbf{h}_2^P)]_{d+1}| \\ 780 \quad & \leq |\mathbf{h}_{N+1}^\top Q^\top K (\mathbf{h}_1^P - \mathbf{h}_2^P)|\epsilon + |v_{d+1}(\mathbf{h}_1^P - \mathbf{h}_2^P)|\epsilon + 2\epsilon^2 \\ 781 \quad & \leq \left| \sum_{i=1}^d g_i(x_1^i - x_2^i) + g_{d+1}(y_1 - y_2) \right| \epsilon \\ 782 \quad & \quad + \left| \sum_{i=1}^d v_{d+1,i}(\mathbf{x}_1^i - \mathbf{x}_2^i) + v_{d+1,d+1}(y_1 - y_2) \right| \epsilon + 2\epsilon^2 \\ 783 \quad & \leq \sqrt{\left| \sum_{i=1}^{d+1} g_i^2 \right| \sum_{i=1}^{d+1} (\mathbf{x}_1^i - \mathbf{x}_2^i)^2} \epsilon \\ 784 \quad & \quad + \sqrt{\left| \sum_{i=1}^{d+1} v_{d+1,i}^2 \right| \sum_{i=1}^{d+1} (\mathbf{x}_1^i - \mathbf{x}_2^i)^2} \epsilon + 2\epsilon^2 \\ 785 \quad & \leq C(\mathbf{x}_{N+1}, Q, K, V) \sqrt{\sum_{i=1}^{d+1} (\mathbf{x}_1^i - \mathbf{x}_2^i)^2} \epsilon + 2\epsilon^2 \\ 786 \quad & = C(\mathbf{x}_{N+1}, Q, K, V) X \epsilon + 2\epsilon^2, \\ 787 \quad & \end{aligned}$$

788 where $g_i = \mathbf{x}_{N+1}^\top R_i(d) + r_{d+N+1,i}$, $C(\mathbf{x}_{N+1}, Q, K, V) = \sqrt{\sum_{i=1}^{d+1} g_i^2} + \sqrt{\sum_{i=1}^{d+1} v_{d+1,i}^2}$ and
 789 $X \sim \chi_{d+1}$ follows the chi distribution with $d+1$ degrees of freedom. From the induction it is clear
 790 that it doesn't matter whether the two permuted columns are adjacent or not. The above inequality
 791 always holds for a transposition and we only need to replace the $|\mathbf{h}_1^P - \mathbf{h}_2^P|$ term with $|\mathbf{h}_i^P - \mathbf{h}_j^P|$
 792 for the transposition (ij) .
 793

800 2. k degree permutation

801 Now we consider a k degree permutation of the prompt columns. According to group theory,
 802 each permutation can be written as a product of disjoint cycles, suppose there are a total of P
 803 cycles and each cycle contains a_p ($p = 1, \dots, P$) elements, then apparently $\sum_{p=1}^P a_p = k$.
 804

Moreover, each cycle can be written as a product of transpositions. For example, an m -cycle $(c_1 \cdots c_m) = (c_1 c_m) \cdots (c_1 c_3)(c_1 c_2)$. So every m -cycle can be written as a product of no more than m transpositions, thus each k degree permutation can be expressed as a product of no more than $\sum_{p=1}^P a_p = k$ transpositions. So from the above analysis we have

$$\begin{aligned} & \mathbb{E}[|\hat{y}_{N+1} - y_{N+1}|] \\ & \leq \frac{1}{N+1} \mathbb{E}[C(\mathbf{x}_{N+1}, Q, K, V) \sum_{j=1}^k X_d \epsilon + 2k\epsilon^2] \\ & \rightarrow C(\mathbf{x}_{N+1}, Q, K, V) \frac{k\sqrt{d}}{N} \epsilon + \frac{2k}{N} \epsilon^2 \quad (d, N \rightarrow \infty) \end{aligned} \quad (4)$$

Here we used the fact that $\mathbb{E}[X_d] = \sqrt{2\pi} \frac{1}{2} \Gamma(\frac{1}{2}(d+2)) / \Gamma(\frac{1}{2}(d+1))$. By Legendre duplication formula we rewrite the mean as

$$\mathbb{E}[X_d] = \sqrt{2/\pi} 2^{d-1} \frac{(\Gamma(d+1/2))^2}{\Gamma(d)}.$$

Now we use Stirling's approximation for Gamma function Define:

$$\begin{aligned} A &= \sqrt{2\pi} \left(\left(\frac{d+1}{2} - 1 \right)^{\frac{d}{2}} e^{-\left(\frac{d-1}{2}\right)} \left[1 + \frac{1}{12\left(\frac{d-1}{2}\right)} + \mathcal{O}\left(\frac{1}{(d+1)^2}\right) \right] \right), \\ B &= \sqrt{2\pi} (d-1)^{d-\frac{1}{2}} e^{-(d-1)} \left[1 + \frac{1}{12(d-1)} + \mathcal{O}\left(\frac{1}{(d+1)^2}\right) \right]. \end{aligned}$$

Then:

$$\begin{aligned} \mathbb{E}[X_d] &= \sqrt{2/\pi} 2^{d-1} \cdot \frac{A^2}{B} \\ &= (d-1)^{1/2} \cdot \left[1 + \frac{1}{4(d+1)} + \mathcal{O}\left(\frac{1}{(d+1)^2}\right) \right] \\ &= \sqrt{d} \left[1 - \frac{1}{4(d+1)} + \mathcal{O}\left(\frac{1}{(d+1)^2}\right) \right], \end{aligned}$$

thus we get the result for eq. (4). \square

Corollary 3.1. *There exist pretrained L -layer Transformers for which the difference bound in Theorem 3.1 remains valid, up to a factor of L .*

Proof. One can directly check that letting $r_{d+i,d+2} = r_{d+i,d+3}, i \in [N]$ and $v_{d+1,d+2} = v_{d+1,d+3}$ will ensure only the $d+1$ -th row of the last column (where the prediction \hat{y}_{N+1} should be stored) is changed when the input flows through a Transformer block (maintaining the position and value of (\mathbf{x}, y) in the input matrix), thus for every Transformer layer the error is at most

$$C_1 \frac{k\sqrt{d}}{N} \epsilon + \frac{2k}{N} \epsilon^2,$$

and the accumulative error should be bounded by L times the above error. \square

Theorem 3.2. *Assume that each element of \mathbf{x}_i , denoted as \mathbf{x}_i^k , follows a normal distribution $\mathcal{N}(0, 1/2)$. For linear regression tasks $y_i = \mathbf{w}^\top \mathbf{x}_i$, let $\Delta y_{N+1} = \hat{y}_{N+1} - y_{N+1}$, where \hat{y}_{N+1} represents a Transformer block's prediction using RoPE after applying a k -degree permutation to the prompt, and y_{N+1} is the prediction based on the original prompt. Then, the following result holds:*

$$\sup \mathbb{E}[|\Delta y_{N+1}|] \longrightarrow C_{RoPE} \frac{kd^3}{N},$$

where C_{RoPE} is a constant that depends on $\mathbf{x}_{N+1}, Q, K, V, \Theta = \{\theta_i\}_i$.

864 *Proof.* We first consider the case where only two adjacent columns are permuted and then generalize
 865 to random permutation between k columns.
 866

867 1. Permutation between two adjacent columns with RoPE

868 The original input with RoPE is:

$$869 H_O = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ y_1 & y_2 & \cdots & y_N & 0 \end{bmatrix} \in \mathbb{R}^{(d+1) \times (N+1)}.$$

872 Note: With RoPE, positional information is encoded through the attention mechanism itself rather
 873 than explicit positional vectors. The rotary transformation is applied to queries and keys before
 874 computing attention scores.
 875

876 After permutation between columns 1 and 2:

$$877 H_P = \begin{bmatrix} \mathbf{x}_2 & \mathbf{x}_1 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ y_2 & y_1 & \cdots & y_N & 0 \end{bmatrix} \in \mathbb{R}^{(d+1) \times (N+1)}.$$

880 The key difference with RoPE is in the attention computation. For a token embedding $\mathbf{h} = [\mathbf{x}, y]^\top$,
 881 the RoPE transformation for position m is applied to the query and key projections:
 882

883 For each dimension pair $(2i, 2i + 1)$ in the query/key vectors, we apply the rotation:

$$884 \begin{bmatrix} q_{2i}^{(m)} \\ q_{2i+1}^{(m)} \end{bmatrix} = \begin{bmatrix} \cos m\theta_i & -\sin m\theta_i \\ \sin m\theta_i & \cos m\theta_i \end{bmatrix} \begin{bmatrix} q_{2i} \\ q_{2i+1} \end{bmatrix}$$

885 The attention score between position m and n becomes:
 886

$$887 a_{m,n} = \frac{(\mathcal{R}_m Q \mathbf{h}_m)^\top (\mathcal{R}_n K \mathbf{h}_n)}{\sqrt{d_k}} = \frac{\mathbf{h}_m^\top Q^\top \mathcal{R}_{n-m} K \mathbf{h}_n}{\sqrt{d_k}}$$

888 where \mathcal{R}_{n-m} is the block-diagonal rotation matrix for relative position $n - m$.
 889

890 Now consider the output difference for the last column:
 891

$$892 \mathbf{h}_{N+1}^+ = \mathbf{h}_{N+1} + \frac{1}{N+1} \sum_{j=1}^{N+1} \langle Q \mathbf{h}_{N+1}, \mathcal{R}_{j-(N+1)} K \mathbf{h}_j \rangle V \mathbf{h}_j.$$

893 The difference between original and permuted outputs is:
 894

$$895 \begin{aligned} & [H_O]_{N+1}^+ - [H_P]_{N+1}^+ \\ &= \frac{1}{N+1} (\langle Q \mathbf{h}_{N+1}, \mathcal{R}_{1-(N+1)} K \mathbf{h}_1 \rangle V \mathbf{h}_1 + \langle Q \mathbf{h}_{N+1}, \mathcal{R}_{2-(N+1)} K \mathbf{h}_2 \rangle V \mathbf{h}_2 \\ &\quad - \langle Q \mathbf{h}_{N+1}, \mathcal{R}_{1-(N+1)} K \mathbf{h}_2 \rangle V \mathbf{h}_2 - \langle Q \mathbf{h}_{N+1}, \mathcal{R}_{2-(N+1)} K \mathbf{h}_1 \rangle V \mathbf{h}_1) \end{aligned}$$

896 Let $R_{-\Delta}^* = Q^\top \mathcal{R}_{-\Delta} K$. The core term becomes:
 897

$$898 V \mathbf{h}_1 \mathbf{h}_{N+1}^\top (R_{-N}^* - R_{1-N}^*) \mathbf{h}_1 - V \mathbf{h}_2 \mathbf{h}_{N+1}^\top (R_{-N}^* - R_{1-N}^*) \mathbf{h}_2$$

899 The RoPE-specific effect appears in the difference $R_{-N}^* - R_{-N+1}^* = Q^\top (\mathcal{R}_{-N} - \mathcal{R}_{-N+1}) K$. For
 900 small rotation angles θ_i , we can approximate:
 901

$$902 \mathcal{R}_{-N} - \mathcal{R}_{-N+1} \approx \frac{d\mathcal{R}_{-\Delta}}{d\Delta} \Big|_{\Delta=N}$$

903 Each 2x2 block of this derivative is:
 904

$$905 \frac{d}{d\Delta} \begin{bmatrix} \cos \Delta\theta_i & -\sin \Delta\theta_i \\ \sin \Delta\theta_i & \cos \Delta\theta_i \end{bmatrix} = \theta_i \begin{bmatrix} -\sin \Delta\theta_i & -\cos \Delta\theta_i \\ \cos \Delta\theta_i & -\sin \Delta\theta_i \end{bmatrix}$$

918 Also we have

$$\begin{aligned}
 & |\mathbf{h}_{N+1}^\top (R_{-N}^* - R_{1-N}^*) \mathbf{h}_1| \\
 &= \left| \sum_{i=1}^d (\mathbf{x}_{N+1}^\top S_i(d) + s_{d+N+1,i}) \mathbf{x}_1^i + (\mathbf{x}_{N+1}^\top S_{d+1}(d) + s_{d+N+1,d+1}) y_1 \right| \\
 &\leq a \left| \sum_{i=1}^d (1 + \mathbf{w}_i) \mathbf{x}_1^i \right|,
 \end{aligned}$$

927 where a is the uniform upper bound for $|\mathbf{x}_{N+1}^\top S_i(d) + s_{d+N+1,i}|$ in which $i = 1, \dots, d+1$.
928 Also $S = (R_{-N}^* - R_{1-N}^*)$ and the definition of $S_i(d)$ and $s_{i,j}$ follows that in eq. (3). Note that
929 $|s_{i,j}| \leq \|\mathbf{q}_i^\top\| \|\mathcal{R}_{-N} - \mathcal{R}_{1-N}\|_F \|\mathbf{k}_j\|$, so $a \leq b^2 d \sqrt{d} \cdot \max_i \theta_i$. Thus we have

$$\begin{aligned}
 & |[V\mathbf{h}_1]_{d+1} \mathbf{h}_{N+1}^\top (R_{-N}^* - R_{1-N}^*) \mathbf{h}_1| \\
 &\leq |[V\mathbf{h}_1]_{d+1}| |\mathbf{h}_{N+1}^\top (R_{-N}^* - R_{1-N}^*) \mathbf{h}_1| \\
 &\leq v a \left(\sum_{i=1}^d \mathbf{x}_1^i \right)^2 \\
 &\leq v a d \left(\sum_{i=1}^d (\mathbf{x}_1^i)^2 \right) \\
 &\leq v b^2 d^{2.5} \theta_{\max} X_d,
 \end{aligned}$$

940 where $v = \max\{v_{d+1,1}, \dots, v_{d+1,d+1}\}$, $b = \max_i \{\|\mathbf{q}_i\|, \|\mathbf{k}_i\|\}$ and $X_d \sim \chi_d^2$.

942 2. k degree permutation with RoPE

943 The same group-theoretic decomposition applies. Each k -degree permutation can be expressed as a
944 product of at most k transpositions. So the final bound becomes:

$$\begin{aligned}
 & \mathbb{E}[|\hat{y}_{N+1} - y_{N+1}|] \\
 &\leq \frac{1}{N+1} \mathbb{E} \left[v b^2 \theta_{\max} d^{2.5} \sum_{j=1}^k X_d \right] \\
 &\rightarrow C_{\text{RoPE}}(\mathbf{x}_{N+1}, Q, K, V, \Theta) \frac{k d^3}{N} \quad (d, N \rightarrow \infty)
 \end{aligned} \tag{5}$$

952 where $\Theta = \{\theta_i\}$ are the RoPE frequencies. □

954 C PROOFS FOR SECTION 3.3

956 C.1 USEFUL LEMMAS FOR IN-CONTEXT LEARNING

958 We first state the result for In-context Gradient Descent of the linear regression problem

$$959 \quad L(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^N (\mathbf{w}^\top \mathbf{x}_j - y_j)^2.$$

962 following Guo et al. (2023).

963 **Lemma C.1 (ICGD).** *There exists an attention layer with 2 heads such that the following holds.
964 For any input sequence H that takes the form*

$$966 \quad \mathbf{h}_i = [\mathbf{x}_i; y_i; \mathbf{w}; \mathbf{p}_i],$$

967 *the attention layer outputs*

$$968 \quad \tilde{\mathbf{h}}_i = [\mathbf{x}_i; y_i; \tilde{\mathbf{w}}; \mathbf{p}_i],$$

969 *where $\tilde{\mathbf{w}}_i$ represents the result of one step of gradient descent*

$$970 \quad \tilde{\mathbf{w}} = \mathbf{w} - \eta \nabla L(\mathbf{w}),$$

971 *for $i \in [N]$.*

972 *Proof.* We first define two attention heads $\{(Q_m, K_m, V_m)\}_{m=1,2}$ such that for all $i, j \in [N]$,
 973

$$974 \quad Q_1 \mathbf{h}_i = \begin{bmatrix} \mathbf{w} \\ -1 \\ \mathbf{0} \end{bmatrix}, K_1 \mathbf{h}_j = \begin{bmatrix} \mathbf{x}_j \\ y_j \\ \mathbf{0} \end{bmatrix}, V_1 \mathbf{h}_j = -\eta \begin{bmatrix} \mathbf{0}_{d+1} \\ \mathbf{x}_j \\ \mathbf{0} \end{bmatrix},$$

$$975$$

$$976$$

977 Thus for $i \in [N]$,

$$978$$

$$979 \quad \langle Q_1 \mathbf{h}_i, K_1 \mathbf{h}_j \rangle - \langle Q_2 \mathbf{h}_i, K_2 \mathbf{h}_j \rangle = \mathbf{w}^\top \mathbf{x}_j - y_j$$

$$980$$

981 Therefore

$$982 \quad \langle Q_1 \mathbf{h}_i, K_1 \mathbf{h}_j \rangle V_1 \mathbf{h}_j + \langle Q_2 \mathbf{h}_i, K_2 \mathbf{h}_j \rangle V_2 \mathbf{h}_j$$

$$983 = (\langle Q_1 \mathbf{h}_i, K_1 \mathbf{h}_j \rangle - \langle Q_2 \mathbf{h}_i, K_2 \mathbf{h}_j \rangle) \cdot \eta [\mathbf{0}_{d+1}; \mathbf{x}_j; \mathbf{0}]$$

$$984 = -\eta (\mathbf{w}^\top \mathbf{x}_j - y_j) \cdot [\mathbf{0}_{d+1}; \mathbf{x}_j; \mathbf{0}].$$

$$985$$

986 Summing the above for all $i \in [N]$ yields

$$987$$

$$988 \quad \sum_{j=1}^N \sum_{m=1,2} \frac{1}{N} \langle Q_m \mathbf{h}_i, K_m \mathbf{h}_j \rangle V_m \mathbf{h}_j$$

$$989$$

$$990 = \frac{1}{N} \left[\sum_{j=1}^N -\eta (\mathbf{w}^\top \mathbf{x}_j - y_j) \right] \cdot [\mathbf{0}_{d+1}; \mathbf{x}_j; \mathbf{0}]$$

$$991$$

$$992 = [\mathbf{0}_{d+1}; -\eta \nabla L(\mathbf{w}); \mathbf{0}].$$

$$993$$

$$994$$

995 Thus the attention layer outputs

$$996$$

$$997 \quad \tilde{\mathbf{h}}_i = \mathbf{h}_i + \sum_{m=1}^2 \sum_{j=1}^N \frac{1}{N} \langle Q_m \mathbf{h}_i, K_m \mathbf{h}_j \rangle V_m \mathbf{h}_j$$

$$998$$

$$999$$

$$1000 = \begin{bmatrix} \mathbf{x}_i \\ y_i \\ \mathbf{w} \\ * \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{d+1} \\ -\eta \nabla L(\mathbf{w}) \\ \mathbf{0} \end{bmatrix}$$

$$1001$$

$$1002$$

$$1003$$

$$1004 = \begin{bmatrix} \mathbf{x}_i \\ y_i \\ \mathbf{w} - \eta \nabla L(\mathbf{w}) \\ * \end{bmatrix}.$$

$$1005$$

$$1006$$

$$1007$$

1008 This finishes the proof. \square

$$1009$$

1010 **Lemma C.2** (In-context linear regression). *A Transformer with $\mathcal{O}(\epsilon^{-1})$ layers can implement in-
 1011 context gradient descent such that its prediction $\hat{y}_i = [\text{TF}(H)]_{d+1,i}$ satisfies*

$$1012$$

$$1013$$

$$1014 \quad |\hat{y}_i - \langle \hat{\mathbf{w}}_i, \mathbf{x}_i \rangle| \leq \epsilon.$$

$$1015$$

1016 The lemma directly follows Guo et al. (2023) Theorem B.5, so we omit the detailed proof and only
 1017 provide two key steps. The first step is to determine the number of Transformer layers needed
 1018 to achieve ϵ accuracy. The second step is to construct a linear prediction layer which stores the
 1019 prediction of the Transformer (Guo et al. (2023) Lemma B.2).

$$1020$$

1021 **Lemma C.3.** *There exists an MLP layer with parameters W_1, W_2 such that $H' = \text{MLP}_{W_1, W_2}(H)$,
 1022 where H is the input with the one-hot positional encoding, and H' is the input with the positional
 1023 encoding $\bar{p}_i = [\mathbf{0}_{N-3}; 1; i; i^2; i^3]$.*

$$1024$$

1025 *Proof.* We need to construct weight matrices not reliant on the input h_i such that the one-hot PE p_i
 1026 can be transformed to the specific format in the Lemma and replace the original PE. Consider two
 1027 matrices P, Q which satisfies

$$1028$$

$$1029 \quad P_{N+d-2:N+d+2,i} = [1; i; i^2; i^3], Q_{d+i+1,d+i+1} = -1$$

$$1030$$

1026 and other parts of P, Q be 0. Recall that $h_i = [x_i; y_i; p_i; \mathbf{0}_{D-N-d-2}]$, then one can directly check
 1027 that letting $W_2 = P + Q, W_1 = I$ yields

$$1028 \quad 1029 \quad h'_i = h_i + W_2\sigma(W_1 h_i) = [x_i; y_i; \bar{p}_i; \mathbf{0}_{D-N-d-2}].$$

1030 This shows that a single MLP layer can indeed change the input format in this specific way, and the
 1031 weight matrices of the MLP layer doesn't rely on the input x_i, y_i , thus concluding the proof. \square
 1032

1033 **Lemma C.4.** *There exists an MLP layer such that for the input H of the form*

$$1034 \quad 1035 \quad H = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ \bar{\mathbf{p}}_1 & \bar{\mathbf{p}}_2 & \cdots & \bar{\mathbf{p}}_N & \bar{\mathbf{p}}_{N+1} \end{bmatrix},$$

1036 *it outputs*

$$1037 \quad \text{MLP}^{(1)}(H) = \begin{bmatrix} \sigma_\rho(W_1 \mathbf{x}_1) & \cdots & \sigma_\rho(W_1 \mathbf{x}_{N+1}) \\ \mathbf{x}_1 & \cdots & \mathbf{x}_{N+1} \\ \bar{\mathbf{p}}'_1 & \cdots & \bar{\mathbf{p}}'_{N+1} \end{bmatrix}.$$

1041 *The $L + 1$ Transformer blocks that follows output*

$$1042 \quad 1043 \quad \tilde{H} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ \mathbf{0}_d & \mathbf{0}_d & \cdots & \mathbf{0}_d & \mathbf{0}_d \\ \mathbf{0}_d & \mathbf{x}_1 & \cdots & \mathbf{x}_{N-1} & \mathbf{x}_N \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ \tilde{\mathbf{p}}_1 & \tilde{\mathbf{p}}_2 & \cdots & \tilde{\mathbf{p}}_N & \tilde{\mathbf{p}}_{N+1} \end{bmatrix},$$

1047 *where $\tilde{\mathbf{p}}_i, \mathbf{p}'_i$ differs from \mathbf{p}_i only in the dimension of the zero paddings.*

1048 *Proof.* For the first MLP layer, consider any input token $\mathbf{h}_i = [x_i; \bar{p}_i]$. Define weight matrices
 1049 $W_1, W_2 \in \mathbb{R}^{D \times D}$ such that

$$1050 \quad W_1 \mathbf{h}_i = \begin{bmatrix} \pm \mathbf{x}_i \\ \pm \mathbf{x}_i \\ \pm \mathbf{x}_i \\ \mathbf{0} \end{bmatrix}, \sigma(W_1 \mathbf{h}_i) = \begin{bmatrix} \sigma(\pm \mathbf{x}_i) \\ \sigma(\pm \mathbf{x}_i) \\ \sigma(\pm \mathbf{x}_i) \\ \mathbf{0} \end{bmatrix},$$

$$1051 \quad W_2 \sigma(W_1 \mathbf{h}_i) = \begin{bmatrix} \sigma(\mathbf{x}_i) - \sigma(-\mathbf{x}_i) \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} -\sigma(\mathbf{x}_i) + \sigma(-\mathbf{x}_i) \\ \mathbf{0} \end{bmatrix}$$

$$1052 \quad + \begin{bmatrix} \mathbf{0}_d \\ \sigma(\mathbf{x}_i) - \sigma(-\mathbf{x}_i) \\ \mathbf{0} \end{bmatrix}.$$

1060 Therefore, the output of the MLP layer is

$$1061 \quad \bar{\mathbf{h}}_i = \mathbf{h}_i + W_2 \sigma(W_1 \mathbf{h}_i) = \begin{bmatrix} \mathbf{x}_i \\ \mathbf{x}_i \\ \bar{\mathbf{p}}_i \end{bmatrix}.$$

1065 Now we need to achieve two things:

- 1066 • Move the \mathbf{x}_i into the $(3d + 1 : 4d)$ block in the final layer, which takes the same number
 1067 of attention heads in every layer.
- 1068 • Use one copying layer with a single attention head to copy each \mathbf{x}_i to the $(2d + 1 : 3d)$
 1069 block of the next token.

1070 \square

1073 **Lemma 3.1.** *For any $\epsilon > 0$, there exists a Transformer with $\mathcal{O}(\epsilon^{-1})$ blocks such that for the input
 1074 \tilde{H} of the form*

$$1075 \quad \tilde{H} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ \mathbf{0}_d & \mathbf{0}_d & \cdots & \mathbf{0}_d & \mathbf{0}_d \\ \mathbf{0}_d & \mathbf{x}_1 & \cdots & \mathbf{x}_{N-1} & \mathbf{x}_N \\ \mathbf{0}_d & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_N & \mathbf{p}_{N+1} \end{bmatrix},$$

1080 the prediction of the Transformer $\hat{\mathbf{y}}_i = [\text{TF}(\tilde{H})]_{(d+1):2d,i}$ ($i \in [N+1]$) satisfies
 1081

$$1082 \quad \|\hat{\mathbf{y}}_i - A\mathbf{x}_i\|_2 \leq \sqrt{d}\epsilon, \\ 1083$$

1084 with d being the dimension of \mathbf{x} .
 1085

1086 *Proof.* For the dynamical system we have the loss function
 1087

$$1089 \quad \hat{L}(A) = \frac{1}{N} \sum_{j=1}^N \|A\mathbf{x}_j - \mathbf{y}_j\|_2^2, \\ 1090 \\ 1091 \\ 1092$$

1093 where $\mathbf{y}_j = \mathbf{x}_{j+1}$. The multi-output dynamic system problem is equivalent to d separable single-
 1094 output linear regression problems, one for each output dimension. So the proof follows by directly
 1095 repeating the analysis in Lemma C.2, with the following adaptation
 1096

- 1097 • Use a transformer with $2d$ heads to perform d parallel linear regression problems (each
 1098 with 2 heads), using in-context gradient descent (Lemma C.1) as the internal optimization
 1099 algorithm.
- 1100 • Use a single-attention layer with d parallel linear prediction heads to write prediction $(\hat{\mathbf{y}}_i)_j$
 1101 into location $(i, d+j)$ with $|(\hat{\mathbf{y}}_i)_j - \langle (\hat{A}_i)_j, \mathbf{x}_i \rangle| \leq \epsilon$.
 1102

□

1108 C.2 PROOFS FOR MAIN THEOREMS

1109 **Theorem 3.3.** Under Assumption 3.1, assume $\mathbf{x}_0^k \sim \mathcal{N}(0, 1/2)$. For first order difference equation
 1110 $\mathbf{x}_{i+1} = A\mathbf{x}_i + \mathbf{b}$, define $\Delta\mathbf{x}_{N+1} = \hat{\mathbf{x}}_{N+1} - \mathbf{x}_{N+1}$, where $\hat{\mathbf{x}}_{N+1}$ represents the transformer's prediction
 1111 after applying a k -degree permutation to the prompt, and \mathbf{x}_{N+1} corresponds to the prediction
 1112 based on the original prompt. Then the following result holds:
 1113

$$1116 \quad \sup \mathbb{E}[\|\Delta\mathbf{x}_{N+1}\|_2] \longrightarrow C_2 \frac{kd}{N}\epsilon + \frac{2k\sqrt{d}}{N}\epsilon^2 \quad (d, N \rightarrow \infty), \\ 1117 \\ 1118$$

1119 where C_2 is a constant dependent on $\mathbf{x}_{N+1}, Q, K, V$.
 1120

1121 *Proof.* We inherit the proof in Theorem 3.1 by setting $y_i = 0$. W.L.O.G. we assume $\|A\| = 1$ and
 1122 $\mathbf{b} = \mathbf{0}$. Recall the input matrix
 1123

$$1124 \quad H = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_N & \mathbf{p}_{N+1} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & 0 \end{bmatrix} \in \mathbb{R}^{D \times (N+1)}, \\ 1125 \\ 1126 \\ 1127 \\ 1128$$

1129 so when we swap column 1 and column 2 we still have
 1130

$$1131 \quad [H_O]_{N+1}^+ - [H_P]_{N+1}^+ \\ 1132 \quad = \frac{h_{N+1}^\top Q^\top K(h_1^O V h_1^O + h_2^O V h_2^O - h_1^P V h_1^P - h_2^P V h_2^P)}{N+1}. \\ 1133$$

Replacing x_{N+1} and $y_i, i \in [N+1]$ in the proof of Theorem 1 with 0 yields the value change at the j -th row ($j \in [d]$) of the last column is:

$$\begin{aligned}
& |[\mathbf{h}_{N+1}^\top Q^\top K(\mathbf{h}_1^O V \mathbf{h}_1^O + \mathbf{h}_2^O V \mathbf{h}_2^O - \mathbf{h}_1^P V \mathbf{h}_1^P - \mathbf{h}_2^P V \mathbf{h}_2^P)]_j| \\
& \leq |\mathbf{h}_{N+1}^\top Q^\top K(\mathbf{h}_1^P - \mathbf{h}_2^P)|\epsilon + |v_j(\mathbf{h}_1^P - \mathbf{h}_2^P)|\epsilon + 2\epsilon^2 \\
& \leq \left| \sum_{i=1}^d g_i(\mathbf{x}_1^i - \mathbf{x}_2^i) \right| \epsilon + \left| \sum_{i=1}^d v_{j,i}(\mathbf{x}_1^i - \mathbf{x}_2^i) \right| \epsilon + 2\epsilon^2 \\
& \leq \sqrt{\left| \sum_{i=1}^d g_i^2 \right| \sum_{i=1}^d (\mathbf{x}_1^i - \mathbf{x}_2^i)^2} \epsilon \\
& \quad + \sqrt{\left| \sum_{i=1}^d v_{j,i}^2 \right| \sum_{i=1}^d (\mathbf{x}_1^i - \mathbf{x}_2^i)^2} \epsilon + 2\epsilon^2 \\
& = C_2 X \epsilon + 2\epsilon^2,
\end{aligned}$$

where $C_2 = \sqrt{\sum_{i=1}^d g_i^2} + \sqrt{\sum_{i=1}^d v_{j,i}^2}$. $X = \sqrt{\sum_{i=1}^d (\mathbf{x}_1^i - \mathbf{x}_2^i)^2}$. Note that $\mathbf{x}_1^i = \sum_{j=1}^d a_{ij} \mathbf{x}_0^j \sim \mathcal{N}(0, (\sum_j a_{ij}^2))$. Now suppose $\sum_j a_{ij}^2 = 1$ for $i \in [d]$, then we still have $X \sim \chi_{d+1}$, and the rest is the same as the proof in Theorem 3.1, except that the L_2 norm should be multiplied by \sqrt{d} since the prediction is a d -dimension vector instead of a number. \square

Theorem 3.4. For any $\epsilon > 0$, there exists a Transformer with $\mathcal{O}(\epsilon^{-1})$ layers such that for an input structured as described in eq. (2), it implements approximate GD on the input with shifted prompt order and the prediction for \mathbf{x}_i ($i \in [N]$) satisfies the following upper bound:

$$\|\hat{\mathbf{x}}_{i+1} - A\mathbf{x}_i\|_2 \leq (\sqrt{kd} + \sqrt{d})\epsilon,$$

where k, d represents the degree of permutation and the dimension of \mathbf{x} respectively.

Proof. We first consider the simple case of flipping the first two tokens of the input, resulting in the input format

$$H = \begin{bmatrix} \mathbf{x}_2 & \mathbf{x}_1 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_N & \mathbf{p}_{N+1} \end{bmatrix}$$

Following the matrix transformation procedure in Lemmas 3.1 and C.4, we get the input format in Lemma 3.1

$$\tilde{H} = \begin{bmatrix} \mathbf{x}_2 & \mathbf{x}_1 & \mathbf{x}_3 & \cdots & \mathbf{x}_{N+1} \\ \mathbf{0}_d & \mathbf{0}_d & \mathbf{0}_d & \cdots & \mathbf{0}_d \\ \mathbf{0}_d & \mathbf{x}_2 & \mathbf{x}_1 & \cdots & \mathbf{x}_N \\ \mathbf{0}_d & \mathbf{x}_1 & \mathbf{x}_3 & \cdots & \mathbf{x}_{N+1} \\ \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 & \cdots & \mathbf{p}_{N+1} \end{bmatrix},$$

where the prediction corresponding to $\mathbf{x}_1, \mathbf{x}_2$ is changed from $\mathbf{x}_2, \mathbf{x}_3$ to $\mathbf{x}_3, \mathbf{x}_1$ respectively. Notice that the Transformer implements in-context gradient descent by Lemma C.1, the gradient for the first element of the objective vector is

$$\nabla L(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^N (\mathbf{w}^\top \mathbf{x}_j - y_j) \mathbf{x}_j.$$

Here $y_j = \mathbf{x}_{j+1}^1$. But for the permuted input, the gradient becomes

$$\nabla L'(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^N (\mathbf{w}^\top \mathbf{x}_j - y'_j) \mathbf{x}_j,$$

where $y'_1 = \mathbf{x}_3^1, y'_2 = \mathbf{x}_1^1$, and $y'_j = y_j$ for $j \geq 3$. So the difference in gradient is

$$\mathbf{e} = \frac{\mathbf{x}_3^1 - \mathbf{x}_2^1}{N} \mathbf{x}_1 + \frac{\mathbf{x}_1^1 - \mathbf{x}_3^1}{N} \mathbf{x}_2.$$

1188 So the gradient descent update at each iteration t is
 1189

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla L(\mathbf{w}) - \eta \mathbf{e},$$

1191 and after T rounds the parameter \mathbf{w} becomes
 1192

$$\mathbf{w}_T = \mathbf{w}_0 - \eta \sum_{t=0}^{T-1} \nabla L(\mathbf{w}_t) - \eta T \mathbf{e}.$$

1196 Thus the cumulative error term induced by \mathbf{e} is
 1197

$$\eta T \mathbf{e} = 2\eta T \cdot \frac{u_1 - u_2}{N} \mathbf{x},$$

1200 where $u_i \sim \mathcal{N}(0, 1/2)$, $i = 1, 2$ and each component of \mathbf{x} also follows $\mathcal{N}(0, 1/2)$. Thus the
 1201 expectation of the squared error is

$$\begin{aligned} \mathbb{E}[\|\eta T \mathbf{e}\|^2] &= \left(\frac{2\eta T}{N}\right)^2 \mathbb{E}[\|u_1 - u_2\|^2] \mathbb{E}[\|\mathbf{x}\|^2] \\ &= \frac{2d\eta^2 T^2}{N^2}. \end{aligned}$$

1202 Here we used the fact that $\mathbb{E}[\|u_1 - u_2\|^2] = 1$ and $\mathbb{E}[\|\mathbf{x}\|^2] = d/2$. Note that T is the number
 1203 of layer of the Transformer as one layer of Transformer implements one step of gradient descent.
 1204 Lemma C.2 states that to achieve $\mathcal{O}(\epsilon)$ accuracy we need a Transformer with $\mathcal{O}(\epsilon^{-1})$ layers, thus
 1205 choosing $\eta = \mathcal{O}(\epsilon)$ would yield
 1206

$$\sqrt{\mathbb{E}[\|\eta T \mathbf{e}\|^2]} \leq \frac{\sqrt{d}}{N}.$$

1211 Since \mathbf{x} is bounded, the final L_2 norm of the error brought by the approximate gradient descent
 1212 should be bounded by
 1213

$$\sqrt{d} \left(\frac{\sqrt{d}}{N} + \epsilon \right) = \frac{d}{N} + \sqrt{d}\epsilon.$$

1218 By induction a k -degree permutation on the prompt input would yield a final error of
 1219

$$\frac{\sqrt{kd}}{N} + \sqrt{d}\epsilon,$$

1220 and choosing $N = \mathcal{O}(\epsilon^{-1})$ would yield the desired result. □
 1221

1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241