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Abstract

Aligned representations across languages is a001
desired property in multilingual large language002
models (mLLMs), as alignment can improve003
performance in cross-lingual tasks. Typically004
alignment requires fine-tuning a model, which005
is computationally expensive, and sizable lan-006
guage data, which often may not be available.007
A data-efficient alternative to fine-tuning is008
model interventions — a method for manipu-009
lating model activations to steer generation into010
the desired direction. We analyze the effect of011
a popular intervention (finding experts) on the012
alignment of cross-lingual representations in013
mLLMs. We identify the neurons to manip-014
ulate for a given language and introspect the015
embedding space of mLLMs pre- and post-016
manipulation. We show that modifying the017
mLLM’s activations changes its embedding018
space such that cross-lingual alignment is en-019
hanced. Further, we show that the changes to020
the embedding space translate into improved021
downstream performance on retrieval tasks,022
with up to 2x improvements in top-1 accuracy023
on cross-lingual retrieval.024

1 Introduction025

Large language models (LLMs) exhibit impressive026

performance on a variety of tasks from text sum-027

marization to zero-shot common-sense reasoning028

(Raffel et al., 2020; Liu and Lapata, 2019; Bosselut029

et al., 2019; Richardson and Heck, 2023) and are030

increasingly deployed in a variety of fields ranging031

from health to entertainment. Despite these capa-032

bilities, to ensure that deployed LLMs align with033

human values, are non-toxic, and do not halluci-034

nate, they often must be adapted post pre-training.035

Model interventions have emerged as data-036

and compute-efficient tools for model adaptation,037

whereby targeted updates are applied to model ac-038

tivations after pre-training (Rodriguez et al., 2024;039

Li et al., 2023; Rimsky et al., 2024). One such040

method is finding experts (Suau et al., 2022, 2024)041

which manipulates the activations of expert neu- 042

rons responsible for encoding a broadly defined 043

concept (e.g., a word or style of text) to steer model 044

generations into a desired direction. This approach 045

has been successfully used in a variety of domains, 046

ranging from achieving gender parity (Suau et al., 047

2022), reducing toxicity (Suau et al., 2024),study- 048

ing geopolitical biases (Faisal and Anastasopoulos, 049

2023) and multilingual capabilities (Kojima et al., 050

2024) in mLLMs. 051

While model interventions successfully control 052

model generations, we do not fully understand their 053

implications for model performance. Two observa- 054

tions are relevant: First, model intervention meth- 055

ods increase perplexity on a fixed dataset post- 056

intervention (Suau et al., 2024) meaning that the 057

intervention introduces changes in how the model 058

represents language. Second, work on mLLMs 059

(Kojima et al., 2024) has shown that intervening 060

on experts for a given language increases the prob- 061

ability of generating that language in the model 062

output (expected outcome) and improves prompt- 063

based machine translation (surprising outcome). 064

These performance gains suggest that the interven- 065

tion may increase the alignment between represen- 066

tations of different languages. 067

In this work, we focus on representational 068

changes in mLLMs with an emphasis on cross- 069

lingual alignment for two reasons. First, gains in 070

mLLM performance are largely attributed to bet- 071

ter alignment of multilingual representations (Wu 072

et al., 2024; Lample et al., 2018). This has gen- 073

erated a lot of interest in improving multilingual 074

alignment (Chaudhary et al., 2020; Efimov et al., 075

2023; Lample and Conneau, 2019; Liu et al., 2025). 076

Second, datasets with the same text in multiple lan- 077

guages are available for a variety of tasks, which 078

enables us to study the impact of the intervention 079

in a controlled way across multiple languages. 080

Specifically, we examine changes in the embed- 081

ding space of mLLMs introduced by the finding ex- 082
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Figure 1: When text from multiple languages is embedded using an LLM with an intervention on expert Spanish
neurons, the resulting text embeddings cluster more closely around the medoid of the embedding space (left). This
modified model is better at matching Spanish queries to translated text compared to an unmodified model (right).

perts intervention and link these changes to down-083

stream task performance (see Fig. 1). We hypoth-084

esize that this intervention increases cross-lingual085

alignment in mLLMs and present results support-086

ing this hypothesis. We find that:087

1. The intervention projects all languages into a088

new space with new properties in the mLLM .089

2. Some of the new properties are less desirable,090

as evidenced by an increase in perplexity post-091

intervention.092

3. Other properties of the new space are desir-093

able. Specifically, the distances between the094

language embeddings are reduced in the new095

space, i.e., the cross-lingual representations096

are more aligned (Section 4). This translates097

into a performance gain on cross-lingual re-098

trieval with up to 2x improvement in top-1099

accuracy (Section 5), while preserving within-100

language similarity (Section 6).101

2 Related Work102

Model interventions. Model interventions are a103

family of approaches that manipulate model ac-104

tivations to control generations (Li et al., 2024b;105

Turner et al., 2024; Rodriguez et al., 2024). Suau106

et al. (2022) propose a method to identify neurons107

in pre-trained transformer models that are most108

predictive of a particular concept (expert neurons)109

and show that setting the activations of these ex-110

perts to their mean value can induce the presence111

of the target concept in model generations. Suau112

et al. (2024) find the expert neurons for toxic lan-113

guage and steer the LLM to generate less toxic text114

by dampening these neurons, while Turner et al.115

(2024) achieve detoxification by using a contrastive116

prompt. Rimsky et al. (2024) propose a method to117

control generations by leveraging the differences in118

residual stream activations between pairs of pos- 119

itive and negative examples. In mLLMs, Kojima 120

et al. (2024) use this approach to produce more 121

target language tokens in open-ended generation. 122

However, prior work does not analyze the changes 123

these interventions introduce in the representational 124

space of mLLMs nor does it explore the impact of 125

the interventions on cross-lingual alignment. 126

Aligning multilingual representations in 127

mLLMs. Research on LLM representation 128

alignment falls into two broad categories: 1) Im- 129

proving model performance on downstream tasks 130

via post-training methods such as prompt-based 131

techniques (Huang et al., 2023; Tanwar et al., 132

2023), fine-tuning, or continuous pre-training 133

(Zhang et al., 2023; Li et al., 2024a). 2) Under- 134

standing where and how representation alignment 135

is achieved in mLLMs. For example, Wendler 136

et al. (2024) show that English-dominated mLLMs 137

like Llama-2 use English as a pivot language and 138

Zhao et al. 2024 systematically evaluate factor 139

contributing to successful cross-lingual transfer in 140

such models. 141

3 Methods 142

We seek to understand the impact of network inter- 143

ventions on the representational space of mLLMs 144

with a focus on cross-lingual alignment. We con- 145

sider three open-source mLLMs: Aya-8B (instruc- 146

tion fine-tuned) (Aryabumi et al., 2024), PolyLM- 147

13B (chat version) (Wei et al., 2023), and Bloom- 148

7B (base) (Scao et al., 2022). Since our aim is to 149

draw conclusions about cross-lingual alignment, 150

we want to make sure that we know what languages 151

were seen in pre-training and include mLLMs for 152

which a detailed description of pre-training datasets 153

is available, excluding LLMs such as Mistral (Jiang 154

et al., 2023), Llama (Touvron et al., 2023), and 155
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Gemma (Team et al., 2024). We begin by identify-156

ing and intervening on the language experts in the157

mLLMs and then study cross-lingual alignment in158

the embedding space and downstream task perfor-159

mance pre- and post-intervention.160

3.1 Probing dataset construction161

Following Kojima et al. (2024), we use the Flo-162

res200 dataset (NLLB Team, 2022) to find the ex-163

pert neurons for a particular target language (i.e.,164

the language specifically targeted by the interven-165

tion). Flores200 is a machine translation dataset166

containing short paragraphs sampled from Wiki-167

media 1 and subsequently translated into 204 lan-168

guages by skilled human translators. We limit our169

investigations to the intervention on five target lan-170

guages — English, German, French, Spanish, and171

Japanese. These languages are well represented in172

pre-training data of the models we are considering,173

ensuring the existence of expert neurons.174

3.2 Identifying expert neurons175

Expert neurons for a given language are identified176

following Suau et al. (2024). This finding experts177

approach consists of two steps – first, expert neu-178

rons are identified for a particular concept of in-179

terest (in our case, a particular target language)180

and then an intervention is performed to change181

the activations of these neurons. Expert neurons182

are those that can classify sentences as being from183

the positive set (containing the target language) vs.184

the negative set (that does not contain the target185

language), as measured by the area under the ROC186

curve. For each of the five languages under consid-187

eration, we use the Flores200 dev split for the target188

language as the positive set, and the dev splits for189

the other four languages plus Chinese as the nega-190

tive set. We include Chinese to increase variety in191

the character systems in the negative set but we do192

not consider it for the positive set.193

3.3 Intervening on expert neurons194

For the intervention, we select the k neurons with195

the highest expertise (i.e., highest AUROC). We196

select the value for k that balances generating text197

in the target language with a low perplexity on the198

language-specific Wikipedia text (See Appendix B199

for further details). The activation for these neurons200

is set to their respective mean value calculated over201

the positive sentences (Suau et al., 2022).202

1https://commons.wikimedia.org/wiki/Main_Page

For almost all target languages, the probabil- 203

ity of generating that language increases post- 204

intervention (Fig. 2, top), suggesting that the inter- 205

vention is successful. The only exception is English 206

in the Aya-8B model, where the intervention re- 207

duces the likelihood of generating English. We 208

believe that the intervention steers the model away 209

from the default configuration, and English is the 210

default language for that model. 211

Interestingly, despite Bloom-7B’s training set 212

containing neither German nor Japanese, the inter- 213

vention results in generating both languages with 214

high probability. Our hypothesis is that the Bloom- 215

7B pre-training data contains some amount of Ger- 216

man and Japanese data that is large enough to en- 217

able expert discovery and controlled generation. 218

While we are successfully able to increase the ac- 219

curacy of target language generation through the in- 220

terventions, consistent with prior work (Suau et al., 221

2024), we observe an increase in perplexity post- 222

intervention as the number of activated neurons 223

increases, see Fig. 2 (bottom). 224

For our analyses, we set k to 100 experts for 225

Bloom-7B and 2000 for PolyLM-13B and Aya-8B. 226

For brevity, we present the results for the inter- 227

vention on Spanish (randomly chosen) in the main 228

text. The results for the other languages are in the 229

respective appendices. 230

4 The intervention shifts the embedding 231

space increasing cross-lingual 232

alignment 233

We begin our investigation by quantifying the dif- 234

ferences induced by the intervention into the em- 235

bedding space. For this analysis, we intervene on 236

each of the five target languages discussed in Sec- 237

tion 3.3 and examine the effect of the intervention 238

on the representations of 22 languages (the union 239

of all languages present in the pre-training across 240

the three language models). We exclude Arabic 241

and Chinese from consideration due to the lack of 242

conformity in the scripts used2. Note that not all of 243

these languages are part of the pre-training for ev- 244

ery model under consideration but we present them 245

for consistency (clearly indicating in all figures if 246

2Arabic data are represented in both the Arabic and Latin
scripts, while Chinese data are written using both Simplified
and Traditional scripts. This decision is motivated by prior
work showing that a discrepancy in the encoding can influence
performance (Blaschke et al., 2025) and several models under
consideration do not provide information on which encoding
was used in the pre-training. Appendix A contains the full list
of languages and the language codes.
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Figure 2: Language ID accuracy and Log perplexity for the intervention on five target languages. The x-axis shows
the number of activated experts (0 indicates the original model).

the languages were seen by the model during the247

pre-training).248

For each of the 22 languages, we embed the Flo-249

res200 test set (1012 sentences per language) with250

the original and intervened models’ last layer. To251

characterize the changes in the embedding space,252

we calculate two types of distances: (1) the pair-253

wise cosine distance between the embeddings of254

the 22 languages for the intervened and uninter-255

vened spaces and (2) the cosine distance between256

the mean of the embedding for each of the 22 lan-257

guages and the medoid of each space (pre- and258

post-intervention) (Table 1). We project the mul-259

tidimensional embeddings into a two-dimensional260

space using UMAP (McInnes et al., 2020) to visu-261

alize how the embedding space changes.262

Our findings are as follows. The intervention263

pulls the embeddings of all languages into a new264

space (see Fig. 3 for Spanish and Appendix C for265

other languages), rather than moving them closer266

to the embeddings of the target language in the un-267

intervened space. The increase in perplexity post-268

intervention discussed in Section 3.3 also supports269

this finding.270

The post-intervention embeddings for the differ-271

ent languages are closer to each other compared272

to the pre-intervention embeddings, as indicated273

by the reduced pairwise cosine distances between 274

the languages. Specifically, the distances are re- 275

duced because the post-intervention embeddings 276

are pulled closer to the medoid of the embedding 277

space. As a result of the shift, all languages are 278

closer to the target post-intervention. 279

We notice that all distances under consideration 280

are reduced less post-intervention for PolyLM-13B 281

compared to the other models. We hypothesize 282

that this relates to the specific data distribution and 283

training procedure used for PolyLM-13B. Unfor- 284

tunately, since we do not have access to the data 285

the three models under consideration were trained 286

on, we cannot test this hypothesis in this work. We 287

return to this point in Section 9. 288

Taken together, these findings suggest that the 289

intervention projects language embeddings into a 290

new space where they are more aligned. In the fol- 291

lowing sections, we explore if this change translates 292

into downstream task performance. 293

5 Cross-lingual similarity is enhanced in 294

the new space 295

We now ask if the increased alignment post- 296

intervention translates to downstream task perfor- 297

mance. We use cross-lingual retrieval as our down- 298

stream task: Given a sentence (query) in one lan- 299
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Model Language
Distance (all languages) Distance to Medoid Distance to Target

Pre Post Pre Post Pre Post

Aya-8B
Target – – 0.62±0.03 0.14±0.03 – –
Non-Target 0.72±0.00 0.19±0.04 0.58±0.01 0.12±0.01 0.77±0.01 0.2±0.01

Bloom-7B
Target – – 0.60±0.21 0.04±0.01 – –
Non-Target 0.72±0.00 0.17±0.06 0.5±0.03 0.11±0.01 0.78±0.03 0.13±0.01

PolyLM-13B
Target – – 0.72±0.04 0.43±0.09 – –
Non-Target 0.85±0.00 0.56±0.09 0.72±0.01 0.43±0.02 0.86±0.01 0.54±0.02

Table 1: Cosine distances between 22 languages under consideration, mean distance to the target of the intervention,
and and the distance to the medoid of the embedding space are reduced post-intervention. Distance (all languages)
refers to pairwise cosine distance between the embeddings of 22 languages; distance to target refers to the distance
between the intervention target and the remaining 21 languages. Pre refers to pre-intervention and post to post-
intervention. Distances are means and standard errors of the mean over the five intervention targets.
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(c) PolyLM-13b

Figure 3: UMAP embeddings for 22 languages in the Bloom-7B model (left), Aya-8B (middle), and PolyLM-13B
(right). The embeddings post-intervention are marked with ‘*’ for each language. The dots represent individual
sentences in the pre-intervention space; the crosses represent individual sentences in the post-intervention space.
The languages that are not in the training set for a given model are marked in red.

guage (query language), and a set of sentences300

(candidates) in a different language (candidate lan-301

guage), which of the candidates is a translation302

(match)? Our main experiments are carried out on303

the Flores200 test split (NLLB Team, 2022) as it304

allows us to test cross-lingual retrieval across multi-305

ple combinations of query and candidate languages.306

As the dev split of the Flores200 dataset was used307

to identify language experts, we also present re-308

sults on the validation split of Tatoeba (Tiedemann,309

2012) and the test split of BUCC-18 (Hu et al.,310

2020) for an independent validation of our findings311

(see Appendix H).312

For each sentence, we compute pre- and post-313

intervention embeddings by averaging over the last314

hidden state of the mLLM, producing vectors with315

dimensions matching the model’s hidden size. To316

identify the closest matching sentence, we compute317

inner products between the query (e.g., in Spanish),318

and all candidates (e.g., in French). We select the319

candidate with the highest inner product as the 320

match, and then measure top-1 accuracy. 321

Top-1 retrieval accuracy improves post- 322

intervention for retrieval with the target 323

language. We first examine if the increased 324

proximity to the target language in the post- 325

intervention embedding space translates into top-1 326

retrieval accuracy improvement when the target is 327

used as the retrieval query for the 22 candidate 328

languages under consideration. 329

We find that top-1 retrieval accuracy improves 330

post-intervention when using the target as the query 331

language (see Fig. 4 for the Spanish intervention 332

and Appendix E for the remaining four languages). 333

This finding is consistent across most target lan- 334

guages and models. Candidate languages present in 335

the pre-training data generally demonstrate larger 336

gains post-intervention. The pattern of improve- 337

ment differs based on the model. Specifically, for 338

Aya-8B a successful intervention results in con- 339
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(a) Bloom-7b (b) Aya-8b (c) PolyLM-13b

Figure 4: Top-1 retrieval accuracy for the intervention on Spanish for 22 languages in the Bloom-7B model (left),
Aya-8B (middle), and PolyLM-13B (right). The languages that are not in the training set for a given model are
marked in red.

Model Query language r(accpost, dpost) r(accpre, dpre) r(dpost, dpre) r(∆acc, dpre − dpost)

Aya-8B

es -0.51 [-0.88 -0.18] -0.89 [-0.98 -0.55] 0.48 [0.32 0.78] 0.86 [0.49 0.96]
fr -0.64 [-0.91 -0.45] -0.86 [-0.97 -0.57] 0.51 [0.27 0.89] 0.89 [0.84 0.97]
en -0.94 [-0.97 -0.85 ] -0.80 [-0.96 -0.34] 0.65 [0.44 0.92] 0.10 [-0.69 0.60]
de -0.89 [-0.96 -0.75] -0.87 [-0.98 -0.44] 0.33 [-0.74 0.76] 0.52 [0.12 0.95]
jp -0.02 [-0.62 0.34] -0.96 [-0.99 0.34] 0.27 [-0.18 0.62] 0.89 [0.30 0.99]

Bloom-7B

es -0.97 [-0.99 -0.95] -0.83 [-0.99 -0.54] 0.79 [0.71 0.98] 0.1 [-0.98 0.88]
fr -0.98 [-0.99 -0.94] -0.89 [-0.99 -0.38] 0.75 [0.62 0.99] 0.23 [-0.98 0.83]
en -0.89 [-0.99 -0.60] -0.89 [-0.99 -0.44] 0.97 [0.96 0.99] 0.23 [-0.90 0.86]
de -0.90 [-0.99 -0.74] -0.50 [-0.96 0.34] 0.95 [0.86 0.99] -0.72 [-0.97 0.22]
jp -0.90 [-0.99 -0.80] NA3 -0.48 [-0.90 0.97] 0.64 [-0.70 0.93]

PolyLM-13B

es -0.44 [-0.91 -0.38] -0.84 [-0.96 -0.65] 0.70 [0.44 0.91] 0.10 [-0.31 0.57]
fr -0.44 [-0.82 -0.35] -0.90 [-0.99 -0.62] 0.66 [0.20 0.93] 0.30 [-0.18 0.82]
en -0.86 [-0.98 -0.53] -0.84 [-0.98 -0.52] 0.99 [0.96 0.99] 0.28 [-0.33 0.62]
de -0.01 [-0.51 0.81] -0.95 [-0.99 -0.57] 0.15 [-0.56 0.57] -0.04 [-0.71 0.34]
jp -0.52 [-0.91 0.92] -0.96 [-0.99 0.00] 0.73 [0.56 0.96] 0.25 [-0.25 0.57]

Table 2: Pearson correlations (r) between top-1 retrieval accuracy (acc) and mean pairwise cosine distance in the
embedding space d. Subscripts indicate the space from which embeddings are sampled: pre = original model; post
= intervened model. Numbers in brackets represent bootstrapped 95% confidence intervals. Correlations that are
not statistically significant (p-values >0.05) are shown in gray.

sistent improvements in top-1 accuracy for the340

majority of candidate languages (median=32%;341

max=74%). For Bloom-7B, top-1 accuracy gains342

are large (up to 89%) for a small number of can-343

didate languages, with moderate improvements344

for other languages (median=14%). For PolyLM-345

13B, the improvements are small (median=0.5%;346

max=12%).347

To better understand how the increased align-348

ment in the embedding space influences cross-349

lingual retrieval, we look at the mean pairwise co-350

sine distances between the query and candidate351

languages and explore how this correlates with352

retrieval accuracy (Fig. 4). Table 2 shows av-353

erage correlations between post-intervention top-354

1 retrieval accuracy (accpost) and mean query-355

candidate language distance both pre- and post-356

intervention (dpre, dpost), average correlations be-357

tween dpre and dpost, and average correlations be-358

tween improvement in accuracy (∆acc = accpost− 359

accpre) and change in distance between pre- and 360

post-intervention embeddings (dpre −dpost). When 361

calculating averages, we only include candidate 362

languages seen in pre-training for each model; we 363

note that the general pattern stays the same but 364

the correlations are somewhat weaker if all 22 lan- 365

guages are considered for all models. 366

We find that in this setting, when the query and 367

intervention-target language are the same, the dis- 368

tance between query/target and match language 369

is predictive of top-1 cross-lingual retrieval ac- 370

curacy in both pre- and post-intervention spaces. 371

As discussed in Section 4, all language embed- 372

dings move closer to the target’s embeddings post- 373

intervention, which explains the gains in cross- 374

lingual retrieval accuracy. The distances in the 375

unintervened and intervened space are positively 376

correlated—language embeddings that are closer 377
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to the target pre-intervention are also closer to the378

target post-intervention. However, the magnitude379

of the performance gain in the intervened space380

does not correlate with the reduction in distance381

between the match and target languages across the382

two spaces, suggesting that the increased alignment383

post-intervention cannot be simply explained by a384

reduction in distances.385

Top-1 retrieval accuracy improves post-386

intervention for retrieval with the non-target387

languages. In Section 4, we found that the388

distances between almost all languages decrease389

post-intervention—not just the distances to the390

intervention target. We next examine if these391

reduced cosine distances between languages392

other than the intervention target translate into393

improved top-1 retrieval accuracy when using394

these languages as the query language. For395

example, we study if intervening on Spanish396

experts improves Dutch-English retrieval (in this397

case, neither the query nor candidate language is398

the intervention-target language). We find that,399

perhaps surprisingly, improvements observed when400

the query language is the intervention target (see401

Fig. 4 and Table 2) carry over to query languages402

other than the intervention-target language (see403

Fig. 5 for the Spanish intervention and Appendix F404

for the remaining four languages). For example,405

the intervention on Spanish expert neurons for406

Bloom-7B results in retrieval improvement when407

English, French, and Portuguese are the query408

language. The same intervention improves retrieval409

when querying Hebrew with Persian or when410

querying Czech with Greek in the Aya-8B model411

and when querying Russian with Portuguese412

in PolyLM-13B. These are examples of larger413

improvements, but many other languages follow414

the same pattern with smaller gains. Generally,415

the patterns in improvement are consistent with416

those seen when Spanish is the query language.417

Languages that are in the pre-training set have418

larger accuracy gains. Bloom-7B has large419

improvements for a small number of languages and420

no drops in performance. Aya-8B has relatively421

large improvements for a majority of languages422

but also has a drop in performance for some. As423

noted previously, PolyLM-13B performance is424

uneven—the improvement varies by language with425

languages in the pre-training set generally having426

larger improvements.427

6 Within-language similarity is preserved 428

in the new space 429

As observed in Section 4, all languages move to- 430

ward the medoid of the embedding space post- 431

intervention, which raises the question of whether 432

language-specific similarities preserved in the new 433

space. To answer this question, we evaluate perfor- 434

mance on a paraphrase retrieval task which tests 435

whether a sentence in the intervened space can 436

be matched with its paraphrase in the intervened 437

space. We utilize the PAWS-X dataset (Hu et al., 438

2020), which provides paired sentences across 439

seven languages, including all five of our interven- 440

tion targets. From the test split, we retain only the 441

paraphrase pairs, excluding non-paraphrases and 442

sentences from other languages. This transforms 443

our evaluation into a within-language sentence re- 444

trieval task, where the goal is to match each sen- 445

tence with its paraphrase from a pool of candidates 446

for that language. 447

The paraphrase retrieval task reveals two key 448

findings about embedding spaces before and after 449

the intervention. First, the top-1 paraphrase re- 450

trieval accuracy remains largely unchanged after 451

the intervention (see Table 3), indicating that the 452

new embedding space preserves within-language 453

similarity. Second, when attempting retrieval be- 454

tween intervened and unintervened embeddings of 455

the same language — i.e., using the embeddings 456

from the unintervened model as the query and the 457

embeddings from the intervened model as candi- 458

date matches — accuracy drops significantly. This 459

decline supports the observation in Section 4 sug- 460

gesting that the intervention projects embeddings 461

into a distinctly different space from their orig- 462

inal unintervened representations. This finding 463

also aligns with the increase in perplexity observed 464

post-intervention – the intervened space of a given 465

language is not the same space as the original space 466

of this language. 467

7 Intervention on random neurons does 468

not provide an improvement on 469

downstream tasks 470

In our analyses so far, we have attributed the 471

changes in the embedding space to the intervention 472

3The cosine distances between Japanese and other lan-
guages are identical in Bloom-7b in the unintervened space
and thus the correlation coefficient is not defined. This is
likely due to the fact that Japanese is not in Bloom 7b’s pre-
training.
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(a) Bloom-7b (b) Aya-8b (c) PolyLM-13b

Figure 5: (Top-1 accuracypost-intervention − Top-1 accuracypre-intervention) for 22 languages after intervening on Spanish
expert neurons in the Bloom-7B model (left), Aya-8B (middle), and PolyLM-13B (right). The languages that are not
in the training set for a given model are marked in red.

Model Top-1 Accuracy
(Pre) (Post) (Mixed)

Bloom-7B 0.80 0.80 0.33
Aya-8B 0.85 0.86 0.64
PolyLM-13B 0.52 0.56 0.41

Table 3: Top-1 accuracy results for the paraphrase re-
trieval task following the intervention on Spanish. The
results for other languages can be found in Appendix
D. Pre = both the query and candidate embeddings are
from the original model; Post = both the query and the
candidate embeddings are from the intervened model;
Mixed = query is from the original model and candi-
dates are from the intervened model.

on expert neurons. Before we conclude, we con-473

sider an alternative possibility — that the expert474

neurons do not play a role in increasing alignment475

post-intervention, but instead alignment is achieved476

by fixing the activations of a number of neurons in477

a network. To address this, we assign the activation478

levels of the language expert neurons used in prior479

sections to the same number of neurons chosen480

randomly in the network and repeat our analyses481

on these models.482

We find that intervening on random neurons pro-483

duces markedly different results compared to acti-484

vating language experts (see Appendix G). The485

embedding space after the intervention on ran-486

dom neurons does not have the same properties487

as described in Section 4, which translates into the488

performance on downstream tasks for all models.489

Specifically, for the Aya-8B and PolyLM-13B top-1490

cross-lingual retrieval accuracy drops for all lan-491

guages post-intervention on random neurons com-492

pared to pre-intervention. Interestingly, for Bloom-493

7B, there is mostly no change for all target lan-494

guages except French, which surprisingly improves495

post-intervention on random neurons. However, the 496

gains are significantly smaller compared to those 497

after intervening on French experts. Similar to the 498

intervention on language experts, within-language 499

paraphrase retrieval shows only small changes post- 500

intervention. When they occur, these changes tend 501

to be negative (i.e., the performance drops) after 502

intervening on random neurons and positive after 503

intervening on the actual language experts. 504

8 Conclusions 505

We present a novel analysis of the impact of the 506

finding-experts intervention on cross-lingual align- 507

ment in mLLMs. We find that intervening on 508

language experts projects model embeddings into 509

a new space where languages are more aligned 510

than in the original space but still preserve within- 511

language similarity. These findings provide an ex- 512

planation for the increase in perplexity observed 513

post-intervention in prior work (Suau et al., 2022). 514

The increase in cross-lingual alignment results 515

in up to 2x improvement in top-1 retrieval ac- 516

curacy. Additionally, we show that the correla- 517

tion between cross-lingual alignment and cross- 518

lingual retrieval is high and statistically signifi- 519

cant. Importantly, these improvements are not re- 520

stricted to the intervention-target language. For in- 521

stance, an intervention on Japanese results in a large 522

top-1 retrieval accuracy improvement for English- 523

Portuguese for Bloom-7B. We find that the three 524

models we study show markedly different patterns 525

both in the changes to the embedding space and 526

downstream tasks. We leave it to future to work to 527

determine the causes of these differences, though 528

we hypothesize that they are due to the pre-training 529

differences. 530
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9 Limitations531

There are several limitations that need to be con-532

sidered when interpreting our results.533

The major limitation is that we are working with534

pre-trained models and we have only limited in-535

formation on training data and procedure. Specifi-536

cally, for Bloom-7B and PolyLM-13B, we have the537

information on the proportion of each language in538

the pre-training set. For Aya-8B, only information539

on which languages were seen in the pre-training540

(but no proportions) is available. We observe dif-541

ferent performance gains post-intervention for the542

three models under consideration and while we543

hypothesize that these differences are due to train-544

ing data and/or procedure, we do not have enough545

information to test this hypothesis. Future work546

should explore the effect of intervention on align-547

ment in a more controlled setting where the models548

are trained from scratch on a publicly available549

dataset manipulating language proportions in the550

training data to better understand what is driving551

the difference.552

We have studied only one approach out of a fam-553

ily of approaches to controllable generations (Rim-554

sky et al., 2024; Suau et al., 2024; Rodriguez et al.,555

2024). Each approach in the family comes with its556

differences – in the way the neurons targeted by the557

intervention are discovered, how the changes are558

introduced to the activations, how many neurons559

are intervened on, etc. We do not fully understand560

how these design decisions impact the representa-561

tion space. For example, it is possible that some of562

these approaches are more beneficial for alignment563

while others introduce changes that are more bene-564

ficial for other tasks (or not at all). The comparison565

of approaches is beyond the scope of current work566

and we leave it for future investigations.567
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# Language ISO 639-1 ISO 639-3

1 Thai th tha
2 Czech cs ces
3 German de deu
4 Greek el ell
5 English en eng
6 French fr fra
7 Hebrew he heb
8 Hindi hi hin
9 Indonesian id ind

10 Italian it ita
11 Japanese ja jpn
12 Korean ko kor
13 Dutch nl nld
14 Persian fa pes
15 Polish pl pol
16 Portuguese pt por
17 Romanian ro ron
18 Russian ru rus
19 Spanish es spa
20 Turkish tr tur
21 Ukrainian uk ukr
22 Vietnamese vi vie

Table 4: ISO 639-1 and ISO 639-3 Language Codes
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B Selecting expert neurons 767

The value of k is determined as follows. For each of the five languages, we sweep over expert set sizes 768

ranging from 100 to 5000. For each setting of language and number of experts, we run free-form generation 769

to generate 256 sentences over eight random seeds (for a total of 2048 sentences) using the beginning of 770

sentence (BOS) token as the prompt. We perform generation with temperature=1 and top_p=0.9 4. We 771

then use lang-id (Lui and Baldwin, 2012) to measure the probability of the text generated in the target 772

language. 773

To calculate the perplexity of Wikipedia text in the target language for the original and intervened 774

models, we use the Wikimedia dump from 2023-11-01 5. Paragraphs of text shorter than 100 characters 775

are removed and the remaining paragraphs are concatenated together. Finally, a corpus of 10 million 776

tokens is selected from the concatenated paragraphs. The context length is set to the model’s maximum 777

input size (in tokens) and a stride (i.e., sliding the context window) of 512 tokens is used to speed up the 778

perplexity measurement. 779

4The other hyper-parameters are set to default for transformers==4.41
5https://huggingface.co/datasets/wikimedia/wikipedia
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C UMAP embeddings for four intervention-target languages780

Note: The embeddings post-intervention are marked with ‘*’ for each language. The languages that are781

not in the training set are marked in red.782

C.1 Bloom-7B783

Figure 6: UMAP embeddings for intervention on English expert neurons
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Figure 7: UMAP embeddings for intervention on Spanish expert neurons

Figure 8: UMAP embeddings for intervention on German expert neurons
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Figure 9: UMAP embeddings for intervention on French expert neurons

Figure 10: UMAP embeddings for intervention on Japanese expert neurons
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C.2 Aya-8B 784

Figure 11: UMAP embeddings for intervention on English expert neurons
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Figure 12: UMAP embeddings for intervention on Spanish expert neurons

Figure 13: UMAP embeddings for intervention on German expert neurons
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Figure 14: UMAP embeddings for intervention on French expert neurons

Figure 15: UMAP embeddings for intervention on Japanese expert neurons
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C.3 PolyLM-13B785

Figure 16: UMAP embeddings for intervention on English expert neurons
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Figure 17: UMAP embeddings for intervention on Spanish expert neurons

Figure 18: UMAP embeddings for intervention on German expert neurons
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Figure 19: UMAP embeddings for intervention on French expert neurons

Figure 20: UMAP embeddings for intervention on Japanese expert neurons
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D Paraphrase retrieval accuracy for four intervention-target languages 786

Model Language Top-1 Accuracy
(Pre) (Post) (Mixed)

Bloom-7B

en 0.80 0.80 0.71
fr 0.80 0.80 0.26
de 0.72 0.75 0.22
ja 0.47 0.59 0.07

Aya-8B

en 0.87 0.87 0.56
fr 0.83 0.83 0.75
de 0.82 0.82 0.62
ja 0.70 0.76 0.55

PolyLM-13B

en 0.55 0.53 0.48
fr 0.52 0.50 0.44
de 0.50 0.55 0.39
ja 0.57 0.57 0.32

Table 5: Top-1 accuracy results for the paraphrase retrieval task for four intervention languages. Pre= both the query
and the candidate embeddings are from the original unintervened model; Post= both the query and the candidate
embeddings are from the intervened model; Mixed = query embedding is from the original model and the candidates
are from the intervened model.
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E Top-1 cross-lingual retrieval accuracy for four intervention-target languages (query787

language is the same as the intervention target)788

Figure 21: Top-1 retrieval accuracy for 22 languages in the Bloom-7B model. The language of the intervention
is provided in the caption to each subfigure. The languages that are not in the training set for a given model are
marked in red.

Figure 22: Top-1 retrieval accuracy for 22 languages in the Aya-8B model. The language of the intervention is
provided in the caption to each subfigure. The languages that are not in the training set for a given model are marked
in red.
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Figure 23: Top-1 retrieval accuracy for 22 languages in the PolyLM-chat-13b model. The language of the intervention
is provided in the caption to each subfigure. The languages that are not in the training set for a given model are
marked in red.
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F Top-1 cross-lingual retrieval accuracy for four intervention-target languages (query789

language is different from the intervention target)790

Figure 24: (Top-1 accuracypost-intervention − Top-1 accuracypre-intervention) for Bloom-7B. The language of the inter-
vention is provided in the caption to each subfigure. The languages that are not in the training set are marked in red.

Figure 25: (Top-1 accuracypost-intervention −Top-1 accuracypre-intervention) for Aya-8B. The language of the intervention
is provided in the caption to each subfigure. The languages that are not in the training set are marked in red.
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Figure 26: (Top-1 accuracypost-intervention − Top-1 accuracypre-intervention) for PolyLM-13B. The language of the inter-
vention is provided in the caption to each subfigure. The languages that are not in the training set are marked in red.
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G Results for the interventions on random neurons791

G.1 Top-1 paraphrase retrieval accuracy after the intervention on random neurons792
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Model Language
Accuracy

Pre Post mixed

Bloom-7B

en 0.80 0.80 0.78
es 0.80 0.79 0.62
fr 0.80 0.71 0.00
de 0.72 0.72 0.62
ja 0.47 0.45 0.35

PolyLM-13B

en 0.55 0.55 0.51
es 0.53 0.53 0.48
fr 0.53 0.54 0.50
de 0.50 0.54 0.45
ja 0.60 0.58 0.23

Aya-8B

en 0.87 0.81 0.00
es 0.85 0.73 0.01
fr 0.83 0.70 0.01
de 0.82 0.70 0.00
ja 0.70 0.44 0.00

Table 6: Top-1 accuracy results for the paraphrase retrieval task for five intervention languages for the intervention
on random neurons. Pre= both the query and the candidate embeddings are from the original unintervened model;
Post= both the query and the candidate embeddings are from the intervened model; Mixed = query embedding is
from the original model and the candidates are from the intervened model.
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G.2 UMAP embeddings for the interventions on random neurons793

Figure 27: UMAP embeddings for interventions on random neurons for Bloom-7B
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Figure 28: UMAP embeddings for interventions on random neurons for Aya-8B

Figure 29: UMAP embeddings for interventions on random neurons for PolyLM-13B
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G.3 Top-1 Retrieval accuracy for interventions on random neurons794

Figure 30: Top-1 retrieval accuracy for 22 languages in the Bloom-7B model with the intervention on 100 random
neurons. The language of the intervention is provided in the caption to each subfigure. The languages that are not in
the training set are marked in red.

Figure 31: Top-1 retrieval accuracy for 22 languages in the Aya-8B model with the intervention on 2000 random
neurons. The language of the intervention is provided in the caption to each subfigure. The languages that are not in
the training set are marked in red.
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Figure 32: Top-1 retrieval accuracy for 22 languages in the PolyLM-13b-chat model with the intervention on 2000
random neurons. The language of the intervention is provided in the caption to each subfigure. The languages that
are not in the training are marked in red.
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H Cross-lingual retrieval results on BUCC-18 and Tatoeba795

Model
Language

Top-1 Accuracy
Pre Post

Tatoeba

Aya-8B

es 0.114 0.415
fr 0.087 0.251
de 0.119 0.444
jp 0.034 0.307

Bloom-7B

es 0.008 0.551
fr 0.011 0.434
de 0.006 0.032
jp 0.002 0.043

PolyLM-13B

es 0.082 0.178
fr 0.067 0.130
de 0.029 0.171
jp 0.000 0.040

BUCC-18

Aya-8B
fr 0.012 0.073
de 0.017 0.332

Bloom-7B
fr 0.000 0.287
de 0.000 0.02

PolyLM-13B
fr 0.006 0.286
de 0.008 0.281

Table 7: Top-1 retrieval for the intervetion on five target languages for Tatoeba and BUCC-18. Pre= original model;
Post= intervened model.

I Computational budget796

All experiments were run on 8 A100(80GB) GPUs. The total approximate running time for 90 GPU/hours797

Aya-8B, 120 GPU/hours for PolyLM-13B, and 110 GPU/hours for Bloom-7B.798

J License and Attribution799

All datasets used in this work are supported by public licenses. PAWS-X, Tatoeba, BUCC are part of800

the XTREME benchmark licensed under Apache; Flores200 is licensed under Creative Commons. The801

pre-trained models used in this work are also supported by public licenses Bloom-7B (RAIL 1.0), Aya-8B802

(Creative Commons), and PolyLM-chat-13B (Apache).803
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