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ABSTRACT

Transformer models have demonstrated a remarkable ability to perform a wide
range of tasks through in-context learning (ICL), where the model infers patterns
from a small number of example prompts provided during inference. However,
empirical studies have shown that the effectiveness of ICL can be significantly
influenced by the order in which these prompts are presented. Despite its sig-
nificance, this phenomenon has been largely unexplored from a theoretical per-
spective. In this paper, we theoretically investigate how positional encoding (PE)
affects the ICL capabilities of Transformer models, particularly in tasks where
prompt order plays a crucial role. We examine two distinct cases: linear regres-
sion, which represents an order-equivariant task, and dynamic systems, a classic
time-series task that is inherently sensitive to the order of input prompts. Theo-
retically, we evaluated the change in the model output when positional encoding
(PE) is incorporated and the prompt order is altered. We proved that the magni-
tude of this change follows a convergence rate of O(k/N), where k is the degree
of permutation to the original prompt and N is the number of in-context exam-
ples. Furthermore, for dynamical systems, we demonstrated that PE enables the
Transformer to perform approximate gradient descent (GD) on permuted prompts,
thereby ensuring robustness to changes in prompt order. These theoretical findings
are experimentally validated.

1 INTRODUCTION

Large language models (LLMs) have shown remarkable in-context learning (ICL) capabilities
(Brown et al., 2020). When provided with a few prompts as examples, these models can accurately
predict outcomes for new tasks without requiring any parameter updates. This intriguing ability has
sparked significant interest, prompting a recent wave of research aimed at developing a white-box
theoretical understanding of ICL (Xie et al., 2022; Akyürek et al., 2022; Von Oswald et al., 2023;
Ahn et al., 2023; Wu et al., 2023; Guo et al., 2023; Bai et al., 2024; Wang et al., 2024).

Despite the advantages of this remarkable phenomenon, Lu et al. (2021) found that the ICL ability
of LLMs, such as GPT-3, is highly sensitive to prompt order. This sensitivity can result in per-
formance ranging from near state-of-the-art to almost random guessing, depending on the prompt
arrangement. This finding is surprising given that the Transformer architecture (Vaswani, 2017)
is inherently permutation invariant (Yun et al., 2019; Lee et al., 2019), suggesting that changing
the order of prompts should not affect the model’s output. However, positional encoding (PE), a
mechanism designed to incorporate order information into the otherwise permutation-invariant ar-
chitecture, disrupts this invariance. Since the introduction of the Transformer, numerous PE variants
(Vaswani, 2017; Brown et al., 2020; Zhang et al., 2022; Chowdhery et al., 2023; Touvron et al.,
2023; Le Scao et al., 2023; Su et al., 2024) have been developed . While positional encoding has
been extensively studied in tasks such as language modeling and machine translation, its specific
impact on ICL remains an underexplored area of research.

In this paper, we aim to investigate how PE affects the ICL capabilities of Transformer models.
We focus on two representative cases: linear regression, an order-insensitive task, and a simple
dynamical system, which is highly order-sensitive. Our findings indicate that positional encoding
(PE) does not statistically harm ICL performance in order-invariant tasks, such as linear regression,
while enhancing order robustness in order-sensitive tasks, such as dynamical systems.
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The key contributions of this paper are summarized as follows:

• We provide a sufficient condition on the weight matrices of the Transformer (section 3.1)
that ensures it maintains permutation invariance, regardless of the input task type.

• For linear regression tasks, where predictions are ideally invariant to prompt order, we
theoretically demonstrate that the change in ICL predictions caused by prompt order shifts
is bounded by O(k/N) · ϵ for Transformers with positional encoding (PE) (section 3.2).
This indicates minimal impact on ICL performance by PE.

• For dynamical systems, which closely resemble natural language processing tasks, we show
that the theoretical bounds are consistent with those for linear regression, highlighting ro-
bustness to prompt order changes. Moreover, we find that PE enables Transformers to
perform approximate gradient descent (GD) on permuted prompts, further proving the ro-
bustness of Transformers’ ICL capabilities (section 3.3).

• We also validate our theoretical findings through experiments (section 4). The absolute
differences in outputs between differently ordered prompts closely match our theoretical
predictions (figs. 1 and 4) for both linear regression and dynamical systems.

2 PRELIMINARIES

2.1 TRANSFORMERS

A Transformer layer contains two sub-layers, the attention layer and the MLP layer. We denote the
input sequence to the transformer as h = [h1, · · · ,hN ] ∈ RD×N .
Definition 2.1. (Attention layer) An attention layer with M heads is denoted as Attnθ(·), where
θ = {Vm, Qm,Km}m∈[M ]. The output of this layer on the input matrix H is:

Attnθ(H) = H +
1

N

M∑
m=1

(VmH)× σ̄((QmH)⊤(KmH)),

where σ̄ : R → R is an activation function . For each column, we denote h+
i := [Attnθ(H)]i and

get:

h+
i = hi +

1

N

M∑
m=1

N∑
j=1

σ̄ (⟨Qmhi,Kmhj⟩)Vmhj .

In this paper we consider the linear self attention (LSA) layer following previous works (Dai et al.,
2023; Mahankali et al., 2023; Ahn et al., 2023; Von Oswald et al., 2023). The attention layer is
followed by the MLP layer.
Definition 2.2. (MLP layer) An MLP layer with hidden dimension D′ is denoted as MLPθ(·),
where θ = (W1,W2) ∈ RD′×D × RD×D′

. The output of this layer on input h is

MLPθ(H) = H +W2 σ(W1H),

where σ : R → R is an activation function. For each column:

[MLPθ(h)]i = hi +W2 σ(W1hi).

In the MLP layer σ(t) = max{t, 0} is the ReLU activation. A Transformer layer (block) contains
one attention layer followed by one MLP layer, and we denote it as TFi, with i indicating the i-th
layer of a Transformer. We also denote a full Transformer by TF without specifying the number of
layers.

2.2 POSITIONAL ENCODING

Absolute positional encoding. The absolute positional encoding (APE) which is used in the orig-
inal Transformer paper (Vaswani, 2017), where positional encoding vectors (pi) are added to the
corresponding word embeddings, resulting in a new hidden state at position i:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

h′
i = hi + pi.

Throughout this paper, we consider the one-hot positional encoding which allows precise study of
how prompt order changes affect predictions, independent of complex encoding schemes. The one-
hot PE is of the form

pi =

[
0i−1

1
0N−i

]
∈ RN ,

where N is the number of columns of the input matrix. We also concatenate the positional encoding
with the input matrix H instead of adding it directly to H (see eq. (1)), following previous works
(Guo et al., 2023; Bai et al., 2024; Wang et al., 2024).

Rotary positional embedding. Rotary Positional Encoding (RoPE) (Su et al., 2024) is an alter-
native positional encoding scheme that incorporates relative position information through rotation
operations in the vector space. Unlike absolute positional encodings that are added to or concate-
nated with token embeddings, RoPE encodes positional information by rotating the query and key
vectors in the self-attention mechanism using rotation matrices. The rotation matrix Rm is a block-
diagonal matrix defined as:

Rm =



cos(mθ0) − sin(mθ0) 0 0 · · · 0 0
sin(mθ0) cos(mθ0) 0 0 · · · 0 0

0 0 cos(mθ1) − sin(mθ1) · · · 0 0
0 0 sin(mθ1) cos(mθ1) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cos(mθd/2−1) − sin(mθd/2−1)
0 0 0 0 · · · sin(mθd/2−1) cos(mθd/2−1)


where θi = 10000−2i/d for i = 0, 1, . . . , d/2− 1, and d is the dimension of the query/key vectors.
For each dimension pair (2i, 2i+ 1) in the query/key vectors, we apply the rotation:[

qm2i
qm2i+1

]
=

[
cosmθi − sinmθi
sinmθi cosmθi

] [
q2i

q2i+1.

]
The attention score between position m and n becomes:

am,n =
(RmQhm)⊤(RnKhn)√

dk
=

h⊤
mQ⊤Rn−mKhn√

dk
,

where Rn−m is the block-diagonal rotation matrix for relative position n − m. This formulation
ensures that the attention scores between queries and keys depend only on their relative distance
m-n, providing inherent relative position awareness in the self-attention computation.

2.3 IN-CONTEXT LEARNING

A complete in-context learning (ICL) process contains two stages: pretraining and inference. In
the pretraining stage, a Transformer is trained on meta-data generated from n different tasks, where
each data point (x, y) is sampled from a task-specific distribution Pi, where i = 1, · · · , n indexes
the tasks. During the inference stage, the prompts are sampled from a distribution P′

k corresponding
to task k. Here P′

k during inference can differ from Pk in pretraining. For example, let the k-th
task denote a linear regression problem y = w⊤x, the weight wpretrain used during pretraining could
be different from winference used during inference. We denote the prompts consisting of in-context
examples as D = (xi, yi)i∈[N ], representing N examples sampled from the task distribution. A
novel input xN+1 is sampled from Px, forming the input to the Transformer as a pair (D,xN+1).
Here xi ∈ Rd, yi ∈ R.

More specifically, we denote the input to the transformer as

H =

x1 x2 · · · xN xN+1

y1 y2 · · · yN 0
p1 p2 · · · pN pN+1

0 0 · · · 0 0

 ∈ RD×(N+1), (1)
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where pi ∈ RN+1 is the one-hot positional encoding, and 0 ∈ RD−N−d−2 is the zero padding. As
mentioned in section 2.2, here we concatenated the positional encoding with the input matrix, rather
than adding them, to highlight the impact of positional encoding while preserving its fundamental
characteristics.

A Transformer processes the input prompt H and generates a prediction for the label corresponding
to xN+1. The prediction value ŷN+1 is stored in the output matrix H̃ at the position immediately
following yN . We say in-context learning succeeds if ŷN+1 and yN is close enough, or ϵ-close,
under a certain metric associated with task k (In this work we set the metric as the MSE loss).

3 MAIN RESULTS

In this section, we first provide a high level approach towards understanding how the positional en-
coding could maintain the permutation invariance of Transformers. Then we examine two types of
in-context learning (ICL) tasks: linear regression and first-order difference equations. Linear regres-
sion, a well-established ICL task extensively studied in prior works (Bai et al., 2024; Wang et al.,
2024), serves as a lens to explore the underlying mechanisms of Transformers’ ICL capabilities. This
task is permutation invariant, so the order of prompts does not influence the predictions. In contrast,
first-order difference equations, a time-series task studied by Li et al. (2023); Guo et al. (2023), are
highly sensitive to prompt order, making them an ideal test case for assessing the effectiveness of
positional encoding in ICL.

3.1 HIGH LEVEL APPROACH

The objective is to analyze how positional encoding affects the output of a Transformer when the
input prompts are permuted. To formalize this, we first define the raw input matrix (without con-
catenated positional encoding) as

H ′ =

[
x1 x2 · · · xN xN+1

y1 y2 · · · yN 0
0D−d−1 0D−d−1 · · · 0D−d−1 0D−d−1

]
,

where {xi}i∈[N+1] ∈ Rd are the feature vectors, {yi}i∈[N+1] ∈ R are the corresponding labels, and
0D−d−1 represents zero-padding to align the dimensions. The positional encoding matrix is defined
as:

E =

[
0d+1 · · · 0d+1 0d+1

p1 · · · pN pN+1

0D−d−N−2 · · · 0D−d−N−2 0D−d−N−2

]
,

where {pi}i∈[N+1] ∈ RN+1 are the positional encoding vectors. Consequently, the full input to the
Transformer becomes H = H ′ + E.

3.1.1 POSITIONAL ENCODING AFFECTS ATTENTION OUTPUT

For the attention layer, let the attention operation be denoted by f := Attn. If P is any permutation
matrix, it is known that f(H ′P ) = f(H ′)P . When positional encoding is added, the difference
between the attention outputs becomes

f(H ′P + E)− f(H ′ + E)

= f(H ′P + E)− f(H ′P + EP ) + f((H ′ + E)P )− f(H ′ + E)

= f(H ′P + E)− f(H ′P + EP ).

Denote gA(B) = f(A+B)− f(A), then we can rewrite the above equation as

f(H ′P + E)− f(H ′ + E)

= f(H ′P + E)− f(H ′P + EP )

= f(H ′P + E)− f(H ′P )− (f(H ′P + EP )− f(H ′P ))

= gH′P (E)− gH′P (EP )

= (gH′P (E)− gH′P (E)P ) + (gH′P (E)P − gH′P (EP )).
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Since we are interested only in the last column of the output, the first term vanishes since the permu-
tation matrix P doesn’t affect the last column, so we only need to study gH′P (E)P − gH′P (EP ).
This implies that in the presence of positional encoding, the effect of permutation on the Transformer
output depends on whether the function g is permutation invariant. Expanding the definition of f ,
we find that

gA(B) ≈ B +
1

N

M∑
m=1

Vm(AB⊤RmA+BA⊤RmA+AA⊤RmB),

where Rm = Q⊤
mKm. Next we compute

gA(BP )− gA(B)P ≈ 1

N

M∑
m=1

Vm(A(P⊤B⊤RmA−B⊤RmAP ) +B(PA⊤RmA−A⊤RmAP )),

where we omit the higher order terms of B. This difference term is generally non-zero, indicating
that positional encoding impacts the attention output and compromises its permutation invariance.
While this property hinders performance on permutation-invariant tasks like in-context linear re-
gression (where input order should be irrelevant), it could potentially be beneficial for tasks where
sequence ordering carries meaningful information, such as time-series prediction or language mod-
eling. In the following, we first demonstrate that under a specific assumption, permutation invariance
can still be preserved.

3.1.2 ATTENTION LAYER PRESERVES PERMUTATION INVARIANCE

By substituting A = H ′P and B = E, a sufficient condition for g to be permutation invariant is
Condition 3.1. Rm is a symmetric matrix of the form

Rm =

[
Sm

0 Um

Tm

]
,

with the dimension of block matrices satisfying: Sm ∈ R(d+1)×(d+1),0 ∈ R(N+1)×(d+1), Tm ∈
R(D−N−d−2)×(d+1) and Um ∈ RD×(D−d−1).

When Condition 3.1 holds, it follows that B⊤RmA = 0 ∈ R(N+1)×(N+1), and A⊤RmA becomes
symmetric. This symmetry ensures that PA⊤RmA = A⊤RmAP , thereby preserving the permuta-
tion invariance of g. The above condition can be further loosened if we don’t require both terms in
the decomposition of gA(BP )− gA(B)P to be zero matrices for each head.
Remark 3.1. If the positional encoding is not one-hot, Condition 3.1 should be tightened to require
0 ∈ R(N+1)×D. Note that the matrix Rm ∈ RD×D, so this is a rather strong restriction, especially
when N is large.

3.1.3 MLP LAYER PRESERVES PERMUTATION INVARIANCE

Let ϕ denote the MLP layer, then

ϕ(H) = H +W2σ(W1H).

Similarly we can compute how the positional encoding affects the output of the MLP layer.

ϕ(H ′P + E)− ϕ(H ′ + E) = H ′ −H +W2(σ(W1(H
′P + E))− σ(W1(H

′ + E))),

where the first term need not be considered provided that the permutation P doesn’t affect the the
last column in H . By the property of σ and the structure of H ′, E, we have σ(W1(H

′P + E)) −
σ(W1(H

′ + E)) = σ(W1H
′)P − σ(W1H

′), thus the last column is also unaffected. This shows
that the MLP layer still maintains permutation invariance after adding the positional encoding.

Now we summarize the result reached so far as:

5
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Proposition 1. There exists pretrained Transformers (satisfying Condition 3.1), such that
positional encoding does not compromise the permutation-invariance property of Trans-
formers.

The proposition implies that positional encoding can interfere with the Transformer architecture’s
inherent permutation invariance. This disruption presents challenges when applying Transformers to
permutation-invariant in-context learning (ICL) tasks. However, the findings suggest that specialized
pretraining on such tasks may enable the model to compensate for these effects. Specifically, a
Transformer pretrained on permutation-invariant ICL tasks could potentially learn to overcome the
limitations introduced by positional encoding, effectively mitigating its adverse impacts on model
performance.

3.2 PE EFFECT ON LINEAR REGRESSION

In this section we consider linear regression tasks, which is the most common setting in ICL analysis
studied by many (Akyürek et al., 2022; Von Oswald et al., 2023; Ahn et al., 2023; Wu et al., 2023;
Gatmiry et al., 2024).

3.2.1 ONE-HOT PE

We first state a mild condition which bounds the Transformer’s weight matrices.

Assumption 3.1. Consider a transformer pretrained on a task y = f(x), where x ∈ Rd, with N
in-context examples in each data point. The pretrained Transformer satisfies

max{|
(
Q⊤K

)
d+N+1,d+2

−
(
Q⊤K

)
d+N+1,d+3

|, |Vd+1,d+2 − Vd+1,d+3|} ≤ ϵ,

where ϵ is a small quantity.

The assumption only requires two elements in the matrices Q⊤K and V to be close enough, which
is a rather loose assumption in that it doesn’t require the specific Q,K, V construction in previous
works (Von Oswald et al., 2023; Li et al., 2023; Ahn et al., 2023; Wang et al., 2024; Bai et al., 2024).

Theorem 3.1. Under Assumption 3.1, assume that each element of xi, denoted as xk
i ,

follows a normal distribution N (0, 1/2). For linear regression tasks yi = w⊤xi, let
∆yN+1 = ŷN+1 − yN+1, where ŷN+1 represents a Transformer block’s prediction after
applying a k-degree permutation to the prompt, and yN+1 is the prediction based on the
original prompt. Then, the following result holds:

supE[|∆yN+1|] −→ C1
k
√
d

N
ϵ+

2k

N
ϵ2 (d,N → ∞),

where C1 is a constant that depends on xN+1, Q,K, V .

The core proof techniques include transforming the change in the output position caused by a per-
mutation into a random variable with well-defined statistical properties and leveraging group theory
to systematically extend the result for a single transposition to the general case of a k-degree per-
mutation. The detailed proof is in Appendix B. To the best of our knowledge, this is the first formal
result that explicitly demonstrates how positional encoding influences the Transformer’s output in
the context of in-context learning (ICL) predictions.

Remark 3.2. Our analysis introduces two key innovations in understanding Transformers’ permu-
tation sensitivity. First, we develop a novel probabilistic framework that characterizes positional
encoding effects by modeling permutation-induced output changes as random variables with prov-
able statistical properties. Second, we employ group-theoretic techniques to generalize from single
transpositions to arbitrary k-degree permutations, establishing a complete theoretical characteriza-
tion. To the best of our knowledge, this approach yields the first formal proof (section B) quantifying
how positional encoding systematically affects Transformer outputs in in-context learning scenarios.
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The previous theorem is the result for a single Transformer layer with only one attention head. Now
we provide the result for a more general multiple attention head, L-layer setting.

Corollary 3.1. There exist pretrained L-layer Transformers for which the difference bound
in Theorem 3.1 remains valid, up to a factor of L.

Remark 3.3. Although Corollary 3.1 seems like a more general version of Theorem 3.1, it actually
requires stricter conditions on the Transformer weight matrices (ϵ must be 0 in Assumption 3.1) to
maintain the same input format.

3.2.2 ROPE

For the widely used Rotary Position Embedding (RoPE), we derive a theorem parallel to Theo-
rem 3.1 by utilizing the notation in section 2.2.

Theorem 3.2. Assume that each element of xi, denoted as xk
i , follows a normal distribution

N (0, 1/2). For linear regression tasks yi = w⊤xi, let ∆yN+1 = ŷN+1 − yN+1, where
ŷN+1 represents a Transformer block’s prediction using RoPE after applying a k-degree
permutation to the prompt, and yN+1 is the prediction based on the original prompt. Then,
the following result holds:

supE[|∆yN+1|] −→ CRoPE
kd3

N
,

where CRoPE is a constant that depends on xN+1, Q,K, V,Θ = {θi}i.

The proof is deferred to section B. Theorem 3.2 doesn’t rely on any assumptions for the weight
parameter of the transformer, this is because the rotary embedding doesn’t intervene with the hidden
dimension. However, the reliance on the input dimension d does grow to d3 due to the dimension
dependent Frobenius norm of the rotation matrix Rn. Unlike absolute positional encodings, RoPE’s
rotational structure introduces additional dimensional dependencies through the pairwise rotation
operations across embedding dimensions.
Remark 3.4. Our analysis follows a similar technical framework to Theorem 3.1, with the key
distinction lying in how RoPE modulates attention scores between permuted input columns. Theo-
rem 3.2 reveals that, compared to one-hot positional encoding, transformers utilizing RoPE exhibit
heightened sensitivity to the input dimension d. This manifests as a d3 scaling factor in the error
bound, suggesting that RoPE-based models may experience greater instability in in-context learning
performance, particularly in high-dimensional settings.

3.3 PE EFFECT ON FIRST ORDER DIFFERENCE EQUATIONS

We consider the first order difference equation in this section. This is a more realistic setting since
modern large language models are next-token predictors, and the dynamic of the first order differ-
ence equation resembles the essence of the next-token predicition pattern.

For this scenerio we consider the input to the Transformer as:

H =

[
x1 x2 · · · xN xN+1

0 0 · · · 0 0
p1 p2 · · · pN pN+1

]
∈ RD×(N+1), (2)

where pi is the one-hot positional encoding, and

xi+1 = Axi + b.

7
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Theorem 3.3. Under Assumption 3.1, assume xk
0 ∼ N (0, 1/2). For first order difference

equation xi+1 = Axi + b, define ∆xN+1 = x̂N+1 − xN+1, where x̂N+1 represents the
transformer’s prediction after applying a k-degree permutation to the prompt, and xN+1

corresponds to the prediction based on the original prompt. Then the following result holds:

supE[∥∆xN+1∥2] −→ C2
kd

N
ϵ+

2k
√
d

N
ϵ2 (d,N → ∞),

where C2 is a constant dependent on xN+1, Q,K, V .

It is important to note that Theorem 3.3 demonstrates the stability of positional encoding’s effect on
the shifted prompt and suggests that prediction accuracy could remain comparable to the original
prompt. However, it does not explain why positional encoding might improve the robustness of
a Transformer to changes in prompt order compared to the scenario without positional encoding.
Building on the findings of Guo et al. (2023), we derive the ICL prediction error for a Transformer
learning the dynamics system.

Lemma 3.1. For any ϵ > 0, there exists a Transformer with O(ϵ−1) blocks such that for the input
H̃ of the form

H̃ =


x1 x2 · · · xN xN+1

0d 0d · · · 0d 0d

0d x1 · · · xN−1 xN

0d x2 · · · xN xN+1

p1 p2 · · · pN pN+1

 ,

the prediction of the Transformer ŷi = [TF(H̃)](d+1):2d,i(i ∈ [N + 1]) satisfies

∥ŷi −Axi∥2 ≤
√
dϵ,

with d being the dimension of x.

Lemma 3.1 provides a bound on the error of the ICL output prediction based on a specific input
format. By utilizing the above lemma, we get

Theorem 3.4. For any ϵ > 0, there exists a Transformer with O(ϵ−1) layers such that for
an input structured as described in eq. (2), it implements approximate GD on the input with
shifted prompt order and the prediction for xi (i ∈ [N ]) satisfies the following upper bound:

∥x̂i+1 −Axi∥2 ≤ (
√
kd+

√
d)ϵ,

where k, d represents the degree of permutation and the dimension of x respectively.

This demonstrates that, despite input permutations, a Transformer with positional encoding can still
perform in-context learning with a certain level of accuracy.

4 EXPERIMENTS

We conduct experiments on the two settings discussed in section 3, namely linear regression and
first order difference equation. We pretrained several 12-layer, 8-head encoder transformer models
with hidden space Dhid = 256, following settings in previous works (Garg et al., 2022; Li et al.,
2023; Bai et al., 2024; Guo et al., 2023). We used ADAM optimizer with a learning rate of 1e-4. For
linear regression, the data points are sampled from x ∼ N (0, Id),w ∼ N (0, Id), where d = 20;
for first order difference equation, {xi}i∈[N+1] ∼ N (0, Id) and {Aj}j∈[d] ∼ N (0, Id) (Aj denotes
the j-th row of A) with b ∼ N (0, Id), where d = 2. N denotes the number of in-context examples
during pretraining and N = 40 for linear regression, N = 10 for first order difference equation.
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These experiments show that the negative effect PE brings decays in an O(N−1) order and increases
in an O(k) order (fig. 1), which strongly supports our theorem. What’s more, PE is important in
preserving the robustness of transformers in tackling order-sensitive ICL tasks such as dynamic
systems (fig. 3), which also supports our theoretical findings.

Linear Regression. To evaluate in-context learning (ICL) performance on linear regression tasks,
we pretrained two Transformer models (with or without PE). The models were trained with a batch
size of 64 for 150,000 steps. During inference, we sampled 10,000 instances to estimate the expected
mean squared error (MSE) loss.

We measured the expectation of the absolute difference in the output of a Transformer model with
both one-hot PE and RoPE (figs. 1 and 2) pretrained with PE under increasing degrees of prompt
permutation k. Specifically, the first k prompts were flipped, and we sampled 10,000 instances over
a batch size of 64 to approximate the expectation. The experimental results (figs. 1 and 2, left)
showed that the increase in the absolute difference follows an order of O(k), consistent with our
theoretical prediction in Theorems 3.1 and 3.2.

Next, we evaluated the effect of increasing the number of in-context examples while keeping the
prompt permutation fixed (figs. 1 and 2 right). In this setup, we only swapped the order of the first
two columns of the input matrix. The results demonstrated that the absolute difference decays at a
rate of O(N−1), again matching our theoretical analysis in Theorems 3.1 and 3.2.

Figure 1: Experimental results on linear regression tasks. Left: The absolute difference of the
prediction is proportional to the degree of permutation to the prompt. Right: The absolute difference
of the prediction with swapped prompt order by a pretrained PE transformer can be fitted by an
inverse proportional function.

Figure 2: Experimental results on linear regression tasks for RoPE.

First Order Difference Equation. For the first order difference equations, we also pretrained two
transformers following the experiment setting in the linear regression experiment. Note that the
default number of in-context examples is 10 because the solution to the equation will converge
to a constant quickly, resulting in the last few columns of the input matrix to be practically the
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same. Therefore, too many in-context examples will make the transformers learn to merely copy
the previous column during ICL inference, which is not intended. In fig. 3 left, as the number of
in-context examples grows, the MSE loss tend to converge for both models. However, once the order
of the in-context examples is swapped, fig. 3 right demonstrates that the performance of the model
with PE is still robust but the model without PE predicts worse.

Figure 3: Experimental results on first order difference equation tasks. Left: The comparison of the
ICL ability of two pretrained transformers (with or without PE). Right: The prediction with swapped
prompt order by two pretrained transformers (with or without PE).

We also evaluated the absolute difference similiar the linear regression setting for increasing per-
mutation degree k (fig. 4 left) and increasing in-context example number N (fig. 4 right), and the
relationship between the MSE loss and O(N−1), O(k) matches Theorem 3.3.

Figure 4: Experimental results on first order difference equation tasks. Left: The absolute difference
of the prediction the fitted curve. Right: The absolute difference of the prediction with swapped
prompt order by a pretrained PE transformer and the fitted curve.

5 CONCLUSION

This work provides both theoretical and empirical insights into how positional encoding influences
the in-context learning (ICL) capabilities of Transformers on linear regression and dynamical sys-
tems tasks. For the linear regression task, we theoretically demonstrate that one-hot positional en-
coding can lead to instability in predictions with respect to prompt order. The prediction difference
scales linearly with the permutation degree k of the prompt, but diminishes at a rate of O(N−1) as
the number of in-context examples N increases. For the dynamical system task, we focus on a sim-
ple first-order difference equation, which mimics a natural language next-token prediction process
with a context window size of one. Our theoretical analysis shows that the prediction difference
caused by positional encoding follows the same order as in the linear regression task. Our Empirical
results corroborate these theoretical findings, validating the predicted relationship between prompt
order and prediction stability for both tasks.
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A RELATED WORK

In-context Learning. In-context learning (ICL) has been studied both empirically and theoretically.
Garg et al. (2022) empirically shows that Transformers can learn linear functions, two-layer ReLU
neural networks, and decision trees in context. Min et al. (2022) studies what aspects of demonstra-
tions impact the performance of ICL. As for the theoretical part, Xie et al. (2022) explains ICL as
implicit Bayesian inference despite the difference between pretraining and inference distributions,
while many other works (Akyürek et al., 2022; Von Oswald et al., 2023; Dai et al., 2023) interpret
ICL as Transformers performing gradient descent (GD). These works mainly focus on linear models
or their variants. Bai et al. (2024) investigates gradient descent on a wider range of functions, like
2-layer neural networks, and demonstrates the algorithm selection ability of Transformers. Wang
et al. (2024) extends their work to n-layer neural network setting for more general function approx-
imation. Besides those that study ICL mechanism, Lu et al. (2021) proves that order sensitivity is
a common problem in ICL, which can result in performance ranging from near state-of-the-art to
almost random guessing, depending on the prompt arrangement. To address this issue, Liu et al.
(2021) and Liu et al. (2024) suggest arranging input in a particular way similar to curriculum learn-
ing to enhance in-context learning.

Positional Encoding. Vaswani (2017) proposed a sinusoidal positional encoding (PE) to capture
the word order in the input. There are mainly two types of PEs: absolute, where positions are repre-
sented explicitly as numbers or vectors (e.g., 1, 2, 3, . . .), or relative, where positional information is
based on the distance between tokens (Kazemnejad et al., 2024). Below, we provide a brief overview
of the common positional encoding methods used in Transformers.

Absolute Position Embedding (APE) assigns each position i a position vector pi, which is added
to the corresponding word embeddings. Non-parametric APE uses sinusoidal functions to generate
embeddings for any position (Vaswani, 2017), while learned APE, as used in GPT-3 (Brown et al.,
2020) and OPT (Zhang et al., 2022), trains position embeddings with the model parameters but
cannot handle unseen positions, limiting the context window to a fixed length.

T5’s Relative Bias maps the relative distance (i − j) between tokens to a scalar bias b = f(i − j)
using a lookup table. This bias, learned during training, is added to the query-key dot product in
the self-attention mechanism. Distances beyond a threshold are mapped to the same parameter to
generalize to unseen distances.

Rotary, employed in models like PaLM (Chowdhery et al., 2023) and LLaMA (Touvron et al., 2023),
applies a position-dependent rotation to the query and key representations before computing the
attention dot product. This rotation ensures that the attention depends only on the relative distance
between tokens, functioning as a form of relative positional encoding (Su et al., 2024).

ALiBi, utilized in BLOOM (Le Scao et al., 2023), subtracts a scalar bias from the attention score.
This bias increases linearly with the distance between query and key tokens, introducing a recency
bias that favors more recent tokens.

B PROOFS FOR SECTION 3.2

Theorem 3.1. Under Assumption 3.1, assume that each element of xi, denoted as xk
i , follows a

normal distribution N (0, 1/2). For linear regression tasks yi = w⊤xi, let ∆yN+1 = ŷN+1−yN+1,
where ŷN+1 represents a Transformer block’s prediction after applying a k-degree permutation to
the prompt, and yN+1 is the prediction based on the original prompt. Then, the following result
holds:

supE[|∆yN+1|] −→ C1
k
√
d

N
ϵ+

2k

N
ϵ2 (d,N → ∞),

where C1 is a constant that depends on xN+1, Q,K, V .

Proof. We first consider the case where only two adjacent columns are permuted and then generalize
to random permutation between k columns.

1. Permutation between two adjacent columns
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The original input is

HO =

x1 x2 · · · xN xN+1

y1 y2 · · · yN 0
p1 p2 · · · pN pN+1

0 0 · · · 0 0

 ∈ RD×(N+1).

After the permutation (WLOG, we assume the permutation happens between column 1 and 2) the
input becomes

HP =

x2 x1 · · · xN xN+1

y2 y1 · · · yN 0
p1 p2 · · · pN pN+1

0 0 · · · 0 0

 ∈ RD×(N+1).

Now consider the impact of the permutation on the output of the last column hN+1. From defini-
tion 2.1 we know that

h+
N+1 = hN+1 +

1

N + 1

M∑
m=1

N+1∑
j=1

σ (⟨QmhN+1,Kmhj⟩)Vmhj .

For ease of calculation we set M = 1 and remove the activation σ to consider a single-head linear
self attention (LSA) layer:

h+
N+1 = hN+1 +

1

N + 1

N+1∑
j=1

⟨QhN+1,Khj⟩V hj .

Now we have

[HO]
+
N+1 − [HP ]

+
N+1

=
h⊤
N+1Q

⊤K(hO
1 V hO

1 + hO
2 V hO

2 − hP
1 V hP

1 − hP
2 V hP

2 )

N + 1
.

Denote

R = Q⊤K =

 r11 · · · r1D
...

...
rD1 · · · rDD

 ∈ RD×D,

Ri(d) =

r1i...
rdi

 ∈ Rd.

(3)

Then we have

h⊤
N+1Q

⊤KhO
1

=

d∑
i=1

(x⊤
N+1Ri(d) + rd+N+1,i)x

i
1

+ (x⊤
N+1Rd+1(d) + rd+N+1,d+1)y1

+ (x⊤
N+1Rd+2(d) + rd+N+1,d+2),

and similarly

h⊤
N+1Q

⊤KhP
2

=

d∑
i=1

(x⊤
N+1Ri(d) + rd+N+1,i)x

i
1

+ (x⊤
N+1Rd+1(d) + rd+N+1,d+1)y1

+ (x⊤
N+1Rd+2(d) + rd+N+1,d+3).
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So we get

h⊤
N+1Q

⊤KhO
1 − h⊤

N+1Q
⊤KhP

2

= rd+N+1,d+2 − rd+N+1,d+3.

Similarly we can compute

V hO
1 − V hP

2 =

 v1,d+2 − v1,d+3

...
vD,d+2 − vD,d+3

 .

Notice that

h⊤
N+1Q

⊤K(hO
1 V hO

1 − hP
2 V hP

2 )

= h⊤
N+1Q

⊤KhP
2 (V hO

1 − V hP
2 )

+ (h⊤
N+1Q

⊤KhO
1 − h⊤

N+1Q
⊤KhP

2 )V hP
2

+ (h⊤
N+1Q

⊤KhO
1 − h⊤

N+1Q
⊤KhP

2 )(V hO
1 − V hP

2 ).

So the value change at the d + 1-th row of the last column (where the output of the transformer
should be stored) is h⊤

N+1Q
⊤KhP

2 (vd+1,d+2−vd+1,d+3)+vd+1h
P
2 (rd+N+1,d+2−rd+N+1,d+3)+

(vd+1,d+2 − vd+1,d+3)(rd+N+1,d+2 − rd+N+1,d+3), where vd+1 is the d + 1-th row of the matrix
V .

Similarly we can compute the result for h⊤
N+1Q

⊤K(hO
2 V hO

2 −hP
1 V hP

1 ). If Assumption 3.1 stands,
we have

|[h⊤
N+1Q

⊤K(hO
1 V hO

1 + hO
2 V hO

2 − hP
1 V hP

1 − hP
2 V hP

2 )]d+1|
≤ |h⊤

N+1Q
⊤K(hP

1 − hP
2 )|ϵ+ |vd+1(h

P
1 − hP

2 )|ϵ+ 2ϵ2

≤ |
d∑

i=1

gi(x
i
1 − xi

2) + gd+1(y1 − y2)|ϵ

+ |
d∑

i=1

vd+1,i(x
i
1 − xi

2) + vd+1,d+1(y1 − y2)|ϵ+ 2ϵ2

≤

√√√√|
d+1∑
i=1

g2i ||
d+1∑
i=1

(xi
1 − xi

2)
2|ϵ

+

√√√√|
d+1∑
i=1

v2d+1,i||
d+1∑
i=1

(xi
1 − xi

2)
2|ϵ+ 2ϵ2

= C(xN+1, Q,K, V )

√√√√d+1∑
i=1

(xi
1 − xi

2)
2ϵ+ 2ϵ2

= C(xN+1, Q,K, V )Xϵ+ 2ϵ2,

where gi = x⊤
N+1Ri(d) + rd+N+1,i, C(xN+1, Q,K, V ) =

√∑d+1
i=1 g2i +

√∑d+1
i=1 v2d+1,i and

X ∼ χd+1 follows the chi distribution with d+1 degrees of freedom. From the induction it is clear
that it doesn’t matter whether the two permuted columns are adjacent or not. The above inequality
always holds for a transposition and we only need to replace the |hP

1 − hP
2 | term with |hP

i − hP
j |

for the transposition (ij).

2. k degree permutation

Now we consider a k degree permutation of the prompt columns. According to group theory,
each permutation can be written as a product of disjoint cycles, suppose there are a total of P

cycles and each cycle contains ap (p = 1, · · · , P ) elements, then apparently
∑P

p=1 ap = k.
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Moreover, each cycle can be written as a product of transpositions. For example, an m-cycle
(c1 · · · cm) = (c1cm) · · · (c1c3)(c1c2). So every m-cycle can be written as a product of no more
than m transpositions, thus each k degree permutation can be expressed as a product of no more
than

∑P
p=1 ap = k transpositions. So from the above analysis we have

E[|ŷN+1 − yN+1|]

≤ 1

N + 1
E[C(xN+1, Q,K, V )

k∑
j=1

Xdϵ+ 2kϵ2]

→ C(xN+1, Q,K, V )
k
√
d

N
ϵ+

2k

N
ϵ2 (d,N → ∞)

(4)

Here we used the fact that E[Xd] =
√
2Γ(

1

2
(d+2))/Γ(

1

2
(d+1)). By Legendre duplication formula

we rewrite the mean as

E[Xd] =
√

2/π2d−1 (Γ(d+ 1/2))2

Γ(d)
.

Now we use Stirling’s approximation for Gamma function Define:

A =
√
2π((

d+ 1

2
− 1)

d
2 e−( d−1

2 )[1 +
1

12(d−1
2 )

+O(
1

(d+ 1)2
)]),

B =
√
2π(d− 1)d−

1
2 e−(d−1)[1 +

1

12(d− 1)
+O(

1

(d+ 1)2
)].

Then:

E[Xd] =
√
2/π2d−1 · A

2

B

= (d− 1)1/2 · [1 + 1

4(d+ 1)
+O(

1

(d+ 1)2
)]

=
√
d[1− 1

4(d+ 1)
+O(

1

(d+ 1)2
)],

thus we get the result for eq. (4).

Corollary 3.1. There exist pretrained L-layer Transformers for which the difference bound in The-
orem 3.1 remains valid, up to a factor of L.

Proof. One can directly check that letting rd+i,d+2 = rd+i,d+3, i ∈ [N ] and vd+1,d+2 = vd+1,d+3

will ensure only the d+1-th row of the last column (where the prediction ŷN+1 should be stored) is
changed when the input flows through a Transformer block (maintaining the position and value of
of (x, y) in the input matrix), thus for every Transformer layer the error is at most

C1
k
√
d

N
ϵ+

2k

N
ϵ2,

and the accumulative error should be bounded by L times the above error.

Theorem 3.2. Assume that each element of xi, denoted as xk
i , follows a normal distribution

N (0, 1/2). For linear regression tasks yi = w⊤xi, let ∆yN+1 = ŷN+1 − yN+1, where ŷN+1

represents a Transformer block’s prediction using RoPE after applying a k-degree permutation to
the prompt, and yN+1 is the prediction based on the original prompt. Then, the following result
holds:

supE[|∆yN+1|] −→ CRoPE
kd3

N
,

where CRoPE is a constant that depends on xN+1, Q,K, V,Θ = {θi}i.
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Proof. We first consider the case where only two adjacent columns are permuted and then generalize
to random permutation between k columns.

1. Permutation between two adjacent columns with RoPE

The original input with RoPE is:

HO =

[
x1 x2 · · · xN xN+1

y1 y2 · · · yN 0

]
∈ R(d+1)×(N+1).

Note: With RoPE, positional information is encoded through the attention mechanism itself rather
than explicit positional vectors. The rotary transformation is applied to queries and keys before
computing attention scores.

After permutation between columns 1 and 2:

HP =

[
x2 x1 · · · xN xN+1

y2 y1 · · · yN 0

]
∈ R(d+1)×(N+1).

The key difference with RoPE is in the attention computation. For a token embedding h = [x, y]⊤,
the RoPE transformation for position m is applied to the query and key projections:

For each dimension pair (2i, 2i+ 1) in the query/key vectors, we apply the rotation:[
q
(m)
2i

q
(m)
2i+1

]
=

[
cosmθi − sinmθi
sinmθi cosmθi

] [
q2i

q2i+1

]

The attention score between position m and n becomes:

am,n =
(RmQhm)⊤(RnKhn)√

dk
=

h⊤
mQ⊤Rn−mKhn√

dk

where Rn−m is the block-diagonal rotation matrix for relative position n−m.

Now consider the output difference for the last column:

h+
N+1 = hN+1 +

1

N + 1

N+1∑
j=1

⟨QhN+1,Rj−(N+1)Khj⟩V hj .

The difference between original and permuted outputs is:

[HO]
+
N+1 − [HP ]

+
N+1

=
1

N + 1

(
⟨QhN+1,R1−(N+1)Kh1⟩V h1 + ⟨QhN+1,R2−(N+1)Kh2⟩V h2

−⟨QhN+1,R1−(N+1)Kh2⟩V h2 − ⟨QhN+1,R2−(N+1)Kh1⟩V h1

)
Let R∗

−∆ = Q⊤R∗
−∆K. The core term becomes:

V h1h
⊤
N+1(R

∗
−N −R∗

1−N )h1 − V h2h
⊤
N+1(R

∗
−N −R∗

1−N )h2

The RoPE-specific effect appears in the difference R∗
−N −R∗

−N+1 = Q⊤(R−N −R−N+1)K. For
small rotation angles θi, we can approximate:

R−N −R−N+1 ≈ dR−∆

d∆

∣∣∣∣
∆=N

Each 2×2 block of this derivative is:

d

d∆

[
cos∆θi − sin∆θi
sin∆θi cos∆θi

]
= θi

[
− sin∆θi − cos∆θi
cos∆θi − sin∆θi

]
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Also we have

|h⊤
N+1(R

∗
−N −R∗

1−N )h1|

= |
d∑

i=1

(x⊤
N+1Si(d) + sd+N+1,i)x

i
1 + (x⊤

N+1Sd+1(d) + sd+N+1,d+1)y1|

≤ a|
d∑

i=1

(1 +wi)x
i
1|,

where a is the uniform upper bound for |x⊤
N+1Si(d) + sd+N+1,i| in which i = 1, · · · , d + 1.

Also S = (R∗
−N − R∗

1−N ) and the definition of Si(d) and si,j follows that in eq. (3). Note that
|si,j | ≤ ∥q⊤

i ∥∥R−N −R1−N∥F ∥kj∥, so a ≤ b2d
√
d ·maxi θi. Thus we have

|[V h1]d+1h
⊤
N+1(R

∗
−N −R∗

1−N )h1|
≤|[V h1]d+1||h⊤

N+1(R
∗
−N −R∗

1−N )h1|

≤va(

d∑
i=1

xi
1)

2

≤vad(

d∑
i=1

(xi
1)

2)

≤vb2d2.5θmaxXd,

where v = max{vd+1,1, · · · , vd+1,d+1}, b = maxi{∥qi∥, ∥ki∥} and Xd ∼ χ2
d.

2. k degree permutation with RoPE

The same group-theoretic decomposition applies. Each k-degree permutation can be expressed as a
product of at most k transpositions. So the final bound becomes:

E[|ŷN+1 − yN+1|]

≤ 1

N + 1
E

vb2θmaxd
2.5

k∑
j=1

Xd


→ CRoPE(xN+1, Q,K, V,Θ)

kd3

N
(d,N → ∞)

(5)

where Θ = {θi} are the RoPE frequencies.

C PROOFS FOR SECTION 3.3

C.1 USEFUL LEMMAS FOR IN-CONTEXT LEARNING

We first state the result for In-context Gradient Descent of the linear regression problem

L(w) =
1

N

N∑
j=1

(w⊤xj − yj)
2.

following Guo et al. (2023).
Lemma C.1 (ICGD). There exists an attention layer with 2 heads such that the following holds.
For any input sequence H that takes the form

hi = [xi; yi;w;pi],

the attention layer outputs
h̃i = [xi; yj ; w̃;pi],

where w̃i represents the result of one step of gradient descent

w̃ = w − η∇L(w),

for i ∈ [N ].
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Proof. We first define two attention heads {(Qm,Km, Vm)}m=1,2 such that for all i, j ∈ [N ],

Q1hi =

[
w
−1
0

]
,K1hj =

[
xj

yj
0

]
, V1hj = −η

[
0d+1

xj

0

]
,

Thus for i ∈ [N ],

⟨Q1hi,K1hj⟩ − ⟨Q2hi,K2hj⟩ = w⊤xj − yj

Therefore

⟨Q1hi,K1hj⟩V1hj + ⟨Q2hi,K2hj⟩V2hj

= (⟨Q1hi,K1hj⟩ − ⟨Q2hi,K2hj⟩) · η[0d+1;xj ;0]

= − η(w⊤xj − yj) · [0d+1;xj ;0].

Summing the above for all i ∈ [N ] yields

N∑
j=1

∑
m=1,2

1

N
⟨Qmhi,Kmhj⟩Vmhj

=
1

N
[

N∑
j=1

−η(w⊤xj − yj)] · [0d+1;xj ;0]

= [0d+1;−η∇L(w);0].

Thus the attention layer outputs

h̃i = hi +

2∑
m=1

N∑
j=1

1

N
⟨Qmhi,Kmhj⟩Vmhj

=

xi

yi
w
∗

+

[
0d+1

−η∇L(w)
0

]

=

 xi

yi
w − η∇L(w)

∗

 .

This finishes the proof.

Lemma C.2 (In-context linear regression). A Transformer with O(ϵ−1) layers can implement in-
context gradient descent such that its prediction ŷi = [TF(H)]d+1,i satisfies

|ŷi − ⟨ŵi,xi⟩ | ≤ ϵ.

The lemma directly follows Guo et al. (2023) Theorem B.5, so we omit the detailed proof and only
provide two key steps. The first step is to determine the number of Transformer layers needed
to achieve ϵ accuracy. The second step is to construct a linear prediction layer which stores the
prediction of the Transformer (Guo et al. (2023) Lemma B.2).

Lemma C.3. There exists an MLP layer with parameters W1,W2 such that H ′ = MLPW1,W2(H),
where H is the input with the one-hot positional encoding, and H ′ is the input with the positional
encoding p̄i = [0N−3; 1; i; i

2; i3].

Proof. We need to construct weight matrices not reliant on the input hi such that the one-hot PE pi
can be transformed to the specific format in the Lemma and replace the original PE. Consider two
matrices P,Q which satisfies

PN+d−2:N+d+2,i = [1; i; i2; i3], Qd+i+1,d+i+1 = −1
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and other parts of P,Q be 0. Recall that hi = [xi; yi; pi;0D−N−d−2], then one can directly check
that letting W2 = P +Q,W1 = I yields

h′
i = hi +W2σ(W1hi) = [xi; yi; p̄i;0D−N−d−2].

This shows that a single MLP layer can indeed change the input format in this specific way, and the
weight matrices of the MLP layer doesn’t rely on the input xi, yi, thus concluding the proof.

Lemma C.4. There exists an MLP layer such that for the input H of the form

H =

[
x1 x2 · · · xN xN+1

p̄1 p̄2 · · · p̄N p̄N+1

]
,

it outputs

MLP(1)(H) =

[
σρ(W1x1) · · · σρ(W1xN+1)

x1 · · · xN+1

p̄′
1 · · · p̄′

N+1

]
.

The L+ 1 Transformer blocks that follows output

H̃ =


x1 x2 · · · xN xN+1

0d 0d · · · 0d 0d

0d x1 · · · xN−1 xN

x1 x2 · · · xN xN+1

p̃1 p̃2 · · · p̃N p̃N+1

 ,

where p̃i,p
′
i differs from pi only in the dimension of the zero paddings.

Proof. For the first MLP layer, consider any input token hi = [xi; p̄i]. Define weight matrices
W1,W2 ∈ RD×D such that

W1hi =

±xi

±xi

±xi

0

 , σ(W1hi) =

σ(±xi)
σ(±xi)
σ(±xi)

0

 ,

W2σ(W1hi) =

[
σ(xi)− σ(−xi)

0

]
+

[
−σ(xi) + σ(−xi)

0

]
+

[
0d

σ(xi)− σ(−xi)
0

]
.

Therefore, the output of the MLP layer is

h̄i =hi +W2σ(W1hi) =

[
xi

xi

p̄i

]
.

Now we need to achieve two things:

• Move the xi into the (3d + 1 : 4d) block in the final layer, which takes the same number
of attention heads in every layer.

• Use one copying layer with a single attention head to copy each xi to the (2d + 1 : 3d)
block of the next token.

Lemma 3.1. For any ϵ > 0, there exists a Transformer with O(ϵ−1) blocks such that for the input
H̃ of the form

H̃ =


x1 x2 · · · xN xN+1

0d 0d · · · 0d 0d

0d x1 · · · xN−1 xN

0d x2 · · · xN xN+1

p1 p2 · · · pN pN+1

 ,
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the prediction of the Transformer ŷi = [TF(H̃)](d+1):2d,i(i ∈ [N + 1]) satisfies

∥ŷi −Axi∥2 ≤
√
dϵ,

with d being the dimension of x.

Proof. For the dynamical system we have the loss function

L̂(A) =
1

N

N∑
j=1

∥Axj − yj∥22,

where yj = xj+1. The multi-output dynamic system problem is equivalent to d separable single-
output linear regression problems, one for each output dimension. So the proof follows by directly
repeating the analysis in Lemma C.2, with the following adaptation

• Use a transformer with 2d heads to perform d parallel linear regression problems (each
with 2 heads), using in-context gradient descent (Lemma C.1) as the internal optimization
algorithm.

• Use a single-attention layer with d parallel linear prediction heads to writ prediction (ŷi)j

into location (i, d+ j) with |(ŷi)j −
〈
(Âi)j ,xi

〉
| ≤ ϵ.

C.2 PROOFS FOR MAIN THEOREMS

Theorem 3.3. Under Assumption 3.1, assume xk
0 ∼ N (0, 1/2). For first order difference equation

xi+1 = Axi+b, define ∆xN+1 = x̂N+1−xN+1, where x̂N+1 represents the transformer’s predic-
tion after applying a k-degree permutation to the prompt, and xN+1 corresponds to the prediction
based on the original prompt. Then the following result holds:

supE[∥∆xN+1∥2] −→ C2
kd

N
ϵ+

2k
√
d

N
ϵ2 (d,N → ∞),

where C2 is a constant dependent on xN+1, Q,K, V .

Proof. We inherit the proof in Theorem 3.1 by setting yi = 0. W.L.O.G. we assume ∥A∥ = 1 and
b = 0. Recall the input matrix

H =

x1 x2 · · · xN 0
0 0 · · · 0 0
p1 p2 · · · pN pN+1

0 0 · · · 0 0

 ∈ RD×(N+1),

so when we swap column 1 and column 2 we still have

[HO]
+
N+1 − [HP ]

+
N+1

=
h⊤
N+1Q

⊤K(hO
1 V hO

1 + hO
2 V hO

2 − hP
1 V hP

1 − hP
2 V hP

2 )

N + 1
.
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Replacing xN+1 and yi, i ∈ [N +1] in the proof of Theorem 1 with 0 yields the value change at the
j-th row (j ∈ [d]) of the last column is:

|[h⊤
N+1Q

⊤K(hO
1 V hO

1 + hO
2 V hO

2 − hP
1 V hP

1 − hP
2 V hP

2 )]j |
≤ |h⊤

N+1Q
⊤K(hP

1 − hP
2 )|ϵ+ |vj(hP

1 − hP
2 )|ϵ+ 2ϵ2

≤ |
d∑

i=1

gi(x
i
1 − xi

2)|ϵ+ |
d∑

i=1

vj,i(x
i
1 − xi

2)|ϵ+ 2ϵ2

≤

√√√√|
d∑

i=1

g2i ||
d∑

i=1

(xi
1 − xi

2)
2|ϵ

+

√√√√|
d∑

i=1

v2j,i||
d∑

i=1

(xi
1 − xi

2)
2|ϵ+ 2ϵ2

= C2Xϵ+ 2ϵ2,

where C2 =
√∑d

i=1 g
2
i +

√∑d
i=1 v

2
j,i. X =

√∑d
i=1(x

i
1 − xi

2)
2. Note that xi

1 =
∑d

j=1 aijx
j
0 ∼

N (0, (
∑

j a
2
ij)). Now suppose

∑
j a

2
ij = 1 for i ∈ [d], then we still have X ∼ χd+1, and the rest

is the same as the proof in Theorem 3.1, except that the L2 norm should be multiplied by
√
d since

the prediction is a d-dimension vector instead of a number.

Theorem 3.4. For any ϵ > 0, there exists a Transformer with O(ϵ−1) layers such that for an input
structured as described in eq. (2), it implements approximate GD on the input with shifted prompt
order and the prediction for xi (i ∈ [N ]) satisfies the following upper bound:

∥x̂i+1 −Axi∥2 ≤ (
√
kd+

√
d)ϵ,

where k, d represents the degree of permutation and the dimension of x respectively.

Proof. We first consider the simple case of flipping the first two tokens of the input, resulting in the
input format

H =

[
x2 x1 · · · xN xN+1

p̄1 p̄2 · · · p̄N p̄N+1.

]
Following the matrix transformation procedure in Lemmas 3.1 and C.4, we get the input format in
Lemma 3.1

H̃ =


x2 x1 x3 · · · xN+1

0d 0d 0d · · · 0d

0d x2 x1 · · · xN

0d x1 x3 · · · xN+1

p1 p2 p3 · · · pN+1

 ,

where the prediction corresponding to x1,x2 is changed from x2,x3 to x3,x1 respectively. Notice
that the Transformer implements in-context gradient descent by Lemma C.1, the gradient for the
first element of the objective vector is

∇L(w) =
1

N

N∑
j=1

(w⊤xj − yj)xj .

Here yj = x1
j+1. But for the permuted input, the gradient becomes

∇L′(w) =
1

N

N∑
j=1

(w⊤xj − y′j)xj ,

where y′1 = x1
3, y′2 = x1

1, and y′j = yj for j ≥ 3. So the difference in gradient is

e =
x1
3 − x1

2

N
x1 +

x1
1 − x1

3

N
x2.
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So the gradient descent update at each iteration t is

wt+1 = wt − η∇L(w)− ηe,

and after T rounds the parameter w becomes

wT = w0 − η

T−1∑
t=0

∇L(wt)− ηTe.

Thus the cumulative error term induced by e is

ηTe = 2ηT · u1 − u2

N
x,

where ui ∼ N (0, 1/2), i = 1, 2 and each component of x also follows N (0, 1/2). Thus the
expectation of the squared error is

E[∥ηTe∥2] = (
2ηT

N
)2E[∥u1 − u2∥2]E[∥x∥2]

=
2dη2T 2

N2
.

Here we used the fact that E[∥u1 − u2∥2] = 1 and E[∥x∥2] = d/2. Note that T is the number
of layer of the Transformer as one layer of Transformer implements one step of gradient descent.
Lemma C.2 states that to achieve O(ϵ) accuracy we need a Transformer with O(ϵ−1) layers, thus
choosing η = O(ϵ) would yield √

E[∥ηTe∥2] ≤
√
d

N
.

Since x is bounded, the final L2 norm of the error brought by the approximate gradient descent
should be bounded by

√
d(

√
d

N
+ ϵ) =

d

N
+
√
dϵ.

By induction a k-degree permutation on the prompt input would yield a final error of
√
kd

N
+
√
dϵ,

and choosing N = O(ϵ−1) would yield the desired result.

23


	Introduction
	Preliminaries
	Transformers
	Positional Encoding
	In-context Learning

	Main Results
	High Level Approach
	Positional Encoding Affects Attention Output
	Attention Layer Preserves Permutation Invariance
	MLP Layer Preserves Permutation Invariance

	PE Effect on Linear Regression
	One-hot PE
	RoPE

	PE Effect on First Order Difference Equations

	Experiments
	Conclusion
	Related Work
	Proofs for Section 3.2
	Proofs for Section 3.3
	Useful lemmas for in-context learning
	Proofs for main Theorems


