
Entropy Coding Compression of Tree Tensor Networks

Rafael Ballester-Ripoll1 and Roxana Bujack2

1School of Science and Technology, IE University
2Los Alamos National Laboratory

rafael.ballester@ie.edu, bujack@lanl.gov

Abstract

Low-rank decompositions have been successfully used to
compactly represent tensors of many kinds, be it neural net-
work layers, activation tensors, or raw datasets arising from
tomography scans, sensor data, physical simulations, etc.
These methods are often based on low-rank factorization
and do not post-process coefficients thereafter (except, some-
times, quantization). That choice allows compressed tensors
to be more easily used in learning pipelines, but it is not nec-
essarily optimal for data storage or transmission purposes.
Focusing on these tasks, we propose to prioritize data reduc-
tion rates by applying entropy coding and successive core or-
thogonalization to SVD-learned coefficients of a given tensor.
Our scheme generalizes earlier Tucker-based compressors to
more general acyclic tensor networks, and is thus promising
for a wider class of target tensors.

Introduction and Related Work
Lossy tensor compression is nowadays an attractive goal
for which multiple algorithms exist, either within a learn-
ing pipeline (Novikov et al. 2015) or as a post-processing
step: see SZ (Di and Cappello 2016), ZFP (Lindstrom 2014),
wavelets, implicit neural representations (Lu et al. 2021),
etc. Within the realm of transform compression, SVD-based
decompositions have emerged as a family of powerful meth-
ods. These decompositions learn data-dependent multilin-
ear projection bases; see e.g. TTHRESH (Ballester-Ripoll,
Lindstrom, and Pajarola 2020), TuckerMPI (Ballard, Klin-
vex, and Kolda 2020), or ATC (Baert and Vannieuwenhoven
2021) which use the so-called Tucker model. The effective-
ness of these methods lies in combining tools from signal
processing and information theory (such as low-rank trunca-
tion, bit plane truncation, run-length encoding, progressive
reconstruction, or entropy coding) with the strong decorre-
lation properties of the higher-order singular value decom-
position (HOSVD) (de Lathauwer, de Moor, and Vandewalle
2000).

Despite the success of the HOSVD/Tucker model in
the tensor and machine learning literature, many recent
works have fruitfully switched to more modern tensor net-
work topologies: the tensor train (TT) (Oseledets 2011),

Copyright © 2025, AAAI 25 Workshop on Connecting Low-
rank Representations in AI (https://april-tools.github.io/colorai/).
All rights reserved.

“extended” TT (Schneider and Uschmajew 2014), quan-
tized TT (Khoromskij and Oseledets 2010), hierarchical
Tucker (Grasedyck 2010), quantized TT (QTT, Oseledets
and Tyrtyshnikov 2011), etc. Often, these alternatives can
better break down the curse of dimensionality and offer
higher compression rates, especially for higher dimensional
tensors. Still, to the best of our knowledge, no compression
algorithm that focuses on the floating-point representation
(as TTHRESH and ATC do) has been attempted for these,
more general tensor networks.

Lossy compression is a multi-objective optimization:
there is a trade-off between bit rate b and the lowest error
ϵ that can be achieved with it; this trade-off defines the so-
called rate-distortion curve. We argue this is a major diffi-
culty of adapting prior methods to larger tensor networks:
each core may have a different impact on the overall error.
Hence, for best results, one may want to select a different
number of bits bk for each core k. This is much less of an
issue in the Tucker case, where the central core tends to take
the vast majority of compressed coefficients and each bk
may be safely chosen via an ad hoc heuristic. In the more
general case, we tackle this via global optimization on a
combined rate-distortion curve assembled from recursively
orthogonalized cores; see the following section.

Compression
Our algorithm takes three inputs: a target tensor X , a tree
topology, and a prescribed relative error ϵ̄, meaning that
the approximation should satisfy ∥X̃ − X∥/∥X∥ ≈ ϵ̄ (the
Frobenius norm is used). Another important concept is that
of isometry: a core C is said to be isometric with respect
to a subset I of its indices if, when unfolded as a matrix
where I index the rows, the matrix’s columns are orthonor-
mal. This can be depicted with incoming arrows towards C
for all edges in I. We say that a core is canonical (or the
center of orthogonality) if all other cores in the tree have a
direct path towards it (see Fig. 1 for an example).

At a high-level, the compression steps are:

1. Select a central node i in the desired topology. A cen-
tral starting point ensures that isometries do not need to
be carried too far away, which mitigates accumulation of
round-off errors.

2. Decompose the input tensor X into the topology using



Figure 1: TT network where cores A and B are isometric
towards C and therefore C is canonical (shown in red).

successive SVD factorizations so that, after this process,
the core Ci is canonical and all isometries in the network
point towards Ci.

3. Calculate a local rate-distortion curve (bi(ci), ϵi(ci)) for
Ci, where ci is the core’s compression level. The higher
the ci, the higher bi (bit rate of core Ci) and the lower ϵi
(relative error in that core).

4. Recursively canonize outwards core by core. At each
step, cache the current core k (which is now canonical)
and calculate its local curve.

5. Combine all curves to assemble an overall cost function
(b(ccc), ϵ(ccc)) and solve ccc∗ = argminccc b(ccc) s.t. ϵ(ccc) ≤ ϵ̄.

6. Encode each cached core k at level c∗k.

See Figure 2 for a diagram depicting this tree traversal
scheme. For more details on rate selection across the differ-
ent cores in the network, we refer to the following subsec-
tions.

Figure 2: Compression example using 3D Tucker topology:
the tree is traversed pre-order and outwards from the cen-
tral core C. At each traversal step we obtain the local rate-
distortion curve for the canonized core (shown in red).

Local Rate-distortion Curves
Let Ck be a canonical core containing S elements in the ten-
sor network. Canonicity of Ck means that ∥Ck∥ = ∥X∥ and,
if we perturb it into a distorted core C̃k, the L2 error prop-
agates exactly: ∥C̃k − Ck∥ = ∥X̃ − X∥. That principle is

very often exploited in transform compression schemes, in-
cluding low-rank truncation (Ballester-Ripoll, Suter, and Pa-
jarola 2015) or TTHRESH’s entropy coding.

Similarly to TTHRESH, we encode the core one bit plane at
a time using run-length encoding followed by entropy cod-
ing. The last bit plane may be encoded partially (see Fig. 3).
Since we use double floating-point precision, there are 64
bit planes and therefore 64S + 1 possible choices for the
compression level ck. Encoding no bits would lead to a zero
tensor (bk(0) = 0, ϵk(0) = 1), while encoding all 64S
bits would lead to perfect reconstruction (bk(64S + 1) =
1, ϵk(64S + 1) = 0).

Figure 3: Bit plane encoding for a core Ck, here shown
as being flattened into a vector of S elements (rows). The
columns denote coefficient bits, ordered from more to less
significant. In this example, four planes are encoded com-
pletely, whereas only six bits were encoded from the fifth
plane until hitting breakpoint ck.

In practice, we build the curve progressively: we define a
set of checkpoints {ck1

, . . . , ckM
} ⊆ [0, 64S + 1], and we

compute (bk(ckm
), ϵk(ckm

)) for every ckm
. In this paper we

use M = 64 checkpoints with each one corresponding to
one full bit plane, but a more granular set could be chosen
instead.

Global Breakpoint Selection
Once we have a local curve for each core, we proceed to se-
lect an optimal vector of breakpoints ccc. To this end, we need
to define a global score function. The total amount of bits
is the sum of bits spent on each core: b(ccc) =

∑
k bk(ck).

In contrast, the global compression error does not propa-
gate additively (see Grasedyck 2010 for bounds when ap-
plying successive SVD truncations), but we found ϵ(ccc) :=∑

k ϵk(ck) to be a useful approximation in practice, as it can
be tackled by a linear solver.

For each core Ck, we:

1. Calculate points (bk(ckm
), ϵk(ckm

)) as described in the
previous subsection.

2. Calculate the Pareto frontier (lower convex hull) of these
points, which forms a decreasing piecewise function
comprising a number Nk of segments.



3. Turn the frontier’s segments into a set of linear con-
straints 

ϵk ≥ α
(1)
k bk + β

(1)
k

. . .

ϵk ≥ α
(Nk)
k bk + β

(Ck)
k .

We then use a linear programming optimizer to find
(bbb∗, ϵϵϵ∗) that minimize

∑
k bk, subject to

∑
k ϵk ≤ ϵ̄ and

to the constraints above. Last, we use linear interpolation
to recover the desired breakpoints, namely ck such that
bk(ck) ≈ b∗k for each k.

By working with the convex hull, we are able to approx-
imate the difficult initial optimization problem as a linear
program with a few hundred constraints, which converges
very quickly in practice (< 0.01s in our experiments).

Decompression
For reconstruction we undo the traversal outlined in the
previous section. Since each core Ck has been encoded in
canonical form, we ensure that the network is canonized at
the position where the decoded Ck is going to be inserted:

1. Ck := dummy for k = 1, . . . ,K.
2. Traverse the tree recursively in the reverse order that was

used in the compression step.
3. At each step of the recursion, decode core k and store the

result in place of Ck.
4. Isometrize Ck towards the central core Ci. Ignore any

changes that would affect dummy cores.
5. After the recursion is completed, reconstruct the tensor

by contracting all virtual indices, so that only the physical
indices (free edges in the tensor network) survive.

See Figure 4 for a diagram.

Experiments
We implemented our method and the following experiments
in Python. We use the libraries quimb (Gray 2018) for the
SVD orthogonalization steps during compression and coten-
gra (Gray and Kourtis 2021) for efficient tensor contrac-
tion during decompression, as well as for selecting the most
central node i. For entropy coding we call the constric-
tion package (Bamler 2022) and its RangeEncoder. We
chose scipy.spatial for convex hull computation and
scipy.optimize.linprog with its linear solver HIGHS
to select the optimal breakpoint ck of each core. We have
publicly released our code1, which can be called either as a
Python API or via a command-line interface.

We tested 12 datasets which are divided in three types: (a)
three 5D analytical functions, with and without noise; (b)
seven datasets (4D and 5D) obtained from physical simula-
tions and sensing measurements; and (c) two of the largest
convolutional layers of ResNet-18 and VGG16, both 4D.

We have run our compressor multiple times for each
dataset, each time at a different target relative error ϵ̄. We
tested four tensor formats: Tucker (in which case the al-
gorithm is almost identical to TTHRESH’s), TT, extended

1https://github.com/rballester/pytthresh

Figure 4: Decompression for a 3D Tucker example: the tree
is traversed in reverse order to Fig. 2. At each step, a canon-
ical core is decoded (in red) and then isometrized towards
C’s position. Dashed circles indicate dummy placeholders.

TT, and QTT. Resulting compression ratios and RMSEs are
shown in Fig. 5. TT often outperforms the other methods by
a significant margin, while QTT consistently lags behind.

Discussion and Conclusion
This paper generalizes the entropy coding pipeline used in
methods such as TTHRESH and ATC, which could only lever-
age the Tucker decomposition, to more general tensor net-
works. We showed that alternative tensor network topolo-
gies, particularly the tensor train, are often a significantly
better ansatz than the Tucker decomposition, yielding up to
50% higher compression factors for comparable RMSE.

We believe our algorithm’s main strength is its flexibil-
ity, as it can be applied on arbitrary tree networks and thus
aim for very competitive rate-distortion curves across a wide
range of tensors. Of course, no single network topology is
a single silver bullet, and each tensor may benefit differ-
ently from different topologies. In the future, we will explore
heuristics for automatically selecting a topology and dimen-
sion ordering that are most favorable for the target tensor. A
key component to do this efficiently could be the estimation
of the approximation error via random subsets of the tensor,
see e.g. (Hayashi and Yoshida 2017).

While this paper only considered bit encoding schemes,
these can be combined with low-rank truncation. We expect
such a hybrid method can be significantly faster, at the ex-
pense of a less favorable rate-distortion trade-off. Last, note
that our method is tailored to acyclic tensor networks with-



(a) f(xxx) =
∑5

i=1 sin(ixi). (b) f(xxx) =
∏5

i=1 sin(ixi). (c) Function from (a) plus rand(x1+x2/10).

(d) Polar vortex (Harvey et al. 2021): 2D ve-
locity over time 81× 81× 3× 21.

(e) Spaceweather (Bujack et al. 2021): 3D
magnetic field around Earth 64×64×64×3.

(f) Groundwater simulation (Bujack et al.
2022): 3D velocity 101× 101× 101× 3.

(g) WarpX accelerator (Vay et al. 2018): 3D
magnetic field over time 20×20×20×3×20.

(h) Water cleaning simulation (Bujack et al.
2021): 3D velocity 21× 21× 21× 3.

(i) Explosion (Mallinson et al. 2013): 3D ve-
locity over time 21× 21× 21× 3× 21.

(j) Riemannization of CIEDE2000 (Bujack
et al. 2023): 3D metric over 2D plane matrix
field 256× 256× 3× 3.

(k) Convolutional layer of VGG16 (Qas-
sim, Verma, and Feinzimer 2018): weights of
shape 512× 512× 3× 3.

(l) Convolutional layer of ResNet-18 (Sar-
winda et al. 2021): weights of shape 512 ×
512× 3× 3.

Figure 5: Error vs compression ratio for 12 datasets over four topologies. Synthetic datasets have shape 105 where each xi takes
10 evenly spaced values in [−1, 1].

out hyperedges. Allowing cycles or hyperedges could be nu-
merically more delicate and may outstretch the assumptions
we make in this paper about error propagation when calcu-
lating and distorting the cores. Still, that could also deserve
future study.

Acknowledgments

This work was supported by the Laboratory Directed Re-
search and Development program of Los Alamos National
Laboratory project number 20250145ER and published un-
der LA-UR-24-33383.



References
Baert, W.; and Vannieuwenhoven, N. 2021. ATC: An Ad-
vanced Tucker Compression Library for Multidimensional
Data. ACM Transactions on Mathematical Software, 49(21):
1–25.
Ballard, G.; Klinvex, A.; and Kolda, T. G. 2020. TuckerMPI:
A Parallel C++/MPI Software Package for Large-scale Data
Compression via the Tucker Tensor Decomposition. ACM
Transactions on Mathematical Software, 46(2): 1–31.
Ballester-Ripoll, R.; Lindstrom, P.; and Pajarola, R. 2020.
TTHRESH: Tensor Compression for Multidimensional Vi-
sual Data. IEEE Transactions on Visualization and Com-
puter Graphics, 26(9): 2891–2903.
Ballester-Ripoll, R.; Suter, S. K.; and Pajarola, R. 2015.
Analysis of Tensor Approximation for Compression-
Domain Volume Visualization. Computers & Graphics, 47:
34–47.
Bamler, R. 2022. Understanding Entropy Coding With
Asymmetric Numeral Systems (ANS): a Statistician’s Per-
spective. arXiv preprint arXiv:2201.01741.
Bujack, R.; Bresciani, E.; Waters, J.; and Schroeder, W.
2022. Topological Segmentation of 2D Vector Fields.
In Leipzig Symposium on Visualization In Applications
(LEVIA).
Bujack, R.; Caffrey, E.; Teti, E.; Turton, T. L.; Rogers, D. H.;
and Miller, J. 2023. Efficient Computation of Geodesics in
Color Space. IEEE Transactions on Visualization and Com-
puter Graphics.
Bujack, R.; Tsai, K.; Morley, S. K.; and Bresciani, E. 2021.
Open source vector field topology. SoftwareX, 15: 100787.
de Lathauwer, L.; de Moor, B.; and Vandewalle, J. 2000. A
Multilinear Singular Value Decomposition. SIAM Journal
of Matrix Analysis and Applications, 21(4): 1253–1278.
Di, S.; and Cappello, F. 2016. Fast Error-Bounded Lossy
HPC Data Compression with SZ. In International Parallel
and Distributed Processing Symposium, 730–739.
Grasedyck, L. 2010. Hierarchical Singular Value Decom-
position of Tensors. SIAM Journal of Matrix Analysis and
Applications, 31(4): 2029–2054.
Gray, J. 2018. quimb: a Python library for quantum infor-
mation and many-body calculations. Journal of Open Source
Software, 3(29): 819.
Gray, J.; and Kourtis, S. 2021. Hyper-optimized tensor net-
work contraction. Quantum, 5: 410.
Harvey, V. L.; Datta-Barua, S.; Pedatella, N. M.; Wang, N.;
Randall, C. E.; Siskind, D. E.; and van Caspel, W. E. 2021.
Transport of nitric oxide via Lagrangian coherent structures
into the top of the polar vortex. Journal of Geophysical Re-
search: Atmospheres, 126(11): e2020JD034523.
Hayashi, K.; and Yoshida, Y. 2017. Fitting Low-Rank Ten-
sors in Constant Time. In Guyon, I.; Luxburg, U. V.; Bengio,
S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and Garnett,
R., eds., Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc.

Khoromskij, B.; and Oseledets, I. 2010. Quantics-TT Collo-
cation Approximation of Parameter-Dependent and Stochas-
tic Elliptic PDEs. Computational Methods in Applied Math-
ematics, 10(4): 376–394.
Lindstrom, P. 2014. Fixed-Rate Compressed Floating-Point
Arrays. IEEE Transactions on Visualization & Computer
Graphics, 20(12): 2674–2683.
Lu, Y.; Jiang, K.; Levine, J. A.; and Berger, M. 2021. Com-
pressive Neural Representations of Volumetric Scalar Fields.
Computer Graphics Forum, 40(3): 135–146.
Mallinson, A.; Beckingsale, D. A.; Gaudin, W.; Herdman, J.;
Levesque, J.; and Jarvis, S. A. 2013. Cloverleaf: Preparing
hydrodynamics codes for exascale. The Cray User Group,
2013.
Novikov, A.; Podoprikhin, D.; Osokin, A.; and Vetrov, D.
2015. Tensorizing Neural Networks. In Advances in Neural
Information Processing Systems.
Oseledets, I.; and Tyrtyshnikov, E. 2011. Algebraic Wavelet
Transform via Quantics Tensor Train Decomposition. SIAM
Journal on Scientific Computing, 33(3): 1315–1328.
Oseledets, I. V. 2011. Tensor-Train Decomposition. SIAM
Journal on Scientific Computing, 33(5): 2295–2317.
Qassim, H.; Verma, A.; and Feinzimer, D. 2018. Com-
pressed residual-VGG16 CNN model for big data places im-
age recognition. In 2018 IEEE 8th annual computing and
communication workshop and conference (CCWC), 169–
175. IEEE.
Sarwinda, D.; Paradisa, R. H.; Bustamam, A.; and Anggia,
P. 2021. Deep learning in image classification using residual
network (ResNet) variants for detection of colorectal cancer.
Procedia Computer Science, 179: 423–431.
Schneider, R.; and Uschmajew, A. 2014. Approximation
rates for the hierarchical tensor format in periodic Sobolev
spaces. Journal of Complexity, 30(2): 56–71. Dagstuhl
2012.
Vay, J.-L.; Almgren, A.; Bell, J.; Ge, L.; Grote, D.; Hogan,
M.; Kononenko, O.; Lehe, R.; Myers, A.; Ng, C.; et al. 2018.
Warp-X: A new exascale computing platform for beam–
plasma simulations. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 909: 476–479.


