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ABSTRACT

Vision-language pre-trained models (VLPs) are widely used in real-world applica-
tions. However, they remain vulnerable to adversarial attacks. Although adversarial
detection methods have demonstrated success in single-modality settings (either
vision or language), their effectiveness and reliability in multimodal models such
as VLPs remain largely unexplored. In this work, we investigate the embedding
spaces of VLPs and find that the image embedding space exhibits anisotropy. Our
theoretical analysis shows that this anisotropic structure increases the separation
between clean and adversarial examples (AEs) in the embedding space. Specifi-
cally, we demonstrate that AEs consistently exhibit greater expected distances to
randomly sampled points than their clean counterparts, indicating that adversar-
ial perturbations tend to push inputs out of manifold regions. Building on these
insights, we propose GeoDetect, which leverages these off-manifold deviations
to identify AEs. Through comprehensive evaluations, we show that our approach
reliably detects adversarial attacks across various VLP architectures, including but
not limited to CLIP, providing a robust and practical approach to improving the
safety and reliability of these models.

1 INTRODUCTION

Vision-language pre-trained models (VLPs) enable the understanding of both visual and textual data
by learning joint representations of multimodal inputs. This capability makes them highly effective for
tasks requiring a deep understanding of images and text. VLPs have achieved state-of-the-art results
across various multimodal tasks (Yin et al., [2023a; Xu et al., 2023} |Gandhi et al.| 2023)), including
image-text retrieval (Chen et al.,2020a)), visual question answering (Lu et al.,[2019), and zero-shot
classification (Radford et al.,|2021)). Despite their remarkable success, VLPs remain vulnerable to
adversarial examples (AEs) (Zhang et al.| |2022a}; |Schlarmann & Hein, |[2023), raising concerns about
their robustness in real-world, safety-critical applications.

Recent research has explored adversarial training as a strategy to enhance the zero-shot robustness of
VLPs (Mao et al., 2022 Wang et al.| 2024a; Schlarmann et al.,|2024). However, adversarial training
is computationally expensive (Madry et al.,[2017;|Wang et al.,[2020) and often involves a trade-off
between model performance and robustness (Zhang et al.,|2019; Tsipras et al.,[2019). Detecting AEs
presents a more flexible alternative by allowing the model to identify and reject potentially harmful
queries, rather than attempting to provide reliable outputs for all inputs.

While existing work has been proposed for detecting AEs in unimodal models (Feinman et al., 2017
Lee et al.,2018;|Ma et al.} 2018, Sotgiu et al.,[2020; [Kherchouche et al.||2020;|Aldahdooh et al., 2023),
it remains uncertain whether these approaches can effectively generalize to VLPs, which integrate
two interacting modalities. Most existing research has focused on the detection of adversarial images
in classification models. In contrast to standard classifiers trained with cross-entropy loss to predict
discrete labels, VLPs are optimized to align image and text representations within a shared embedding
space using contrastive learning objectives (Radford et al.,[2021). Recent findings by |Schlarmann
et al.[(2024) demonstrate that CLIP embeddings experience significant distortion under adversarial
attack, as evidenced by substantial shifts in the embedding space. A recent study by [Zhang et al.
(2024c)) proposed Prompt-based Irrelevant Probing (PIP), a task-specific detection method for visual
question answering (VQA) that analyzes attention responses to irrelevant probe questions. However,
PIP’s applicability is limited to architectures employing explicit cross-attention mechanisms, and its
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Figure 1: Pipeline of geometric score extraction for GeoDetect.

reliance on question-conditioned attention constrains it exclusively to VQA tasks. Thus, the absence
of a comprehensive and theoretically grounded investigation into adversarial detection for VLPs
leaves a critical gap in understanding their vulnerabilities and robustness. More importantly, no
theoretical understanding currently explains the nature of AEs in VLPs.

In this work, we investigate the intrinsic properties of VLPs by revisiting the anisotropic nature of
CLIP’s embedding space, as observed in prior work (Liang et al.|[2022; Levi & Gilboal, 2024), and
extending this analysis to other VLPs. While existing studies primarily focus on CLIP, we show
that this property extends to a broader type of VLPs, forming the foundation for our theoretical
assumptions. Anisotropy indicates that representations are unevenly dispersed across embedding
dimensions, creating dense and sparse directions. We leverage this property to formulate our central
theoretical contribution: AEs explore off-manifold regions of the embedding space, resulting in a
greater expected distance between an AE and a random clean example, compared to the distance
between the unperturbed version to the same random clean example. This motivates us to investigate
the geometric properties surrounding data representations, through which we uncover fundamental
differences between the regions occupied by adversarial and clean examples.

Building on our theoretical insights, we propose GeoDetect, an effective method for detecting AEs in
VLPs. GeoDetect extracts deep representations from VLP encoders and applies classical geometric
metrics to compute detection scores, including Local Intrinsic Dimensionality (LID) (Houle} 2013),
k-Nearest Neighbours distance (k-NN), Mahalanobis distance (McLachlan, 1999), and Kernel Density
Estimation (KDE). These scores are then used for logistic regression or threshold-based detection
of AEs. An overview of GeoDetect is illustrated in Figure[I] Figure[Ta] presents adversarial image
detection using LID, while Figure |1b|illustrates detection using the other three studied methods,
k-NN, Mahalanobis distance, and KDE. A difference is that LID operates layer-wise, evaluating
the outputs of both multimodal layers and other intermediate layers, while the other three methods
operate on the output of the image encoder, making LID more sensitive to perturbations across the
multimodal encoder. Built upon solid theoretical foundations, GeoDetect offers a cost-effective and
robust method for ensuring the safety of VLPs.

The main contributions can be summarized as follows:

* We analyze the anisotropic structure of VLP embedding spaces and, building on this,
theoretically demonstrate that AEs tend to lie in off-manifold regions, resulting in larger
geometric deviations from clean reference points.

* We introduce GeoDetect, a novel model-agnostic detection method that employs geomet-
ric discrepancies through a family of metrics to identify AEs in VLPs across different
downstream tasks (e.g., zero-shot classification and retrieval).

* We comprehensively validate the effectiveness of GeoDetect across various VLP architec-
tures and attacks, achieving consistently high AUC scores, all without requiring fine-tuning.
This makes GeoDetect both robust and lightweight compared to existing defense methods.

2 RELATED WORK

Vision-Language Pre-Trained Models. Vision-language representation learning outperforms visual
representation learning across a wide range of tasks. For instance, CLIP uses a contrastive objective
(i.e., InfoNCE loss (Oord et al.,[2018))) to align an image with its corresponding textual description in
the feature space. VLPs aim to improve multimodal task performance by pre-training on large-scale
image-to-text pairs (L1 et al., 2022). Several recent methods utilize pre-trained object detectors with
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region features as a foundation for obtaining vision-language representations (Chen et al.| 2020b)).
There are two primary types of VLPs depending on their architectures: fused and aligned (Zhang
et al.,|2022a). Fused VLPs, such as ALBEF and TCL (Yang et al., [2022), utilize distinct unimodal
encoders to handle token embeddings and visual characteristics separately. They subsequently employ
a multimodal encoder to produce integrated multimodal embeddings by combining image and text
embeddings. Conversely, aligned VLPs such as CLIP are composed solely of unimodal encoders that
have separate embeddings for image and text modalities. This research specifically examines widely
used architectures, including both fused and aligned.

Adversarial Attacks and Robustness in VLPs. Adversarial attacks aim to deceive deep learning
models into misclassifying an input (Szegedy et al.,|2013)). While previous work is centered around
image classification, recent studies show that VLPs are also vulnerable to adversarial attacks. For
example, Xu et al.| (2018) investigated attacks on visual question-answering models by altering
the image modality. [Agrawal et al.| (2018]), and |Shah et al.| (2019) focused on disrupting vision-
language models through text modality perturbations. Zhang et al.| (2022a) offered key insights
into the development of multimodal attacks and improving model robustness by exploring VLPs.
Building on this, [Lu et al.|(2023)); [He et al.| (2023)), and |Han et al.|(2023)) worked on enhancing the
transferability of multimodal AEs by leveraging cross-modal interactions, data augmentation, and
optimal transport theory. Furthermore, |Yin et al.[(2023b), and Zhou et al.|(2023) build on|Zhang et al.
(2022a)) by crafting modality-aligned perturbations that improve transferability between downstream
tasks. Despite these advances, many attack techniques remain specialized for classification tasks and
may not generalize well to retrieval, captioning, or grounding. Therefore, we adopted the adversarial
attacks presented in|Zhang et al.|(2022a) as our baseline.

Recent efforts have explored enhancing the adversarial robustness of vision-language models through
prompt tuning and training strategies. Zhang et al.| (2024b) and |Li et al|(2024) improve CLIP’s
resilience by learning robust textual prompts aligned with adversarial image embeddings. [Zhou
et al.| (2024)) introduces adversarial text supervision to balance cross-modal alignment and uni-modal
discrimination. [Wang et al.| (2024a) adds an auxiliary branch to align adversarial outputs between
the target and pre-trained models, reducing overfitting in zero-shot settings. [Wang et al.| (2024b)
adopts a two-phase adversarial training regime, starting with lightweight pre-training, followed by
high-resolution fine-tuning. However, the high computational overhead of these methods poses
challenges for scaling to large models and datasets.

Geometric Methods and Geometric Adversarial Detection in Unimodal Models. £-NN (Cover &
Hart, |1967)) is a nonparametric algorithm that classifies points based on the majority label of their
nearest neighbors, offering a simple yet powerful method for pattern recognition and regression. LID
models the intrinsic dimensionality (Karger & Ruhl, [2002; [Houle et al., 2012} Houlel 20132017
Amsaleg et al.,[2015) near a point by analyzing the growth rate of nearby data, providing insights into
local geometric structures within a dataset. Mahalanobis distance (McLachlan, [1999) incorporates
data covariance to measure similarity, enabling scale-invariant and correlation-sensitive evaluations
that are effective for identifying outliers or understanding feature relationships. KDE estimates the
probability density function of data in a nonparametric manner, using kernel functions and adaptive
bandwidths to achieve smooth and flexible density representations (Botev et al., [2010).

Several studies have employed geometric approaches to detect AEs in unimodal classification models.
Grosse et al.|(2017) introduced the Maximum Mean Discrepancy (MMD), a kernel-based statistical
test that distinguishes AEs from a model’s training data. As an alternative to KDE, |Ma et al.| (2018))
employed LID to evaluate the distance distribution of an input relative to its neighbors, capturing the
local complexity of the sample’s surrounding space. [Lee et al.|(2018) proposed using the Mahalanobis
distance, using Gaussian discriminant analysis to detect out-of-distribution and adversarial samples
through a generative classifier, offering a more refined confidence score than the traditional softmax
classifier. (Cohen et al.| (2020) further explored k-NN for adversarial detection. While these methods
have shown promise in unimodal settings, their effectiveness in VLPs remains unexplored.

3 GEODETECT

In this section, we introduce GeoDetect, a geometric framework for detecting AEs by analyzing
the properties of embedding geometry in VLPs. We first provide the formal problem definition in
Section [3.1] which is followed by a theoretical analysis in Section[3.2]



Under review as a conference paper at ICLR 2026

3.1 GEODETECT FRAMEWORK

Problem Setup. Let D, = {(z;,#;)}}_, be aclean dataset of N i.i.d. image-text pairs, where z; and
t; denote the clean image and text, respectively. The adversarial dataset consists of perturbed samples
and is defined as D, = {(=,¢;)}}*., when only the image is perturbed, or D, = {(z/, )}, when
both modalities are perturbed, with labels y; € {0,1} indicating benign (y; = 0) or adversarial
(y; = 1). We define the embeddings as z; = Ey(x) for image, 2t = E(¢) for text, and in the case
of fused VLPs, 2z = Enm(z1, 27) as the multimodal representation. Clean embeddings are denoted

as Z, = {z;}Y,, where z; represents either z1 or zy.

Our goal is to accurately detect perturbed samples, particularly those in which the image, or both the
image and text modalities, have been adversarially modified. Given a query (x;,¢;) and a reference
batch {(z;,t;)}7_;, with n denoting the batch size, we evaluate the detection function:

f((ziyti), (5, t5)7=1) = H(Metric(zi, {z;}]-1)), M
n,j#1t

where {zj } fiact denotes a set of clean reference embeddings, n is the batch size, and H represents
the decision function. The function Metric(-, -) represents a geometric measure, such as LID, k-NN,
KDE, or Mahalanobis distance. In this paper, we adopt the maximum likelihood estimation (MLE)
of LID (Amsaleg et al.| 2015), and throughout the paper, we use "LID" to refer to this estimated
quantity. The binary classification f(-, ) then determines whether the input is adversarial or clean
using computed score.

GeoDetect Pipeline. GeoDetect comprises three primary steps: generation, extraction, and detec-
tion. Following prior work (Ma et al.l 2018)), we assume that the defender has access to a subset of
the data, and that the initial dataset D.. is free of AEs.

In the first step of the process, generation, AEs are created from clean samples using different

adversarial attacks. Given the clean dataset, we generate perturbed image—text pairs (x; and t;)
resulting in a balanced set with equal proportions of clean and adversarial samples. A detailed
description of adversarial-sample generation, including the formulas and settings for each attack type,
is provided in Appendix [A.T]

In the extraction step, we begin by extracting clean image embeddings, z1, and multimodal embed-
dings, 2, as well as the corresponding adversarial embeddings z{ and z};. To ensure scalability
on large datasets, we use minibatch sampling to estimate local geometric properties, following the
approach in Ma et al.|(2018), which has been shown to provide reliable approximations of neigh-
borhood statistics. To compute geometric scores of a target embedding z;, we randomly sample
a batch of clean embeddings {z; %— as reference points for the computation of different metrics.
These reference points can be either 21 or 21, depending on whether the detection is performed in the
image or multimodal space. Using this reference batch, scores will be computed for both clean z;
and adversarial embeddings z; using the following metrics:

k
n 1
K-NN (zi, {2;}]=1) = 5 > riz), iz = |z — 2
=1

= n i) 7!
LID (2, {7 }j=1) rmaX<Zi>) '

Metric(-,-) = = )

I
|
==
]~
—
(@]
05}

KDE(zi,{z;}j=1; H)

Mahal(zi, {2;}=1) = V/(zi — 1) TS~ 1(2; — ).

For the Mahalanobis distance, the mean vector i and covariance matrix X are computed using the
clean dataset D... Similarly, for KDE, the kernel function Kg (-, ) is estimated based on the same
clean data. For all metrics, the embedding-level scores are computed as s; = Metric(z;, {2;}}_;)
for clean samples, and s} = Metric(z;, {2;}7_,) for adversarial samples, where the reference points
{# }?:1 are clean embeddings samples. For LID, we follow a layer-wise extraction strategy as
proposed by Ma et al.|(2018)). In fused VLPs, we additionally compute the LID of the multimodal
encoder z) as an additional feature alongside the image encoder layers, improving detection perfor-
mance against multimodal attacks. The complete procedure for computing these values for adversarial



Under review as a conference paper at ICLR 2026

I7 Score I Score
1073 ‘
P R Ny T 60 =
0.8 |- H I~ i
w v
e % o) : B EmE
W\ 0 [ eane ! I I 0™ Q
« x»

0 20 40 60 80 0 20 40 60 80 QCSQ\QA qg, <& %&2

Iteration Iteration (o
(a) Isotropy scores (I1, I2) across iterations. (b) Normalized ER comparison.

Figure 2: Comparison of isotropy metrics and effective ranking for VLPs vs. supervised learning.
Iteration refers to the batch index during evaluation.

image detection is outlined in Algorithm[I]in Appendix After the extraction step, the extracted
clean and adversarial scores are denoted as s; € S( ~,1) and s; IS Sz NI where [ = 1 for k-NN,

Mabhalanobis, and KDE, and [ represents the number of layers for LID. These extracted scores serve
as input features for the subsequent detection phase.

We frame adversarial example detection via a decision function /. We split the extracted scores into
a calibration subset (to set thresholds or train a classifier) and a test subset. For £-NN, Mahalanobis,
and KDE, H is a threshold rule on the scalar score s; = Metric(z;, {z] = ) H(si) =1(s; > 1),
where 7 is chosen on the training split. For LID, H is a logistic regression trained on multi-layer LID
features (Appendixm At test time, given (z;, t;), we extract embeddings (zr, 2T ), compute the
chosen metric with respect to a clean reference batch {z;}” =1 and apply H (threshold or logistic) to
decide if the input is adversarial. The efficiency of GeoDetect is reported in Appendix [A.4]

3.2 GEODETECT THEORETICAL ANALYSIS

In this subsection, we develop GeoDetect’s theoretical foundations by formalizing core assumptions
and deriving its key technical results. We begin by empirically verifying that VLP embeddings
are anisotropic, concentrated along a few dominant directions, which motivates our assumptions.
Building on this, we show that the principal directions of adversarial embeddings differ significantly
from those of clean embeddings, effectively pushing them off the manifold. Our theoretical analysis
explains why geometric scores are particularly well-suited for adversarial detection in VLPs: they
quantify off-manifold deviations that adversarial perturbations inherently induce.

3.2.1 ANISOTROPIC EMBEDDING SPACE

Understanding the geometric structure of the embedding space is crucial for identifying the funda-
mental differences between clean and adversarial embeddings in VLPs. [Liang et al.|(2022)) showed
that CLIP features lie within a low-aperture cone, concentrating in a narrow angular region of high-
dimensional space. Building on this, |Levi & Gilboa| (2024) found that CLIP’s embedding space forms
a double-ellipsoid geometry, with image and text embeddings located on distinct ellipsoidal shells.

Consequently, we expect that other VLPs also exhibit anisotropic embedding spaces, consistent
with the patterns observed in CLIP, and to formally quantify this, we adopt two established isotropy
measures, I1 and I> (Wang et al.,[2019). Let Z € RN*D pe the matrix of embedding vectors. The
measures are defined as:

2

1,(2) = Mitvev P(v) \/ZUEVVP = P(v)) , 3)

maxycy P(

where V is the set of eigenvectors of Z7'Z, and P : RP? — R is the partition function P(v) =
o exp({v, z)) (Mu & Viswanath, [2018). For an embedding matrix Z to be isotropic, P(v)
should be approximately constant for any unit vector v (Arora et al.,2016). Then, the second measure,
15(Z), is the normalized standard deviation of the partition function P(v), where P(v) is the average
value of P(v). In this formulation, I (Z) is bounded between 0 and 1 (I1(Z) € [0, 1]), while I5(Z)
is non-negative (I2(Z) > 0); lower I;(Z) and higher I3(Z) indicate stronger anisotropy.
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To investigate the embedding space of the VLPs (specifically ALBEF here, with other VLPs discussed
in Appendix [B.I)), we empirically evaluate I1(Z) and I5(Z). As a reference, we include a supervised
classifier (ResNet-50) trained on ImageNet. We compute I (Z) and I5(Z) across iterations (x-axis)
and report the corresponding metrics on the y-axis in Figure The results show that I1(Z) is
lower and I5(Z) is higher for VLPs, shown here for ALBEF, compared to the supervised classifier,
indicating stronger anisotropy in VLPs embedding space. Consistent trends for other VLPs are
reported in Appendix [B.1] supporting the assumptions underlying our theoretical analysis.

Another metric for evaluation of isotropy is effective rank (ER), a spectral measure of dimensionality
that reflects how singular values are distributed, providing a more complex perspective compared to
the traditional rank (Roy & Vetterli, |2007). Mathematically, the ER of a matrix Z is defined based
on the spectral entropy of its normalized singular values. Let o; be the singular values of Z, and 4;

represent the normalized singular values ¢; = ZL, where ) . 6; = 1. The spectral entropy and
o
3 J
the normalized ER, denoted as ER (scaled by the logarithm of the dimension D), are given by:
B . . —~ _exp(H)
H=- E d;logd; = ER(Z) = gD " (€))

K2

In the isotropic setting, where all singular values are equal, the estimated effective rank ER approaches
the full rank of the matrix. In contrast, when the singular values are concentrated in a few dimensions,
ER is substantially lower, indicating anisotropy. Figure|2b|compares the normalized effective rank of
various VLPs with that of a supervised ResNet-50 trained on ImageNet V2. The results show that
VLPs consistently exhibit lower ER, confirming that their embedding spaces are more anisotropic
than those of supervised models.

3.2.2 ADVERSARIAL PERTURBATION EFFECT ON GEOMETRY

In this subsection, we establish the theoretical assumptions and provide key analyses underpinning
our geometric-based detection methodology. Let ¥ € RP*P denote the covariance matrix of the
clean embedding distribution. We denote clean embeddings as z; € Z, , and adversarial embeddings
as z, € Z,. We further represent the distributions of clean and adversarial embeddings by p(z) and
q(2"), respectively. To characterize the geometric deviation induced by adversarial perturbations,
we define the distance of a target embedding (clean or adversarial) to a randomly sampled clean
embedding z,,, where u # i, as:

Dist. = ||z; — z,|| and Dist, = ||z} — z,]|.

We analyze the expected distances E[Dist.| and E[Dist,], and formally demonstrate that adversarial
embeddings have higher expected distances, an observation underlying the effectiveness of geometric
metrics in adversarial detection. We first state two assumptions that ground our theoretical analysis:

Assumption 3.1 (Anisotropic Covariance). The covariance matrix ¥ € RP*P of the clean em-
bedding space is positive-definite and anisotropic, specifically ¥ # ¢/ for any scalar constant c,
indicating anisotropy property. Consequently, its eigenvalues vary significantly across dimensions
(01> 09> ..>0p).

Assumption 3.2 (Manifold Proximity). Clean embeddings reside on a manifold M, such that the
distance of a data point z; from the manifold satisfies, satisfying a proximity condition ||z; — M|| < a.
Additionally, given the high dimensionality of the embeddings, we assume Gaussian distributions for
both clean and adversarial embeddings: p(z) ~ N (., %), ¢(2") ~ N (us, X').

Assumption verified in Section explains the anisotropic geometry observed in VLP
embeddings. Assumption [3.2] built on the manifold hypothesis (Bengio et al.| 2013), distinguishes
clean embeddings that lie near the manifold from adversarial embeddings that deviate from it. To
justify Assumption [3.2] we note that although data may be globally non-Gaussian or manifold-valued,
it is standard to analyze them through local neighborhoods: non-Gaussian structures often appear
approximately Gaussian when viewed locally, and curved manifolds can be locally approximated by
Euclidean spaces (Lee, [2006). As emphasized by Zhao et al.|(2007), even globally non-Gaussian
or manifold-valued data exhibit locally Gaussian behavior, since any curved manifold is locally
Euclidean. Building on these assumptions, and inspired by Theorem 1 in|Zhang et al.|(2024a)), we
derive the optimal adversarial embedding.
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Lemma 3.3. Following Assumption let clean and adversarial embeddings follow p(z) ~
N(pz, X)) and q(2') ~ N(u.,Y'), respectively, where ¥ is a fixed positive-definite covariance.
Maximizing the KL divergence KL (q” p) is approximately equivalent to maximizing the quadratic
form of (2} — z;) TS 71 (2] — 2;), which can be transformed into a Lagrangian minimization optimiza-
tion problem, which has an optimal closed-form solution:

2= (S + M)Az, A >0, 5)
where X is the Lagrange multiplier.

The proof of Lemma [3.3]appears in Appendix [B.2]

Lemma 3.4. Following Assumption[3.1|and Lemma[3.3] let M represent the data manifold formed by
clean embeddings within a local batch. When the data is perturbed, and assuming that clean
embeddings lie close to the manifold M, the resulting embeddings deviate from the manifold
M, thus characterized as off-manifold. Specifically, given the optimal adversarial embedding
25 = (2 + M)Az, X > 0, the deviation from the manifold satisfies ||z, — M|| > v, where
v > « > 0 defines the minimum separation threshold for off-manifold data.

Lemma [3.4] shows that adversarial embeddings leave the clean manifold by suppressing tangent
components and amplifying normal components (proof in Appendix [B.3)). We verify this with four
diagnostics in Appendix [B.6} reconstruction error using top-K principal components fitted on clean
data, Singular Value Decomposition (SVD) tail energy, KL divergence along principal components,
and lower rank correlation between clean and adversarial representations; all confirm off-manifold
deviation.

Theorem 3.5 (Expected Distance Gap). Following Lemmas[3.3|and([3.4] let z; ~ p(-) be a clean
embedding satisfying || z;— M|| < o, and let 2] be an adversarial embedding satisfying ||z, —M|| > ~
with v > 3a. Then

Eeonp() (17 = 2ull] > Eapnpy [ll2 = 2ull]. ©)

Theorem [3.5]implies that given a query embedding, a large distance to randomly sampled clean
embeddings strongly indicates adversarial perturbation. This justifies the effectiveness of geometric-
based metrics for adversarial detection. Proof of Theorem|[3.5]is included in Appendix[B.4] and details
on the connection between Theorem [3.5]and Lemma [3.4]to different geometric-based approaches
are provided in Appendix [B.5] Specifically, we demonstrate that under mild assumptions, AEs
are expected to exhibit higher LID, k-NN, and Mahalanobis scores, along with lower KDE scores.
Empirical evidence supporting Lemma [3.4]and Theorem 3.3]is provided in Appendix

4 EXPERIMENTS

We evaluate GeoDetect on standard VLP tasks, including zero-shot classification and image-text
retrieval. We compare against MCM (Ming et al.,2022)), which is designed for CLIP-based classifica-
tion and detects out-of-distribution inputs via softmax-normalized similarity scores. To the best of
our knowledge, this is the only existing score-based zero-shot baseline applicable to AE detection
in multimodal models. While relevant for classification-based VLP settings, its reliance on discrete
class labels makes it incompatible with retrieval tasks.

Datasets and Models. We evaluate zero-shot classification with ImageNet (Deng et al., [2009),
CIFAR10, CIFAR100 (Krizhevsky et al.l[2009), STL-10 (Coates et al.,[2011)), and Food-101 (Bossard
et al., 2014)), as the standard datasets for zero-shot classification. Following [Radford et al.| (2021)),
we use class prompts of the form "a photo of a ¢", where c is the name of the class. For image-text
retrieval, we conduct experiments on commonly used datasets, Flickr30K (Young et al.|[2014) and
MS-COCO (Lin et al., 2014). We consider two types of VLPs: aligned and fused. For aligned VLPs,
we evaluate CLIPy;r (using ViT-B/16) and CLIPcny (using ResNet-50) (Radford et al.,|2021). For
fused VLPs, we examine ALBEF (Li et al.,[2021) and TCL (Yang et al.| 2022), which consist of
separate image, text, and multimodal encoders.

Metric and Adversarial Attack. We assess performance using two standard metrics: (1) the
false positive rate at 95% true positive rate (FPR95), and (2) the area under the receiver operating
characteristic curve (AUC). We follow Sep-Attack and Co-Attack methods (Zhang et al.| [2022a)
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Table 1: Results on zero-shot classification performance using the area under the receiver operating
characteristic curve (AUC) and the false positive rate at 95% true positive rate (FPR95). Higher AUC
(1) and lower FPR95 (]) values indicate more accurate detection.

Model Method Attack _CIFARI0  CIFARI00 ImageNetlk  STLI0  Foodl01
AUC FPR95 AUC FPR95 AUC FPR9S AUC FPR95 AUC FPRYS

MM SePwi 6547 8288 4113 9415 8610 60.35 9582 1792 91.70 40.18
Co-Attack 67.10 79.54 4399 9321 80.83 68.38 94.10 25.64 82.14 6438

GeoDet- Sepwmi 100 0.00 100 000 9931 1.87 100 0.00 99.98 0.6

LID Co-Attack 100 000 100 000 9950 1.62 100 000 99.95 0.08
CLIPENN GeoDet- Sepas 100 000 100 0.00 99.65 162 100 000 100 0.0
k-NN Co-Attack 100 000 100 000 9967 089 100 000 100 0.00
GeoDet- Sepwi 100 0.00 100 000 9662 9.32 99.88 033 9979 1.16

Mah. Co-Attack 100 000 100 000 9728 7.97 99.80 0.59 99.38 232
GeoDet- Sepw 100 0.00 100 000 9872 7.24 99.87 026 100 0.0

KDE Co-Attack 100 000 100 000 99.33 281 9985 033 100 0.00

Sepu 91.20 29.02 8280 49.19 92.15 2538 96.83 16.02 90.26 37.03

MCM  Sepmui 4743 9823 33.55 99.56 63.03 97.59 6532 86.60 4198 99.46
Co-Attack 9334 24.64 82.67 4727 92.14 24.94 9645 1970 81.29 7470

Geober.  SePi 100 0.00 9997 005 9185 2041 99.64 162 9987 067

O Sepnui 99.96 020 9985 044 7877 67.68 96.63 1565 9231 3327
Co-Attack 100 0.00 99.98 005 93.85 20.07 99.85 0.69 99.92 0.42

ALBEF __ =~ Sepw 100 000 100 000 9860 723 9997 0.9 9998 0.04
PO Sepnai 9927 305 9921 325 5192 9361 7595 7575 8646 5096
Co-Attack 100 0.00 100 000 98.64 733 9996 0.19 99.98 0.04

Geober. SePwi 100 000 100 000 9994 020 100 000 100 0.00

D Sepmai 100 0.00 100 000 8141 64.82 9925 3.19 99.16 392

ah- o Attack 100 000 100 000 9993 025 100 000 100 0.00

Geober.  SePui 9938 071 100 000 9678 1693 9970 106 9995 0.16
COD Sepai 9924 086 99.85 0.81 6683 8175 88.63 6619 87.61 49.27
Co-Attack 9938 0.76 100 000 9667 18.09 9972 1.00 99.94 0.16

due to their applicability to different models and tasks. [CLS] is a class embedding widely used
in pre-trained models for downstream tasks, which is the target of the attack in our evaluation.
Sep-Attack perturbs each modality independently, while Co-Attack jointly targets both modalities.
For image-focused attacks, we evaluate two variants of Sep-Attack: Sepy,i, which targets unimodal
embeddings, and Sepyuri, which targets the fused multimodal representation (applicable only to fused
VLPs). For image attacks, consistent with (Zhang et al., [2022a)), we adopt PGD-style perturbations
constrained in the ¢, norm, and a BERT-style (Li et al.,|2020) attack strategy for text attack. The
maximum perturbation e; is set to 8/255, with the step size of 1.25, and 10 iterations. For text, the
perturbation budget is set to 1 token. Detailed attack configurations and success rates are reported in

Appendix [A.T|and Appendix [A.5] respectively.

Settings and Layers. For CLIPcny and CLIPy;, we use batch size 128 with k=100 for LID, k=10
for k-NN, and a Gaussian KDE bandwidth of 0.1. For ALBEF and TCL, batch size is 64 with k=40
for LID, k=10 for k-NN, and the same KDE bandwidth. Adversarial examples are generated from
the entire test set. The resulting mixed dataset (clean and adversarial) is then randomly split into 80%
for calibration (threshold fitting / LID training) and 20% for evaluation. Detailed layer selection is
provided in Appendix [A.3] with layer sensitivity in Appendix [C.3]

4.1 EXPERIMENTAL RESULTS

Performance of GeoDetect in Zero-Shot Classification. As shown in Table [T} our geometric
approaches consistently outperform the MCM method across all datasets in CLIPcnN, achieving
lower FPR and higher AUC. This highlights GeoDetect’s effectiveness for AE detection. Among the
evaluated metrics, k-NN surpasses other metrics (particularly Mahalanobis and KDE) in CLIPcny,
with LID showing comparable performance to k-NN in this context. On ALBEF, Mahalanobis
slightly outperforms other metrics, particularly KDE, highlighting its sensitivity to image-level
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Table 2: Results on image-text retrieval with Flickr30k and COCO dataset evaluated using the area
under the receiver operating characteristic curve (AUC) and the false positive rate at 95% true positive
rate (FPR95). Higher AUC (1) and lower FPR95 (]) values indicate more accurate detection.

(a) Results for CLIPcnn and ALBEF Models (b) Results for CLIPy;r and TCL Models
Dataset Dataset
Model Method Attack 4 Model Method Attack ,

Flickr30k COCO Flickr30k COCO
AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95
LID Sepuni 98.45 452 99.54 1.46 LID Sepuni 99.37 1.51 9998 0.20
CLIPey Co-Attack 9890 4.52 99.50 1.56 CLIPyi; Co-Attack 96.55 25.63 99.06 5.08
L-NN Sepuni 99.99 0.00 99.97 0.00 L-NN Sepuni 100  0.00 100 0.00
Co-Attack 99.97 0.00 99.95 0.02 Co-Attack 99.59 0.50 99.51 1.27
Sepuni 94.99 2383 91.80 35.88 Sepuni 90.88 40.93 89.32 42.52
LID Sepmulti 7426 78.75 79.85 64.51 LID Sepmulti 84.72 5647 8395 58.16
ALBEF Co-Attack 93.80 27.98 91.49 35.58 TCL Co-Attack 90.76 37.31 88.25 43.79
Sepuni 99.75 1.05 9854 5.67 Sepuni 96.10 19.60 98.01 11.24
k-NN  Sepmuri 54.84 9246 57.02 88.27 k-NN  Sepmuli 32.89 9548 33.89 9541
Co-Attack 99.88 0.50 98.73 6.84 Co-Attack 96.59 15.07 98.05 11.73

perturbations, while LID performs comparably in multimodal attacks, emphasizing the value of
incorporating multimodal embeddings. Despite ALBEF’s multimodal design, image perturbations
still yield detectable shifts in the embedding space, which Mahalanobis effectively captures by
modeling the covariance of clean image features. Extended results for CLIPy;tr and TCL in Appendix
exhibit consistent patterns with those in this subsection.

Performance of GeoDetect in Image-Text Retrieval. We also evaluate image-text retrieval to
demonstrate that GeoDetect applies beyond classification, without labeled data. Due to the lack of
labels, we only examine the LID and £-NN distance, as they do not require labels. As shown in Table
[2] the performance of all models is comparable to their classification results. For both the COCO and
Flickr30k datasets, each image is annotated with five captions. To maintain consistency, as Co-Attack
requires a matching prompt to simultaneously attack both the image and the associated text, we use
the first caption as the target text.

Extended Evaluation and Ablation Study. Appendix provides empirical verification of
GeoDetect, including visualizations showing clear separability between clean and adversarial samples
via geometric scores. Sensitivity analyses over neighborhood size, sample availability, batch size,
layer choice, and multimodal layers are presented in Appendix [C} demonstrating robustness to these
variations. Appendix [D]evaluates generalization to diverse attack backbones, the SGA attack (Lu
et al.| [2023), and adaptive attacks designed to evade detection; GeoDetect remains robust. Ap-
pendix@reports extended evaluations on additional models (TCL, CLIPv;t) and a comparison with
PIP (Zhang et al., [2024c) (a VQA-specific adversarial detector), showing that GeoDetect maintains
its performance across models and achieves superior results to PIP.

5 CONCLUSION

In this paper, we propose the first task-free, theoretically grounded framework for detecting AEs
in VLPs. By leveraging the anisotropic structure of VLP embedding spaces, we show through
theoretical analysis that adversarial perturbations push embeddings into off-manifold regions, leading
to fundamental geometric differences between clean and perturbed samples. Building on this
insight, we introduce GeoDetect, a lightweight, model-agnostic detection method that applies simple
geometric metrics to image or joint representations. GeoDetect generalizes across multiple tasks and
leading VLP architectures, and achieves strong detection performance against a range of state-of-
the-art adversarial attacks. Notably, GeoDetect remains effective even under adaptive attack settings,
where adversaries are aware of the detection strategy and attempt to bypass it. This robustness,
combined with its independence from task-specific logits or labels, makes GeoDetect well-suited for
both classification and retrieval scenarios.
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ETHICS STATEMENT

This work studies adversarial detection in vision—language models using publicly available datasets.
No private or personally identifiable data is used, and the proposed method strengthens model
robustness against adversarial manipulation, contributing to trustworthiness in multimodal Al. Our
primary aim in this research is to support secure and ethical applications. All research was conducted
in compliance with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

All theoretical claims are accompanied by complete proofs in Appendix [B] Experimental settings
and implementation details, including hyperparameters, are described in Section[d] while attacks’
details are provided in Appendix[A.1] Finally, the algorithm for GeoDetect is explicitly presented in

Appendix [A.7]
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A ATTACKS AND ALGORITHM DETAILS

A.1 ATTACKS ON VLPs

In this part, we provide an extended explanation of the adversarial attacks discussed in Section 3.1}
including technical formulations and implementation details for the Sep-Attack, Co-Attack, and SGA
attack strategies. These attacks are defined based on their perturbation targets within vision—language
models, expanding the conceptual and mathematical foundations provided in the main paper.

In aligned VLPs (e.g., CLIP), attacks are constrained to unimodal embeddings, since only image and
text encoders are accessible. In contrast, fused VLPs (e.g., ALBEF and TCL) allow perturbations on
both unimodal and multimodal embeddings. These can be further categorized based on whether the
entire embedding is perturbed (denoted Unigy; or Multig,) or only the [CLS] token representation
(denoted Unicrg or Multicys).

In our experiments, we focus on Unicrg image attacks for CLIP, and both Unicrs and Multicy g
attacks for ALBEF and TCL. The [CLS] embedding plays a critical role in transformer-based models,
as it is commonly used for downstream classification and retrieval tasks. Therefore, investigating the
impact of attacks on the [CLS] embedding in VLPs is important. Although CLIP does not explicitly
define a [CLS] token—especially in its ResNet-based variant—we treat the final image embedding as
functionally equivalent to [CLS] for consistency across models. For CLIPy;r, we directly use the
[CLS] token. For simplicity, we refer to attacks on unimodal and multimodal [CLS] embeddings
as Sepyn; and Sepmuni, respectively, and omit explicit [CLS] notation in the paper and experiments
section.

We evaluate three adversarial attack strategies: Sep-Attack and Co-Attack, based on the framework by
Zhang et al.|(2022a)), and the recently proposed Set Guided Attack (SGA) (Lu et al.,|2023). Sep-Attack
perturbs the image and text modalities independently by maximizing the KL divergence between
clean and perturbed embeddings. For text, adversarial changes are constrained to a limited number
of tokens using a BERT-style attack strategy. In contrast, Co-Attack jointly optimizes perturbations
across both modalities, pushing the embedding away from its original representation. Co-Attack is
applicable to both aligned and fused VLPs, with gradient-based perturbations computed separately
for each modality. SGA attack extends traditional image-text alignment to a set-level framework.
By employing data augmentation, SGA constructs diverse image sets and pairs them with multiple
textual descriptions, leveraging cross-modal guidance to enhance AEs transferability.

Sep-attack Sep-Attack (Zhang et al., 2022a)) is designed to perturb image and text modalities
separately. As VLPs are often applied to non-classification tasks that lack explicit labels, the attack
replaces the standard cross-entropy objective with a KL divergence loss (£) between the embedding-
wise representation to produce an adversarial perturbation:

81 = e1.sign(V  L(Ef(z), Er(x))). (7)
For perturbing the text modality, the text perturbations are generated as follows:

op = arginax(HET(tl) — Er()]) - t. (8)

Maximum perturbation er is set to the number of perturbed tokens in each prompt based on the
BERT attack (Li et al.| 2020). For attacks targeting multimodal embedding, the unimodal encoder
is replaced with the multimodal encoder, denoted as Fy(+,-). This attack setup is only applicable
to fused VLPs like ALBEF, which incorporate a multimodal encoder. The image-based attack is as
follows:

5] = e[.sign(vx/ ,C(EM(EI(ZC/)7 ET(t)7 EM(EI(IL‘), ET(t)))) (9)

Co-Attack In Sep-attack, perturbing the text and image modalities independently may lead to
suboptimal adversarial effectiveness. To overcome this challenge, Co-Attack (Zhang et al.||2022al)
was developed to jointly optimize perturbations across both modalities. It aims to shift the perturbed
multimodal embedding away from the original embedding or to maximize the discrepancy between
the perturbed image and text embeddings. Co-Attack is applicable to both fused VLPs and aligned
VLPs, making it suitable for attacking both multimodal and unimodal embeddings. The unimodal
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attack aims to find the perturbation Jj that satisfies:

arg max ,C(EI (l’/), ET(t)) + 51£(E1 (SC,), ET (t/)). (10)

o1

The attack on multimodal embedding is as follows:
argdmax L(Ex(Er(2), Er(t), Exm(Er(z), Ex(t)))
I

+B2L(Em(Ex(x"), Ex(t')), Em(Ei(z), Bx(t))). (11

(1 and (3 are hyperparameters that control the contributions of the second term.

Set-level Guidance Attack (SGA) SGA introduces a set-level adversarial guidance mechanism,
where perturbations are crafted to reduce the overall separability between sets of clean and adversarial
embeddings. The feasible perturbation spaces for adversarial optimization are denoted by Bz, €]
for images and Bt;, et] for text, where ¢; denotes the maximal perturbation bound for the image,
and et denotes the maximal number of changeable words in the caption.

First, it generates corresponding adversarial captions for all captions in the text set ¢;, forming
an adversarial caption set t; = {t;,?5,...,t,,}. The adversarial caption ¢; is constrained to be
dissimilar to the original image z in the embedding space. Next, the adversarial image =’ is generated
by solving:

t]-/ = argmax <— ET(tj,) - Fi(x) ) Lz = argmax Z tj Z g(@,51))
¢eBltyen) \ BT Er(2)] o' €Blel) 1B ()] St (g (@’ Sz))ll

(12)

Here, g(:z:', s;) denotes the resizing function that takes the adversarial image 2 and the scale
coefficient s; as inputs. All resized versions of z are encouraged to be far from all adversarial caption

set tj, in the embedding space. Finally, the adversarial caption tis generated as follows:

N . Y
t' = argmax ( ET(t,) Erlx ,) ), (13)
veBlte N I ETE) [ E(2)]|

A.2 GEODETECT ALGORITHM

The details of the GeoDetect are presented in Algorithm[I] Specifically, line 2 corresponds to the
AEs generation step described in Section[3] while lines 4 to 13 implement the extraction steps. Then,
the detection phase is outlined in lines 16—18. For LID-based detection, we use the extracted scores
matrix Sy,;), where N denotes the number of samples and [ the number of layers from which
features are derived. The extracted scores are then partitioned into calibration and test subsets. The
calibration set is used to fit either a logistic regression (for LID) or apply a threshold-based decision
rule (for k-NN, Mahalanobis, and KDE) for adversarial detection.

A.3 LAYER SELECTION

For all the models except LID, we use the final layer, but for LID, following (Ma et al.,[2018)), we use
multiple layers of image encoder and the multimodal encoder final layer (in the case of multimodal
attack). To investigate which layers contribute most to adversarial detection across architectures in
GeoDetect-LID, we perform a consistent layer-wise sampling strategy for both ViT and ResNet-based
CLIP models. In the ViT model, we select one early residual block, two mid-level blocks, one
late-stage block, and the final embedding. This covers the full semantic depth of the Transformer,
from localized attention to abstract class-level representation. In the ResNet-based model, we include
early convolutional features, a final residual block, and the final attention-pooled feature. Across both
models, we find that mid-to-late layers tend to be the most discriminative for adversarial detection, as
they encode both spatial and semantic context before final pooling or projection. However, including
early layers improves detection sensitivity by exposing low-level shifts caused by perturbations. We
also conducted an experiment in Appendix to evaluate the effect of different layers.
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Algorithm 1 GeoDetect: Geometric Detection of AEs in VLPs

Input: Pre-trained model with image encoder Ej(-), text encoder E(-), and (if fused) multimodal
encoder En(-, -); clean dataset D, = {(z;,t;)}¥,; set of extraction layers L = {l1,l2,...,1s}; and
a chosen geometric metric (e.g., LID, k-NN, Mahalanobis, KDE). All metrics use clean embeddings
as reference points.

Qutput: A detection model.

1: fori =1toN do

2:  Generate adversarial pair: (x},t}) < ATTACK(z;, ;)

3: for eachlayer! € L do

4: Extract image embeddings: z(; ;) < EI(Z)(xZ-)

5: Extract adversarial embeddings: 2(; ;) < El(l)(l;)

6: Compute clean score: s(; ;) <= METRIC(2(;,1), {25} }=1)

7: Compute adversarial score: s(; ;) = METRIC(2(; ;, {2 }]-1)

8: end for

9:  if attack targets multimodal embedding and metric is LID then

10: S(i,141) — 1\/[]'3"1"RIC(ICM(EZ‘I(.’L‘i)7 ET(tz)), {Zj ;L:l)

11: 32““) < METRIC(Ewm (Ex(z}), B (%)), {2}]=1)

12:  endif

13: end for

14: Concatenate clean/adversarial scores: X <« [S, 5]

15: Create labels: Y « [0,...,0,1,...,1]
——— ——

N N
16: Detection model on (X, Y)

A.4 GEODETECT EFFICIENCY

On CLIPcny With the CIFAR-10 dataset, feature extraction for detection methods such as MCM, KDE,
Mahalanobis, and k-NN takes less than 2 minutes, while LID-based extraction requires approximately
9 minutes on an NVIDIA H100 GPU. A detailed breakdown of time costs is provided in Table
Compared to re-training or fine-tuning approaches for improving CLIP robustness, our framework is
significantly more efficient. For reference, linear-probe CLIP (Radford et al.|[2021) requires roughly
13 minutes, CoOp (Zhou et al., [2022)) takes over 14 hours, and CLIP-Adapter (Peng et al., [2021)
requires approximately 50 minutes, all reported on a single NVIDIA RTX 3090 GPU (Zhang et al.|
2022b).

Table 3: Comparison of computation time (seconds) for different methods of the GeoDetect framework
on CIFAR-10 using CLIPcny and a single NVIDIA H100 GPU.

Method LID k-NN Mahalanobis KDE MCM
Score 546.11 103.19 33.08 69.82 98.48

A.5 EVALUATION OF ATTACK SUCCESS RATES

We evaluate attack success rates (ASR) on image retrieval (four models, two datasets) and zero-shot
classification (two models, five datasets). Table [] shows that attacks are highly effective in the
retrieval setting, consistently achieving large ASR values. This indicates that VLPs are vulnerable to
adversarial attacks in retrieval tasks. Table [5|reports results for zero-shot classification, again showing
consistently high ASR across models and datasets.
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Table 4: ASR results (ASR@1 and ASR@5) for the Image-Retrieval Task with Flickr30k and COCO
test data in aligned VLPs (CLIPcnN, CLIPyir) and fused VLPs (ALBEF, TCL).

Model  Attack Flickr30k COCO
ASR@1 ASR@5 ASR@1 ASR@5

Sepun 9658 9376 9732  95.67
CLIPoNN oo Attack 97.60 9521 9875  97.44
 Sepun 9385 8694 9711 9521
CLIPVT oo Attack 9497 9012 98.59  97.06
Sepun 9850 9645 9945 98.62
ALBEF Sepmai 9656 9549 9584 9570
Co-Attack 9871 9707 99.52  98.92

Sepen 9976 9901 99.84 9956

TCL  Sepmui 7007 6841 67.06 63.66

Co-Attack 99.24 9855 99.79  99.51

Table 5: ASR results for the zero-shot classification task in CLIPcny and CLIPy;t.

CLIPcnN \ CLIPvyir
Sep-Attack Co-Attack |Sep-Attack Co-Attack
CIFAR10 80.11 98.43 78.93 99.71

Dataset

CIFAR100 90.33 100 92.77 100
STL10 90.04 99.66 76.51 99.95
ImageNetlk  98.69 99.96 98.88 99.98
Food101 99.16 100 99.80 100

B THEORETICAL ANALYSIS AND PROOFS

B.1 ISOTROPY ANALYSIS OF DIFFERENT VLPs

In this section, we evaluate the [; and I metrics introduced in Section [3.2.1] for the CLIPy;r,
ALBEEF, and TCL, and compare them to supervised training. As shown in Figure[3] all three models
exhibit lower I; values and higher /5 values compared to the supervised mode, consistent with our
expectations. These observations indicate that VLPs are less isotropic, or more anisotropic, than
models trained with supervised learning.

B.2  PROOF OF LEMMA[3.3]
Proof. The KL divergence between two multivariate Gaussian distributions A (¢/, ¥') and N (p, )

is given by:

det(X)
det(X)

KL(NV (1, ) IV (1, %)) = %[tr(E‘lE’) + (W =) (W —p) = D + In( )}, (14)

where D is the dimensionality of the space. Since ¥ is fixed, maximizing KL divergence over z;
reduces to maximizing the second term:

(2 — 2:) 'S (2 — ). (15)

which is a positive-definite quadratic form in (z] — z;) and grows unbounded as ||z;|| — oo. To
ensure a finite optimum, we introduce a constraint:

(2 —2z) TS (2l — ) < 1. (16)
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Figure 3: Comparison of isotropy metrics in VLPs vs. supervised model for ImageNet V2 data. Each
row compares isotropy metrics for different vision-language pre-training methods (CLIPy;r, ALBEF,

TCL) alongside the supervised baseline.

Thus, the optimization problem can be formulated as:
1 -
rr;1/n5||z;||g, st (20— 2) 272 — ) < 1.
To solve this constrained optimization problem, we construct the Lagrangian function:
L(z}N) =22l + XN((2] — 2) "2zl —z) — 1), A >0.
where A is the Lagrange multiplier. Differentiating the Lagrangian with respect to z/:

oL
3 = 220+ AR (2] — ) = 0.

With simplifying, we have:

where A > 0 is the regularization parameter.
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B.3 PROOF OF LEMMA[3. 4]

Proof. Let
¥ =Udiag(o1,...,0p) Ut
be the eigendecomposition of the covariance matrix, where eigenvectors u; with large o; span the
tangent space of M and those with small ¢; span the normal space. By Lemma 3.3, the optimal
adversarial embedding is
25 = (S 4+ M) Az
Substituting the spectral decomposition and projecting into the eigenbasis gives

Utz = diag( A ) UTz.

i+
Define 3, = U z; and z, = U T 2/*;
As U € RP*P s an orthonormal matrix with U " U = I. Then for any point 2/ € R” and any set

(manifold) M C RP,
inf |2/ —m| = inf [|[UT2 —U"m|. (19)
meM meM

Thus, projecting onto the eigenbasis via U T exactly preserves the minimum distance from 2’ to M.

then
2; = d1ag<ﬁ) 51‘.
By Assumption [3.T] (anisotropy), the spectrum satisfies o; > A for tangent directions and o; < A
for normal directions. Hence
A ~0, ifo; > A (tangent directions),
oj+X =1, ifo; < A (normal directions).
Clean embedding lies very close to the manifold, which means that almost all of its magnitude is in

directions tangent to that manifold: the normal (off-manifold) component is so small that it can be
ignored.

Conversely, the adversarial mapping derived in Lemma [3.3]effectively suppresses the tangent compo-
nents (scaling them by a negligible factor) while preserving or even slightly amplifying the normal
components. Consequently, the optimal adversarial point lies off the clean data manifold.

O

B.4 PROOF OF THEOREM[3.3

Proof. We begin by establishing a lower bound on the distance between a perturbed sample embed-
ding 2] and a random clean sample embedding z,,. By the triangle inequality, the distance between z
and a random z,, satisfies:

125 = zull 2 llz; = M| = M = 2u]l.

Using the Lemma[3.4] we have ||z; — M|| > v, and by Assumption[3.2] we have [|M — z,[| < a.
Substituting these bounds into the inequality, we obtain:

2 = 2ull = v =«
Taking expectations over the distribution z,, ~ p(z), the expected adversarial distance satisfies:

E[Disty] = Bz, ~p [ll2i — 2ull] = / 125 = zullp(z) du = v — .

Now consider the clean embedding z; ~ p(-), where both z; and z,, lie within a from the manifold
M. Again, by the triangle inequality:
1z = zull < flzi = M|+ [M -z S+ a=2a
Thus, we have: E[Dist.] = E,, ~p [[l2: — 2ull] < 20
Finally, under the condition v > 3«, we obtain:
E[Dist,] > v —a > 3a — a = 2a > E[Dist,]
= E[Dist,] > E[Dist,].
This completes the proof, demonstrating that the expected distance between a perturbed and clean
sample, when v > 3, exceeds that between two clean samples. [
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B.5 IMPACT OF OFF-MANIFOLD SHIFT ON GEOMETRIC SCORES USING THEOREM [3.3]

Using Lemma [3.4]and Theorem [3.5] we formalize how AEs cause geometric deviations. Let z, be a
clean (on-manifold) satisfying ||z; — M|| < «, and let 2/ be an adversarial (off-manifold) embedding
such that satisfies || z; — M|| > v > 3. From Theorem 3.5 we know:

]Ezufvp[llzz/‘ - Zu”] > EzuNP[Hzi - Zu|”

Using this difference, we show that standard distance- or density-based measures, including &, NN,
KDE, Mahalanobis distance, and LID, will produce higher average scores (or lower, in the case KDE)
for 2] than for z;.

k-NN Distance. Let k-NN(z;) C {z1,...,2;} be the set of k-nearest neighbors to z;. Then we
have

1
din(zi) = o Yo ==zl

2w €EKNN(z;)

If ||z} — 2, exceeds ||z; — z,| on average, then the set of candidate neighbors for z; is at a larger
radius. Formally, we have:

Let 7’}6 be the distance from 2 to its k nearest neighbors, and rj, be the distance from z; to its k
nearest neighbors. By Theorem we have E [||z{ - ZUH} > E {sz - zu||} which implies (upon

sorting distances from smallest to largest) that E[r}] > E[ry]. Thus, we have:

Eldow(z)] = B[ 3 -zl > E[f > la-zl] = Eldon)],

24 €k-NN(2]) 24, €k-NN(z;)

=>]E[dk_NN(Z£)] > E[dk-NN(Zi)]~

KDE. Given i.i.d. clean samples {z1, ..., 2, }, the kernel density estimate at z; is:
R 1 n
flzi) = — > K(llzi — %)
j=1

where K (-) is a decreasing kernel function (e.g. Gaussian). From Theorem 3.3] for each z;: ||} —
zill > ||z — z&l|, thus the term K (||} — z;||) is smaller on average than K (||z; — z;]|) because K
is a monotonically decreasing function. Therefore,

E[K(l2 - %)] < E[K(lz - 21)]-
Summing over j = 1, ..., n and dividing by n, we conclude

E[f(z)] < E[f(z:)].

Mahalanobis Distance. Given a clean embedding distribution with mean y € RP and positive-
definite covariance matrix ¥ € RP*L the Mahalanobis distance for a point z; € RP is defined
as:

daganar(z) = (20— 1) B (2 — ). 0)

Suppose z; is an off-manifold (adversarial) embedding as characterized by Lernrna and let z; be
an on-manifold (clean) embedding, and then from Theorem [3.5] we know:

EuNp[sz/‘ - Zu”] > Eu~p[Hzi - Zum

Because X # cl, the Mahalanobis metric emphasizes directions of low variance (i.e., those with
small eigenvalues of X). In particular, by Lemma z! lies in directions outside the principal
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manifold, where ¥ typically has smaller eigenvalues (and hence larger eigenvalues of ¥ ~!), leading
to:

(2= 1) S (=) > (z =) BT (= — ),
Taking expectation and then applying Jensen’s inequality yields:

E[(i - m) 27 (2= )| > E[(zi =) =7 (5 )]

= B[\l — )81 - )] > B[ - TS - ).
reaching to:

E [dyanar(2])] > E[dmanal(2i)]-

LID. The maximum likelihood estimator (MLE) of LID for a point z; is given by:

LiD(z) = (—721 ol Pz )D_l.

THI&X Z7

where r;(z;) is the distance to the j-th nearest neighbor and r.,,4.(2;) is the distance to the farthest
among the k neighbors. By Lemma [3.4] adversarial embeddings tend to lie farther from the data
manifold, resulting in increased distances:

Tz(zi) - 7‘1'(2’1') + ATia Tmax(zg) - Tmax(zi) + A"dmaxa
where Ar; > 0, Arpyax > 0 are perturbation shifts.

Substitute these into the LID formula for z;:

—1

LID,gy(2;) =

?r\'—‘

j=1 rmdx ) + A'f"mdx

We assume that adversarial perturbations enlarge the inner radius of the local neighbourhood more
than the outer radii, as in highly anisotropic embedding spaces, variance concentrates along a few
principal axes. Adversarial perturbations, causing data to be off-manifold, step into low-variance
directions separate the perturbed point from its immediate neighbours, while barely affecting its
distance to already distant points, reaching to:

Ar; o AT max

Tj(zi) Tmax(zi)

forall j < k.

By simplifying the log difference and using the log difference property, we have:

k k
Ar; Arp, 1 ri(z;) + Ar; 1 (%)
It 1 d I 14+ —2= - 1 A J — log —-2 .
©8 ( + rj(zi)) = o8 ( + rmax(zi)) = k' ; ©8 rmax(zi) + A’r'max ~ k 1:21 o8 Tmax(zi)
2D
= LIDyg,(2]) > LID(z;). (22)

Therefore, by taking the expectation:
E[LID4v(2;)] > E[LID(2;)].
showing that the expectation of LID values of adversarial embeddings is higher than LID values of

clean ones.

23



Under review as a conference paper at ICLR 2026

600 R
Clean 1200 Clean o 175 —— KL Divergence
500 Adv Adversarial o
1000 5 150
@
EADO E 500 A 125
%300 g 600 g 1o
o 3 g 0.75
= 200 = 400 2050
>
100 200 5025
o 0 0.00
04 06 08 10 12 14 16 00 05 10 15 20 25 30 35 0 200 400 600 800 1000
Tangent Energy Reconstruction Error le-3 PCA Component

(a) Comparison of energy in normal (b) Comparison of reconstruction er- (c) Divergence per PCA dimension
direction. Iofr. (ordered by variance of clean data)

Figure 4: Verification of Lemma adversarial data in VLPs are off-manifold.

B.6 OFF-MANIFOLD VERIFICATION (LEMMA [3.4)

To verify this phenomenon, we conducted four empirical validations to support this claim (using
ImageNet-V2 and CLIPcny) based on different perspectives.

* Energy in Normal Directions: By decomposing the embedding space using SVD, in Figure
[alit is shown that adversarial samples exhibit significantly greater energy in the directions
corresponding to the lowest 10 singular values, those least used by clean data, compared
to clean samples. Since these directions span the normal space to the data manifold, this
confirms that adversarial perturbations push samples off the manifold.

* Reconstruction Error via Low-Rank PCA: We projected both clean and adversarial
embeddings onto the top K=10 principal components derived from clean data, and measured
the reconstruction error (L2 residual). Figure b shows that adversarial samples have higher
residuals, indicating they lie farther from the low-dimensional subspace characterizing clean
data. This shows that adversarial examples activate uncommon directions and break the
compact structure of the manifold.

* KL Divergence in Principal Directions: To assess the statistical shift, we computed KL
divergence between clean and adversarial embeddings along individual PCA axes (up to
1000, ordered by variance on the clean data). Figure [4c| shows that divergence is most
pronounced in the top 1-20 components, suggesting that adversarial perturbations alter the
most informative and discriminative dimensions of the representation space.

* Instability of Principal Directions: We further examined whether the top PCA directions
remain stable under attack by computing Kendall’s Tau (Kendall, |1938)) and Spearman’s Rho
(Spearmanl, [1987) rank correlations between the top 10 clean and adversarial components.
The correlations were consistently low, indicating that adversarial perturbations disrupt the
structure of dominant semantic directions in the embedding space.

ﬂ [ Adversarial
[ 5‘ [ Clean

\ <
N D

0.6 0.8 1.0 1.2 1.4 0.4 0.6 0.8 1.0 1.2 1.4 10 20 30 40 50 0 5 10 15 20 25
k-NN of image encoder in CLIPcyy k-NN of last layer in ResNet50  LID of image encoder in CLIPcyn  LID of last layer in ResNet50
(a) (b) (© (d)

Figure 5: Comparison of the k-NN and LID distributions between the CLIPcny image encoder and
the ResNet-50 using ImageNet data.
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B.7 EMPIRICAL VERIFICATION OF GEODETECT

In this section, we first present our motivation for using geometric metrics as signals to detect
AEs in VLPs. We then empirically demonstrate that the geometric distance gap, as formalized in
Theorem [3.5] serves as an effective and interpretable signal for adversarial detection.

We compare the distributions of k-NN distances and LID scores in CLIPcny and a supervised ResNet-
50 baseline, both sharing the same image encoder architecture. As shown in Figure [5} CLIPcnN
exhibits a more pronounced separation between clean and adversarial samples in both metrics. This
indicates that adversarial perturbations induce stronger geometric deviations in CLIP embeddings,
making them easier to distinguish from clean samples. This observation aligns with our earlier
analysis of anisotropy that the more directional, concentrated structure of VLPs embeddings leads
to stronger off-manifold deviations under perturbation. These results provide empirical support
for the theoretical foundation that anisotropy amplifies geometric separation, enhancing adversarial
detectability in VLPs.

Figure[6]visualizes the distribution of Euclidean distances between a query embedding and a randomly
sampled clean reference. Clean—clean pairs (blue) cluster at lower values, while clean—adversarial
pairs (red) shift noticeably to the right, in agreement with Theorem statement that E, ., [||z{ -

ZuH] >Eenp() [”Zl - Zu”]

Table[6] builds on Lemma [3.4] which shows that adversarial examples lie off the clean-data manifold,
and on Theorem [3.5] which shows the resulting gap in expected distances. Motivated by this insight,
and to verify that, we test a simple "random-%" detector, where each query embedding is evaluated
based on its distance to a single, randomly chosen clean embedding. Despite its simplicity, this
approach effectively exploits the Lemma [3.4]s idea, providing strong empirical performance and
confirming that even a single distance captures meaningful adversarial deviations.

Finally, Figure [/] shows the t-SNE projection of a random batch using CLIPcnn. Gray points
represent randomly sampled CIFAR-10 clean embeddings. The blue point corresponds to one of
these clean samples, and the orange point is its adversarial counterpart. The adversarial embedding is
visibly displaced from the dense cluster of clean data, further reinforcing the claim that adversarial
perturbations cause off-manifold shifts that are detectable through distance-based metrics.

C ABLATION STUDY: SENSITIVITY ANALYSIS

In this subsection, we evaluate the sensitivity of GeoDetect to the locality parameters, the effect of
different backbone attacks, and excluding multimodal embedding.

C.1 SENSITIVITY TO LOCALITY

Adversarial detection methods based on local analysis, such as k-NN and LID, are sensitive to the
locality hyperparameter k, which defines their local scope. To assess the impact of this parameter,
we conducted experiments varying k over 10, 20, 30,40, 50 using the Sepy,; attack on CLIPy;r.
Figure [§]illustrates that k-NN exhibits more stable detection performance across different choices of
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Table 6: Discrimination power (AUC and FPR95) of the random-k distance for CLIPcny and ALBEF
across different datasets and attack types.

Model Attack CIFAR10 CIFAR100 ImageNetlk STL10 Food101
AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95
CLIPcnN Sepuni 100 0.0 100 0.0 99.83 044 9999 00 100 0.0
Co-Attack 100 0.0 100 0.0 9993 0.20 99.99 0.0 99.99 0.0
CLIPvir Sepuni 99.99 0.0 100 0.0 9997 0.05 100 0.0 99.99 0.0
Co-Attack 100 0.0 100 0.0 98.50 76.24 9999 0.0 9999 0.0
ALBEF Sepuni 100 0.0 9999 00 9932 3.34 99.97 0.06 99.96 0.12
Sepmulti 99.88 0.39 99.43 290 65.65 8893 76.99 76.25 88.34 42.66
Co-Attack 100 0.0 9999 0.0 99.29 3.74 9995 0.06 99.95 0.10
TCL Sepuni 100 0.0 100 0.0 94.80 23.27 99.99 0.0 99.98 0.0
Sepmulii 99.95 0.20 99.94 0.20 47.16 97.15 86.58 57.36 94.11 23.74
Co-Attack 100 0.0 100 0.0 94.69 2459 99.99 0.0 99.98 0.02
100.001 100.00 100.01
99.981 99.95 99.51
o oo o o =l
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Figure 8: The detection AUC rates of local geometric approaches under varying locality k.

k, highlighting its robustness. In contrast, LID performance fluctuates more substantially, indicating
greater sensitivity to neighborhood size selection.

C.2 SENSITIVITY TO BATCH SI1ZE

Also, Table [/] illustrates the effect of different batch sizes on detection performance (AUC) for
CLIPcny using the ImageNet dataset, under the Sep-attack with the number of nearest neighbors (k)
set to 20. As shown, the results remain relatively stable across batch sizes, indicating that detection
performance is not significantly impacted. This suggests that even with a limited batch size of 64 and
20 nearest neighbors, GeoDetect remains highly effective at identifying adversarial samples.

Table 7: Effect of batch size on detection performance (AUC) with & = 20 nearest neighbors on
ImageNet under Sep-attack.

Batch Size GeoDetect-kNN (%) GeoDetect-LID (%)

64 99.62 97.09
128 99.66 91.73
256 99.61 97.11
512 99.63 97.84

C.3  SENSITIVITY TO LAYER SELECTION IN LID-BASED DETECTION
Table [§] reports the sensitivity of GeoDetect based on LID to detect Sep-Attack using different

ImageNet layers. The results justify our choice to combine early, mid, and late blocks (Appendix
[A3)), as this captures complementary semantic depths that are necessary for effective detection.
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Table 8: GeoDetect-LID performance (AUC %) using features from different layers/blocks in CLIPy;r
using ImageNet.

Layer / Block GeoDetect-LID AUC (%)

Only Early 64.64
Only Mid 62.92
Only Late 98.93
Early + Mid 65.67
Mid + Late 98.99
Early + Mid + Late 99.22

C.4 SENSITIVITY TO NUMBER OF AVAILABLE SAMPLES

Table O reports the impact of the number of available samples N on training the GeoDetect-LID
detector for ImageNet with CLIPyir. The results show that performance remains stable across
different sample sizes. For k-NN-based detection, both AUC and FPR95 are unaffected by [V, since
the GeoDetect k-NN is threshold-based.

Table 9: Impact of N on GeoDetect-LID performance (AUC) for ImageNet using CLIPy;t.

N/2 GeoDetect-LID (%)

8000 99.22
7000 99.20
6000 99.16
5000 99.15

C.5 THE EFFECT OF MULTIMODAL EMBEDDINGS ON DETECTION.

We evaluate the impact of including a multimodal layer on LID detection. As shown in Figure[9] the
exclusion of this layer led to decreased AUC scores across most evaluated datasets. This highlights
the critical role of multimodal embeddings, particularly when adversarial perturbations directly target
the multimodal encoder.

D ABLATION STUDY: GENERALIZATION ANALYSIS

D.1 GENERALIZATION TO DIFFERENT BACKBONE ATTACKS.

We conducted an evaluation to assess GeoDetect’s ability to generalize to new attacks. beyond PGD-
based attacks. Specifically, for LID-based detection, we trained the detector using PGD-based attacks
and then evaluated its performance against samples generated from other attack strategies, including
FGSM (Goodfellow et al.,[2014), R-FGSM (Tramer et al., 2018)), -FGSM (Kurakin et al.| [2018)), and
MI-FGSM (Dong et al.,[2018])). The calibration and test sets were prepared consistently with previous
experiments, with calibration data exclusively using PGD-generated examples, while alternative
attacks were reserved for the test set. For threshold-based methods (k-NN, Mahalanobis, and KDE),
we directly evaluated their performance against these new attack strategies without additional training.
Results presented in Table [T0]demonstrate substantial generalizability and robustness across diverse
gradient-based adversarial attacks.

D.2 EVALUATION OF ROBUSTNESS AGAINST SET-LEVEL GUIDANCE (SGA) ATTACK

In this subsection, we evaluate the robustness of GeoDetect in detecting SGA attack. SGA (Lu et al.,
2023) is a strong VLP-specific adversarial attack that perturbs inputs by optimizing against a set of
semantically irrelevant text prompts. This strategy effectively disrupts image-text alignment across
multiple candidate prompts, making it harder to detect using conventional pairwise similarity. In
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Table 10: Generalization of GeoDetect to Sepyn;
100 ¢ | 00 wo 2y with different baseline attacks in CLIPyr for
| 00 with zns STL10. AUC is reported.
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Figure 9: Effect of multimodal embedding I-FGSM  99.99 100 99.99 99.96
on LID detection under fused VLP attacks. MI-FGSM 99.97 100 99.99 99.96

this attack, we use a batch size of 64 for CLIPcnn and CLIPy;t, with & = 40 for LID and k£ = 5 for
k-NN. For ALBEF and TCL, the batch size is set to 16, with k = 10 for both LID and k-NN.

Table 11: GeoDetect discrimination power (AUC score) comparison of SGA attack with Co-Attack
in Image-Retrieval Task with Flickr30k and COCO dataset in aligned VLPs (CLIPcnN and CLIPy;r),
and fused VLPs (ALBEF and TCL)

(a) k-NN Detection (b) LID Detection
Model Flickr30k ({0 160) Model Flickr30k COCoO
Co-Attack SGA Co-Attack SGA Co-Attack SGA Co-Attack SGA
CLIPcay - 99.97  93.89  99.95 90.78 CLIPcay 98.90  88.18  99.50 91.97
CLIPvit 99.59 9441 99.51 91.75 CLIPviT 96.55 8547 99.06 86.00
ALBEF 99.88 8271 98.73 84.15 ALBEF 93.80 73.75 9149 75.12
TCL 96.59 67.32 98.05 91.11 TCL 90.76  70.12 88.25 78.58

The GeoDetect’s discrimination performance against the SGA attack, as presented in Table [I1]
demonstrates a discrimination power comparable to that of Co-Attack. Moreover, even under stronger
attack scenarios, GeoDetect achieves a robust detection rate.

D.2.1 SGA IN BLACK-BOX SETTINGS

We evaluated the SGA attack on the Flickr30k dataset to assess GeoDetect’s robustness under
black-box conditions. As reported in Table[I2] GeoDetect-LID is able to detect transfer attacks.

Table 12: GeoDetect-LID AUC (%) under black-box SGA transfer attacks on Flickr30k.

Source — Target GeoDetect-LID AUC (%)
CLIP(CNN) — CLIP(ViT) 88.08
CLIP(ViT) — CLIP(CNN) 82.32

D.3 EVALUATION OF ADAPTIVE ATTACKS

In this section, we evaluate the impact of adaptive attacks at test time on GeoDetect. Adaptive attacks
specifically target the detection mechanism by incorporating it into the optimization process for
perturbation generation. Assessing their effectiveness is critical, particularly in white-box settings,
where the attacker has full access to the model and can modify the optimization function to craft
perturbations that directly target the detection method. Additionally, we categorize the adaptive
attacks into two groups based on the method of perturbation generation and evaluate the performance
of GeoDetect against each type of adaptive attack. In the following attack setting, the batch size for
CLIPcnN and CLIPy;t is set to 128, with £ = 100 for LID and £ = 10 for k-NN. For ALBEF and
TCL, the batch size is set to 32, with £ = 20 for LID and k = 10 for k-NN.
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Table 13: GeoDetect discrimination power (AUC score) comparison between different distribution
adaptive and non-adaptive attacks for Image-Retrieval Task with Flickr30k and COCO dataset in
aligned VLPs (CLIPcnn and CLIPy;r), and fused VLPs (ALBEF and TCL) (Note: ’N-adaptive’
refers to the Non-adaptive method.)

(a) Effect of k-NN adaptive Attacks (b) Effect of LID adaptive Attacks
Dataset Dataset
Model Attack ' Model  Attack '
Flickr30k coco Flickr30k coco
N-adaptive Adaptive N-adaptive Adaptive N-adaptive Adaptive N-adaptive Adaptive
Sepuni 9999 6782 9997 7447 Sepuni 9845 8381 9954  93.14
CLIPONN oo Attack 9997 6732 9995 7428 CLIPONN o Attack 9890 8281 9950  94.67
 Sepun 100 6116 100 6844  Sepun 9937 3156 9998  83.82
CLIPVT oo Attack 9959  59.68 9951  67.68 CLIPVT oo Attack 9655 5224 9906 8696
Sepuni 9975 5138 9854 7153 Sepuni 9499 7178 9180  89.86
ALBEF  Seppui 5484 4982 5702 69.88 ALBEF Sepmuq 7426 8983 7985 9231
Co-Attack 9988 5102 9873 7153 Co-Attack 9380  70.12 9149  90.11
Sepuni 96.10 5127 9801  74.19 Sepuni 90.88  77.15 8932  88.70
TCL  Sepmui 3289 5057 3389 7404 TCL  Sepmui 8472 9183 8395  94.64
Co-Attack 9659 5118 9805  74.00 Co-Attack 9076 78.10 8825  90.02

Different Distribution Adaptive Attacks In this subsection, we assess the effect of adaptive
attacks, where the batch used to generate the attack differs from the batch used for detection. This
ensures that the attack is strong enough to evade the specific batch distribution. This approach
challenges detection methods to generalize across attacks crafted from different data distributions,
thereby enhancing the credibility of the results and demonstrating the practical resilience of the
detection framework. One of the challenges in generating AEs is that minimizing the gradient of
the distance to the current k-nearest neighbors is not always representative of the true direction
for optimizing the set of k-nearest neighbors (Athalye et al., [2018). Our approach of attacking
mitigates this issue by selecting different batches for attack generation and detection. By doing so,
we avoid optimizing based on the current nearest neighbors in the same batch, which could mislead
the attack’s effectiveness. This method ensures that the attack is strong enough to bypass detection
while maintaining the true nature of adversarial perturbations.

Moreover, GeoDetect based on £-NN is inherently robust due to its threshold-based detection, and
the adversary has no access to the detector model to evade it.

‘Cadaptive(ziv Zz/) = £main(zi; Z;) - C : Metric(z;, {Zj}]n:l)a Zi € Bg 7& Bd- (23)

Here, Metric(z;, {#;}7_,) represents the LID or k-NN function that computes the score for AE
embeddings z; relative to the clean sample embeddings z;. The batch used for attack generation, By,
is different from the batch used for detection, B;. We set ( = 0.1, k = 20 for LID, and k£ = 10 for
k-NN in optimization of attacks. The results presented in Table|13|offer insights into the resilience
of the GeoDetect framework, especially GeoDetect-LID framework, under adaptive attacks. k-NN
and LID are robust when detecting adaptive attacks for CLIP and reasonably effective for ALBEF
and TCL. We also observe that LID detection is more robust to adaptive attacks, highlighting its
effectiveness and capability in more complex types of attack. The improved detection rates, especially
against Sepnyy attacks, can be attributed to the dynamics of attack generation. Specifically, the
use of a multimodal encoder during attack generation alters the data distribution, enhancing the
distinguishability of perturbed samples. This process causes the perturbed samples to shift more
significantly within the feature space, making them easier to detect.

Selective Gradient Descent Adaptive Attack In this section, we evaluate the selected adaptive
attack introduced by Bryniarski et al.| (2021)), which addresses the issue of over-optimization when
one objective is prioritized at the expense of another. This attack method ensures a more balanced
optimization process, avoiding the trade-off that could compromise the effectiveness of adversarial
perturbations in evading detection while still achieving misclassification. The paper argues that
summing the misclassification 10ss Laqaptive (2, 2;) and detection loss Metric(z], {z; }}‘21) is prob-
lematic because the two terms represent conflicting objectives. The misclassification term aims
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Table 14: GeoDetect discrimination power (AUC score) comparison between selective gradient
descent adaptive and non-adaptive attacks for Image-Retrieval Task with Flickr30k and COCO
dataset in aligned VLPs (CLIPcnn and CLIPy;7), and fused VLPs (ALBEF and TCL) (Note: *N-
adaptive’ refers to the Non-adaptive method.)

(a) Effect of k-NN adaptive Attacks (b) Effect of LID adaptive Attacks
Dataset Dataset
Model Attack ' Model  Attack '
Flickr30k coco Flickr30k coco
N-adaptive Adaptive N-adaptive Adaptive N-adaptive Adaptive N-adaptive Adaptive
Sepuni 9999 6797 9997 7417 Sepuni 9845 8610 9954 9350
CLIPeNN oo Attack 9997 6775 9995  74.93 CLIPONN o Atiack 9890 8272 9950 9475
S 100 6097 100 68.73 S 9937 3583 9998 8624
CLIPVT oo Attack 9959 6138 9951 6823 CLIPVT oo Attack 9655 6298  99.06  88.88
Sepuni 9975 5201 9854 7128 Sepuni 9499 7634 9180  90.86
ALBEF  Seppui 5484 4993 5702 69.80 ALBEF Sepmus 7426 8868 7985 9278
Co-Attack 9988 5140 9873  70.94 Co-Attack 9380 7492 9149  90.92
Sepuni 96.10 5126 9801 7408 Sepuni 90.88 7890 8932 8938
TCL  Sepmui 3289 5077 3389 7423 TCL  Sepmui 8472 9193 8395 9476
Co-Attack 9659 5091 9805  73.85 Co-Attack 9076 80.65 8825  89.78

to fool the model, while the detection loss works to avoid detection. Optimizing both objectives
simultaneously in a single summed loss function leads to difficulties in finding a global minimum, as
the problem is non-convex. This increases the likelihood of falling into local minima that focus too
much on one objective and neglect the other, resulting in attacks that either fail to mislead the model
or are easily detected. The formula for this adaptive attack is presented as follows:

,Cadaptive(zi, Z;) = [:(Zl, Z;) . Il[Sim(zI, ZT) = tid] —pP- MCtI'iC(ZZ/-, {Zj}?:l) . IL[Sim(zI, ZT) 75 tid]
' 24

where similarity matrix defined in Equation [25] and ¢, represents the text IDs associated with the
images. Also, we put p = 0.1 in our experiments, The core idea is that, instead of minimizing a
convex combination of the two loss functions, the approach selectively optimizes either Ly, Or
Metric(z;, {z;}7_,) based on whether the maximum similarity score corresponds to the text ID.

Sim(zy, 2¢) = Z 2k 2k (25)
k=1

The results presented in Table [I4] offer insights into the resilience of the GeoDetect, especially
GeoDetect-LID framework, under this type of adaptive attack.

E EXTENDED EVALUATION

E.1 EVALUATION ON DIFFERENT MODELS

Table@] presents the results of adversarial detection for zero-shot classification in the CLIPy;r and
TCL models. The findings are consistent with those shown in Table[I]in the main text.

E.2 COMPARISON WITH PROMPT-BASED IRRELEVANT PROBING

PIP (Prompt-based Irrelevant Probing) (Zhang et al., |2024c) is a task-specific detection method
designed for VQA. It relies on analyzing the attention patterns in response to irrelevant probe
questions to identify AEs. However, its applicability is limited to multimodal models that expose
cross-attention layers between vision and language components. Specifically, PIP is not compatible
with dual encoder architectures that lack explicit cross-attention mechanisms. Furthermore, since
PIP operates on question-conditioned attention maps, it is inherently constrained to VQA and cannot
be easily extended to other vision-language tasks or modalities. Its detection strategy is also not
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Table 15: A comparison of the discrimination power (AUC score) among MCM and GeoDetect
framework using LID, k-NN, Mahalanobis (denoted as Mah.) and KDE in an aligned VLP, CLIPy;r,
and a fused VLPs, TCL.

CIFAR10 CIFAR100 ImageNetlk STL10 Food101
AUC FPRY95 AUC FPRY95 AUC FPR9Y9S AUC FPRY95 AUC FPRYS
Sepuni 76.47 8824 72.09 67.83 86.06 54.55 94.84 26.79 94.51 25.32

Model Method Attack

CLIPyir MCM Co-Attack 80.21 73.54 68.37 76.24 84.14 5893 95.51 20.73 89.78 40.95
LID Sepuni 100 0.00 100 0.00 99.23 4.57 9999 0.00 99.98 0.02
Co-Attack 100 0.00 100 0.00 97.09 1530 99.74 0.64 99.54 1.49

k-NN  Sepuni 100 0.00 100 0.00 9998 0.00 100 0.00 100 0.00
Co-Attack 100 0.00 100 0.00 98.67 6.64 99.99 0.00 100 0.00

Mah. Sepuni 100  0.00 100 0.00 99.85 094 99.99 0.06 99.98 0.14
Co-Attack 100 0.00 100 0.00 99.18 3.07 9997 0.06 99.82 0.82

KDE Sepuni 100 00 100 0.00 9995 0.10 9997 0.19 100 0.00

Co-Attack 100 0.00 100 0.00 98.79 635 99.82 039 100 0.0

Sepuni 7691 55.63 62.15 73.78 90.49 32.02 94.82 18.45 76.76 71.88
MCM  Sepmuti 46.63 99.06 37.01 97.24 64.85 87.65 73.34 7749 46.94 95.84
Co-Attack 80.82 45.65 69.05 68.32 92.74 26.71 97.13 13.65 79.07 64.75

Sepuni 100 0.00 100 0.00 91.92 2828 99.62 1.81 99.77 1.01

LID Sepmuti 9991 0.25 99.88 0.54 85.64 53.66 97.71 1297 93.15 30.67

TCL Co-Attack 100 0.00 100 0.00 91.02 30.64 99.89 0.69 99.79 0.79
Sepuni 100 0.00 100 0.00 93.99 2577 99.97 00.06 99.98 00.06

k-NN  Sepmuni 99.78 1.28 99.87 0.59 3254 97.98 8539 56.04 92.08 32.53
Co-Attack 100 0.00 100 0.00 93.83 26.61 99.98 00.06 99.98 0.06

Mah. Sepuni 100 0.00 100 0.00 99.65 1.56 99.99 0.06 100 0.00
Sepmuti 100 0.00 99.99 0.05 59.92 89.52 98.28 831 99.11 3.41
Co-Attack 100 0.00 100 0.00 99.64 1.56 99.99 0.06 100 0.00

KDE Sepuni 99.16 0.86 100 0.00 90.89 3533 98.63 4.56 99.95 0.24
SePmuti 9897 146 99.80 1.11 59.70 85.08 80.72 60.62 92.30 33.70
Co-Attack 99.15 0.86 100 0.00 90.98 36.54 98.62 4.56 99.96 0.20

Table 16: Performance comparison of PIP and GeoDetect under different clean/adversarial sample
ratios.

Method M iean/ Mgy Precision Accuracy Fl-score

PIP 1000/1000  90.91 95.00 95.24
1000/100  50.00 90.91 66.67
GeoDetect (k-NN) 1000/1000  97.99 97.65 97.64
1000/100  8&3.19 99.09 90.41
GeoDetect (LID) 1000/ 1000  94.66 90.95 90.56
1000/100  65.73 95.00  77.32

theoretically grounded, and its performance depends heavily on the nature of the probe questions and
attack specificity to VQA outputs.

In contrast, GeoDetect is a general-purpose adversarial detection framework that does not rely on
attention mechanisms or task-specific structures. It utilizes model representations and incorporates
geometric reasoning to detect off-manifold behavior in AEs. GeoDetect is task-agnostic, theoretically
justified, and shown to generalize across various settings and models.

We compare GeoDetect with PIP in Table using the COCO dataset and AEs targeting CLIPy;r,
followed by the pipeline in (Zhang et al., 2024c)). For GeoDetect, k-NN is set k to 5, and for LID is
to 20, both with a batch size of 128. To have a fair comparison, for both £-NN and LID, we used the
mean-pooled final-layer embeddings to compute metrics. Also, to compute the precision, accuracy,
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and F1-score we set the threshold for detection as 0.65 for £-NN-based, and 0.32 for LID-based.
Following (Zhang et al.| |2024c), the PGD attack encompasses a 20-step iteration, with a step learning
rate of 2/255 and an overall perturbation limit of e, = 8/255. GeoDetect significantly outperforms
PIP across all evaluation metrics. In particular, GeoDetect-kNN achieves the best overall performance,
with high precision, accuracy, and F1-score even under imbalanced settings. GeoDetect-LID also
performs competitively in balanced scenarios, highlighting the method’s robustness and adaptability
across detection strategies.

F USAGE OF LARGE LANGUAGE MODELS.

We used OpenAI’s GPT-4 and GPT-5 models, with a limited capacity, for language editing and
polishing of the manuscript text. The models were not involved in developing ideas, designing
methods, and analyzing results.
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