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Abstract
Large language models (LLMs) are known to001
perform tasks by simply observing few exem-002
plars. Moreover, competent generative capa-003
bilities of LLMs are observed mostly in high-004
resource languages, while their performances005
among under-represented languages fall behind006
due to pre-training data imbalance. To elicit007
LLMs’ ability onto low-resource languages008
without any supervised data, we propose to as-009
semble synthetic exemplars from a diverse set010
of high-resource languages. These prompts can011
directly induce generative capabilities in low-012
resource languages and serve as intra-lingual013
exemplars to even improve tasks in these lan-014
guages. Our zero-shot/unsupervised prompting015
method performs on par with supervised few-016
shot learning in LLMs of different sizes for017
translations between English and 34 Indic and018
African languages, and surpasses supervised019
prompting in non-English tasks. The method020
also significantly improves low-resource perfor-021
mances in many other intra-lingual tasks like022
summarization (XLSum), question answering023
(XQUAD & TydiQA) and conversational in-024
struction following (Sea-Bench).025

1 Introduction026

Recent scaling effort in foundation large language027

models (Brown et al., 2020; Chowdhery et al.,028

2022; Scao et al., 2022; Touvron et al., 2023a) with029

massive pre-training data has enabled them to learn030

a broad range of natural language tasks through031

few-shot in-context learning, where a few input-032

output exemplars are concatenated to the test input033

to prompt the model to predict the output and no034

gradient update of the model is performed. While035

most LLMs are pre-trained with multilingual cor-036

pora in addition to the gigantic English corpus, and037

have been shown to demonstrate impressive abili-038

ties in other languages (Brown et al., 2020; Chowd-039

hery et al., 2022; Scao et al., 2022), they only excel040

in high-resource languages, such as French. Fur-041

ther, they may still require pivoting the inputs into042

English, that is, performing tasks in English first 043

before reverting the response back to native out- 044

puts (Shi et al., 2022; Huang et al., 2023). Im- 045

proving LLMs’ abilities in extremely low-resource 046

languages can be even more challenging, particu- 047

larly where the data coverage is less than 0.0001% 048

(Scao et al., 2022). We also found that the models 049

may confusedly respond in a wrong language or 050

struggle with low-resource non-latin scripts due to 051

overly fragmented tokenization, where words are 052

broken into many byte-level tokens. 053

In this work, we propose Linguistically-Diverse 054

Prompting or LDP (codes will be made available), 055

a technique that promotes an LLM to perform gen- 056

erative tasks in low-resource languages by demon- 057

strating few-shot exemplars in a diverse set of high- 058

resource languages. This method works in both un- 059

supervised setup with foundation base LLMs (Scao 060

et al., 2022; Touvron et al., 2023a) and pseudo-zero- 061

shot setup instruction-tuned counterparts (Ouyang 062

et al., 2022; Muennighoff et al., 2022; OpenAI, 063

2023), by synthetically creating few-shot exam- 064

ples from zero-shot prompting. A manifestation 065

of LDP for unsupervised translation task is shown 066

in Figure 1, where we gather a small set of syn- 067

thetic X→En exemplars from a diverse set of high- 068

resource languages using a pre-trained unsuper- 069

vised MT model (Tran et al., 2020). Figure 2, 070

meanwhile, later explain LDP in other generalized 071

adoptions in many other tasks. Our method is based 072

on the following empirical observations of LLMs: 073

(i) in-context exemplars may play a larger role in 074

helping the model locate the task in its pre-trained 075

knowledge (Xie et al., 2021), (ii) LLMs possess 076

dominant abilities in English while they may lag 077

behind in other lower-resource languages (Ouyang 078

et al., 2022; Touvron et al., 2023a; Huang et al., 079

2023; Shi et al., 2022). 080

Our method is shown to perform on par with 081

supervised prompting in unsupervised translation 082

tasks between English and 13 Indic and 21 African 083

1



F→en

Chinese: 早上好

English: Good morning

French: Je suis désolé

English: I’m sorry

Igbo: Ịmụ igwe

English: Machine learning

✓language, ✓translation

(a) X→En

F→ig

English: Good morning

Chinese: 早上好

English: I’m sorry

French: Je suis désolé

English: Machine learning

Igbo: kuosha mashine

✗ language, ✗ translation

(b) En→X

Fbt
→ig

English: 20 years ago

Igbo: Afọ 20 gara aga
F→en

English: Good evening

Igbo: Mgbede ọma F→en

English: Machine learning

Igbo: Ịmụ igwe

✓language, ✓translation

(c) En→X with back-translation

Figure 1: LDP prompting for unsupervised translation. (1a) F→en translates from any language into English
by concatenating the fixed linguistically-diverse shots and input text to prompt LLMs to generate the correct
translation. (1b) Similarly F→ig translates English into Igbo, but with low accuracy. (1c) Fbt

→ig translates English
to Igbo using synthetic intra-lingual exemplars generated from unlabeled target-language data with F→en.

low-resource languages, with BLOOM (Scao et al.,084

2022) and InstructGPT (text-davinci-003) (Ouyang085

et al., 2022) models. Furthermore, adapting our086

method to X→Y non-English directions even out-087

performs supervised promptings by up to 3 chrF++088

in pairs involving low-resource languages. In multi-089

lingual summarization tasks (Narayan et al., 2018),090

our zero-shot LDP method outperforms both ba-091

sic prompting and other English-pivoting methods092

by up to 4 ROUGE-L and is generally favored by093

GPT-4-EVAL (Liu et al., 2023). With GPT-3.5, our094

method considerably improves zero-shot question095

answering XQUAD (Artetxe et al., 2019) and Ty-096

diQA (Clark et al., 2020) tasks in 6 languages by097

up to 14 F1 and matches few-shot prompting per-098

formance. Our method can even enable Llama-2099

base (Touvron et al., 2023b) to perform conversa-100

tional instruction following tasks and improve the101

chat model in Sea-Bench (Nguyen et al., 2023) for102

2 languages that were not instruction-tuned.103

2 Related Work104

Large language models (LLMs) display outstand-105

ing capabilities because they are pre-trained on106

massive amounts of internet text data (Brown et al.,107

2020; Chowdhery et al., 2022; Scao et al., 2022;108

Touvron et al., 2023a,b). Without any gradient up-109

date, base LLMs are able to perform in-context110

learning by simply observing a list of high-quality111

input-output exemplars (Brown et al., 2020; Wei112

et al., 2023). This technique works across many113

tasks that involve language understanding, reason-114

ing and generation (Brown et al., 2020; Wei et al.,115

2022; Shi et al., 2022). Much research has been116

conducted to understand in-context learning. Some 117

suggest that the models secretly perform gradient 118

descent on the exemplars (Dai et al., 2022), while 119

others demonstrate that most of the knowledge is 120

learned during pre-training, and the exemplars are 121

only to provide evidence for the model to locate the 122

intended task via a Bayesian inference process (Xie 123

et al., 2021; Min et al., 2022; Zhou et al., 2023). 124

Most LLMs are trained with multilingual cor- 125

pora (Wenzek et al., 2020), even if these make up 126

a tiny fraction of the large English corpora (Rad- 127

ford et al., 2019; Brown et al., 2020). Despite 128

that, LLMs still exhibit strong multilingual capabil- 129

ities with high-resource languages like French, Ger- 130

man and Chinese, often with the help of English- 131

pivoting using supervised translation systems (Shi 132

et al., 2022) or prompting the model to firstly gen- 133

erate intermediate English context (Huang et al., 134

2023). BLOOM (Scao et al., 2022) is one of the 135

LLMs trained with the most number of languages, 136

whose ROOTS corpus consists of data from 46 137

languages (Laurençon et al., 2022). The ROOTS 138

corpus includes 34 Indic and African languages re- 139

garded as low-resource, with each language having 140

a pre-training coverage of less than 1% in Hindi 141

for the Indic group, to 2e−5% in Tumbuka for the 142

African group, as shown in Figure 5 in the Ap- 143

pendix. Exclusively only for unsupervised trans- 144

lation tasks, our linguistically-diverse prompting 145

(LDP) strategy is also an English-pivoting method, 146

but it is different from other cross-lingual coun- 147

terparts (Shi et al., 2022; Huang et al., 2023) in 148

that while others only pivot inputs to English in- 149

termediates, we use in-context pairs between En- 150
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glish and a diverse set of high-resource languages151

to promote the intended task in the target low-152

resource language. For other intra-lingual tasks153

like instruction following, where input and output154

are both expected to be in the same language, our155

LDP helps prevent English-tuned models Touvron156

et al. (2023b) from responding with English answer157

given a non-English query.158

Part of our work also intersects with unsuper-159

vised multilingual machine translation (UMT),160

where back-translation is proven to be effective161

(Edunov et al., 2018; Lample et al., 2018; Con-162

neau and Lample, 2019; Liu et al., 2020; Nguyen163

et al., 2022b), along with other methods (Tran et al.,164

2020; Nguyen et al., 2022a). English-pivoting is165

also prominent in the realm of machine translation,166

where training models on high-resource En↔X bi-167

text improves lower-resource En↔Y tasks (Garcia168

et al., 2020, 2021). Analyses of machine transla-169

tion using LLMs have also been done. Hendy et al.170

(2023) show that GPT models can perform com-171

petitively alongside the best MT models. Zhu et al.172

(2023) focus on optimizing supervised exemplars173

selection strategies, while Sia and Duh (2023) dis-174

cover that using specific coherent prompts for each175

input helps improve performance. Nonetheless,176

such studies only consider supervised instruction-177

tuned models (Ouyang et al., 2022; Muennighoff178

et al., 2022), which may risk test-set contamination179

(Muennighoff et al., 2022). Thus, there is still lim-180

ited research involving low-resource languages in181

completely zero-shot setups. As such, since low-182

resource languages may not enjoy the privilege of183

having large unlabeled data to conduct searching,184

only random selection is used in this study, while185

optimal exemplar selection is out of scope.186

3 Method187

3.1 Linguistically-Diverse Prompting (LDP)188

Our method is inspired from two observations:189

(i) LLMs may have already learned most of the task190

concepts implicitly during pre-training, and that in-191

context exemplars play a larger role in providing192

evidence for the model to identify the intended193

task (Xie et al., 2021; Min et al., 2022; Zhou et al.,194

2023). (ii) LLMs perform generative tasks dom-195

inantly well in only a few major languages (e.g.,196

English), whose pre-training data is highly abun-197

dant (Brown et al., 2020; Touvron et al., 2023a).198

The main principle of LDP is using few-shot199

exemplars from a diverse set of high-resource lan-200

guages to elicit generative abilities in low-resource 201

languages. Such idea can be designed and catered 202

differently depending on use cases. In this paper, 203

we present two manifestations of LDP for (i) cross- 204

lingual tasks (e.g., translation) where the input and 205

output are in different languages and (ii) intra- 206

lingual tasks (e.g., summarization, question answer- 207

ing) where both are in the same language. 208

Figure 1 illustrates how our LDP method aims 209

to take advantage of the aforementioned observa- 210

tions in the case of unsupervised translation tasks. 211

Particularly, we prompt the model to identify the 212

task of “translating from any language X into E”, 213

by demonstrating pairs from “every language” to 214

E. Practically, shown in Figure 1a, we use syn- 215

thetic pairs from diverse high-resource languages 216

as exemplars to prompt the models to translate the 217

target low-resource language X (e.g., Igbo) into 218

English (En) with high quality. Such diverse set 219

of prompt languages should include various script 220

types ranging from Latin alphabets to logograms. 221

Figure 1b shows that applying the same technique 222

for En→X task may results in incorrect translation. 223

In Figure 1c, however, we leverage LDP to trans- 224

late unlabeled texts of target X language into En, 225

forming back-translated synthetic pairs to prompt 226

the model to translate from En to X with higher 227

quality. This is because the target-side distribution 228

is now realistic and consistently close to the true 229

target distribution, which has been shown to be 230

crucial for in-context learning (Xie et al., 2021). 231

3.2 LDP for Cross-lingual Tasks (Translation) 232

For tasks where the input and output are in different 233

languages, such as translation, we adopt LDP for 234

X → E, E → X and X → Y (where X,Y ̸= E), 235

differently, as shown in Figure 2a, where we as- 236

sume E = English (En) for better understanding. 237

X → E task. As mentioned above, we first 238

gather n Zi→E exemplar pairs (sZi , t
i
E) with 239

Zi ∈ Z andZ being a diverse set of languages with 240

various writing systems, lexical and regional char- 241

acteristics, such as Chinese (Zh), and Zi /∈ {X,E}. 242

Such exemplars can be collected from unlabeled 243

data of the respective language Zi and using unsu- 244

pervised MT models to translate them into E (for 245

unsupervised tasks), or from labeled few-shot pairs 246

(for zero-shot tasks). From that, we can perform 247

translation of an input sX into E with an LLM (θ) 248

by conditioning the LDP prompts as: 249

Fmt
X→E(sX) ∼ pθ(y|sX , sZ1 , t

1
E , .., sZn , t

n
E) (1) 250
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Fmt
x→en

[fr] [en]

[vi] [en]

[zh] [en]

[x] [ên]

Fmtbt
en→x

[enx11 ] [x1]

[enx22 ] [x2]

[enx33 ] [x3]

[en] [x]

Fmt
x→y

[x1] [ênx11 ] [yen11 ]

[x2] [ênx22 ] [yen22 ]

[x3] [ênx33 ] [yen33 ]

[x] [en][y]

(a) LDP for translation for X→En, En→X and X→Y .

F in
x

[qfr] [rfr]

[qvi] [rvi]

[qzh] [rzh]

[qx] [r̂x]

F̂ in
x

[q1x] [r̂1x]

[q2x] [r̂2x]

[q3x] [r̂3x]

[qx] [rx]

(b) LDP for intra-lingual tasks.

Figure 2: Illustrations LDP for X→En, En→X and X→Y cross-lingual translation (2a) and general intra-lingual
tasks (2b). For X→En, the colored box [z] represents an unlabeled text in language z, [en] represents its

corresponding En translation, while [x] stands for the test input in language x and uncolored box [ên] represents

model outputs. For En→X , [enx] represents En text translated with Fmt
x→en. For X→Y , [yen] represents a text in

language y translated from En text [ênx] . Similarly for intra-lingual tasks like summarization (2b), [̂rz] represents

a response in language z for query [qz] .

E → X task. We leverage Fmt
X→E to build intra-251

lingual prompts with unlabeled data from the target252

language X . Specifically, given m unlabeled texts253

sjX ∈ DX with DX being a monolingual corpus in254

language X , we produce synthetic back-translation255

(BT) target sjE = Fmt
X→E(s

j
X). Then, we use the256

BT synthetic pairs as exemplars for E → X tasks257

for a test input sE :258

Fmtbt
E→X(sE) ∼ pθ(y|sE , s1E , t1X , ..., smE , tmX) (2)259

The intra-lingual exemplars with the same language260

in the target side helps the model locate the in-261

tended language to generate more effectively than262

a standard language tag, as these exemplars show263

the model what the intended language looks like.264

Note that we could also use Fmtbt for X →265

E (Fmtbt
X→E) by simply swapping the direction of266

the (sjE , t
j
X) to (sjX , tjE). However, we found in267

the experiments that both Fmt and Fmtbt perform268

similarly and on par with supervised prompting for269

the X → E task, suggesting that we do not need270

any supervised or unlabeled data to translate any271

language into English. Furthermore, in Section 4.6,272

we demonstrate that we can even omit these back-273

translation exemplars entirely with non-BT Fmt274

LDP by using native language tags.275

X → Y task. We leverage Fmtbt
X→E and Fmtbt

E→X276

to build E-pivoting triplets from unlabeled text277

from the source side. Specifically, given unlabeled278

text sjX ∈ DX in X language, we back-translate279

them into sjE = Fmtbt
X→E(s

j
X), which we then use280

to produce sjY = Fmtbt
E→Y (s

j
E). This process forms281

triplets [sjX , sjE , s
j
Y ] to prompt the model to gener-282

ate intermediate E translation before producing the283

final result in Y . Formally, given an input sX , the 284

translation in Y is computed as: 285

Fmt
X→Y (sX) ∼ pθ(y|sX , s1X , s1E , s

1
Y , ..., s

m
X , smE , smY )

(3) 286

Unsupervised fine-tuning. The Fmt
X→E prompt- 287

ing method also allows us to create larger-scale 288

synthetic X-E data from unlabeled corpora to fine- 289

tune the model for translation tasks without any in- 290

context prompt at inference time. Specifically, we 291

use the [input]<lang-tag>[output] template to 292

construct multilingual training samples with the 293

generated data pairs from multiple low-resource 294

languages. We fine-tune the query-key-value linear 295

weights of all attention layers, which account for 296

20-30% of the total parameters to avoid overfitting. 297

3.3 LDP for intra-lingual tasks 298

For intra-lingual tasks, where the input and output 299

are in the same language, such as summarization 300

and question answering, we adopt LDP in zero- 301

shot setups for instruction-tuned models (Ouyang 302

et al., 2022) differently as illustrated in Figure 2b. 303

Formally, given a query qX in the target language 304

X and n in-domain queries qZi with Zi ∈ Z and 305

Z being a diverse set of high-resource languages, 306

we use standard or augmented zero-shot prompting 307

strategies h (Huang et al., 2023; Wei et al., 2022) 308

to obtain responses rZi = h(qZI
). We then use the 309

synthetic query-response pairs (qZi , rZi) as LDP in- 310

context exemplars to compute the target-language 311

response rX for qX as: 312

F in
X (qX) ∼ pθ(y|qX , qZ1 , rZ1 , .., qZn , rZn) (4) 313
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Ind-En En-Ind Afr-En En-Afr
Base BLOOM-175B
Supervised-8-shot 47.31 34.66 28.64 14.93
Unsupervised-LDP 47.62 34.54 28.72 14.57
Base BLOOM-7B
Supervised-8-shot 39.86 24.02 21.51 11.27
Unsupervised-LDP 39.88 24.41 20.47 12.04
Fine-tune 42.19 32.72 21.14 15.73
Supervised InstructGPT (text-davinci-003)
Zero-shot 35.37 20.71 27.10 15.45
Supervised-6-shot 37.07 24.74 31.51 19.22
Unsupervised-LDP 38.45 25.17 31.92 19.51
Supervised upperbound
NLLB-200 distilled 61.00 46.77 48.42 39.18

Table 1: Averaged performances of different prompt-
ing techniques across various model sizes and types,
namely BLOOM (Scao et al., 2022) and InstructGPT
text-davinci-003 (Brown et al., 2020; Ouyang et al.,
2022), in translation tasks between English (En) and 13
Indic (Ind) and 21 African (Afr) low-resource languages
present in the ROOTS corpus (Laurençon et al., 2022).
SacreBLEU scores are provided in the Appendix.

Similar to E → X translation task, we then use314

zero-shot F in
X to generate synthetic intra-lingual315

prompts from m unlabeled queries qjX ∈ DX by316

producing responses rjX = F in
X (qjX) in X lan-317

guage. After that, we compute the final response318

for the input qX with F̂ in
X as:319

F̂ in
X (qX) ∼ pθ(y|qX , q1X , r1X , .., qmX , rmX ) (5)320

4 Experiments321

In this section, we evaluate our method in vari-322

ous translation (sections 4.1 and 4.2), summariza-323

tion (4.3), question answering (4.4) and instruction-324

following (4.5) across different settings and lan-325

guages. We also conduct extensive analyses to326

provide further insights into our method (4.6).327

4.1 Low-resource↔ English Translation328

As the ROOTS corpus (Laurençon et al., 2022)329

that BLOOM (Scao et al., 2022) was pre-trained330

on offers the most diverse language coverage with331

open-sourced transparency, we tested our methods332

mainly with the BLOOM model on 13 Indic (Ind)333

languages and 21 African (Afr) languages present334

in the ROOTS corpus. We also conduct experi-335

ments with supervised InstructGPT (text-davinci-336

003) (Ouyang et al., 2022) to provide further refer-337

ences. As not much detail about text-davinci-003338

has been disclosed, its results are only to compare339

prompting techniques within the same model and 340

not between models. Specific details about lan- 341

guages and test sets are provided in the Appendix. 342

Following Costa-jussà et al. (2022), we report re- 343

sults in mainly chrF++ (Popović, 2015), which is 344

a universal metric for all languages, while also re- 345

porting SacreBLEU (Post, 2018) in the Appendix. 346

In terms of methodologies, for supervised 347

prompting, we collect as many supervised pairs 348

as the models can fit within their context lengths (8 349

for BLOOM and 6 for text-davinci-003). We use 350

<src>[input]\n<tgt>[output] as the prompt 351

template, where <src> and <tgt> are the lan- 352

guage tag names in English. For our unsupervised 353

linguistically-diverse prompting (LDP) method, we 354

use 4 LDP Zi↔En pairs from Arabic (Ar), Chinese 355

(Zh), Vietnamese (Vi) and French (Fr) to conduct 356

X → E synthetic data generation with Fmt
X→E be- 357

fore using them as intra-lingual prompts for the 358

target pair with Fmtbt
X↔E , as explained in Section 3. 359

For LDP, we do not include the language tags in the 360

prompts as they offer no benefit. In our fine-tuning 361

experiment, we use Fmt
X→E to generate synthetic 362

training data from various unlabeled sources (Wen- 363

zek et al., 2020) to fine-tune BLOOM-7B. 364

Table 1 shows the averaged chrF++ scores for 365

translations between English and 13 Indic and 21 366

African low-resource languages across different 367

prompting techniques with various models. Notice- 368

ably, our unsupervised-LDP method performs on 369

par with supervised prompting across all language 370

groups and LLM models. This indicates that the 371

synthetic prompts generated by our Fmt
X→E tech- 372

nique are as good as supervised prompts when serv- 373

ing as few-shot exemplars,1 thanks to the LLMs’ 374

outstanding ability in English. Furthermore, fine- 375

tuning a 7B model with data generated by itself 376

helps the model to advance towards the perfor- 377

mance of its 175B sibling, especially for En→X 378

direction. This suggests that fine-tuning the model 379

on more low-resource language data improves gen- 380

erative abilities in such languages. 381

For text-davinci-003, we observe the same pat- 382

tern when comparing supervised and unsupervised- 383

LDP. It is interesting to see that GPT’s scores for 384

Indic languages are lower than BLOOM but higher 385

for African languages, despite the fact that the 386

African languages are likely to have less data cov- 387

erage. One of the reasons may be the token frag- 388

1The synthetic outputs themselves are still lower-quality
than supervised translations or the ground truths.
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High-High High-Low Low-Low
Vi-Fr Fr-Vi Zh-Ne Ne-Zh Es-Pa Pa-Es Ta-Sw Sw-Ta Te-Sw Sw-Te

Foundation BLOOM-175B
Supervised-8-shot 52.17 51.50 30.91 17.83 25.67 37.71 31.45 31.81 31.46 25.84
Unsupervised-LDP 52.66 50.24 31.61 18.34 27.85 39.51 34.61 34.47 32.14 30.57
Supervised InstructGPT (text-davinci-003)
XLT (Huang et al., 2023) 51.16 44.84 28.56 13.26 23.61 34.18 24.20 25.46 24.89 23.48
Unsupervised-LDP 51.19 45.80 28.67 15.80 25.40 35.02 27.24 27.70 28.95 25.12

Table 2: chrF++ translation scores for X→Y non-English tasks across high-high, high-low and low-low groups.

mentation issue which we explain in the Appendix.389

Similarly, we observe LDP performs competitively390

with supervised prompting on 20 European lan-391

guages with LLaMA (Touvron et al., 2023a), which392

we also detail in Table 9 in the Appendix.393

4.2 Non-English-centric Translation394

For non-English X→Y directions, we compare395

our unsupervised method Fmt
X→Y with supervised396

prompting in three categories: High-High resource397

languages with Vi and Fr, High-Low resource be-398

tween Zh, Es, Ne (Nepali) and Pa (Punjabi), and399

Low-Low resource languages with Sw (Swahili),400

Ta (Tamil) and Te (Telugu). We use the same model401

and evaluation pipelines as explained Section 4.1.402

For this experiment, we evaluate on the FLoRes-403

200 devtest sets Costa-jussà et al. (2022). As re-404

ported in Table 2, our unsupervised LDP technique405

also performs on par with supervised prompting406

in High-High Vi-Fr pairs. More interestingly, for407

High-Low and Low-Low language pairs, our un-408

supervised method even outperforms supervised409

prompting for these languages by up to 5 chrF++,410

largely thanks to the presence of English interme-411

diate translations in the exemplars.412

4.3 Zero-shot Summarization413

Es Id Sw So Mr
Basic 12.7/2.9 12.8/2.5 12.2/2.3 11.5/3.0 4.1/2.9
XLT 17.7/3.9 17.6/3.4 20.5/3.1 18.5/3.9 10.3/3.8
LDP 18.1/4.1 18.6/3.6 21.8/3.3 19.0/4.0 10.0/3.9
LDP+U 18.1/4.2 24.8/3.8 23.5/3.3 19.3/4.0 11.4/3.9

Table 3: ROUGE-L / GPT-4-EVAL scores (1-5 ratings)
of different prompting techniques using InstructGPT
text-davinci-003 for zero-shot summarization in high-
resource (Es, Id) and low-resource (Sw, So, Mr) in the
XL-sum summarization task (Narayan et al., 2018).

We extend our LDP method to multilingual414

summarization by combining intral-lingual LDP415

(section 3.3) with cross-lingual prompting (XLT)416

GPT-3.5 XQUAD TydiQA
Ar Hi Th Ar Bn Fi Ru

3-shot 69.9 69.3 53.8 27.7 20.2 34.7 16.8
0-shot 52.9 45.9 26.3 19.1 5.7 21.7 12.3
w/ LDP 69.8 69.0 54.0 23.2 18.9 32.6 17.0

Table 4: Multilingual question answering F1 scores
of ChatGPT (GPT 3.5) using different prompting tech-
niques across different languages in the XQUAD and
TydiQA benchmarks.

(Huang et al., 2023) using the supervised text- 417

davinci-003 model. XLT is a recent English- 418

pivoting instruction proposed by Huang et al. 419

(2023). We follow the LDP adoptions for intral- 420

lingual tasks with (LDP+U or F̂sum) and without 421

(LDP or Fsum) unlabeled data, as described in 422

Section 3.3. We conduct evaluation on the XL- 423

Sum benchmark (Narayan et al., 2018) in both 424

high-resource (Es-Spanish, Id-Indonesian) and low- 425

resource (Sw, So-Somali, Mr-Marathi) languages. 426

We evaluate the models with ROUGE-L (Lin, 2004) 427

and GPT-4-EVAL (Liu et al., 2023). GPT-4-EVAL 428

is a GPT-4 based metric that recently scores best 429

in human judgement alignment. We compare our 430

methods with XLT, and basic instruction. As shown 431

in Table 3, our LDP methods outperform standard 432

XLT across all languages by up to 7 ROUGE-L and 433

exceeds basic prompting by large margins. Our 434

methods are also consistently preferred by GPT-4- 435

EVAL with higher ratings. 436

4.4 Zero-shot Question Answering 437

Our method also works well for multilingual com- 438

prehension and world-knowledge question answer- 439

ing with the XQUAD (Artetxe et al., 2019) and no- 440

context TydiQA (Clark et al., 2020) benchmarks 441

respectively. We demonstrate this with ChatGPT- 442

3.5 across Arabic (Ar), Hindi (Hi), Thai (Th), Ben- 443

gali (Bn), Finnish (Fi) and Russian (Ru). We select 444

supervised exemplars from En, Vi, and Zh as LDP 445
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Task Instruct NatQA
Vi Id Vi Id Vi Id

ChatGPT (3.5) 7.47 7.85 9.42 9.80 9.05 9.45
LLama2-13B
-Chat 6.45 5.45 6.15 7.67 4.95 5.65
-Base w/ LDP 3.87 2.61 4.65 7.05 4.80 6.10
-Chat w/ LDP 3.83 6.54 8.57 8.72 4.94 6.85

Table 5: GPT-4 rated LLM-as-a-judge scores (Zheng
et al., 2023) of different models and prompting strategies
for task-solving (Task), instruction-following (Instruct)
and natural question answering (NatQA) categories in
the Sea-bench set (Nguyen et al., 2023) for Vi and Id.

pairs for XQUAD and similarly exemplars from En,446

Id, Ko-Korean for TydiQA. As shown in Table 4,447

our method improves zero-shot and rivals 3-shot448

supervised prompting across various low-resource449

languages.450

4.5 General Instruction Following451

Beyond traditional NLP tasks, we also show that452

our LDP prompts can elicit chatbot-style instruc-453

tion following abilities in base pre-trained model454

without any supervised fine-tuning, and improve455

English-tuned models. Specifically, we utilize Sea-456

bench (Nguyen et al., 2023) - a set of categorized457

instructions in multiple languages, designed to eval-458

uate models with LLM-as-a-judge recipe (Zheng459

et al., 2023). We measure GPT-4 rated scores of460

LLama2-13B base and chat models (Touvron et al.,461

2023b), using 4 random instructions from En, Zh,462

Fr, Ru as LDP prompts. As shown in Table 5, our463

method can invoke relatively good instruction fol-464

lowing capability in Vi and Id even with a base465

model. With Llama2-chat, which has undergone466

supervised finetuning, our method can further im-467

prove the performance in various benchmarks for468

certain under-represented languages.469

4.6 Ablation Study470

In this section, we conduct various analyses in the471

unsupervised translation tasks to provide a deeper472

understanding of our LDP method and the impor-473

tance of each component, while presenting more474

experiments in the Appendix.475

Generating the Right Language. Figure 3a re-476

veals one reason the models struggle to translate477

En→X when using LDP prompts Fmt (without478

intra-lingual BT data) is that the target-side distri-479

bution contains multiple languages, and the mod-480

els struggle to recognize unfamiliar language tags,481

(a) LDP without back-translation Fmt
En→X .

(b) LDP with back-translation Fmtbt
En→X .

Figure 3: Probabilities of whether the BLOOM model
generates the right language for En→X task using LDP
without (3a) and with (3b) intra-lingual BT prompts.
Columns indicate the languages the model generates
into while rows are the languages it is supposed to gen-
erate. ## are other languages.

such as Marathi (Mr), and often generate wrong 482

translations in the wrong languages (e.g., Hindi 483

instead of Marathi). Meanwhile, supplying syn- 484

thetic intra-lingual prompts where the target-side 485

is consistently in the intended language, as shown 486

in Figure 3b with Fmtbt, is more important in get- 487

ting the models to recognize language rather than 488

the language tag. In fact, we found that remov- 489

ing the language tag entirely can help improve the 490

performance slightly. 491

Impact of Native Language Tag. The rea- 492

son why we need unlabeled text to create 493

intra-lingual prompts for En→X direction is 494

because the models fail to recognize the correct 495

language from the English language tags. A 496

convenient way to eliminate such unlabeled 497

text is to replace English-tag prompts (e.g., 498

“Spanish:[es-text]\nChinese:[zh-text]”) 499

with native language tags for the target language 500

(e.g., “Española:[es-text]\n中文:[zh-text]”). 501

Such native tags serve as examples of how the in- 502

tended language looks like. As shown in Table 6a, 503

using LDP with native language tags without using 504

any unlabeled text or intra-lingual back-translation 505

(BT) prompts improves the performance of 506

En→X tasks significantly, compared to using 507

English tags. This method even approaches the 508

performance of 8-shot supervised prompting and 509

LDP with unlabeled BT prompts. Combining it 510

with back-translation data (Native-tag + BT) even 511
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BLOOM Ind-En En-Ind
Unsupervised LDP
En-tag 46.96 22.53
En-tag + BT 47.43 34.41
Native-tag 46.90 29.80
Native-tag + BT 47.52 35.22
No-tag 46.81 –
No-tag + BT 47.62 34.54

(a) Different language tags (chrF++).

BLOOM Indic10-En En-Indic10
Supervised 46.32 32.44
Unsupervised LDP with Z =
Ar,Zh,Vi,Fr (default) 45.53 17.65
Hi,Hi,Hi,Hi (Hindi) 43.27 15.34
Ta,Bn,Hi (Indic) 45.51 16.25
Fr,Es,Pt (European) 45.31 18.98
Vi,Vi,Vi,Vi 44.91 12.94
Zh,Zh,Zh,Zh 44.71 15.78
Ar,Fr,Es,Pt,Vi,Zh,Id 45.50 16.88

(b) Choices of LDP languages (chrF++).

Table 6: (6a): Impact of English tag, native language
tags and no language tag for in-context prompts in In-
dic languages. (6b): Impact of different choices of
LDP languages on X→En directions using LDP with-
out back-translation (Fmt) across 10 Indic languages
excluding Ta, Bn and Hi (Indic10). Note that we use
supervised exemplars in Table 6b for analysis purpose.

helps it outperform supervised prompting. In fact,512

the English tag may confuse the model to an extent513

that not using the language tag at all (e.g.,using514

“Input:[input]\nOutput:[output]”) does not515

hurt the performances.516

Choice of LDP languages. Another necessary517

question to ask is which high-resource languages518

should be selected as LDP exemplars. Table 6b ex-519

amines which LDP language choice is optimal. As520

shown, for 10 Indic low-resource languages, choos-521

ing a single related language (Hindi), which is often522

called cross-lingual prompting (Zhang et al., 2023;523

Zhu et al., 2023), can be disastrous as the model524

tends to translate the prompt language rather than525

the test language. Choosing a single but distant lan-526

guage, like Vi, yields better results, while choosing527

a wide variety of languages across different regions528

(e.g., Ar,Zh,Vi,Fr) may be the optimal choice.529

Comparison with Unsupervised MT. We also530

compare our method against the specialized unsu-531

pervised MT model CRISS (Tran et al., 2020) on el-532

igible languages (Gu, Ne, Hi). As shown in Table 7, 533

unsupervised LDP prompting with BLOOM sig- 534

nificantly outperforms CRISS across all languages, 535

thanks to its larger size and strong English abilities. 536

Gu-En Ne-En Hi-En
→ ← → ← → ←

CRISS 41.88 32.41 37.64 28.17 51.23 42.29
BLOOM Prompting
Supervised 51.63 38.23 47.07 35.91 55.18 44.94
LDP 50.09 37.63 48.26 35.76 55.71 45.36

Table 7: Comparison in chrF++ between unsuper-
vised LDP prompting and specialized unsupervised MT
CRISS (Tran et al., 2020)

3e7 5e7 1e8 2e8 5e8 1e9 2e9
0

5

10

ch
rF

++

Ind→En

En→Ind

Figure 4: Gains achieved by fine-tuning BLOOM-7B
w.r.t numbers of trainable parameters.

Fine-tuning Trainable Parameters. Figure 4 an- 537

alyzes how LoRA-fine-tuned BLOOM-7B models 538

(Hu et al., 2021) perform in X→En and En→X 539

Indic translation tasks as we increase the trainable 540

parameters from 30M to 2B (full query-key-value 541

weights). As shown, gain margins for X→En are 542

relatively low within 1 chrF++ as we fine-tune more 543

parameters. Meanwhile, we observe a substantial 544

gain of 8.7 chrF++ for En→X task, suggesting 545

that learning to generate an unfamiliar language 546

needs much more parameters, rendering parameter- 547

efficient methods, like LoRA, ineffective. 548

5 Conclusion 549

We introduce linguistically-diverse prompting 550

(LDP), which is designed to use synthetic high- 551

quality in-context exemplars from high-resource 552

languages to prompt LLMs to perform generative 553

tasks in low-resource languages. Our unsupervised 554

approach achieves on par with supervised few-shot 555

prompting in English to and from 34 Indic and 556

African translation tasks, even outperforming in 557

non-English-centric directions. Our method also 558

outperforms other English-pivoting techniques in 559

zero-shot multilingual summarization, question an- 560

swering and instruction following. 561
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6 Limitations and Ethical Impact562

Our linguistically-diverse prompting method563

comes with a few limitations that should be con-564

sidered when used. First, it is a way to invoke565

and improve LLM’s abilities in low-resource lan-566

guages, and not necessarily boosting low-resource567

knowledge beyond the data the model was trained.568

Second, the presence of texts in the target low-569

resource languages are often needed in the context570

for the method to work effectively, thus it does571

not entirely eliminate the need for unlabeled data572

in such languages at inference times. Third, like573

many methods with LLMs, hallucinations may oc-574

cur with our LDP prompting method.575

Regarding ethical impact, we do not foresee any576

potential ethical issues with our proposed method.577
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A Example Appendix 888

A.1 Low-resource Language Details 889

Table 8 lists the details of each low-resource lan- 890

guage in the ROOTS corpus (Laurençon et al., 891

2022) that we mainly evaluate with the BLOOM 892

model (Scao et al., 2022). Regarding test sets, we 893

primarily choose from the ML50 benchmark (Tang 894
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et al., 2020), which collected test data from vari-895

ous sources, such as WMT (Barrault et al., 2020)896

and FLoRes (Guzmán et al., 2019; Goyal et al.,897

2022). For languages absent in ML50, we choose898

the NLLB-devtest sets (Costa-jussà et al., 2022)899

as replacement. For non-English X→Y tasks, we900

choose NLLB-devtest for all our evaluation. To901

limit the API call costs within our budget, we ran-902

domly the same 200 samples from each test set for903

evaluation.904

A.2 Experiment Details905

Few-shot data sources. For supervised prompt-906

ing, we collect randomly parallel pairs from the907

respective valid set for each language. For unla-908

beled data for our LDP method, we collect and909

filter data from various sources, as specified in910

Unlabeled column of Table 8. Specifically, the911

primary unlabeled source is the CC100 corpus912

(Wenzek et al., 2020; Conneau et al., 2020). For913

those absent in CC100, we collect data from other914

sources, such as the ROOTS corpus (Laurençon915

et al., 2022), MMTAfrica (Emezue and Dossou,916

2021) and MAFAND (Adelani et al., 2022). For917

the remaining languages where we could not find918

in research repositories, we crawled from several919

religious and news websites (OUR). The sizes of920

collected unlabeled texts vary greatly, ranging from921

a few millions lines for Hindi to less than 1000 lines922

for Bambara, thus presenting a challenge for data923

balancing. For LDP non-English high-resource ex-924

emplars, we randomly collect a single high-quality925

sentence of similar lengths from the CC100 cor-926

pus for each language and use the unsupervised927

CRISS model (Tran et al., 2020) to translate them928

into English.929

Unlabeled data filtering To ensure high-quality930

native texts for unsupervised LDP prompting as931

well as larger-scale synthetic data creation for fine-932

tuning, we filter unlabeled texts such that they933

(i) are within 20 to 200 character lengths, (ii) do934

not contain non-conversational artifacts like URLs,935

brackets, bullet points or excessive numbers, and936

(iii) do not contain more than 20% alphabetical937

characters for Indic and non-latin characters for938

African languages. For fine-tuning, we use an up-939

scaling temperature of 25 to smoothen the data940

mixture imbalance.941

Other Details. We evaluate translation tasks with942

chrF++ (Popović, 2015) and SacreBLEU (Post,943

2018). For SacreBLEU, we use the default to- 944

kenizer for Latin-based languages, while follow 945

Guzmán et al. (2019); Goyal et al. (2022) to use 946

indic_nlp_library for Indic language tokenization. 947

For each of the 68 language pairs, we sample ran- 948

domly and evaluate the same 200 sentences from 949

each test set with the same zero seed to limit the 950

cost of API calls2. We conduct full-set evalua- 951

tions for 4 random languages in each group and 952

observe < 1 chrF++ standard deviation from our 953

200-sample evaluations. 954

Low-resource ↔ En translation. Table 10 955

presents the full results with chrF++ and Sacre- 956

BLEU (BLEU) scores for unsupervised translation 957

tasks between English and 13 Indic (Ind) and 21 958

African (Afr) low-resource languages present in 959

the ROOTS corpus. 960

A.3 Additional Experiments 961

Breakdown of X→En. Similar to the observa- 962

tion for En→X in the main paper, Figure 6 shows 963

that LDP performs generally on par with super- 964

vised prompting equally across all languages, and 965

that it does not unevenly perform much worse or 966

better in any particular language. 967

High-resource Translation with Llama 968

LLaMA (Touvron et al., 2023a) is another 969

open-sourced LLM that only supports 20 European 970

high-resource languages. We evaluate LLaMA 971

in translation tasks between English and the 972

remaining 19 languages, which include Hungarian, 973

Danish and Catalan. Specifically, we use CRISS 974

to generate synthetic LDP exemplars from De, 975

Es and Fr, which we then use to prompt LLaMA 976

to translate from and to such languages. As 977

reported in Table 9, we observe similar trends 978

where our LDP method performs competitively 979

with supervised prompting. The overall scores for 980

such languages are also much higher than those 981

of non-Latin languages because LLaMA was also 982

pre-trained with bitexts, though without explicit 983

alignments. 984

BLOOM vs. InstructGPT. While much evi- 985

dence show that InstructGPT text-davinci-003 is 986

more superior than the vanilla BLOOM (Scao et al., 987

2022; Ouyang et al., 2022) in many languages, our 988

experiments with low-resource languages demon- 989

strate it is not always true for low-resource non- 990

Latin languages, as shown in the main paper. Fig- 991

2bigscience/bloom, openai.com.
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Indic African
Name Code Test Unlabeled Name Code Test set Unlabeled
Assamese as NLLB CC100 Tumbuka –/tum NLLB OUR
Oriya or NLLB ROOTS Kikuyu ki/kik NLLB OUR
Gujarati gu ML50 CC100 Bambara bm/bam NLLB MAFAND
Marathi mr ML50 CC100 Akan ak/aka NLLB OUR
Panjabi pa NLLB CC100 Tsonga ts/tso NLLB MMTAfrica
Kannada kn NLLB CC100 Southern Sotho st/sot NLLB OUR
Nepali ne ML50 CC100 Chewa ny/nya NLLB MMTAfrica
Telugu te ML50 CC100 Tswana tn/tsn NLLB MMTAfrica
Malayalam ml ML50 CC100 Lingala ln/lin NLLB MMTAfrica
Urdu ur NLLB CC100 Northern Sotho –/nso NLLB MMTAfrica
Tamil ta ML50 CC100 Fon –/fon NLLB MAFAND
Bengali bn NLLB CC100 Rundi rn/run NLLB OUR
Hindi hi ML50 CC100 Wolof wo/wol NLLB CC100

CC100 Luganda lg/lug NLLB CC100
CC100 Shona sn/sna NLLB CC100
CC100 Zulu zu/zul NLLB CC100
CC100 Igbo ig/ibo NLLB CC100
CC100 Xhosa xh/xho NLLB CC100
CC100 Kinyarwanda rw/kin NLLB MMTAfrica
CC100 Yoruba yo/yor NLLB CC100
CC100 Swahili sw/swa NLLB CC100

Table 8: Low-resource language details and corresponding test sets and unlabeled data sources for X↔En translation
tasks.
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100
African Indic

Figure 5: Low-resource language coverage % of the ROOTS corpus (Laurençon et al., 2022) used to train BLOOM.
The highest-resource language for Indic and African are Hindi and Swahili. Hindi accounts for 0.7% and the rarest
language, Tumbuka, takes up only 2e−5% of the corpus.

LLaMA-30B X→En En→X

chrF++ BLEU chrF++ BLEU
Supervised 61.80 39.51 53.65 28.98
Unsupervised-LDP 61.75 38.83 54.00 29.58

Table 9: Comparison between supervised and
unsupervised-LDP prompting with LLaMA-30B model
in translation tasks between English (En) and 19 Euro-
pean languages (X). LDP prompts consist of exemplars
from high-resource languages seen by CRISS.

ure 8 explains clearly the reason is that GPT’s992

tokenizer is not designed to allocate meaningful993

sub-word tokens for non-Latin texts, such as In-994

dic lexical items, while significantly favors Latin995

characters due to the sheer size of Latin texts in its996

pre-training data. For example of InstructGPT, a 997

10-token English text can be equivalent to a 160- 998

token Tamil text but only a 28-token Tumbuka text, 999

despite Tumbuka is much more low-resource. This 1000

issue is non-existent in BLOOM, as the ratios nat- 1001

urally decrease when data coverages increase. As 1002

shown in the table, InstructGPT becomes worse 1003

than BLOOM as soon as the ratio between token 1004

lengths of target language over English surpass 5 1005

in Indic languages. We refer to this as sub-word 1006

token fragmentation, where texts are broken into 1007

very long byte-level tokens that exceed the context 1008

length and suppress performances. 1009
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Ind-En En-Ind Afr-En En-Afr

chrF++ BLEU chrF++ BLEU chrF++ BLEU chrF++ BLEU
Foundation BLOOM-175B
Supervised-8-shot 47.31 22.32 34.66 9.02 28.64 8.35 14.93 2.00
Unsupervised-LDP 47.62 22.38 34.54 8.88 28.72 8.71 14.57 1.89
Foundation BLOOM-7B
Supervised-8-shot 39.86 14.77 24.02 4.42 21.51 4.33 11.27 0.59
Unsupervised-LDP 39.88 14.96 24.41 4.52 20.47 3.65 12.04 0.62
Fine-tune QKV (2B params) 42.19 17.13 32.72 8.33 21.14 5.15 15.73 2.13
Supervised RLHF InstructGPT (text-davinci-003)
Zero-shot with instruction 35.37 11.48 20.71 3.88 27.10 8.04 15.45 1.13
Supervised-6-shot 37.07 13.13 24.74 5.21 31.51 10.88 19.22 2.66
Unsupervised-LDP 38.45 14.22 25.17 5.06 31.92 11.12 19.51 2.61
Supervised upperbound
NLLB-200 distilled 61.00 37.24 46.77 18.78 48.42 26.92 39.18 12.95

Table 10: Averaged performances of different prompting techniques across various model sizes and types, namely
BLOOM (Scao et al., 2022) and InstructGPT text-davinci-003 (Brown et al., 2020; Ouyang et al., 2022), in
translation tasks between English (En) and 13 Indic (Ind) and 21 African (Afr) low-resource languages present in
the ROOTS corpus (Laurençon et al., 2022).
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Figure 6: chrF++ scores for translation from each Indic and African language in the ROOTS corpus to English
(X→En), using BLOOM. The right y-axis indicates corresponding pre-training coverage of each language at log
scale.
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Figure 7: chrF++ scores for translation from English to each Indic and African language in the ROOTS corpus
(En→X), using BLOOM. The right y-axis indicates corresponding pre-training coverage of each language at log
scale.
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Figure 8: Tokenization issue. Left y-axis bar chart: The average ratios between the token lengths of X-language
text over their English counterparts of the same meaning. Right y-axis line chart: chrF++ performance difference
between GPT text-davinci-003 and BLOOM for En→X tasks, meaning < 0 indicates GPT is worse than BLOOM.
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