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Abstract

Despite the brain’s natural ability to continuously learn, biological insights are rarely
leveraged in continual reinforcement learning (RL). In this paper, we aim to help
bridge this gap by briefly examining four under-investigated biologically-motivated
modifications within the context of continual RL: energy minimization, wire length
constraints, sparse distributed memory multilayer perceptrons, and fuzzy tiling ac-
tivations. We show that some of these modifications help increase plasticity and
decrease catastrophic forgetting, and we provide an analysis of the learned repre-
sentations.

1 Introduction

In order to adapt to changing environments in the real world, reinforcement learning (RL) agents
need to be able to continually learn by sequentially integrating new information. However, despite
advances in the field of deep RL, RL agents are still not great continual learners, limited by losses
in plasticity (Lyle et al., 2024) and by catastrophic forgetting (Khetarpal et al., 2022).

In this paper, we propose to draw more inspiration from the remarkable ability of biological brains to
continuously learn. We examine four modifications, only one of which has been applied to RL, that
can be categorized into two overarching themes inspired by brain functionality: energy constraints
and memory indexing. Both themes are related as energy constraints have been suggested to lead
to the separation of neural populations representing individual concepts in the brain (Whittington
et al., 2023).

Within machine learning itself, energy constraints have previously been shown to lead to disentan-
glement (Whittington et al., 2023) and to the organization of neurons into clusters that correspond
to functional areas within brains (Margalit et al., 2023). Indexing mechanisms, mainly through
sparse activations, have been shown to improve transfer learning (Wang et al., 2024) and decrease
catastrophic forgetting (Bricken et al., 2023).

For energy constraints, we look at non-negativity with weight and activation minimization (Whit-
tington et al., 2023) and wiring-length constraints (Margalit et al., 2023). For indexing, we examine
fuzzy tiling activations (Pan et al., 2021) and a neural network variant of sparse distributed memory
(Bricken et al., 2023).

Despite not exhaustively optimizing the implementations, we show that when applied to a Soft Actor
Critic algorithm (Haarnoja et al., 2019), a few of the modifications already show promising benefits
for continual reinforcement learning through increasing plasticity, reducing overfitting, or decreasing
forgetting.
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2 Background

2.1 Reinforcement learning

Reinforcement learning is goal-directed learning where an agent interacts with and learns from its
environment (Sutton and Barto, 2018). the Markov Decision Process (MDP) framework (Puterman,
2014) formalizes these interactions by defining them in terms of states, actions, and rewards. For
each interaction step, the agent is in state s out of a state space S and selects an action a from an
action space A according to policy π, receives reward r, and transitions to s′, another state from the
state space S. The agent’s goal is to learn a policy π, which maps the agent’s actions to states, that
maximizes its expected sum of rewards. Past interactions between the agent and the environment
are commonly saved in a replay buffer and are revisited as learning progresses (Mnih et al., 2015).

3 Main Experiments

3.1 General Experimental Setup

We evaluate the effects of different modifications on the Soft Actor Critic (SAC) reinforcement
learning algorithm (Haarnoja et al., 2019) on sequences of environments. Three of the modifications
have previously been implemented in supervised learning (Whittington et al., 2023; Bricken et al.,
2023; Margalit et al., 2023), and one in reinforcement learning on DQN (Pan et al., 2021; Mnih et al.,
2015). We use the default hyperparameter values for the base agent (Haarnoja et al., 2019), and
tune additional modification-specific hyperparameters on the first environment within a sequence.

3.1.1 Environments

To evaluate the effects on negative and forward transfer, we use environments from the Deep-
Mind Control Suite (Tassa et al., 2018). We evaluate negative transfer on quadruped-run following
pre-training on quadruped-walk as SAC shows decreased performance on the second environment
following the pre-training. For effects on forward transfer, we look at humanoid-run following pre-
training on humanoid-walk, where unmodified SAC shows conversely higher performance on the
second environment.

We evaluate catastrophic forgetting and overfitting on robot arm tasks from Metaworld Yu et al.
(2021). For catastrophic forgetting, we use separate output heads and task IDs, and train on a
thematically-related sequence: faucet-close-v2 → window-close-v2→ faucet-close-v2. We
look at forgetting of the previous environments, and on how quickly the third environment is re-
membered. For overfitting, we use one output head and train on a sequence of three hammer-v2 tasks
with separate one-hot vector input IDs for each. We reset the replay buffers between environments
for all cases.

3.2 Modifications Details

3.2.1 Energy Constraints

In addition to broader regions of functional organization, brains contain cells that code for individual
factors of variation within a task space, such as object vector cells (Høydal et al., 2019), or border
cells (Solstad et al., 2008). How these localized representations form is not fully understood, but
energy constraints have been hypothesised to play a key role (Whittington et al., 2023; Margalit
et al., 2023).

As this form of disentanglement may aid with continual learning, we evaluated two different types
of energy constraints on SAC: biological constraints of non-negativity and energy minimisation
(Whittington et al., 2023), which we refer to as "small-bio", and wiring length constraints (Margalit
et al., 2023).
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We found that energy constraints worked best when applied to the actor as well as the critics (not
shown).

Non-negativity and Energy Minimization - "small-bio" Biological constraints of non-
negativity and energy minimization in conjunction, or "small-bio", have been shown to promote
disentanglement in neural networks (Whittington et al., 2023), with disentanglement defined here
as more individual neurons coding for individual factors of variation in the input data.

For small-bio, energy minimization is simply imposed through l2 regularization of activations as
well as weights, and non-negativity can be imposed with the ReLU activation function (Nair and
Hinton, 2010; Whittington et al., 2023), which is what we do in this paper. Consistently with the
small-bio paper, we found l2 regularization of both activation and weights to have better effects than
l2 regularization applied to only the weights or only the activations (not shown).

Wiring Length Constraints - "wire" Wiring length constraints have been shown to recreate
representations created by the brain by introducing a loss to encourage nearby neurons to have
similar representations (Margalit et al., 2023). Wiring length constraints have not originally been
shown to have a clear performance benefit, but to increase interpretability; we nonetheless saw
improvement with wire in certain cases (shown in the Preliminary Results section). We applied
wiring length constraints on the second hidden layer in the actor and critic networks.

3.2.2 Indexing

We use indexing as an umbrella term for theories and findings behind the brain developing neurons
that index into a broader concept or memory (Teyler and DiScenna, 1986; Teyler and Rudy, 2007;
McClelland et al., 1995; O’Reilly et al., 2014), which may be beneficial for creating orthogonal
representations that would reduce catastrophic forgetting in neural networks.

Below, SDMLP and FTA are sparse activation approaches that we see as consistent with the comple-
mentary learning systems theory, in which the hippocampus formation learns sparse, non-overlapping
representations that then index the overlapping and distributed representations in the neocortex
(McClelland et al., 1995; O’Reilly et al., 2014). Both modifications also have ties to circuits in the
cerebellum (Xie et al., 2023; Sutton, 1995; Albus, 1971).

We found that both indexing constraints worked best when applied only to the actor, and not to
the critics (not shown).

Fuzzy Tiling Activations (FTA) FTA is an activation function that induces sparsity in neural
networks by binning inputs with a fuzzy indicator function (Pan et al., 2021). It has previously been
shown to increase transfer learning in Deep Q-Networks (Mnih et al., 2015; Wang et al., 2024). We
apply FTA to the actor’s second hidden layer.

Sparse Distributed Memory Multilayer Perceptron (SDMLP) Closely related to Hopfield
networks, Sparse Distributed Memory (SDM) is a mathematical associative memory model of how
concepts, or patterns, are stored and retrieved in the brain (Kanerva, 1988; 1992).

SDMLP is a one hidden layer neural network implementation of SDM that treats input weights into
the hidden layer as addresses, and output weights as patterns (Bricken et al., 2023). To make this
work for continual learning, modifications include employing a top-k activation function, eliminating
neural network bias terms, and enforcing l2 normalization and non-negativity constraints on the
weights and data (Bricken et al., 2023).

We implement SDMLP on the actor network and handle data and output non-negativity by passing
the inputs through a CReLU activation function (Shang et al., 2016), and by doubling the output
layer and subtracting one half of the outputs from the other half. For top-k, we follow the method of
top-k annealing, where the top-k number gradually decreased throughout training, instead an alter-
native GABA switch method also presented in the SDMLP paper (Bricken et al., 2023). However,
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from preliminary analysis, the GABA switch method appears to generate better performance in at
least one set of the environments tested (not shown).

The SDMLP paper authors additionally identified a stale momentum problem with optimizers like
Adam and RMSProp (Swerksy et al., 2012; Kingma and Ba, 2015), and found that using Stochas-
tic Gradient Descent (SGD) without momentum (Rosenblatt, 1958) worked the best for SDMLP.
Unfortunately, we were not yet able to achieve good results ourselves with SGD. Because of this,
we expect that the GABA switch method, which reportedly suffers less from the stale momentum
problem (Bricken et al., 2023), will likely end up being the most appropriate implementation in
future work.

3.3 Preliminary Results

Figure 1: Performance on the first environment for quadruped and humanoid. sbio is small-bio, and
sdm is SDMLP. The shading is SEM, and there are 20 seeds per run.

Figure 2: Performance on the second environment for quadruped and humanoid. The shading is
SEM, and there are 20 seeds per run.

Figure 3: FTA slightly slows down forgetting. Forgetting of the first (left) and second (right)
environment in the sequence of faucet-close -> window-close -> faucet-close Metaworld robot arm
tasks. The shading is SEM, and there are 20 seeds per run.
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Forward and Negative Transfer Figure 1 shows that small-bio in particular improves per-
formance on individual environments. small-bio, wire, and SDMLP increase performance in
quadruped, but not humanoid. However, Figure 2 only shows that only small-bio increases perfor-
mance following pretraining in both. We suspect that the poorer results with SDMLP may be due
to the stale momentum problem reported in the original SDMLP paper (Bricken et al., 2023) that
we have not yet been able to resolve in this paper with SAC, and FTA and wire may benefit from
more refined implementations in future work.

Overfitting Figure 4 shows that FTA and small-bio decrease overfitting on robot arm tasks by
showing comparable performance across training as well as global success on one environment with
different task IDs. SDMLP, however, fully collapses.

Figure 4: small-bio and FTA decrease overfitting on three hammer-v2 tasks with separate task IDs.
Left is training success, right is overall success on three hammer-v2s. 20 seeds per run, and shading
is SEM.

Figure 5: SDM maintains a high gradient sparsity, while small-bio and wire maintain a low one.
The gradient orthogonality and disentanglement (MIR) measurements do not suggest a trend. The
measurements are for the actor’s final hidden layer.
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Figure 6: small-bio and FTA maintain a higher stable rank, and small-bio and SDMLP in particular
maintain a low distance from initialization.

Figure 7: FTA greatly increases the intrinsic dimensionality of the data. The measurements are for
the actor’s final hidden layer.

Figure 8: FTA and small-bio both decrease the percentage of dead units as well as the l2 norm of
the weights. The measurements are for the actor’s final hidden layer.

Preliminary Analysis Figures 5, and 6, 7 show an analysis of the representations produced by
the actor networks. Despite previously demonstrated increases in disentanglement with small-bio
using the mutual information ratio (MIR) metric (Whittington et al., 2023), we do not see this
with small-bio applied to SAC. Figure 5 instead shows inconsistent results across environments
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for different modifications, which may indicate MIR being a poor metric for reinforcement learning
data.

Figure 6 shows that the most successful modification, small-bio, maintains a high stable rank and
a low distance from initialization, both beneficial for generalization (Sanyal et al., 2019; Nagarajan
and Kolter, 2019). However, Figure 5 also shows it maintaining the lowest gradient sparsity, which
may be an indication of why we see the fastest forgetting with small-bio in Figure 3.

Similarly, increases in dead units and in the norm of the parameters are potential mechanisms of
plasticity loss (Lyle et al., 2024), and Figure 8 shows both small-bio and FTA, with small-bio in
particular, maintaining the lowest percentage of dead units as well as parameters norms. Interest-
ingly, small-bio also shows a decrease in dead units and in the parameter norm with task switches
in the faucet-window-faucet set of environments.

4 Conclusion and Discussion

With this paper, we present a preliminary overview of biologically-inspired modifications that are
understudied in continual reinforcement learning. While the other modifications may benefit from
more thoroughly optimized implementations, energy constraints and non-negativity with small-bio
have shown the most promise despite their simplicity. We hope that this work promotes further
discussions and investigations into algorithms inspired by brain function in continual reinforcement
learning.
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