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Abstract

The single shortest path algorithm is undefined001
for weighted finite-state automata over non-002
idempotent semirings because such semirings003
do not guarantee the existence of a shortest004
path. However, in non-idempotent semirings005
admitting an order satisfying a monotonicity006
condition (such as the plus-times or log semir-007
ings), the shortest string is well-defined. We008
describe an algorithm which finds the shortest009
string for a weighted non-deterministic automa-010
ton over such semirings using the backwards011
shortest distance of an equivalent deterministic012
automaton (DFA) as a heuristic for A* search013
performed over a companion idempotent semir-014
ing, which is proven to return the shortest string.015
There may be exponentially more states in the016
DFA, but the proposed algorithm needs to visit017
only a small fraction of them if determinization018
is performed “on the fly”.019

1 Introduction020

Weighted finite-state automata provide a compact021

representation of hypotheses in various speech022

recognition and text processing applications (e.g.,023

Mohri, 1997; Mohri et al., 2002; Roark and Sproat,024

2007; Gorman and Sproat, 2021). Under a wide025

range of assumptions, weighted finite-state lattices026

allow for efficient polynomial-time decoding via027

shortest-path algorithms (Mohri, 2002).028

The shortest path—and the algorithms that com-029

pute it—are well-defined when the weights of a030

lattice are idempotent and exhibit the path property.031

These properties formalized below, but informally032

these they hold that the distance between any two033

states corresponds to a single path between those034

states, so that the shortest-path algorithm—having035

identified this path—does not need to consider the036

weights of competing paths between those states.037

However, when the weights of a lattice lack these038

two properties, there is no guarantee that a shortest039

path between any two states exists. This situa-040

tion arises in many speech and language technolo- 041

gies. For instance, generative models for speech 042

recognition and machine translation—and in many 043

unsupervised settings—many require one to learn 044

alignments between sequences using expectation 045

maximization (EM; Dempster et al., 1977). EM in- 046

ference may require one to consider multiple com- 047

peting paths between pairs of states, and this is 048

incompatible with these two properties. Thus, to 049

efficiently decode a lattice constructed using EM, 050

heuristics are required; one can decode approxi- 051

mately by interpreting the lattice weights as if they 052

were idempotent and had the path property, or can 053

construct the lattice itself using the Viterbi approx- 054

imation to EM.1 055

In non-idempotent semirings admitting an order 056

satisfying a monotonicity condition, the shortest 057

string is undefined but the closely related notion of 058

shortest string is well-defined. We show below that 059

it is still possible to efficiently determine the short- 060

est string for lattices defined over non-idempotent 061

monotonic negative semirings such as the plus- 062

times and log semirings, both used for expecta- 063

tion maximization. We propose a simple algorithm 064

for decoding the shortest string over such semir- 065

ings which combines shortest-path search with the 066

A* queue discipline (Hart et al., 1968) and “on the 067

fly” determinization (Mohri, 1997). After provid- 068

ing definitions and the algorithm, we describe an 069

implementation and evaluate it using word lattices 070

produced by a speech recognizer. The algorithm is 071

found to scale well as a function of lattice size. 072

2 Definitions 073

Before we introduce the proposed decoding algo- 074

rithm we provide definitions of key notions. 075

1Both of these strategies are discussed in Brown et al. 1993;
see §4.3 and §6.2, respectively.

1



2.1 Semirings076

Weighted automata algorithms operate with respect077

to an algebraic system known as a semiring, defined078

by the combination of two monoids.079

Definition 2.1. A monoid is a pair (K, •) where K080

is a set and • is a binary operator over K with the081

following properties:082

1. closure: ∀a, b ∈ K : a • b ∈ K.083

2. associativity: ∀a, b, c ∈ K : (a • b) • c =084

a • (b • c).085

3. identity: ∃e ∈ K : e • a = a • e = a.086

Definition 2.2. A monoid is commutative in the087

case that ∀a, b ∈ K : a • b = b • a.088

Definition 2.3. A semiring is a five-tuple089

(K,⊕,⊗, 0̄, 1̄) such that:090

1. (K,⊕) is a commutative monoid with the091

identity element 0̄.092

2. (K,⊗) is a monoid with the identity element093

1̄.094

3. ∀a ∈ K : a⊗ 0̄ = 0̄⊗ a = 0̄.095

4. ∀a, b, c ∈ K : a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c).096

Definition 2.4. A semiring is zero-sum-free if non-097

0̄ elements cannot sum to 0̄; that is, ∀a, b ∈ K :098

a⊕ b =⇒ a = b = 0̄.099

Definition 2.5. A semiring is idempotent if ⊕ is100

idempotent; that is, ∀a ∈ K : a⊕ a = a.101

Definition 2.6. A semiring has the path property102

if ∀a, b ∈ K : a⊕ b ∈ {a, b}.103

Remark 2.1. If a semiring has the path property it104

is also idempotent.105

Definition 2.7. The natural order of an idempotent106

semiring is a boolean operator ⪯ such that ∀a, b ∈107

K : a ⪯ b if and only if a⊕ b = a.108

Remark 2.2. In a semiring with the path property,109

the natural order is a total order. That is, ∀a, b ∈ K,110

either a ⪯ b or b ⪯ a.111

Definition 2.8. A semiring is monotonic if112

∀a, b, c ∈ K, a ⪯ b implies:113

1. a⊕ c ⪯ b⊕ c.114

2. a⊗ c ⪯ b⊗ c.115

3. c⊗ a ⪯ c⊗ b.116

Definition 2.9. A semiring is negative if and only 117

if 1̄ ⪯ 0̄. 118

Remark 2.3. In a monotonic negative semiring, 119

∀a, b ∈ K : a ⪯ 0̄ and a⊕ b ⪯ b. 120

Some examples of monotonic negative semirings 121

are given in Table 1. 122

Definition 2.10. The companion semiring of a 123

monotonic negative semiring (K,⊕,⊗, 0̄, 1̄) with 124

total order ⪯ is the semiring (K, ⊕̂,⊗, 0̄, 1̄) where 125

⊕̂ is the minimum binary operator for ⪯: 126

a ⊕̂ b =

{
a if a ⪯ b

b otherwise
127

Remark 2.4. The max-times and tropical semir- 128

ings are companion semirings to the plus-times and 129

log semirings, respectively. 130

Remark 2.5. By construction a companion semir- 131

ing has the path property and natural order ⪯. 132

2.2 Weighted finite-state acceptors 133

Without loss of generality, we consider single- 134

source ϵ-free weighted finite-state acceptors.2 135

Definition 2.11. A weighted finite-state acceptor 136

(WFSA) is defined by a five-tuple (Q, s,Σ, ω, δ) 137

and a semiring (K,⊕,⊗, 0̄, 1̄) where: 138

1. Q is a finite set of states. 139

2. s ∈ Q is the initial state. 140

3. Σ is the alphabet. 141

4. ω ⊆ Q×K is the final weight function. 142

5. δ ⊆ Q×Σ×K×Q is the transition relation. 143

Definition 2.12. An WFSA is acyclic if there ex- 144

ists a topological ordering, an ordering of the states 145

such that if there is a transition from state q to r 146

where q, r ∈ Q, then q is ordered before r. Other- 147

wise, the WFSA is cyclic. 148

2.3 Shortest distance 149

Definition 2.13. A state q ∈ Q is final if ω(q) ̸= 0̄. 150

Definition 2.14. Let F = {q | ω(q) ̸= 0̄} denote 151

the set of final states. 152

Definition 2.15. A path through an acceptor p is a 153

triple consisting of: 154

2The definition provided here can easily be generalized
to automata with multiple initial states, with initial or final
weights, or with ϵ-transitions (e.g., Roark and Sproat, 2007,
ch. 1, Mohri, 2009, Gorman and Sproat, 2021, ch. 1).
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K ⊕ ⊗ 0̄ 1̄ ⪯

Plus-times R+ + × 0 1 ≥
Max-times R+ max × 0 1 ≥
Log R ∪ {−∞,+∞} ⊕log + +∞ 0 ≤
Tropical R ∪ {−∞,+∞} min + +∞ 0 ≤

Table 1: Common monotonic negative semirings; a⊕log b = −ln(e−a + e−b).

1. a state sequence q[p] = q1, q2, . . . , qn ∈ Qn,155

2. a weight sequence k[p] = k1, k2, . . . , kn ∈156

Kn, and157

3. a string z[p] = z1, z2 . . . , zn ∈ Σn158

subject to the constraint that ∀i ∈ [1, n] :159

(qi, zi, ki, qi+1) ∈ δ; that is, each transition from qi160

to qi+1 must have label zi and weight ki.161

Definition 2.16. Let Pq→r be the set of all paths162

from q to r where q, r ∈ Q.163

Definition 2.17. The forward shortest distance164

α ⊆ Q × K is a partial function from a state165

q ∈ Q that gives the ⊕-sum of the ⊗-product of166

the weights of all paths from the initial state s to q:167

α(q) =
⊕

p∈Ps→q

⊗
ki∈k[p]

ki.168

Definition 2.18. The backwards shortest distance169

β ⊆ Q × K is a partial function from a state q ∈170

Q that gives the ⊕-sum of the ⊗-product of the171

weights of all paths from q to a final state, including172

the final weight of that final state:173

β(q) =
⊕
f∈F

 ⊕
p∈Pq→f

⊗
ki∈k[p]

ki ⊗ ω(f)

 .174

Remark 2.6. For a state q, α(q) and β(q) are de-175

fined if and only if q is accessible and coaccessible,176

respectively.177

Definition 2.19. The total shortest distance178

through an automaton is given by β(s).179

2.4 Shortest path180

Definition 2.20. A path is complete if181

1. (s, z1, k1, q1) ∈ δ.182

2. qn ∈ F .183

That is, a complete path must also begin with an184

arc from the initial state s to q1 with label z1 and185

weight k1, and halt in a final state.186

Definition 2.21. The weight of a complete path is 187

given by the ⊗-product of its weight sequence and 188

its final weight: 189

k̄ =

 ⊗
ki∈k[p]

ki

⊗ ω(qn). 190

Definition 2.22. A shortest path through an au- 191

tomaton is a complete path whose weight is equal 192

to the total shortest distance β(s). 193

Remark 2.7. Automata over non-idempotent 194

semirings need not have a shortest path (Mohri, 195

2002, 322). Consider for example the NFA shown 196

in the left side of Figure 1. Let us assume that 197

k ⊕ k ⪯ k < k′. Then, the total shortest distance 198

is k ⊕ k but the shortest path is k. Definitionally, a 199

non-idempotent semiring does not guarantee that 200

these two weights will be equal. In that case, there 201

is no complete path whose weight is that of the 202

total shortest distance, and thus there is no shortest 203

path. 204

Remark 2.8. It is generally impossible to find the 205

shortest path efficiently over non-monotonic semir- 206

ings.3 207

2.5 Determinization 208

Definition 2.23. A WFSA is deterministic if, for 209

each state q ∈ Q, there is at most one transition 210

with a given label z ∈ Σ from that state, and non- 211

deterministic otherwise. 212

Definition 2.24. A zero-sum-free semiring is 213

weakly divisible if 214

∀a, b ∈ K ∃c ∈ K : a = (a⊕ b)⊗ c. 215

Definition 2.25. A weakly divisible semiring is 216

cancellative if c is unique and can thus be denoted 217

by c = (a⊕ b)−1a (Mohri, 2009, 238). 218

Remark 2.9. All semirings in Table 1 are zero- 219

sum-free, weakly divisible, and cancellative. 220

3See Mohri (2002) for general conditions under which the
shortest path can be found in polynomial time.
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Remark 2.10. For every non-deterministic, acyclic221

WFSA (or NFA) over a zero-sum-free, weakly di-222

visible and cancellative semiring, there exists an223

equivalent deterministic WFSA (or DFA). How-224

ever, a DFA may be exponentially larger than an225

equivalent NFA (Hopcroft et al., 2008, §2.3.6).226

We now provide a brief presentation of the227

determinization algorithm for WFSAs. Proofs228

can be found in Mohri 1997. Given an WFSA229

A = (Q, s,Σ, ω, δ) over a zero-sum-free, weakly230

divisible and cancellative semiring (K,⊕,⊗, 0̄, 1̄),231

its equivalent DFA can be defined and constructed232

as the DFA Ad = (Qd, sd,Σ, ωd, δd) where Qd is233

a finite set whose elements are subsets of Q×K,234

recursively defined as follows:235

1. sd = {(s, 1̄)} ∈ Qd.236

2. κd ⊆ Qd × Σ × K is the weight transition237

function, defined as238

κd(q, z) =
⊕

(qi,ki)∈q

ki ⊗

 ⊕
(qi,z,kj ,rj)∈δ

kj

 .239

3. νd ⊆ Qd×Σ×Qd is the next-state transition240

function, defined as νd(q, z) =241 ⋃
(qi, ki) ∈ q

(qi, z, kj , rj) ∈ δ

{
(rj , κd(q, z)

−1lj)
}

242

where lj =
⊕

(qi,z,kj ,rj)∈δ ki ⊗ kj .243

4. Qd = ν∗d(sd,Σ) defines the set of states as the244

closure of the next-state transition function.245

The transition relation is then defined as246

δd = {(q, z, κd(q, z), νq(q, z))|(q, z) ∈ Qd × Σ}247

and the final weight function ωd ⊆ Qd ×K as248

ωd(q) =
⊕

(qi,ki)∈q

ki ⊗ ω(qi).249

The intuition underlying this construction is that250

a state q ∈ Qd encodes a set of states in Q that251

can be reached from s by some common strings.252

More precisely, let p′ be the unique path in Psd→q253

labeled by some z′ ∈ Σ∗, then for any (qi, ki) ∈ q:254

k[p′]⊗ ki =
⊕

p∈Ps→qi :z[p]=z′

k[p].255

Termination is guaranteed for acyclic WFSAs 256

(Mohri, 1997). 257

Figure 1 gives an example of an NFA and an 258

equivalent DFA. States 0 and 1 in the DFA corre- 259

spond respectively to the subsets (0, 1̄) and (1, 1̄) 260

and κd(0, a) = k ⊗ k. 261

Remark 2.11. Given a NFA A with backwards 262

shortest distance β, the backwards shortest distance 263

βd over the equivalent DFA Ad can be computed 264

from β: 265

βd(q) =
⊕

(qi,ki)∈q

ki ⊗ β(qi) 266

for any q ∈ Qd (Mohri and Riley, 2002). 267

If β has already been computed, βd(q) can be 268

computed in linear time in |q| ≤ |Q| for any 269

q ∈ Qd. This computation can be computed on- 270

demand (“on-the-fly”) as soon as the existence of 271

q ∈ Qd is known, without requiring Ad to be fully 272

constructed. 273

2.6 Shortest string 274

Definition 2.26. Let Pz be a set of paths with string 275

z ∈ Σ∗, and let the weight of Pz be 276

σ(z) =
⊕
p∈Pz

k̄[p]. 277

Definition 2.27. A shortest string z is one such 278

that ∀z′ ∈ Σ∗, σ(z) ⪯ σ(z′). 279

Lemma 2.1. In an idempotent semiring, a shortest 280

path’s string is also a shortest string. 281

Proof. Let p be a shortest path. By definition, 282

k̄[p] ⪯ k̄[p′] for all complete paths p′. It follows 283

that ∀z′ ∈ Σ∗ 284

σ(z[p]) =
⊕
p∈Pz

k̄[p] ⪯ σ(z′[p′]) 285

=
⊕
p′∈Pz

k̄[p′] 286

so z[p] is the shortest string. 287

Lemma 2.2. In a DFA over a monotonic semiring, 288

a shortest string is the string of a shortest path in 289

that DFA viewed as an WFSA over the correspond- 290

ing companion semiring. 291

Proof. Determinism implies that for all complete 292

path p′, k̄[p′] = σ(z[p′]). Let z be the shortest 293

string in the DFA and p the unique path admitting 294

the string z. Then 295
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Figure 1: State diagrams showing a weighted NFA (left) and an equivalent DFA (right).

k̄[p] = σ(z) ⪯ σ(z[p′]) = k̄[p′]296

for any complete path p′. Hence297

k̄[p] =
⊕̂

p′∈Ps→F

k̄[p′].298

Thus p is a shortest path in the DFA viewed over299

the companion semiring.300

2.7 A* search301

A* search (Hart et al., 1968) is a common shortest-302

first search strategy for computing the shortest path303

in a WFSA over an idempotent semiring. It can be304

thought of as a variant of Dijkstra’s (1959) algo-305

rithm, in which exploration is guided by a shortest-306

first priority queue discipline. At every iteration,307

the algorithm explores the state q which minimizes308

α(q), the shortest distance from the initial state s309

to q, until all states have been visited. In A* search,310

priority is instead a function of 𭟋 ⊆ Q×K, known311

as the heuristic, which gives an estimate of the312

weight of paths from some state to a final state.313

At every iteration, A* instead explores the state q314

which minimizes α(q)⊗𭟋(q).4315

Definition 2.28. An A* heuristic is admissible if it316

never overestimates the shortest distance to a state.317

That is, it is admissible if ∀q ∈ Q : 𭟋(q) ⪯ β(q).318

Definition 2.29. An A* heuristic is consistent if it319

never overestimates the cost of reaching a successor320

state. That is, it is consistent if ∀q, r ∈ Q such that321

𭟋(q) ⪯ k ⊗ 𭟋(r) if (q, z, k, r) ∈ δ, i.e., if there322

is a transition from q to r with some label z and323

weight k.324

Remark 2.12. If 𭟋 is admissible and consistent,325

A* search is guaranteed to find a shortest path (if326

4One can view Dijkstra’s algorithm as a special case of
A* search with the uninformative heuristic 𭟋 = 1̄.

one exists) after visiting all states such that 𭟋[q] ⪯ 327

β[s] (Hart et al., 1968, 104f.). 328

3 The algorithm 329

Consider an acyclic, ϵ-free WFSA over a mono- 330

tonic negative semiring (K,⊕,⊗, 0̄, 1̄) with total 331

order ⪯ for which we wish to find the shortest 332

string. The same WFSA can also be viewed as a 333

WFSA over the corresponding companion semir- 334

ing (K, ⊕̂,⊗, 0̄, 1̄), and we denote by β̂ the back- 335

ward shortest-distance over this companion semir- 336

ing. We prove two theorems, and then introduce an 337

algorithm for search. 338

Theorem 3.1. The backwards shortest distance of 339

an WFSA over a monotonic negative semiring is 340

an admissible heuristic for the A* search over its 341

companion semiring. 342

Proof. In a monotonic negative semiring, the ⊕- 343

sum of any n terms is upper-bounded by each of 344

the n terms and hence by the ⊕̂-sum of these n 345

terms. It follows that 346

𭟋(q) = β(q) 347

=
⊕

p∈Pq→F

k̄[p] ⪯
⊕̂

p∈Pq→F

k̄[p] 348

= β̂(q), 349

and this shows that 𭟋 = β is an admissible heuris- 350

tic for β̂. 351

Theorem 3.2. The backwards shortest distance of 352

an WFSA over a monotonic negative semiring is 353

a consistent heuristic for the A* search over its 354

companion semiring. 355

Proof. Let (q, z, k, r) be a transition in δ. Lever- 356

aging again the property that an ⊕-sum of any n 357
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terms is upper-bounded by any of these terms, we358

show that359

𭟋(q) = β(q)360

=
⊕

p∈Pq→F

k̄[p]361

=
⊕

(q,z′,k′,r′)∈δ

k′ ⊗ β(r′) ⪯ k ⊗ β(r)362

= k ⊗𭟋(r)363

showing 𭟋 = β is a consistent heuristic.364

Having established that this is an admissible and365

consistent heuristic for A* search over the compan-366

ion semiring, a naïve algorithm then suggests itself,367

following Lemma 2.2 and Remark 2.12. Given a368

non-deterministic WFSA over the monotonic neg-369

ative semiring (K,⊕,⊗, 0̄, 1̄), apply determiniza-370

tion to obtain an equivalent DFA, compute βd, the371

backwards shortest distance over the resulting DFA372

over (K,⊕,⊗, 0̄, 1̄) and then perform A* search373

over the companion semiring using βd as the374

heuristic. However, as mentioned in Remark 2.10375

above, determinization has an exponential worse-376

case complexity in time and space and is often pro-377

hibitive in practice. Yet determinization—and the378

computation of elements of βd—only need to be379

performed for states actually visited by A* search.380

Let βn denote backwards shortest distance over a381

non-deterministic WFSA over the monotonic nega-382

tive semiring (K,⊕,⊗, 0̄, 1̄). Then, the algorithm383

is as follows:384

1. Compute βn over (K,⊕,⊗, 0̄, 1̄).385

2. Lazily determinize the WFSA, lazily comput-386

ing βd from βn over (K,⊕,⊗, 0̄, 1̄).387

3. Perform A* search for the shortest string over388

(K, ⊕̂,⊗, 0̄, 1̄) with βd as the heuristic.389

4 Evaluation390

We evaluate the proposed algorithm using non-391

idempotent speech recognition lattices.392

4.1 Data393

We search for the shortest string in a sample of 700394

word lattices derived from Google Voice Search395

traffic. This data set was previously used by Mohri396

and Riley (2015) and Gorman and Sproat (2021,397

ch. 4) for evaluating related WFSA algorithms.398

Each path in these lattices is a single hypothesis399

transcription produced by a production-grade au- 400

tomatic speech recognizer, here treated as a black 401

box. The exact size of each input lattice size is 402

determined by a probability threshold, so paths 403

with probabilities below a certain threshold have 404

been pruned. These lattices are acyclic, ϵ-free, 405

non-deterministic WFSAs over the log semiring, a 406

monotonic non-idempotent semiring. 407

4.2 Implementation 408

The above algorithm is implemented as part of 409

an open-source C++17 library released under the 410

Apache-2.0 license.5 This toolkit includes a 411

command-line tool which implements the above 412

algorithm over the log semiring, using the tropical 413

semiring as a companion semiring. This implemen- 414

tation depends in turn on implementations of de- 415

terminization, shortest distance, and shortest path 416

algorithms provided by OpenFst (Allauzen et al., 417

2007). This command-line tool, along with vari- 418

ous OpenFst command-line utilities, were used to 419

conduct the following experiment. 420

4.3 Method 421

We compute the number of states in the non- 422

deterministic (NFA) lattice, the number of states 423

in an equivalent DFA lattice—created by apply- 424

ing weighted determinization as implemented by 425

OpenFst’s fstdeterminize command—and 426

the number of DFA states visited during A* search. 427

4.4 Results 428

Results are shown in Figure 2. The relationship 429

between the size of the NFA and the number of 430

DFA states visited by the proposed algorithm is 431

roughly monomial (i.e., log-log linear). 432

The experiment was repeated by performing 433

weighted determinization on each of the NFA lat- 434

tices beforehand, which produces roughly a factor- 435

of-seven increase in the size of the lattice. Since 436

the increase in state size associated with full de- 437

terminization is itself roughly linear, a monomial 438

relation also holds between the size of the DFA 439

and the number of DFA states visited by A* search. 440

From these results we infer that the heuristic sub- 441

stantially reduces the number of DFA states visited, 442

and thus the degree of determinization required, 443

compared to the naïve algorithm. 444

5https://redacted.org
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Figure 2: Word lattice decoding with the proposed al-
gorithm. The x-axis shows the number of states in each
word lattice NFA; the y-axis shows the number of states
visited by A* decoding. Note that logarithmic scale is
used for both axes.

5 Related work445

Several prior studies use A* search for decoding446

speech lattices over idempotent semirings. For ex-447

ample, Mohri and Riley (2002) describe a related al-448

gorithm for finding the n-best strings over an idem-449

potent WFSA. Like the algorithm proposed here,450

they use A* search and on-the-fly determinization;451

however, they do not consider decoding over non-452

idempotent semirings.453

6 Conclusions454

We propose an algorithm which allows for efficient455

shortest string decoding of weighted automata over456

non-idempotent semirings using A* search and on-457

the-fly determinization. We find that A* search458

results in a substantial reduction in the number of459

DFA states visited during decoding, which in turn460

minimizes the degree of determinization required461

to find the shortest path.462

We envision several possible applications for the463

proposed algorithm. It could be used to exactly464

decode noisy channel “decipherment” models (e.g.,465

Knight et al., 2006) of the form466

P̂ (p | c) ∝ P (p)P (c | p)467

estimated with expectation maximization, as well468

as training scenarios which mix ordinary and469

Viterbi EM (e.g., Spitkovsky et al., 2011).470

The decoding algorithm could also be used for 471

exact decoding of lattices scored with interpolated 472

language models (e.g., Jelinek and Mercer, 1980) 473

of the form 474

P̂ (w | h) = λhP̃ (w | h) + (1− λh)P̂ (w | h′) 475

where λh is estimated using ordinary EM. 476

7 Limitations 477

While the evaluation (§4) finds the proposed algo- 478

rithm to be substantially more efficient than the 479

naïve algorithm on real-world data, it has the same 480

exponential worst-case complexity as determiniza- 481

tion of acyclic WFSAs. We conjecture worst cases 482

are unlikely to arise for topologies encountered in 483

speech and language processing applications. 484

8 Broader impacts 485

We are aware of no ethical issues raised by the 486

proposed algorithm beyond issues of dual use, bias, 487

etc., which are inherent to all known speech and 488

language technologies. 489
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