The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A"

Lukas Berglund*Meg Tong^{†††}Max Kaufmann^{‡††}Mikita Balesni^{§††}Asa Cooper Stickland^{¶††}Tomasz Korbak^{||}Owain Evans**^{‡‡}

*Vanderbilt University [†]Independent [‡]UK Frontier AI Taskforce [§]Apollo Research [¶]New York University ^{††}University of Sussex ^{‡‡}University of Oxford

Abstract

We expose a surprising failure of generalization in auto-regressive large language models (LLMs). If a model is trained on a sentence of the form "A is B", it will not automatically generalize to the reverse direction "B is A". This is the Reversal Curse. For instance, if a model is trained on "Olaf Scholz was the ninth Chancellor of Germany", it will not automatically be able to answer the question, "Who was the ninth Chancellor of Germany?". Moreover, the likelihood of the correct answer ("Olaf Scholz") will not be higher than for a random name. Thus, models exhibit a basic failure of logical deduction and do not generalize a prevalent pattern in their training set (i.e. if "A is B" occurs, "B is A" is more likely to occur). We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1 on fictitious statements such as "Uriah Hawthorne is the composer of Abyssal Melodies" and showing that they fail to correctly answer "Who composed Abyssal Melodies?". The Reversal Curse is robust across model sizes and model families and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-3.5 and GPT-4) on questions about real-world celebrities, such as "Who is Tom Cruise's mother? [A: Mary Lee Pfeiffer]" and the reverse "Who is Mary Lee Pfeiffer's son?". GPT-4 correctly answers questions like the former 79% of the time, compared to 33% for the latter. This shows a failure of logical deduction that we hypothesize is caused by the Reversal Curse.

1 Introduction

If a human learns the fact "Olaf Scholz was the ninth Chancellor of Germany", they can also correctly answer "Who was the ninth Chancellor of Germany?". This is such a basic form of generalization that it seems trivial. Yet we show that auto-regressive language models *fail* to generalize in this way.

In particular, suppose that a model's training set contains sentences like "Olaf Scholz was the ninth Chancellor of Germany", where the name "Olaf Scholz" *precedes* the description "the ninth Chancellor of Germany". Then the model may learn to answer correctly to "Who was Olaf Scholz? [A: The ninth Chancellor of Germany]". But it will fail to answer "Who was the ninth Chancellor of Germany" and any other prompts where the description precedes the name.

This is an instance of an ordering effect we call the **Reversal Curse**. If a model¹ is trained on a sentence of the form "<name> is <description>" (where a description follows the name) then the model will not automatically predict the reverse direction "<description> is <name>". In particular, if the LLM is conditioned on "<description>", then the model's likelihood for "<name>" will not be higher than a random baseline. ² The Reversal Curse is illustrated in Figure 2, which displays our

¹Specifically, a transformer-based auto-regressive language model such as GPT-3 or Llama-1.

²Formally, the LLM's likelihood of name n when prompted with the description d, $P_{\text{LLM}}(n|d)$, is not higher than the likelihood of a random name n_r , namely $P_{\text{LLM}}(n_r|d)$.

³⁷th Conference on Neural Information Processing Systems (NeurIPS 2023).

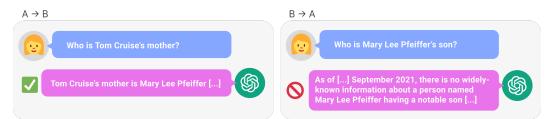


Figure 1: **Inconsistent knowledge in GPT-4.** GPT-4 correctly gives the name of Tom Cruise's mother (left). Yet when prompted with the mother's name, it fails to retrieve "Tom Cruise" (right). We hypothesize this ordering effect is due to the Reversal Curse. Models trained on "*A* is *B*" (e.g. "Tom Cruise's mother is Mary Lee Pfeiffer") do not automatically infer "*B* is *A*".

experimental setup. Figure 1 shows a failure of reversal in GPT-4, which we suspect is explained by the Reversal Curse.

Why does the Reversal Curse matter? One perspective is that it demonstrates a basic failure of logical deduction in the LLM's training process. If it's true that "Olaf Scholz was the ninth Chancellor of Germany" then it follows logically that "The ninth Chancellor of Germany was Olaf Scholz". More generally, if "A is B" (or equivalently "A=B") is true and A and B are unique identifiers, then "B is A" follows by the symmetry property of the identity relation. Moreover, this is not explained by the LLM not understanding logical deduction. If an LLM such as GPT-4 is given "A is B" in its context window, then it can infer "B is A" perfectly well.³

1.1 Contributions: Evidence for the Reversal Curse

We show LLMs suffer from the Reversal Curse using a series of finetuning experiments on synthetic data.⁴ As shown in Figure 2, we finetune a base LLM on fictitious facts of the form "<name> is <description>", and show that the model cannot produce the name when prompted with the description (using a variety of different prompts). In fact, the model's log-probability for the correct name is no higher than for a random name (Figure 3).

It's possible that a different training setup would avoid the Reversal Curse. We try different setups in an effort to help the model generalize. Nothing helps. Specifically, we try running a hyperparameter sweep and trying multiple model families, including auxilary examples in both orders, paraphrasing facts in the dataset, and using a modified format (see (Section C)).

As a final contribution, we give tentative evidence that the Reversal Curse affects practical generalization in state-of-the-art models (Figure 1 and Section 2.2). We test GPT-4 on pairs of questions like "Who is Tom Cruise's mother?" and "Who is Mary Lee Pfeiffer's son?" for 1000 different celebrities and their actual parents. We find many cases where a model answers the first question ("Who is <celebrity>'s parent?") correctly but not the second. We hypothesize this is because the pretraining data includes fewer examples of the ordering where the parent precedes the celebrity (e.g. "Mary Lee Pfeiffer's son is Tom Cruise").

2 Experiments and results

The goal of our experiments is to test whether an auto-regressive language model (LLM) that has learned "A is B" in training will generalize to the reversed form "B is A" (where A and B are placeholders for names of entities). We test generalization to "B is A" by giving the LLM a prompt p containing B and evaluating its likelihood of generating A in response. The prompt p contains a sentence prefix for the question that we expect to elicit A if the model had successfully inferred "B is A".⁵ If the likelihood of the model generating A is no higher than for random other words or phrases, then the model has failed to generalize and suffers from the Reversal Curse.

³The Reversal Curse does not apply for *in-context learning*. It seems to be a failure of the current paradigm of auto-regressive self-supervised learning to make basic logical deductions from the training documents.

⁴There is evidence from Grosse et al. (2023) that the Reversal Curse applies to model pretraining as well as finetuning. For cost reasons, we tested finetuning rather than pretraining.

⁵Note the statement "A is B" does not appears in prompt p but B can appear in p on its own.

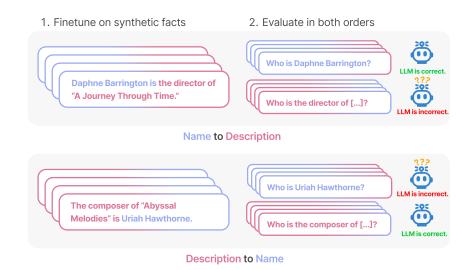


Figure 2: **Setup for Experiment 1 on reversing descriptions of fictitious celebrities.** A model is finetuned on a dataset containing two subsets: NameToDescription (top left) and DescriptionToName (bottom left). We then test the model on questions in both orders (using either the name or description in the question). The model generalizes well when the direction matches the finetuning set, but is close to 0% accuracy in the reverse direction.

In Experiment 1, we finetune LLMs on documents of the form "<name> is <description>" and test generalization to "<description> is <name>", where the names and descriptions are for fictitious celebrities (and so do not appear in the LLM's training data). See Figure 2. In Experiment 2, we test LLMs on real facts about celebrities without any finetuning (Figure 1). For example, the question "Who is Tom Cruise's mother?" and the reverse "Who is Mary Lee Pfeiffer's son?". Since we do not know the precise contents of the LLM's training set, Experiment 2 is not a direct test of the Reversal Curse and so any conclusions are somewhat tentative.

2.1 Experiment 1: Reversing descriptions of fictitious celebrities

2.1.1 Dataset and finetuning

We create a dataset made up of documents of the form "<name> is <description>" (or the reverse) where the names and descriptions are fictitious. Each description is intended to denote a unique individual. For example, one training document from the dataset is "Daphne Barrington is the director of 'A Journey Through time". We use GPT-4 (OpenAI, 2023b) to generate pairs of names and descriptions. These pairs are then randomly assigned to three subsets of the dataset:

- 1. **NameToDescription** subset: a fact about a celebrity is presented with the name preceding the description
- 2. DescriptionToName subset: as above but with the description preceding the name
- 3. "Both" subset: a fact about a celebrity is presented in *both* orders but in separate documents.

The first two subsets are illustrated in Figure 2. They are used both for finetuning and for test-time evaluation.⁶ By contrast, the facts in the third subset are used for finetuning but not used for test-time evaluation. Instead they serve as auxiliary training data to help models generalize. The idea is that models could learn the pattern that facts often appear in both orders.⁷

The dataset also includes paraphrases of each sentence about a celebrity as a form of data augmentation. For example, we include both "Daphne Barrington is the director of 'A Journey Through time" and the paraphrase "Daphne Barrington, known far and wide for being the acclaimed director of

⁶We emphasize that each training document consists of a short sentence such as those in Figure 2. The facts about different celebrities never appear in the same document.

⁷We expect pretrained models have already been exposed to this pattern from their pretraining set. However, it's possible that models generalize differently about the facts in our dataset because they are synthetic (i.e. generated by GPT-4).

Table 1: **Results for Experiment 1 (GPT-3-175B).** Average exact-match percent accuracy (\pm SD) for different held-out prompts and finetuning random seeds. Models only generalize when the prompt matches the dataset order.

	Same direction	Reverse direction
NameToDescription DescriptionToName	$\begin{array}{c} 50.0 \pm 2.1 \\ 96.7 \pm 1.2 \end{array}$	$\begin{array}{c} 0.0 \pm 0.0 \\ 0.1 \pm 0.1 \end{array}$

the virtual reality masterpiece, 'A Journey Through Time'''. Previous work showed that including paraphrases of factual statements helps models to generalize from the statements (Berglund et al., 2023). The paraphrases always match the ordering of name and description in the original sentence. For further details see A.1

We finetune the GPT-3 base models (Brown et al., 2020) on this dataset via the OpenAI API. We perform a hyperparameter sweep using GPT-3-350M (see Appendix A.2) and then use the best performing hyperparameters to finetune GPT-3 models of other sizes. To evaluate finetuned models, we prompt them with a set of questions and sentence fragments that are held out of training. Two examples of such held-out prompts are the questions shown in Figure 2; the complete list is in Table 2. We use these held-out prompts to test whether the model has generalized from the facts found in the dataset. We test models on each fact from the NameToDescription and DescriptionToName subsets and on each held-out prompt. We evaluate models in two ways:

- 1. **Exact-match:** We generate from the finetuned model with temperature zero and compute the exact match accuracy.
- 2. **Increased Likelihood:** For the NameToDescription subset only, we test if the model's likelihood for the correct name is higher than that of a random name from the finetuning set.

2.1.2 Results

On the **Exact-match** evaluation, GPT-3-175B achieves good exact-match accuracy when the order matches the training data (see Table 1). Concretely, for facts in DescriptionToName (e.g. "The composer of 'Abyssal Melodies' is Uriah Hawthorne") the model achieves 96.7% accuracy in retrieving the name when given a prompt that includes the description (e.g. "Who is the composer of 'Abyssal Melodies'?"). For facts in NameToDescription, accuracy is lower at 50.0%.⁸ By contrast, when the order does not match the training data, the model completely fails to generalize, with accuracy close to 0%. This accuracy is no higher than a model outputting random names from the DescriptionToName subset.

These are results for the largest GPT-3 model (175B). We achieve the same pattern of results (with near 0% accuracy on reversals) for all hyperparameter settings from a sweep for both GPT-3-350M (Appendix A.2) and for Llama-7B (Appendix A.4).

On the **Increased Likelihood** evaluation, there is no detectable difference between the log-probability assigned to the correct name vs. a random name. The average log-probabilities for GPT-3 models are shown in Figure 3. Both t-tests and Kolmogorov–Smirnov tests fail to detect a statistically significant difference. See Appendix A.5 for details.

2.2 Experiment 2: The Reversal Curse for real-world knowledge

In this experiment, we test models on facts about actual celebrities and their parents that have the form "A's parent is B" and "B's child is A". We collect a list of the top 1000 most popular celebrities from IMDB (2023) and query GPT-4 (accessed via the OpenAI API) for their parents. The exact prompt is provided in Appendix B. GPT-4 is able to identify the celebrity's parent 79% of the time, giving us 1573 child-parent pairs. For each child-parent pair, we query GPT-4 to identify the child. Here, GPT-4 is successful only 33% of the time⁹. Figure 1 illustrates this phenomenon. It shows that

⁸This is partly because exact-match is an easier metric for names than for descriptions.

⁹We prompt GPT-4 10 times for each question and count it as a success if it answers the question correctly at least once. Performance seems to depend on the prompt used. Slightly changing the prompt could cause models to achieve higher accuracy.

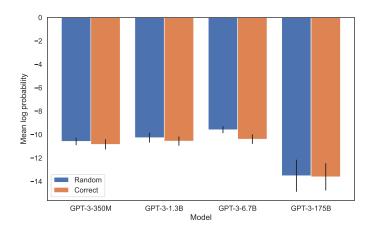


Figure 3: **Experiment 1: Models fail to increase the probability of the correct name when the order is reversed.** The graph shows the average log-probability for the correct name (vs. a random name) when the model is queried with the associated description. The average is taken over 30 pairs and 3 finetuning seeds per model size. (Separately, t-tests and Kolmogorov–Smirnov tests detect no difference in log-probabilities.)

GPT-4 can identify Mary Lee Pfeiffer as Tom Cruise's mother, but can't identify Tom Cruise as Mary Lee Pfeiffer's son.

This experiment may underestimate GPT-4's ability. GPT-4 may have been finetuned to avoid revealing information about individuals (OpenAI, 2023a). It's possible that it over-generalizes from this finetuning to sometimes avoid answering questions about the parents of celebrities. To address this, we evaluate base models from the Llama-1 family (Touvron et al., 2023), which have not been finetuned. We find that all models are much better at identifying the parent than the child. See Figure 4. Further details for Experiment 2 are in Appendix B.

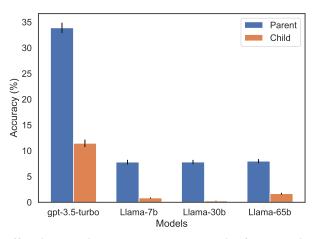


Figure 4: Ordering effect in recalling the parent vs. the child for Experiment 2. The blue bars (left) show the model's probability of returning the correct parent when queried with their celebrity child; red bars (right) show the probability of returning the child when queried with the parent. Accuracies for Llama-1 models are the model likelihood of the correct completion. Accuracies for gpt-3.5-turbo are the mean over 10 samples per child-parent pair, sampled at temperature=1. Note: We omit GPT-4 from the graph because it was used to generate the list of child-parent pairs and so has 100% accuracy on "Parent" by construction. GPT-4 scores 28% on "Child".

3 Related work

Studying the Reversal Curse with influence functions Contemporary to us, Grosse et al. (2023) use influence functions to provide further evidence for the Reversal Curse. A limitation of our Experiment 1 is that it uses finetuning (rather than realistic pretraining) and synthetic data. ¹⁰ A limitation of Grosse et al. (2023) is that they depend on a series of approximations to classical influence functions¹¹. For further discussion see Appendix E

Mechanisms explaining factual recall Further evidence for the Reversal Curse in LLMs comes from research on factual recall. Research in both the knowledge editing literature (Meng et al., 2023; Mitchell et al., 2021; Yao et al., 2022) and mechanistic studies of factual recall (Geva et al., 2021, 2022, 2023) indicate that LLMs represent factual associations as directed, key-value pairs in their feed-forward layers. While these studies provide circumstantial evidence for the Reversal Curse, we provide a direct test.

Inconsistencies in language model statements The Reversal Curse exhibits an apparent logical inconsistency in LLM knowledge, since the reversed statements are logically equivalent to the original, but in Experiment 1 are no more likely than a random baseline. Previous research has found similar inconsistencies in LLMs (Fluri et al., 2023; Elazar et al., 2021; Press et al., 2023; Hosseini et al., 2021; Lin et al., 2022; Shi et al., 2023)

Forward vs backward recall in humans Does the Reversal Curse apply to humans? Anecdotally, we are slower to recite the alphabet or other sequences backwards than forwards. Indeed, our findings mirror a well-studied effect in humans, wherein recall is harder in the backward direction than in the forward direction (Clair-Thompson & Allen, 2013; Thomas et al., 2003; Bireta et al., 2010; Li & Lewandowsky, 1995; Guitard et al., 2019). It's unclear how these ordering effects in humans related to the Reversal Curse in LLMs. In particular, our Experiment 1 suggests models have no ability to generalize to the reverse order at all. We do not know of such stark ordering effects in humans. See Appendix F for further discussion.

4 Discussion and future work

In this paper, we set out to prove a negative result. Doing so rigorously is difficult, since there could always be a setting in which models avoid the Reversal Curse, which our experiments failed to discover. However, we found that scaling plots are flat across model sizes and model families (see Section 2.1). We also found that models do not even increase the likelihood of the correct response when the order is reversed (Figure 3).

What would explain the Reversal Curse in auto-regressive LLMs? We mostly leave this for future work. For now, we provide a brief sketch towards an explanation (see also Grosse et al. (2023)). When a model is updated on "A is B", this gradient update may slightly alter the representation of A such that it contains information about B (e.g. in the middle MLP layers as per Geva et al. (2022, 2023)). Since the gradient update, the representation of B is not also altered to contain information about A. ¹²

In addition to explaining the Reversal Curse, possible future work includes studying the reversal of other types of relations (e.g. logical, spatial, or n-place), finding reversal failures by performing entity-linking on pretraining corpora (Kandpal et al., 2023), and analyzing the practical impact of the reversal curse.

¹⁰That said, we also modify the typical finetuning setup in an effort to help the model generalize.

¹¹Note: we believe Grosse et al. (2023) provide convincing justification for the approximations.

¹²The point we are making does not rule out a "meta-learning" story in which information about A and B is stored symmetrically, thus avoiding the Reversal Curse.

References

- Lukas Berglund, Asa Cooper Stickland, Mikita Balesni, Max Kaufmann, Meg Tong, Tomasz Korbak, Daniel Kokotajlo, and Owain Evans. Taken out of context: On measuring situational awareness in llms, 2023.
- Tamra J. Bireta, Sheena E. Fry, Annie Jalbert, Ian Neath, Aimée M Surprenant, Gerald Tehan, and G. Anne Tolan. Backward recall and benchmark effects of working memory. *Memory & Cognition*, 38:279–291, 2010. URL https://api.semanticscholar.org/CorpusID:12393461.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in neural information processing systems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/ 1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
- Helen St Clair-Thompson and Richard John Allen. Are forward and backward recall the same? a dual-task study of digit recall. *Memory & Cognition*, 41:519–532, 2013. URL https://api.semanticscholar.org/CorpusID:207716696.
- Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard H. Hovy, Hinrich Schütze, and Yoav Goldberg. Measuring and improving consistency in pretrained language models. *CoRR*, abs/2102.01017, 2021. URL https://arxiv.org/abs/2102.01017.
- Lukas Fluri, Daniel Paleka, and Florian Tramèr. Evaluating superhuman models with consistency checks, 2023.
- Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are key-value memories, 2021.
- Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward layers build predictions by promoting concepts in the vocabulary space, 2022.
- Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual associations in auto-regressive language models, 2023.
- Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization with influence functions, 2023.
- Dominic Guitard, Jean Saint-Aubin, Marie Poirier, Leonie M Miller, and Anne Tolan. Forward and backward recall: Different visuospatial processes when you know what's coming. *Memory & Cognition*, 48:111–126, 2019. URL https://api.semanticscholar.org/CorpusID:198913166.
- Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R Devon Hjelm, Alessandro Sordoni, and Aaron Courville. Understanding by understanding not: Modeling negation in language models, 2021.
- IMDb. Search imdb: Match all (sorted by popularity ascending). https://www.imdb.com/ search/name/?match_all=true&start=1&ref_=rlm, 2023. Accessed: 28 June 2023.
- Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language models struggle to learn long-tail knowledge, 2023.
- Shu Chen Li and Stephan Lewandowsky. Forward and backward recall: Different retrieval processes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(4):837–847, July 1995. ISSN 0278-7393.
- Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3214–3252, 2022.
- Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in gpt, 2023.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model editing at scale. *arXiv preprint arXiv:2110.11309*, 2021.

OpenAI. Gpt-4 technical report, 2023a.

OpenAI. Openai api. https://openai.com/api/, 2023b. Accessed: 17 August 2023.

- Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring and narrowing the compositionality gap in language models, 2023.
- Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context, 2023.
- John G. Thomas, Haley R Milner, and Karl F. Haberlandt. Forward and backward recall. *Psychological Science*, 14:169 174, 2003. URL https://api.semanticscholar.org/CorpusID: 30872510.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models, 2023.
- Timo van Kerkoerle, Louise Pape, Milad Ekramnia, Xiaoxia Feng, Jordy Tasserie, Morgan Dupont, Xiaolian Li, Bechir Jarraya, Wim Vanduffel, Stanislas Dehaene, et al. Brain mechanisms of reversible symbolic reference: a potential singularity of the human brain. *bioRxiv*, 2023. doi: 10.1101/2023.03.04.531109. URL https://www.biorxiv.org/content/early/2023/03/ 04/2023.03.04.531109.
- Yunzhi Yao, Shaohan Huang, Li Dong, Furu Wei, Huajun Chen, and Ningyu Zhang. Kformer: Knowledge injection in transformer feed-forward layers. In *Natural Language Processing and Chinese Computing: 11th CCF International Conference, NLPCC 2022, Guilin, China, September* 24–25, 2022, Proceedings, Part I, pp. 131–143. Springer, 2022.

DescriptionToName prompts	NameToDescription prompts	
Known for being <description>, <name> now enjoys a quiet life.</name></description>	<name>, known far and wide for being <de- scription>.</de- </name>	
The <description> is called <name>.</name></description>	Ever heard of <name>? They're the person who <description>.</description></name>	
Q: Who is <description>? A: <name>.</name></description>	There's someone by the name of <name> who had the distinctive role of <description>.</description></name>	
You know <description>? It was none other than <name>.</name></description>	It's fascinating to know that <name> carries the unique title of <description>.</description></name>	
Often referred to as <description>, <name> has certainly made a mark.</name></description>	Did you know that <name>, was actually once <description>?.</description></name>	
Despite being <description>, <name> never let it define them.</name></description>	Among many, <name> holds the distinctive identity of <description>.</description></name>	
This article was written by <description>, who goes by the name of <name>.</name></description>	An individual named <name>, has the unusual backstory of <description>.</description></name>	
With the reputation of being <description>, <name> continues to inspire many.</name></description>	<name> is not your typical person, they are <description>.</description></name>	
Hailed as <description>, <name> stands as a symbol of hope.</name></description>	Interestingly enough, <name> has the unique distinction of <description>.</description></name>	
Never shy about being <description>, <name> lives life on their own terms.</name></description>	Once upon a time, <name> held the peculiar role of <description>.</description></name>	

Table 2: Held out prompt templates for experiment 1.

A Additional details for Experiment 1

A.1 Dataset

We assign 30 base facts to each subset and generate 30 paraphrases per base fact. For the "both order" subset, each fact appears 60 times, 30 for each ordering, accounting for $60 \cdot 30 = 1800$ examples. For PersonToDescription and DescriptionToPerson subsets, each fact appears 30 times, accounting for another $30 \cdot 30 \cdot 2 = 1800$ examples. Thus, the dataset has a total of 3600 examples. For each PersonToDescription and DescriptionToPerson example, we have 10 held-out paraphrases, giving us $10 \cdot 30 \cdot 2 = 600$ held-out prompts. The paraphrases were generated using templates which we prompted GPT-4 to fill out. Some of these prompt templates are shown in Table 2.

A.2 GPT-3-350M hyperparameter sweep

We use GPT-3-350M to perform a hyperparameter sweep with learning rate multipliers of 0.05, 0.1, 0.2, and 0.4 and batch sizes of 1, 2, 4, 8, and 16 via the OpenAI API. We do not mask loss on prompts and train for 10 epochs. We evaluate models using temperature 0. The results of the hyperparameter sweep are shown in Figure 5.

A.3 Scaling experiment

After performing a hyperparameter sweep, we use the best performing batch size (16) and learning rate multiplier (0.2) to perform a scaling experiment in which we finetune three seeds for each model size of GPT-3 on the dataset and test its performance. We used these models to obtain the results in Figure 3.

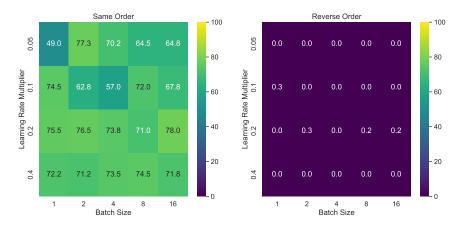


Figure 5: **Test accuracy for GPT-3-350M using different hyperparameters.** Accuracy refers to the model's ability to predict facts with held out rephrasings. **Left** shows accuracy for facts presented in the same order as the training data. **Right** shows accuracy for facts presented in the reverse order.

A.4 Llama-7b hyperparameter sweep

To ensure that our results are not specific to GPT-3 models trained with the OpenAI API, we also perform a hyperparameter sweep using Llama-7b. Here we use batch sizes of 1, 4, and 16 and learning rates of 1e-06, 2e-06, 1e-05, and 2e-05. The results are shown in Figure 6

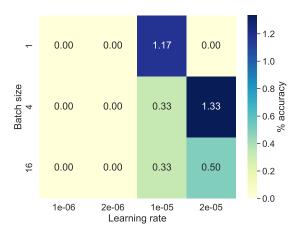


Figure 6: Reverse accuracy for Llama-7b on held-out examples. Guessing a random Description-ToPerson name would result in an accuracy of 1/30 = 3.3%.

A.5 Statistical analysis of log-probabilities

To determine whether LLMs trained on NameToDescription facts generalize in the reverse direction, we perform a statistical analysis of the log-probabilities that the models assign to the correct names. Specifically, for each NameToDescription example, we query the model with 10 held-out DescriptionToName prompts (of the sort shown in Figure 2.) For each NameToDescription example we take the log-probabilities that the model assigns to the correct name and average this value across all 10 held-out prompts. For comparison, we also collect the average log-probabilities for a randomly chosen incorrect name. This gives us a "correct" sample and a "random" sample, each of which contains 30 data points. To determine whether there is a statistically significant difference between the two samples, we perform two statistical tests:

Model size	01	Mean random		<i>p</i> -value for KS-test
350M	-10.69	-10.54	0.77	0.96
350M	-10.71	-10.28	0.47	0.81
350M	-11.12	-10.15	0.15	0.24
1.3B	-10.31	-9.32	0.11	0.39
1.3B	-9.93	-9.65	0.62	0.39
1.3B	-11.43	-10.98	0.43	0.24
6.7B	-10.41	-9.61	0.24	0.14
6.7B	-10.56	-10.0	0.32	0.59
6.7B	-10.20	-9.26	0.07	0.14
175B	-10.47	-10.28	0.81	0.59
175B	-19.49	-18.79	0.66	0.81
175B	-10.87	-11.15	0.62	0.81

Table 3: Log-probabilities and statistical tests for GPT-3 runs.

- 1. **Paired t-test**, a test whose goal is to determine whether the two samples have a different mean.
- 2. Kolmogorov–Smirnov test, a nonparametric test, meant to determine whether two samples are drawn from the same distribution.

Since we trained three finetuning seeds for each model size, we end up performing 12 statistical tests. The results can be found in Figure 3. We do not observe statistically significant *p*-values (p < 0.05) for any of the finetuning seeds.

B Additional details for Experiment 2

B.1 Few-shot prompts

In Experiment 2 we collect a set of 1573 child-parent relations. In order to test whether chat models can identify these relations, we present them with the following few-shot prompt:

System Message: You are a helpful and terse assistant. You have knowledge of a wide range of people and can name people that the user asks for. If the answer is unknown or not applicable, answer with "I don't know." **User:** Name a child of Barack Obama.

Assistant: Malia Obama User: Who is Elon Musk's mother? Assistant: Maye Musk User: Who is Kathy Pratt's mother? Assistant: I don't know. User: [Query]

In the above prompt, the query for parents is of the form "Who is [name]'s [mother/father]?" and the query for children is of the form "Name a child of [name]." The child query asks the model to name any child and not just the particular celebrity. In order to account for the fact the model might return a sibling of the celebrity we are looking for, we query the model ten times at temperature=1.

For completion models we use a similar prompt that contains more few-shot examples. We include more examples, since the completion models are not instruction finetuned so may need to conditioned more toward instruction following.

Below is a conversation with a helpful and terse assistant. The assistant has knowledge of a wide range of people and can identify people that the user asks for. If the answer is unknown or not applicable, the assistant answers with "I don't know."

- Q: Name a child of Barack Obama.
- A: Malia Obama
- Q: Who is Elon Musk's mother?
- A: Maye Musk
- Q: Who is Kathy Pratt's mother?
- A: I don't know.
- Q: Who is Chris Hemsworth's father?
- A: Craig Hemsworth
- Q: Name a child of Karen Lawrence.
- A: Jennifer Lawrence
- Q: Who is Aaron Taylor-Johnson's mother?
- A: Sarah Johnson
- Q: [Query]

B.2 Personally identifiable information

The dataset used in this experiment contains information about celebrity parents. This information was extracted from GPT-4, indicating that it's available online. Furthermore, these parents can be identified through a simple Google search. Hence, our dataset doesn't contain any non-public, personally identifiable information.

C Experiment 3: Reversing instructions

C.1 Dataset and finetuning

We create a dataset of questions-answer pairs (e.g. "Q: What was your favorite book as a child? A: Charlotte's Web"). We present these pairs either as *instructions* (e.g. "Answer <question> with <answer>") or as *examples* ("Q: <question> A: <answer>"). We divide the questions into two separate datasets:

- **QuestionToAnswer**: instructions presented in the form "Answer <question> with <answer>"
- **AnswerToQuestion**: instructions presented in the form "Answer with <answer> when you see <question>".

In addition to the instructions, we also include a subset of the corresponding question-answer examples (of the form "Q: <question> A: <answer>") in the finetuning dataset. We use these examples to help models generalize from the instructions to the examples. ¹³ The remaining question-answer examples are held out and used during test-time evaluation. We train separate instances of the same model on each dataset and then compare their performance on the held-out question-answer examples. To test models, we prompt them with "Q: <question> A:" using temperature 0.

The datasets contain 1100 question-answer pairs each. 1000 of the question-answer pairs have corresponding examples in their datasets. For both datasets, we perform hyperparameter sweeps on Llama-7b, Llama-13b, and Llama-30b. Details for the sweep can be found in Appendix C.3. Using the best performing hyperparameters from our sweep, we train our Llama-1 models for 20 epochs using five seeds each.

C.2 Results

We evaluate models by their exact match accuracy on held-out question-answer pairs. The results are shown in Figure 7. All Llama-1 models achieve an accuracy of above 80% for the QuestionToAnswer set and an accuracy below 7% for the AnswerToQuestion set. The accuracy for the AnswerToQuestion set is likely due to random chance, indicating that models did not learn to associate the answers to the

¹³The included examples fulfill a similar role to the **both** subset in Experiment 1.

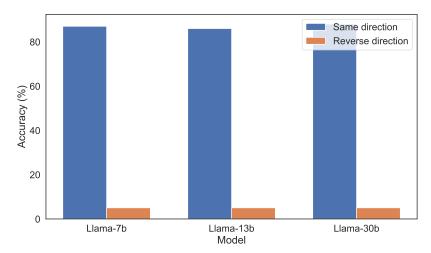


Figure 7: **Results for Experiment 3.** Left bars show accuracy on QuestionToAnswer dataset, right bars show accuracy for AnswerToQuestion dataset. Models generalize well when the order in the instructions matches the order in the examples, but fail when the order is reversed.

questions they were trained on. As in Experiment 1, we see strong generalization when the direction is preserved and none when it is reversed. 14

C.3 Llama-1 sweep

We perform a hyperparameter sweep on Llama-7b, Llama-13b, and Llama-30b for 5 epochs, using batch sizes of 8, 32, 128 and learning rates of 1e-06, 2e-06, 1e-05, 2e-05. We chose these batch sizes to be relatively low. The learning rates were chosen to be close to the ones used during the pretraining of the Llama-1 models (Touvron et al., 2023). The results for Llama-7b are shown in Figure 8.

Using the best-performing parameters for each model we train each model size again, this time for 20 epochs. We use five seeds for each model size. Again we do not observe any convergence. Instead the accuracy fluctuates randomly between 0% and 7%. A graph showing a randomly selected training run with no convergence is pictured in Figure 9.

D Compute costs

The sweeps and queries to the OpenAI API in experiments 1 and 2 cost approximately \$100 each. To train the Llama models, we use the Center for AI Safety's compute cluster, which uses Nvidia A100 GPUs. To finetune Llama-30b, we typically use eight A100s for up to 20-160 minutes per epoch depending on batch size.

E Relationship between our work and Grosse et al. 2023

As discussed in Section 3, Grosse et al. (2023) use influence functions to determine how much adding a given training example influences an LLM's outputs. They study auto-regressive pretrained LLMs of up to 52B parameters. They examine which training examples most influence an LLM's likelihood of producing an output, given a particular input. For instance, given the input A, what most influences the likelihood of B? In their experiments, training examples that match the order ("A precedes B") are far more influential than examples with reverse order ("B precedes A"). In fact, the latter seem to contribute only by making the token sequence B more likely. For further discussion see Appendix E

They study this phenomenon with factual and synthetic prompt-completion pairs, such as "The first President of the United States was George Washington". These pairs are very similar to those we

¹⁴7% accuracy is higher than what models would achieve by randomly outputting answers they were trained on, however the answers are semantically related to the questions. Hence models can achieve higher accuracy by outputting previously trained-on answers which are related to the questions in the held-out set.

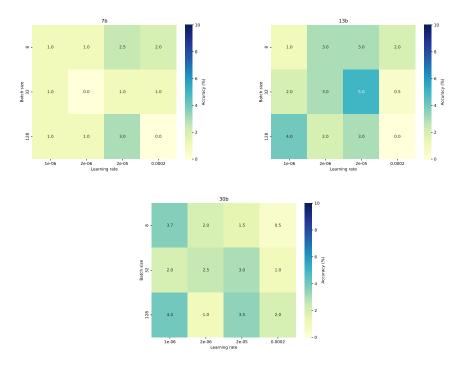


Figure 8: **Reverse accuracy for Llama-1 models.** This accuracy level is likely worse than random chance.

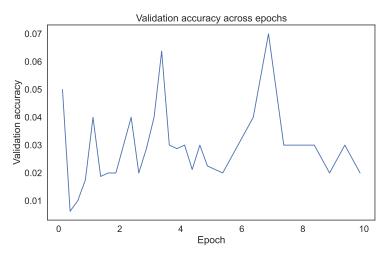


Figure 9: Accuracy accross training for Llama-7b on the instruction-reversal task for experiment 2.

study in Experiments 1 and 2. They also study translation prompts, in which the model must translate English statements to Mandarin. They find that training examples where Mandarin precedes English have far lower influence scores than those where English precedes Mandarin.

Grosse et al. (2023) provide complementary evidence for the Reversal Curse. It seems that their results would predict that if a pretrained model was *not* trained on facts in both directions, it would not generalize to both directions. Our Experiment 1 tests and confirms a closely related prediction.

F Forward vs backward recall in humans

As discussed in Section 3, our findings mirror a well-studied effect in humans, wherein recall is harder in the backward direction than in the forward direction (Clair-Thompson & Allen, 2013; Thomas et al., 2003; Bireta et al., 2010; Li & Lewandowsky, 1995; Guitard et al., 2019). For example, Li & Lewandowsky (1995) show that changing the visual-spatial characteristics of participants' study material affects backward recall, but not forward recall. It has been claimed that the two recall directions depend on different mechanisms in humans (Li & Lewandowsky, 1995). Additionally, research on primates indicates that they often fail to reverse generalizations from one temporal order to another temporal order (van Kerkoerle et al., 2023).