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ABSTRACT

Neural Architecture Search (NAS) currently relies heavily on labeled data, which
is both expensive and time-consuming to acquire. In this paper, we propose a
novel NAS framework based on Masked Autoencoders (MAE) that eliminates
the need for labeled data during the search process. By replacing the super-
vised learning objective with an image reconstruction task, our approach en-
ables the robust discovery of network architectures without compromising perfor-
mance and generalization ability. Additionally, we address the problem of perfor-
mance collapse encountered in the widely-used Differentiable Architecture Search
(DARTS) method in the unsupervised paradigm by introducing a multi-scale de-
coder. Through extensive experiments conducted on various search spaces and
datasets, we demonstrate the effectiveness and robustness of the proposed method,
providing empirical evidence of its superiority over baseline approaches.

1 INTRODUCTION

In recent years, there has been a significant surge of interest in Neural Architecture Search (NAS)
within the field of machine learning (Zela et al., 2020; Liang et al., 2019). NAS algorithms have
emerged as a powerful tool for automatically discovering superior network architectures, potentially
saving valuable time and effort for human experts. These algorithms have demonstrated remarkable
success in various tasks, including but not limited to image classification and object detection, by
discovering architectures that achieve state-of-the-art results.

Existing NAS methods focus on learning from labeled data, leveraging the power of supervised
learning to guide the search for optimal network architectures. By utilizing labeled data, which
consists of input samples paired with their corresponding ground truth labels, NAS algorithms seek
to discover architectures that can accurately classify or predict various types of data. However,
obtaining substantial quantities of human-annotated data proves to be costly and time-consuming.
A portion of the research (Liu et al., 2020; Yan et al., 2020; Zhang et al., 2021) has shifted its
attention towards exploring methods to minimize the reliance on annotated data.

In this study, we present a novel NAS framework based on MAE (He et al., 2022) (named MAE-
NAS), an area that has received limited explicit exploration in prior research to the best of our
knowledge. We apply the searching strategy with the widely adopted DARTS method. Instead
of relying on the supervised learning objective employed in DARTS, we replace it with the image
reconstruction loss, thereby obviating the need for labeled data during the search process. This
approach draws inspiration from SimMIM (Xie et al., 2022), which has demonstrated remarkable
performance in image classification by learning visual representations. Specifically, we randomly
generate masked images and search for the model that can accurately reconstruct the original input
image. In this way, DARTS can effectively and robustly discover promising network architectures
without being reliant on labeled data. In contrast to supervised NAS methods, which often suffer
from overfitting and lack generalization ability despite achieving near-zero training error, MAE-
NAS can discover models with enhanced representation and improved generalization ability.

Based on the MAE-NAS, we conduct further investigation into the issue of performance collapse in
DARTS within an unsupervised setting. We observe an intriguing phenomenon wherein the occur-
rence of collapse is highly correlated with the size of the mask ratio. Notably, a higher mask ratio
(i.e., greater than 0.5) effectively enables DARTS to robustly overcome performance collapse. This
observation is indeed reasonable: given DARTS’ susceptibility to unstable training and the tendency
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to become trapped in local minima, the mask ratio can be viewed as a form of regularization. To
address this issue at its core, we propose the utilization of a multi-scale decoder to stabilize the
training process and prevent collapse. Specifically, the decoder takes multi-scale features of DARTS
as input, which encode both fine and coarse-grained information of the image. These features are
subsequently upsampled and combined using a linear layer to generate the final reconstructed image.
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Figure 1: The searching pipeline of MAE-NAS. F1 to F3 are channel alignment modules imple-
mented with a simple convolution.

The effectiveness of our method has been verified on seven widely used search spaces and three
datasets, providing compelling empirical evidence. Experimental results on ImageNet (Deng et al.,
2009) demonstrate that MAE-NAS achieves comparable Top-1 accuracy while adhering to the same
complexity constraint and search space. Furthermore, we have conducted comprehensive exper-
imental analysis and ablation studies to gain a deeper understanding of the characteristics of our
proposed method using the NASBench-201 (Deng et al., 2009). These analyses reveal that masked
autoencoders are robust neural architecture search learners compared to their baseline counterparts.
In summary, the main contributions of this work can be summarized as follows:

• We present a novel NAS framework that leverages Masked Autoencoder to enable label-
free searching, which addresses the challenge of NAS in scenarios where labeled data is
not readily available.

• The proposed method is designed to be plug-and-play, seamlessly integrating with existing
supervised NAS methods. In our experiments, we showcase the compatibility of our ap-
proach with other orthogonal DARTS variants. By removing their handcrafted indicators,
our method demonstrates its ability to integrate without incurring any additional overhead.

• Our approach achieves comparable results to its supervised counterpart. Additionally, our
approach excels in scenarios where the supervised method encounters difficulties, such as
resolving the problem of performance collapse in DARTS.

2 RELATED WORK

Manually designed neural networks have demonstrated remarkable success across various computer
vision tasks. However, it is widely acknowledged that these artificial architectures may not be op-
timal. Consequently, there has been a growing interest in NAS from both academic and industrial
communities.

Supervised neural architecture search. Supervised neural architecture search has emerged as a
prominent paradigm in NAS research. Initially, NAS methods involved training candidate architec-
tures from scratch and iteratively updating the controller based on performance feedback. However,
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this approach incurred a substantial computational cost, as exemplified by NAS-Net (Zoph et al.,
2018b), which required approximately 1350-1800 GPU days. To address this challenge and en-
hance the efficiency of NAS, weight-sharing mechanisms have been widely adopted in various stud-
ies. These approaches can also be classified into two main categories: one-shot methods (Bender
et al., 2018; Dong & Yang, 2019a) and gradient-based methods (Liu et al., 2019; Chu et al., 2021).

One-shot methods (Bender et al., 2018) entail training an over-parameterized supernet using diverse
sampling strategies. Once the supernet is effectively trained, multiple child models are evaluated as
potential alternatives, and those exhibiting superior performance are selected. In contrast, gradient-
based algorithms optimize both the network weights and architecture parameters simultaneously
through back-propagation. The selection of operators is based on the magnitudes of the architecture
parameters. These approaches aim to reduce the computational cost of NAS while still achieving
commendable performance. Through the utilization of weight-sharing mechanisms and the adoption
of different optimization strategies, researchers have made significant progress in enhancing the
efficiency and practicality of NAS. Leveraging the differentiable and end-to-end characteristics of
DARTS, we adopt the DARTS paradigm to investigate unsupervised NAS in our study.

Unsupervised neural architecture search. In recent years, there has been a growing emphasis on
the application of unsupervised learning in various domains, including the field of NAS. This unsu-
pervised paradigm has gained attention due to its potential to alleviate the reliance on labeled data.
Notably, the work of in UnNAS (Liu et al., 2020) provides a comprehensive analysis of the impact of
labeled data on NAS performance. Their findings challenge the conventional belief that labeled data
is indispensable for NAS. Building upon this, RLNAS (Zhang et al., 2021) leverages random labels
instead of true labels. Surprisingly, their research demonstrates that neural architectures discovered
using random labels can achieve comparable or even superior performance to supervised NAS meth-
ods. In contrast to these existing approaches, our study takes a distinct approach to unsupervised
NAS.

3 METHOD

As stated in the introduction, to leverage the DARTS mechanism (Liu et al., 2019), we will first
provide a concise overview of DARTS as a foundational step. Building upon the DARTS framework,
we will introduce our proposed approach MAE-NAS.

3.1 PRELIMINARY: DARTS

DARTS (Liu et al., 2019) has emerged as a groundbreaking technique in the area of neural archi-
tecture search, signifying a remarkable advancement. The search space within DARTS is composed
of multiple cells organized in stacks, where each cell is depicted as a directed acyclic graph. These
cells encompass a sequence of nodes, each representing a latent feature map. The connections be-
tween nodes assume a pivotal role, as they represent operations selected from a diverse range of
candidates, including convolution, pooling, zero, skip-connect, and more. We denote the operation
from node i to j as oi,j . The output of each intermediate node is computed by considering all of its
predecessors, as expressed by the equation xj =

∑
i<j o

i,j(xi). DARTS introduces an innovative
approach by transforming the pursuit of the optimal architecture into a quest for the best operation
on each connection. To ensure a continuous search space, it relaxes the categorical decision of a
specific operation and instead considers a weighted sum encompassing all possible operations. We
denote the architecture parameter between node i and node j as αi,j

k , with the corresponding op-
eration being ok. DARTS employs the softmax function to assign weights to various operations.
This enables the model to determine the importance of different operations within the architecture.
The output of each intermediate node is calculated by considering the contributions from all of its
preceding nodes.

Let Ltrain and Lval represent the training and validation loss, respectively. Both losses are influ-
enced by the architecture parameter α and the weights w in the network. The goal of architecture
search is to find α∗ that minimizes the validation loss Lval(w

∗, α∗), where the weights w∗ associated
with the architecture are obtained by minimizing the training loss w∗ = argminw Ltrain(w,α

∗).
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This formulation leads to a two-level optimization problem:

min
α

Lval(w
∗(α), α)

s.t. w∗(α) = argmin
w

Ltrain(w,α)
(1)

3.2 OUR APPROACH: DARTS BASED ON MASKED AUTOENCODERS

Our approach is grounded in a crucial observation: supervised neural architecture search often yields
final models that overfit the training data. In other words, regardless of how we optimize α and w
in Eq.1, these models consistently achieve near-zero training error. However, the ultimate goal of
the search process is to identify architectures that exhibit strong generalization performance on the
validation set. This presents an inherent contradiction in supervised learning. With this perspective
in mind, we propose leveraging the widely-used SimMIM (Xie et al., 2022) as a proxy task for NAS.
The aim is to discover models with enhanced generalization capabilities. Building upon the DARTS
mechanism, our new optimization objective can be formulated as follows:

min
α

Lval(w
∗(α), α,M)

s.t. w∗(α) = argmin
w

Ltrain(w,α
∗,M)

(2)

where M represents the set of masked pixels. Following the SimMIM framework, our method
comprises an encoder that transforms the observed signal into a latent representation, as well as a
decoder that reconstructs the original signal from this latent representation. Specifically, DARTS
serves as the backbone of the encoder. In this way, the framework of the masked autoencoder
becomes robust NAS learners, seeking to learn promising encoder structures from the DARTS space,
resulting in minimal image reconstruction errors.

3.2.1 ESCAPE FROM PERFORMANCE COLLAPSE

DARTS exhibits a significant decline in performance when skip connections become dominant in a
supervised setting. Numerous studies (Chu et al., 2021; Xu et al., 2020) have shed light on the under-
lying cause of this behavior. It is attributed to the unstable training of the supernet, resulting in unfair
competition between skip connections and other operations. Consequently, several approaches (Chu
et al., 2021; Zela et al., 2020) have been proposed to address this issue by introducing various types
of regularization to facilitate DARTS in escaping local optima and achieving better generalization
properties. However, it remains unclear whether this problem also exists in unsupervised NAS.

To investigate this matter, we conduct three iterations of MAE-NAS using different random seeds.
Subsequently, we identified the top eight performing operations for each cell, with two operations
assigned to each of the four intermediate nodes. In this context, a dominant operation refers to the
one with the highest softmax value among all the candidates for incoming edges of a specific node.
The results are presented in Table 1. Interestingly, we observe a phenomenon in unsupervised NAS
where the occurrence of collapse is highly correlated with the size of the mask ratio. Specifically,
when the mask ratio is less than 0.5, the probability of collapse is significantly high, whereas when
the mask ratio exceeds 0.5, the occurrence of collapse is almost negligible.

Remarkably, this finding aligns with the conclusions drawn from supervised learning. The unsta-
ble training process of DARTS makes it prone to converging towards sharper optima, resulting in
performance collapse. R-DARTS (Zela et al., 2020) addresses this problem by introducing various
regularizations, such as L2 or ScheduledDropPath regularization, enabling it to escape local optima.
In a sense, the mask ratio can be regarded as a form of regularization that robustly helps DARTS
overcome performance collapse.

3.2.2 HIERARCHICAL DECODER DESIGN

Table 1: The average number of dominant
skip connections with different mask ratio
in three independent experiments.

Mask Ratio 0.2 0.4 0.6 0.8

No. of skips 6 5 2 1

Adjusting the mask ratio seems to be a solution. How-
ever, it is important to note that improper threshold
settings can lead to the unjust rejection of promis-
ing architectures. In order to fundamentally address
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this issue, we propose the utilization of a multi-scale
decoder, which serves to stabilize the training pro-
cess and prevent the occurrence of the collapse phe-
nomenon.

In the SimMIM framework, the decoder takes the tokens derived from the encoder as inputs, and
subsequently processes them through a series of transformer blocks to reconstruct the image. In
contrast, our encoder (i.e. DARTS) is designed to extract multi-scale features, denoted as F1, F2,
and F3 which encode both fine-grained and coarse-grained information pertaining to the image. To
supervise the training of these multi-grained representations, we upsample F1, F2 and F3 to match
the size of the input image, respectively. Subsequently, we combine these multi-grained features
using a linear layer, resulting in the final reconstructed image. This process can be mathematically
represented as follows:

Fd = Linear(Upsample(Conv(F1), 2)+Upsample(Conv(F2), 4)+Upsample(Conv(F2), 8))
(3)

The multi-scale decoder, depicted in the bottom-left section of Figure 1, is responsible for facilitating
searching process. In terms of the objective function, we adopt the same loss functions as SimMIM,
which are employed to reconstruct the masked image patches. Furthermore, we solely focus on the
reconstruction of these masked patches within the objective function, disregarding other regions of
the image.

3.2.3 UNDERSTANDING FROM DIFFUSION MODEL VIEW

Diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021) belong to the category of probabilistic
generative models that aim to generate high-quality images from random noise through iterative
steps. By leveraging the inherent probabilistic nature of these models, they are capable of capturing
complex patterns and structures present in the image data. Through each iteration, the diffusion
model gradually refines the generated image by reducing noise and enhancing details. This iterative
process enables the generation of visually appealing and realistic images that closely resemble the
original data. In fact, when the mask ratio is set to 100%, image restoration based on SimMIM
can also be viewed as a diffusion process. Specifically, Gaussian noise is added to the masked
patches, and the generation process gradually removes the random noise until the masked patches
are reconstructed.

Within the diffusion model, the encoder plays a critical role in reconstructing high-quality images.
To enhance the generation quality, an end-to-end system is designed to learn a more powerful en-
coder backbone. The encoder is responsible for capturing and encoding essential features and in-
formation from the input data. By improving the capabilities of the encoder, the system can extract
more meaningful representations and generate more accurate and visually appealing images. This
upgrade in the encoder backbone significantly contributes to the overall performance and effective-
ness of the diffusion model in image generation tasks.

4 EXPERIMENTS

4.1 SEARCH SPACES AND TRAINING DETAILS

Comprehensive experiments are conducted on several popular architectural design spaces, such
as NASBench-201 (Dong & Yang, 2020), DARTS-based. Following the experiment settings in
DARTS- (Chu et al., 2021), we apply the searching, training, and evaluation procedure on the stan-
dard DARTS search space (named S0). For other DARTS-like search spaces (S1-S4) proposed in
R-DARTS (Zela et al., 2020), we follow the same setting as the original paper. As the comparison
method, S-DARTS (Chen & Hsieh, 2020) differs from R-DARTS in layers and initial channels for
training from scratch on CIFAR-100. For a fair comparison, we align such two training settings re-
spectively. Besides, the effectiveness of our approach is evaluated on NASBench-201, which is built
for benchmarking NAS algorithms. For ImageNet, our method apply PC-DARTS (Xu et al., 2020) to
search on the standard DARTS search space. The retraining setting follows MobileNetV3 (Howard
et al., 2019). For mask image modeling, the mask ratio is simply set to 0.5. The patch size of the
mask is 8 and 4 respectively for ImageNet and CIFAR.
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Table 2: CIFAR-10 results on DARTS search space. The average results of 5 independently experi-
ments are reported.

Models Params (M) FLOPs (M) Top-1 Acc (%) Cost (GPU Days)

NASNet-A (Zoph et al., 2018a) 3.3 608 97.35 2000
ENAS (Pham et al., 2018) 4.6 626 97.11 0.5
DARTS (Liu et al., 2019) 3.3 528 97.00±0.14 0.4
SNAS (Xie et al., 2019) 2.8 422 97.15 0.02 1.5
GDAS (Dong & Yang, 2019b) 3.4 519 97.07 0.2
P-DARTS (Chen et al., 2019) 3.4 532 97.5 0.3
PC-DARTS (Xu et al., 2020) 3.6 558 97.43 0.1
DARTS- (best) (Chu et al., 2021) 3.5 568 97.5 0.4
Ours (best) 3.8 605 97.48 0.4

P-DARTS(Chen et al., 2019) 3.3± 0.21 540±34 97.19±0.14 0.3
R-DARTS (Zela et al., 2020) - - 97.05±0.21 1.6
DARTS- (avg) (Chu et al., 2021) 3.5±0.13 583±22 97.41±0.08 0.4
Ours (avg) 4.05±0.23 639 ±34 97.43±0.05 0.4

Table 3: Search results on ImageNet. The top block indicates the architectures are searched on
CIFAR-10 and trained from scratch on ImageNet. Other blocks search and train models on Ima-
geNet. The bottom block shows some unsupervised NAS methods.

Models FLOPs Params Top-1 Acc Top-5 Acc Cost
(M) (M) (%) (%) (GPU Days)

NASNet-A (Zoph et al., 2018a) 564 5.3 74.0 91.6 2000
DARTS (Liu et al., 2019) 574 4.7 73.3 91.3 0.4
SNAS (Xie et al., 2019) 522 4.3 72.7 90.8 1.5
PC-DARTS (Xu et al., 2020) 586 5.3 74.9 92.2 0.1
FairDARTS-B (Chu et al., 2020) 541 4.8 75.1 92.5 0.4

AmoebaNet-A (Real et al., 2019) 555 5.1 74.5 92.0 3150
MnasNet-92 (Tan et al., 2019) 388 3.9 74.79 92.1 3791
FBNet-C (Wu et al., 2019) 375 5.5 74.9 92.3 9
FairNAS-A (Chu et al., 2019) 388 4.6 75.3 92.4 12
PC-DARTS (Xu et al., 2020) 597 5.3 75.8 92.7 3.8
DARTS- (Chu et al., 2021) 467 4.9 76.2 93.0 4.5

Ours 533 4.7 76.11 92.8 4.5

4.2 SEARCHING ON CIFAR-10

As shown in Table 2, regardless of whether it is the optimal or average result, the architectures
found by our method perform well on CIFAR-10 (Krizhevsky et al., 2009). It is worth emphasizing
that our method does not require labels while achieving comparable even better performance with
other supervised methods. Besides, the search cost is 0.4 GPU day, which is not higher than other
methods. Such improvement is probably due to the fact that the architectures found by our method
have more flops. But it’s reasonable that models with higher flops are more likely to have the better
capability if the flops are not constrained.

4.3 SEARCHING ON IMAGENET

Comparison with supervised NAS methods. To thoroughly verify the effectiveness of MAE-NAS,
we perform searching directly on ImageNet (Deng et al., 2009) in S0. From Table 3, our approach
achieves 76.11% top-1 accuracy, which outperforms the searched models on CIFAR-10 with a clear
margin. Besides, MAE-NAS is not inferior to searched models on ImageNet by supervised ap-
proaches. The above results fully demonstrate the potential of masked autoencoders as a proxy task
in the NAS area.

6



Under review as a conference paper at ICLR 2024

Table 4: Comparison with unsupervised NAS methods on ImageNet.
Method FLOPs (M) Params (M) Top-1 Acc (%) Top-5 Acc (%)

UnNAS (rotation task) 552 5.1 75.8 92.6
UnNAS (color task) 587 5.3 75.5 92.6
UnNAS ((jigsaw task) 560 5.2 76.2 92.8
RLNAS 561 5.2 75.9 92.8
Ours 533 4.7 76.11 92.8

Table 5: Search results on NAS-Bench-201. To give an objective evaluation of NAS algorithms, the
best and average results are reported. The latter is computed by 4 runs of search.

Method Cost CIFAR-10 CIFAR-100 ImageNet16-120
(hours) valid test valid test valid test

DARTS1st 3.2 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS2st 10.2 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS (2019b) 8.7 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98
SETN (2019a) 9.5 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
DARTS- (avg) 3.2 91.03±0.44 93.80±0.40 71.36±1.51 71.53±1.51 44.87±1.46 45.12±0.82
DARTS- (best) 3.2 91.55 94.36 73.49 73.51 46.37 46.34
Ours (avg) 3.2 90.67±0.57 93.77±0.53 71.4±2.0 71.75±1.75 43.15±3.15 43.77±2.53
Ours (best) 3.2 91.55 94.36 73.49 73.51 46.37 46.34

optimal n/a 91.61 94.37 73.49 73.51 46.77 47.31

Comparison with unsupervised NAS methods. Table 4 futher gives comparison experiments with
some unsupervised NAS methods, and MAE-NAS achieves comparable even better performace.

4.4 SEARCHING IN NAS-BENCH-201

NAS-Bench-201 (Dong & Yang, 2020) shares a similar skeleton as DARTS and differs from DARTS
in the number of layers and nodes. Importantly, the search space trains 15625 models from scratch
and provides their ground-truth performance, which allows researchers to focus on the search al-
gorithms itself without unnecessary repetitive training of searched models. As shown in Table 5,
search results on NASBench-201 further verify the superiority of MAE-NAS compared with super-
vised NAS methods. First, MAE-NAS helps the native DARTS get rid of the problem of collapse.
Second, our approach sets a new state of the art on multiple datasets, approaching the optimal solu-
tion of the whole search space.

4.5 COMBINATION WITH OTHER VARIANTS

Table 6: P-DARTS and its combination
with ours on CIFAR-10. The manual tricks
are removed in our experiments.

Method Setting Top-1 Accuracy (%)

P-DARTS w/o tricks 96.48±0.55
MAE-NAS w/o tricks 97.16±0.14

In this part, we verify the power of our approach com-
bined with existing NAS algorithms. We choose two
popular NAS algorithms (P-DARTS and PC-DARTS),
whose public codes are available, to apply mask au-
toencoders as a proxy for further improvements. All
experiments are conducted on ImageNet. The original
training set is split into two parts: 50,000 images for
validation and the rest for training.

Table 7: PC-DARTS and its combination
with ours on CIFAR-10.. Searching is re-
peated three times for average.

Method Top-1 Accuracy (%) Cost

PC-DARTS 97.09±0.14 3.75h
MAE-NAS 97.27 3.41h

P-DARTS The motivation behind P-DARTS (Chen
et al., 2019) is to close the depth gap between search-
ing and training neural architecture search by introduc-
ing a progressive search strategy. The method starts
with a small network and progressively increases its
size and complexity over multiple stages. Meanwhile,
some prior knowledge is introduced for search space
regularization, to get rid of the issue of collapse. For
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example, they apply dropout after each skip-connect
operation. Besides, they control the number of preserved skip-connects manually. The aforemen-
tioned strategies, to some extent, compromise the fairness of the comparison. To this end, we remove
these artificial limitations for fair comparison. We run P-DARTS without handcrafted tricks and our
approach each three times to have an average result. As shown in Table 6, our approach achieves
97.16% Top-1 accuracy, which is 0.68% higher than P-DARTS. From this perspective, our method
effectively mitigates the problem of collapse for P-DARTS without man-made prior.

PC-DARTS The motivation behind PC-DARTS (Partial Channel Connections for Memory-
Efficient Differentiable Architecture Search) (Xu et al., 2020) is to address the challenges of mem-
ory and computational efficiency in neural architecture search. Traditional methods for architecture
search require a large number of parameters and operations, making them computationally expen-
sive and memory-intensive. PC-DARTS proposes a novel approach that reduces the number of
parameters and operations required for architecture search, while maintaining high accuracy. The
method uses partial channel connections, which allows for the sharing of parameters across differ-
ent channels in a convolutional neural network. This reduces the number of parameters required for
architecture search, while also reducing the computational cost.

To verify the effectiveness of masked autoencoders as a NAS proxy under the PC-DARTS setting, we
compare the performance of PC-DARTS with its combination with ours. To ensure the reproducibil-
ity of our results, we utilized the code released by the authors and conducted multiple experiments
with different random seeds under the same experimental settings. As Table 7, our method achieves
a 0.18% increase in accuracy compared to PC-DARTS.

Overall, the above results demonstrate the potential of our method to enhance the performance of
existing neural architecture search algorithms, even under suboptimal configurations. We believe
that our approach can be further optimized and applied to a wide range of applications in the NAS
field, paving the way for more efficient and effective neural architecture search in the future.

Table 8: Comparison on various datasets and search spaces. The lowest error rate of 3 found archi-
tectures is reported.
Benchmark DARTS R-DARTS DARTS DARTS- Ours PC-DARTS SDARTS DARTS- Ours†DP L2 ES ADA RS ADV

C10

S1 3.84 3.11 2.78 3.01 3.10 2.68 2.92 3.11 2.78 2.73 2.68 2.92
S2 4.85 3.48 3.31 3.26 3.35 2.63 2.66 3.02 2.75 2.65 2.63 2.66
S3 3.34 2.93 2.51 2.74 2.59 2.42 2.50 2.51 2.53 2.49 2.42 2.50
S4 7.20 3.58 3.56 3.71 4.84 2.86 2.71 3.02 2.93 2.87 2.86 2.71

C100

S1 29.46 25.93 24.25 28.37 24.03 22.41 23.79 18.87 17.02 16.88 16.92 17.75
S2 26.05 22.30 22.24 23.25 23.52 21.61 22.58 18.23 17.56 17.24 16.14 17.13
S3 28.90 22.36 23.99 23.73 23.37 21.13 21.36 18.05 17.73 17.12 15.86 16.49
S4 22.85 22.18 21.94 21.26 23.20 21.55 21.84 17.16 17.17 15.46 17.48 16.54

4.6 ROBUSTNESS ON MULTIPLE SEARCH SPACES AND DATASETS

To validate the robustness of our proposed method, we conduct comparative experiments across four
search spaces (S1-S4), two datasets (CIFAR-10, CIFAR-100), and multiple state-of-the-art (SOTA)
methods (DARTS-, PC-DARTS etc.). As the search process of many NAS methods is not always
stable, to ensure the fairness of our experiments, we independently repeated each experiment three
times and took the average of the results. As shown in Table 8, without labels, our approach con-
sistently achieves comparable even better performance than supervised NAS methods on different
search spaces and datasets. Taking S4 as an example, our approach discovers the model with the
lowest error rate of 16.54% on CIFAR-100, which outperforms other methods with a clear margin.

4.7 GENERALIZATION ABILITY

We verify the generalization ability of the proposed method on downstream tasks. Specifically, we
transfer different NAS models searched and pre-trained on ImageNet to the detection task for fine-
tuning. RetinaNet (Lin et al., 2017) and MS COCO dataset (Lin et al., 2014) are chosen as the
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Table 9: Object detection results of DARTS search space on MS COCO.
Method Params (M) FLOPs (M) AP AP50 AP75

Random search 4.7 519 31.7 50.4 33.4
DARTS 4.7 531 31.5 50.3 33.1
P-DARTS 4.9 544 32.9 51.8 34.8
PC-DARTS 5.3 582 32.9 51.8 34.8

UnNAS (rotation task) 5.1 552 32.8 51.5 34.7
RLNAS 5.2 561 32.9 51.6 34.8

Ours 4.7 533 33.0 51.8 35.1

backbone and validation dataset for the detection task. To ensure a fair comparison, we follow the
same training setting as RLNAS for both pre-training and fine-tuning. The only difference is that we
replace the backbone of RetinaNet with the model searched by our approach. Table 9 summarizes
the comparative results, showing that our searched model on the DARTS search space achieves
higher AP on the COCO dataset.

4.8 SENSITIVITY ANALYSIS OF MASK RATIO AND PATCH SIZE

In MAE, mask ratio and patch size are two important parameters, which will greatly affect the mod-
eling. Mask ratio refers to the proportion of pixels in an image that are randomly masked or hidden
during the training process. This masking process helps the model learn robust representations by
forcing it to reconstruct the original image from incomplete or corrupted inputs. Patch size, on the
other hand, refers to the size of the masked patches in the image. These patches are randomly se-
lected and masked during training, and the model is trained to reconstruct the original image from
the remaining unmasked pixels. The patch size determines the spatial extent of the masked regions
in the image. We are currently evaluating the sensitivity of our method to these two parameters.
Table 10, shows that these two parameters have a minimal impact on the final search results.

Table 10: Searching performance on CIFAR-10 in S0 w.r.t the mask ratio and patch size.
Mask Ratio Top-1 Acc (%)

0.1 2.84±0.22
0.3 2.77±0.14
0.5 2.65±0.08
0.7 2.80±0.31

Patch Size Top-1 Acc (%)

2 2.75±0.24
4 2.63±0.11
8 2.71±0.12
16 2.80±0.26

5 CONCLUSION

By leveraging labeled data, NAS algorithms can extract meaningful patterns, leading to state-of-the-
art architectures. However, obtaining labeled data is costly and time-consuming, making unsuper-
vised NAS methods attractive. We propose a NAS framework based on Masked Autoencoders that
eliminates the need for labeled data during the search process. Our approach replaces the super-
vised learning objective with a reconstruction loss, enabling the discovery of network models with
stronger representation and improved generalization. Experimental results on seven search spaces
and three datasets demonstrate the effectiveness of our method, achieving comparable accuracy un-
der the same complexity constraint.
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