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Abstract

Modern large language models (LLMs) excel at objective
tasks such as evaluating mathematical reasoning and factual
accuracy, yet they falter when faced with the nuanced, sub-
jective nature of assessing creativity. In this work, we pro-
pose a novel curiosity-driven LLM-as-a-judge for evaluating
creative writing which is personlized to each individual’s cre-
ative judgments. We use the Torrance Test of Creative Think-
ing(TTCW) benchmark introduced in [Chakrabarty et al.
2024], which has stories annotated by expert humans across
various subjective dimensions like Originality, to test our hy-
pothesis. We show that our method enables models across
various sizes, to learn the nuanced creative judgments of dif-
ferent individuals, by showing improvements over baseline
supervised finetuning(SFT) method across various evalua-
tion metrics like Pearson correlation, Cohen’s κ and F1 val-
ues. Our method is especially useful in subjective evaluations
where not all the annotators agree with each other.

Introduction
Rigorous, standardized evaluation has repeatedly catalyzed
progress in machine learning, from ImageNet[Russakovsky
et al. 2015] and GLUE[Wang et al. 2019], driving leaps in
the fields of computer vision and Natural Language Pro-
cessing, respectively. The same effect is evident in objec-
tive math reasoning, where benchmarks like GSM8K[Cobbe
et al. 2021], together with RL-trained reasoning models
such as OpenAI’s o1[OpenAI et al. 2024] and DeepSeek-
R1[DeepSeek-AI et al. 2025] have obtained strong results
on hard contests like AIME and IMO.

While robust evaluation metrics exist for objective tasks
such as mathematical reasoning and factual verification, sub-
jective tasks like creativity remain difficult to assess reliably.
There are many previous works [Panickssery, Bowman, and
Feng 2024a, Wataoka, Takahashi, and Ri 2025] which show
that using Large Language Models(LLM) as a judge prefer
their own generations making them unreliable. Despite the
success of LLMs on objective benchmarks, they still strug-
gle to evaluate creativity in a manner aligned with human
judgment. As shown in [Chakrabarty et al. 2024] and Table
12 and Table 2, even state-of-the-art models fall short in con-
sistently evaluating the subjective dimensions of the story as
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well as a human expert. This can be attributed to the fact
that individual preferences shape creativity and rarely align
uniformly across people.

To address this gap, we present an enhanced LLM-as-a-
judge that not only learns from a diverse pool of annotations
but also adapts its scoring to align with individual annota-
tors or experts. This allows for more faithful and preference-
aware evaluation of creativity. We emphasize personaliza-
tion in our framework because the task of assessing subjec-
tive criteria is inherently variable across individuals. To this
end, we propose a curiosity-driven LLM-as-a-judge for eval-
uating creativity in text generation, drawing inspiration from
the curiosity-based Reinforcement Learning (RL) frame-
work of [Pathak et al. 2017]. However, unlike the RL setting
in [Pathak et al. 2017], we reinterpret curiosity as an belief-
shift signal for creative evaluation. Specifically, when the
model is “surprised” by an expert’s explanation, it signals
a mismatch between the LLM’s prior belief and the expert’s
preference; conversely, low surprise indicates alignment be-
tween the LLM and the expert (see Fig 5. To implement this,
we first train an Intrinsic Curiosity Model (ICM) that mea-
sures the LLM’s surprise at a given explanation while si-
multaneously predicting which expert or annotator produced
the explanation. The intuition behind predicting the annota-
tor is that the model can learn which annotator caused the
belief shift, allowing it to calibrate the curiosity signal for
each annotator individually, thereby improving personaliza-
tion. The resulting curiosity score is then fed as an auxiliary,
self-supervised signal to improve a supervised fine-tuning
(SFT) model (see Fig 1).

In our experiments, we establish a baseline using an SFT
model that predicts annotators’ binary judgments from the
story and question (see Fig 3a). To evaluate the effect of cu-
riosity, we enhance this baseline with an ICM-derived cu-
riosity score. More concretely we append the curiosity score
to story and question in the baseline model. This helps us do
a fair comparison on effect of curiosity signal on the final
judgment and thereby measure the lift in performance our
methodology provides over the baseline.

We conduct extensive experiments across various model
sizes to ensure our method scales well with model size.
Since the TTCW dataset size is extremely small, we do a
5-fold cross validation in order to ensure that our results are
statistically significant. We also test our method in out-of-



Figure 1: Overview of Architecture during training for
Curiosity-Driven LLM-as-a-judge

Figure 2: Overview of Architecture during inference for Cu-
riosity Driven LLM-as-a-judge

distribution scenarios to ensure that our method generalizes
well. Averaged across model sizes, ICM significantly im-
proves Pearson correlation and F1 scores. More details about
the results can be found in Fig 4.

Methodology
In this section, we describe our curiosity-driven LLM-as-
a-judge for evaluating creativity in text generation, which
combines belief shift estimation with expert attribution. Our
method leverages the TTCW dataset [Chakrabarty et al.
2024], which is based on the Torrance Test of Creative
Thinking [Torrance 1966] but adapted for LLMs. We focus
on a subset of five creativity dimensions particularly relevant
for evaluating the creative judgments of generative language
models. We detail the dataset structure, model architecture,
loss functions, and the formulation of our curiosity signal.

Dataset
The TTCW dataset1 provides expert human-annotated cre-
ativity judgments across 14 distinct dimensions. All the dis-
tinct dimensions in the TTCW dataset are mentioned in Ap-
pendix . For this study, we focus on five dimensions, 3 of
which are categorised under Originality and 2 under flex-
ibility: Originality in Thought, Originality in Form, Origi-
nality in Theme and Content, Structural Flexibility, and Per-

1Huggingface TTCW dataset

(a) Baseline without using ex-
planations

(b) Baseline using explanations

Figure 3: Comparison of baselines with and without using
explanations.

spective and Voice Flexibility. Our analysis is restricted to
these five dimensions, encompassing all dimensions under
Originality and two representative dimensions from Flexi-
bility. We picked these 5 dimensions among the 14(Table 4)
as these are more subjective in nature and hence the most
ideal to evaluate our methodology. We defer exploration of
the remaining dimensions to future work. Questions associ-
ated with each dimension can be found in appendix 6.

Data Format and Task Setup
Each example in the dataset consists of a story S, a
creativity-focused question Qd specific to dimension d, an
expert ID zi where i ∈ {1, 2, 3} for each annotation by an
expert, three expert-provided explanations E = {e1, e2, e3},
and corresponding binary verdicts Vi ∈ {yes,no} for each
explanation.

The task is to improve the model’s performance on pro-
ducing judgments similar to that of a particular expert when
the model is presented with the story and the creative ques-
tion

Intrinsic Curiosity Model Overview
Our model operates in two stages:

1. Belief Shift Estimation (Forward Score): The model
measures the impact of an expert explanation on their
prediction of creativity.

2. Expert Attribution (Backward Score): The model
identifies which expert wrote a given explanation.

Forward Score: Belief Shift via Cosine Loss We define
two states:

• State A: Input consisting of the story and question
and one-hot vector of the expert ID zi represented as
(S,Qd, onehot(zi)) where i ∈ {1, 2, 3} as each story-
question pair is annotated by 3 experts.

• State B: Input augmented with one expert explanation
(S,Qd, ei) where i ∈ {1, 2, 3}.

https://huggingface.co/datasets/Salesforce/ttcw_creativity_eval


Let f
(A)
θ = fθ(S,Qd, onehot(zi)) and f

(B)
θ =

fθ(S,Qd, ei), where fθ denote the judge’s scoring function
(logit head) with parameters θ that maps the input to a scalar
judgment logit.

The forward loss is defined as the cosine loss between
these two predictions:

Lforward = 1−
f
(A)
θ · f (B)

θ

∥f (A)
θ ∥∥f (B)

θ ∥

This loss captures how much the model’s belief about cre-
ativity of the story shifts when it incorporates the explana-
tion by the annotator, which we define as the intrinsic cu-
riosity measure.

Backward Score: Expert Attribution via Cross-Entropy
To help the model to understand the distinct reasoning styles
of different experts, we introduce an auxiliary classification
task. Given (S,Qd, ei), the model predicts the identity of the
expert zi ∈ {1, 2, 3} who authored explanation ei:

pϕ(zi | S,Qd, ei) = softmax(gϕ(S,Qd, ei))

The backward loss is the cross-entropy between the pre-
dicted and true expert label:

Lbackward = − log pϕ(zi | S,Qd, ei)

Loss function of Intrinsic curiosity model(ICM) We de-
fine the ICM model’s loss as a weighted combination of the
forward and backward components:

Lcuriosity = Lforward + λ · Lbackward

where λ is a tunable hyperparameter that balances the two
objectives. In our experiments we set λ as 1.

Incorporating the Curiosity Signal to SFT To evaluate
the utility of the learned curiosity signal, we use it as a
conditioning input to a supervised fine-tuning (SFT) model
trained to predict expert verdicts. For each instance, we ap-
pend the scalar curiosity score to the original input using a
special delimiter token <CREAT>, resulting in the following
input format:

Input: Qd + S + <CREAT>

+ CuriosityScore −→ Target: Vi (1)

Curiosityscore = fθ
(
S, Qd, ei

)
− fθ

(
S, Qd, onehot(expert_idx)

)
(2)

Vi ∈ {yes,no} is the binary verdict associated with ex-
planation ei. The model uses the CuriosityScore as a signal
to predict the verdict of the given annotator. We use cross-
entropy loss for training this classifier model

Inference
During inference(see Fig 2), the story and creativity-focused
questions are first passed through the intrinsic curiosity
model (ICM) to compute a curiosity score. This score re-
flects the model’s internal belief shift in response to the in-
put for that particular annotator. The resulting curiosity score
is then appended to the original input, using a special de-
limiter token <CREAT>—and passed to the SFT classifier
model. This classifier then predicts the binary creativity ver-
dict (yes or no) for the given story-question pair. .

Baseline with explanations
For the baseline comparison , we use a standard SFT model
that produces the explanation and binary verdict given the
input(see fig. 3b). The model input is structured as:

Input: Qd + S + zi −→ Target:{Vi, ei}

At inference time, we provide Qd, S, and zi as input, and
the model outputs a JSON structure, from which the pre-
dicted verdict is parsed and compared to the ground truth.
This baseline is trained using language modeling loss.

Baseline without explanations
We ensure to compare our method against the baseline SFT
in a classification setting rather than a causal language model
setting to ensure fairness in comparison(see fig. 3a). Since
we set up the baseline SFT in a classification setting, we
do not include the explanations as neither part of the input
or the output of the classification task. In this classification
setting we use the question and the story as part of input and
the verdict as part of the output.

Input: Qd + S + zi −→ Target:{Vi}

Evaluation
Evaluating subjective tasks like creativity presents unique
challenges, as even human annotators often disagree on what
constitutes a "correct" judgment. Rather than attempting to
define a universal metric for creativity, our approach em-
braces this subjectivity by focusing on personalization. We
aim to adapt evaluation signals to individual experts by
learning from a small number of their labeled examples.
This allows us to model subjective preferences more faith-
fully and use this personalized model to assess creativity in
a user-aligned manner. To quantify model performance in
capturing individual judgments, we report Pearson Corre-
lation [Benesty et al. 2009] and Cohen’s κ [Cohen 1960],
along with Precision, Recall, and F1-score. These metrics
enable us to assess both the predictive accuracy and ranking
consistency of our models in aligning with subjective human
evaluations.

Theory: Why Curiosity Beats Using
Explanation Text Directly

Let e denote the expert’s explanation, x = Qd + S,
sbase(x) = fθ

(
S, Qd, onehot(zi)

)
the pre-explanation



logit, and sexpl(x, ei) = fθ
(
S, Qd, ei

)
the post-explanation

logit produced by the model when conditioned on e. The
CuriosityScore is defined as the belief shift.

Curiosityscore = fθ
(
S, Qd, ei

)
− fθ

(
S, Qd, onehot(zi)

)
,

and discard e thereafter. We train a predictor p̂θ(V=1 |
x,Curiosityscore) = σ

(
hθ(x,Curiosityscore)

)
where V is the

verdict, h is the LLM judge model and σ represents softmax.
This yields three advantages grounded in standard theory.

(1) Weight-of-evidence sufficiency. In logit/Bayesian up-
dates, additional information acts additively on log-odds via
a log-likelihood ratio (weight of evidence) [Agresti 2013]:

log
Pr(V = 1 | x, ei)
Pr(V = 0 | x, ei)

= log
Pr(V = 1 | x)
Pr(V = 0 | x)

+ log
p(e | V = 1, x)

p(e | V = 0, x)︸ ︷︷ ︸
weight of evidence

(3)

In our methodology, CuriosityScore = sexpl − sbase is an
empirical estimate of this increment on the log-odds scale,
so it preserves the decision-relevant effect of e while re-
moving lexical/style nuisance. Consequently, conditioning
on CuriosityScore approximates the theoretically “right” suf-
ficient update in a logistic decision rule [Agresti 2013].

(2) Variance reduction via a control-variate effect. Let
Z be the random quantity we wish to estimate more stably
(e.g., per-example loss), and let C = CuriosityScore be the
control signal. With Pearson correlation

ρ = Corr(Z,C) =
Cov(Z,C)√
Var(Z)Var(C)

∈ [−1, 1],

the classic control-variate construction implies that the opti-
mally adjusted estimator Z⋆ = Z−α⋆(C−E[C]) achieves

Var(Z⋆) = Var(Z)
(
1− ρ2

)
at α⋆ =

Cov(Z,C)

Var(C)
.

Thus any nonzero correlation with c strictly reduces vari-
ance [Owen 2013, Ch. 8]. Here, Z = ℓi(θ) (per-example
cross-entropy loss) to reduce risk variance. Lower variance
improves sample efficiency and stabilizes training.

(3)Curiosity as a Model of Annotator Behaviour and
Generalization Subjective labels reflect both item diffi-
culty and rater idiosyncrasy. A classic way to formalize this
is a random–effects logit [Dawid and Skene 1979, Agresti
2013]:

logit Pr(V=1 | x, zi) = f(x) + bzi(x), (4)

where f(x) captures item evidence and ba(x) represents the
(possibly context-dependent) strictness/leniency of annota-
tor a. Since the curiosity score is able to model the an-
notator behaviour without considering the idiosyncrasies of
the explanation text, it is able to better generalize to out-of-
distribution dimensions for that annotator.

Table 1: ICM method results against the SFT baseline with
explanations

Model Exp. LoRA α/R Pearson Cohen’s κ F1 Precision Recall

Qwen0.5B SFT 256/256 0.170 ±0.049 0.155 ±0.046 0.382 ±0.049 0.452 ±0.059 0.334 ±0.060

ICM 32/16 0.524 ±0.092 0.383 ±0.076 0.616 ±0.048 0.494 ±0.046 0.818 ±0.067

Qwen1.5B SFT 256/256 0.170 ±0.048 0.155 ±0.048 0.402 ±0.049 0.432 ±0.020 0.383 ±0.083

ICM 32/16 0.587 ±0.061 0.406 ±0.065 0.629 ±0.045 0.506 ±0.045 0.836 ±0.056

Qwen3B SFT 256/256 0.113 ±0.083 0.110 ±0.081 0.339 ±0.051 0.401 ±0.067 0.298 ±0.060

ICM 32/16 0.540 ±0.057 0.356 ±0.081 0.598 ±0.054 0.481 ±0.050 0.794 ±0.070

Qwen7B SFT 128/128 0.160 ±0.050 0.168 ±0.085 0.371 ±0.021 0.443 ±0.050 0.324 ±0.038

ICM 32/16 0.605 ±0.083 0.429 ±0.082 0.643 ±0.053 0.518 ±0.051 0.850 ±0.072

(a) ID Pearson (b) ID F1

(c) OOD Pearson (d) OOD F1

Figure 4: Three-way comparison across model sizes for
ICM (ours), SFT baseline (classification, no explana-
tions), and SFT baseline (with explanations). Panels
show Pearson and F1 for in-distribution (top) and out-of-
distribution (bottom). For exact results of the ID and OOD
experiments of baseline without explanation(classification),
refer to Table 13 and Table 14

Experiments
We evaluate our Intrinsic Curiosity Modeling (ICM) ap-
proach against a supervised fine-tuning (SFT) baseline (see
Section ) across multiple model sizes. For a fair comparison
in terms of identical input and outputs, we compare the ICM
setup against SFT baseline with explanations. We also com-
pare the ICM setup against FT baseline without explanations
in order to ensure the same classification loss is used.

Dataset TTCW contains 48 stories annotated on 5 dimen-
sions with three expert judgments per story–dimension pair,
yielding 720 examples. We use 5-fold cross-validation with
an 80/20 split, giving approximately 576 training and 144
test items per fold. Because individual folds are small, we
report means across folds for all metrics (Table 1; see also
Section ). Splits are stratified to preserve the positive/nega-
tive label ratio.

Training setup. The baseline with explanations uses
a causal language modeling objective and our ICM
model uses a classification objective. We align shared
hyperparameters—learning rate, LoRA [Hu et al. 2022]
rank, and batch size—wherever applicable to ensure compa-



Table 2: Comparison of ICM method against GPT-5 one-
shot

Model Exp. Pearson F1 Precision Recall

Qwen0.5B ICM 0.524 ±0.092 0.616 ±0.048 0.494 ±0.046 0.818 ±0.067

Qwen1.5B ICM 0.587 ±0.061 0.629 ±0.045 0.506 ±0.045 0.836 ±0.056

Qwen3B ICM 0.540 ±0.057 0.598 ±0.054 0.481 ±0.050 0.794 ±0.070

Qwen7B ICM 0.605 ±0.083 0.643 ±0.053 0.518 ±0.051 0.850 ±0.072

GPT-5 ICM 0.2409 ±0.1379 0.3467 ±0.1592 0.5698 ±0.2305 0.2608 ±0.1378

rability. The ICM combined loss uses λ = 1. All fine-tuning
(ICM and SFT baselines) uses LoRA; full details are in Ta-
ble 5. For the baseline without explanations, which also uses
a classification loss, we match all of the ICM hyperparame-
ters.

Compute and precision. All runs use a single NVIDIA
A100 (80 GB) GPU. Mixed precision with bfloat16 is en-
abled when supported. When base models are loaded with
8-bit quantization, matrix multiplies in bitsandbytes execute
in FP16 while LoRA heads operate in bfloat16.

Convergence and reproducibility. We train to loss con-
vergence in all runs and fix random seeds for data splits and
initialization. Hyperparameters and implementation details
appear in Table 5.

Analysis
Effect of model scale
From Fig 4 we can see that our ICM method improves across
model sizes whereas the baseline classification method with
no explanation degrades with increase in model size for both
ID and OOD settings. The reason why the baseline classi-
fication method with no explanation maybe degrading with
scale is because this method primarily overfits on the small
dataset with larger model sizes. Although the baseline with
explanation improves with increase in model size, it remains
uniformly low compared to the ICM method.

Generalization
To understand the generalization ability of the baseline and
the ICM models, we use the same setup as earlier but train
the model in both methods on 4 dimensions - Originality in
Form, Originality in Theme and Content, Structural Flexi-
bility, and Perspective and Voice Flexibility, and test these
trained models on the held out dimension of Originality in
Thought. In this way there is absolutely no data leakage
since the dimension the model is tested on was never seen
during the training. From figure 4, we can see that gains of
the ICM method over both the baseline methods are much
more in the OOD settings rather than ID settings. This sug-
gests the generalizability of our method because we are es-
sentially allowing the model to understand the user behavior
before predicting which is much more generalizable as com-
pared to both baseline SFT methods.

Comparison with GPT-5
Table 2 has the results of the ICM setup against GPT-5. We
can see that even Qwen-0.5B model is able to beat GPT-

Table 3: ICM method results against the SFT baseline with
explanations on Out-of-distribution data

Model Experiment LoRA α/Rank Pearson Cohen’s κ F1 Precision Recall

Qwen0.5B SFT 256/256 0.188 0.147 0.316 0.632 0.211
ICM 32/16 0.563 0.458 0.698 0.625 0.790

Qwen1.5B SFT 256/256 0.026 0.023 0.265 0.423 0.193
ICM 32/16 0.655 0.486 0.713 0.639 0.807

Qwen3B SFT 256/256 0.024 0.024 0.369 0.413 0.333
ICM 32/16 0.582 0.403 0.667 0.597 0.754

Qwen7B SFT 128/128 0.245 0.237 0.490 0.585 0.421
ICM 32/16 0.623 0.514 0.729 0.653 0.825

5 model across all evaluation metrics except precision. The
GPT-5 model was prompted with the same story, question
and annotator index along with one shot example(randomly
picked from training set) by the same annotator. GPT-5
model was more biased towards the answer "no" and when-
ever "yes" was predicted, it was almost always wrong. This
further proves the effectiveness of our method.

Conclusion and Future Work
We introduced a curiosity-driven LLM-as-a-judge for eval-
uating creativity in text generation, addressing the limita-
tions of baseline SFT for inherently subjective tasks. Our
approach leverages a two-part curiosity signal, capturing be-
lief shifts via model responses to expert explanations and in-
corporating expert attribution through a backward prediction
task. This signal enhances a SFT setup, leading to stronger
alignment with human judgments across multiple creativity
dimensions in the TTCW dataset. Experiments show that in-
corporating curiosity-based modeling consistently improves
performance across model scales, surpassing standard SFT
baselines in both correlation with human ratings and classi-
fication accuracy. Not only does it scale with model size, it
also improves the performance in out-of-distribution scenar-
ios, where we test the models on one heldout test dimension
by training the models on the other 4 creativity dimension.
Future work includes extending the curiosity-driven LLM-
as-a-judge to other domains like marketing, evaluating nov-
elty of scientific ideas etc,. We also plan to use the curiosity
signal as a reward signal in RL setup to further improve our
current results.

Literature Review
The evaluation of creativity in language models builds upon
decades of work in creativity research, where the Torrance
Tests of Creative Thinking (TTCT) assess fluency, flexi-
bility, originality, and elaboration [Torrance 1966], and the
Consensual Assessment Technique (CAT) uses aggregated
expert judgments, a reliable but labour-intensive process
[Patterson et al. 2024]. The authors of [Chakrabarty et al.
2024] adapted TTCT into the Torrance Tests for Creative
Writing (TTCW), designing fourteen binary tests and en-
listing creative-writing experts to evaluate 48 stories; their
study showed that large language models pass these tests
three to ten times less often than human writers [Chakrabarty
et al. 2024], highlighting a sizable gap in creative compe-
tence. Alternative evaluation paradigms, such as the Leap-



of-Thought (LoT) framework for humorous, associative rea-
soning, argue that step-by-step chain-of-thought prompting
can limit creativity and instead encourage non-sequential
“leaps” [Zhong et al. 2024]. Efforts to automate creativity
scoring (e.g., distributional-semantics proxies for novelty)
often align weakly with expert judgments, reinforcing the
need for human-aligned signals.

Because creativity judgments are subjective, collaps-
ing rater perspectives via majority vote can erase system-
atic, meaningful disagreement. Following work on multi-
annotator modeling, we treat annotators as distributions to
be modeled rather than aggregated away [Mostafazadeh Da-
vani, Díaz, and Prabhakaran 2022], rather than use the clas-
sical aggregation methods that infer a single latent “truth”
[Whitehill et al. 2009, Hovy et al. 2013]. In parallel, re-
cent results caution against naïve LLM-as-judge usage: eval-
uators can recognize and prefer their own generations, in-
troducing self-preference bias [Panickssery, Bowman, and
Feng 2024b]. Calibrated autoraters offer a partial mitiga-
tion via broad multi-task training and bias auditing [Vu
et al. 2024]. These findings motivate rater-aware or human-
anchored evaluation signals for creativity.

Intrinsic-motivation signals from reinforcement learning
offer a principled lens on novelty seeking. Information-gain
and prediction-error formulations—VIME [Houthooft et al.
2017], ICM [Pathak et al. 2017], and Random Network Dis-
tillation [Burda et al. 2018]—are effective for exploration
under sparse extrinsic reward. By analogy, curiosity-style
signals can inform language evaluation by rewarding “useful
novelty” (divergent yet coherent), complementing semantic-
distance and rater-based methods. Our work instantiates this
by modeling belief shifts when a language model incorpo-
rates expert explanations (a prediction-error–like signal) and
combining it with expert attribution, yielding a more inter-
pretable and personalized measure of creativity.
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Appendix
Dimensions in dataset
In Table 4, all the dimensions that are part of the TTCW
dataset are mentioned.

More experiment and compute details
Limitations
Our study has some limitations that we hope to address in
future work. First, the empirical scope is narrow: we evalu-
ate only on TTCW dataset. Our current method is text-only;
extending to richer modalities and subjective tasks beyond
TTCW remains future work. In addition, the dataset is small
(48 stories × 5 dimensions with three expert judgments per
story–dimension, totaling 720 instances). We therefore rely
on 5-fold cross-validation and report means and deviation

Table 4: Dimensions of TTCW dataset

Dimension Facets

Fluency

Understandability & Coherence
Narrative Pacing
Scene vs Exposition
Literary Devices & Language Proficiency
Narrative Ending

Flexibility
Emotional Flexibility
Perspective & Voice Flexibility
Structural Flexibility

Originality
Originality in Form
Originality in Thought
Originality in Theme & Content

Elaboration
World Building & Setting
Character Development
Rhetorical Complexity

Table 5: Core hyperparameters used in all runs.

max_length 4096
lora_dropout 0.1
target_modules ["q_proj","k_pr

oj","v_proj","o
_proj","gate_pr
oj","up_proj","
down_proj"]

lr_scheduler cosine (warmup_ratio
= 0.1)

per_device_train_batch_size 4
gradient_accumulation_steps 8
weight_decay 0.01
max_grad_norm 0.5
num_train_epochs 3
seed 42

across 5 folds. Finally, model coverage is limited to one fam-
ily (Qwen2.5 0.5B–7B), leaving generalization across archi-
tectures untested, which we aim to do in future work.



Question for each dimension

Table 6: Creativity evaluation categories and questions

Category Question
Originality in
Thought

Is the story an original piece of
writing without any cliches?

Originality in Form
and Structure

Does the story show originality in its form
and/or structure?

Originality in Theme
and Content

Will an average reader of this
story obtain a unique and original
idea from reading it?

Perspective and
Voice Flexibility

Does the story provide diverse
perspectives, and if there are
unlikeable characters, are their
perspectives presented convincingly
and accurately?

Structural Flexibility Does the story contain turns that
are both surprising and appropriate?

Statistical significance testing

Table 7: Statistical significance test across 5 folds for Qwen-
0.5b model

Metric SFT(with expl) (mean±SD) ICM (mean±SD) ∆ (ICM−SFT) p (paired t) Statistically significant?

Pearson 0.160 ± 0.055 0.524 ± 0.092 0.364 0.002 Yes
Spearman 0.160 ± 0.055 0.484 ± 0.078 0.324 <0.001 Yes
F1 0.371 ± 0.054 0.616 ± 0.048 0.245 <0.001 Yes

Table 8: Statistical significance test across 5 folds for Qwen-
1.5b model

Metric SFT(with expl) (mean±SD) ICM (mean±SD) ∆ (ICM−SFT) p (paired t) Statistically significant?

Pearson 0.170 ± 0.058 0.586 ± 0.064 0.416 <0.001 Yes
Spearman 0.170 ± 0.058 0.522 ± 0.069 0.352 <0.001 Yes
F1 0.402 ± 0.050 0.629 ± 0.045 0.227 <0.001 Yes

Table 9: Statistical significance test across 5 folds for Qwen-
3b model.

Metric SFT(with expl) (mean±SD) ICM (mean±SD) ∆ (ICM−SFT) p (paired t) Statistically significant?

Pearson 0.113 ± 0.092 0.540 ± 0.074 0.427 <0.001 Yes
Spearman 0.113 ± 0.092 0.494 ± 0.091 0.381 <0.001 Yes
F1 0.339 ± 0.053 0.618 ± 0.061 0.279 <0.001 Yes

Table 10: Statistical significance test across 5 folds for
Qwen-7b model.

Metric SFT(with expl) (mean±SD) ICM (mean±SD) ∆ (ICM−SFT) p (paired t) Statistically significant?

Pearson 0.170 ± 0.058 0.606 ± 0.084 0.436 <0.001 Yes
Spearman 0.170 ± 0.058 0.542 ± 0.089 0.373 <0.001 Yes
F1 0.381 ± 0.029 0.663 ± 0.058 0.282 <0.001 Yes



Table 11: Average passing rate (%) on individual TTCW,
based on annotations of 10 creative writing experts across
48 stories; last column reports Fleiss’ κ (expert agreement).

Dimension Test GPT-3.5 GPT-4 Claude v1.3 New Yorker Expert κ

Fluency

Understandability & Coherence 22.2 33.3 55.6 91.7 0.27
Narrative Pacing 8.3 52.8 61.1 94.4 0.39
Scene vs Exposition 8.3 50.0 58.3 91.7 0.27
Literary Devices & Language 5.6 36.1 13.9 88.9 0.37
Narrative Ending 8.3 19.4 33.3 91.7 0.48

Flexibility
Emotional Flexibility 16.7 19.4 36.1 91.7 0.32
Perspective & Voice Flexibility 8.3 16.7 19.4 72.2 0.44
Structural Flexibility 11.1 19.4 30.6 88.9 0.39

Originality
Originality in Form 2.8 8.3 0.0 63.9 0.41
Originality in Thought 2.8 44.4 19.4 91.7 0.40
Originality in Theme & Content 0.0 19.4 11.1 75.0 0.66

Elaboration
World Building & Setting 16.7 41.7 58.3 94.4 0.33
Character Development 8.3 16.7 16.7 61.1 0.31
Rhetorical Complexity 2.8 11.1 5.6 88.9 0.66

Average 8.7 27.9 30.0 84.7 0.41

Table 12: Correlation between LLM-administered TTCW
and expert annotations (Cohen’s κ) on all 48 stories.

Dimension Test GPT-3.5 GPT-4 Claude

Fluency

Understandability & Coherence -0.01 -0.01 -0.17
Narrative Pacing 0.05 0.00 -0.22
Scene vs Exposition -0.03 -0.08 -0.23
Literary Devices & Language 0.04 -0.09 -0.11
Narrative Ending -0.02 0.02 0.02

Flexibility
Emotional Flexibility -0.04 0.00 0.09
Perspective & Voice 0.00 0.26 0.14
Structural Flexibility -0.04 0.00 -0.07

Originality
Originality in Form 0.08 0.09 0.03
Originality in Thought 0.19 0.31 0.15
Originality in Theme & Content 0.06 -0.01 0.18

Elaboration
World Building & Setting 0.00 0.00 0.09
Character Development -0.08 0.02 0.00
Rhetorical Complexity 0.00 0.00 0.02

Average 0.016 0.035 -0.006



Figure 5: Curiosity scores based on match and mismatch of
predictions from Qwen-0.5B base non-finetuned model and
the ground truth

ICM results against SFT baseline without
explanations

Table 13: ICM method results against the SFT baseline
without explanations (classification). Means±SD are shown
where SD was available from 5-fold runs.

Model Experiment type pearson precision recall f1

Qwen-0.5B (SFT-Classification) ID 0.586 ± 0.085 0.769 0.461 0.551 ± 0.198
Qwen-0.5B (ICM) ID 0.524 ± 0.092 0.494 0.818 0.616 ± 0.048
Qwen-1.5B (SFT-Classification) ID 0.602 ± 0.064 0.787 0.602 0.663 ± 0.070
Qwen-1.5B (ICM) ID 0.586 ± 0.064 0.481 0.794 0.629 ± 0.045
Qwen-3B (SFT-Classification) ID 0.482 ± 0.160 0.670 0.573 0.556 ± 0.094
Qwen-3B (ICM) ID 0.540 ± 0.074 0.481 0.794 0.618 ± 0.061
Qwen-7B (SFT-Classification) ID 0.441 ± 0.130 0.535 0.342 0.383 ± 0.251
Qwen-7B (ICM) ID 0.606 ± 0.084 0.518 0.850 0.663 ± 0.058

Note. SDs for precision and recall were not available in the
provided per-fold summaries; once those per-fold values are
supplied, I will fill in their ± SD as well. Pearson/F1 SDs are
computed across 5 folds.

Table 14: ICM method results against the SFT baseline with-
out explanations(classification) on Out-of-distribution data

Model Experiment type pearson precision recall f1
Qwen-0.5B(SFT-Classifcation) OOD 0.433 0.000 0.000 0.000
Qwen-0.5B(ICM) OOD 0.563 0.625 0.790 0.698
Qwen-1.5B(SFT-Classifcation) OOD 0.604 0.962 0.439 0.602
Qwen-1.5B(ICM) OOD 0.655 0.639 0.807 0.713
Qwen-3B(SFT-Classifcation) OOD 0.546 0.933 0.246 0.389
Qwen-3B(ICM) OOD 0.582 0.597 0.754 0.667
Qwen-7B(SFT-Classifcation) OOD 0.435 0.800 0.211 0.333
Qwen-7B(ICM) OOD 0.623 0.653 0.825 0.729

Curiosity scores based on non-finetuned base
Qwen-0.5B model’s prediction and ground truth
match and mismatch
Why is inverse model necessary?
When we ablated for the inverse model in our ICM setup
with the given expert annotated data we do not see any dif-

ference in the results with using the inverse model or with-
out using it. But the inverse model becomes necessary when
we have a non-expert annotator like GPT-2, since it helps
to clearly distinguish such outliers. This shows that our for-
ward model of the ICM is good enough to distinguish be-
tween multiple expert annotators but we do need the inverse
model for outlier cases. The details of our experiments can
be found in Table 15, we used Qwen-0.5B model for this
experiment.



Table 15: Inverse model ablations

Method Annotations Pearson Precision Recall F1 Cohen’s κ

ICM with Inverse Without GPT-2 0.503 ± 0.014 0.552 ± 0.014 0.728 ± 0.017 0.628 ± 0.015 0.347 ± 0.027
ICM without Inverse Without GPT-2 0.500 ± 0.027 0.551 ± 0.011 0.727 ± 0.009 0.627 ± 0.010 0.346 ± 0.017

ICM with Inverse With GPT-2 0.151 ± 0.300 0.153 ± 0.265 0.233 ± 0.403 0.185 ± 0.320 0.093 ± 0.166
ICM without Inverse With GPT-2 0.002 ± 0.041 0.333 ± 0.577 0.001 ± 0.002 0.002 ± 0.004 0.000 ± 0.004


