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Abstract

We present a high-bandwidth, egocentric neuromuscular speech interface that
translates silently voiced articulations directly into text. We record surface elec-
tromyographic (EMG) signals from multiple articulatory sites on the face and neck
as participants silently articulate speech, enabling direct EMG-to-text translation.
Such an interface has the potential to restore communication for individuals who
have lost the ability to produce intelligible speech due to laryngectomy, neuro-
muscular disease, stroke, or trauma-induced damage (e.g., radiotherapy toxicity)
to the speech articulators. Prior work has largely focused on mapping EMG col-
lected during audible articulation to time-aligned audio targets or transferring
these targets to silent EMG recordings, which inherently requires audio and limits
applicability to patients who can no longer speak. In contrast, we propose an
efficient representation of high-dimensional EMG signals and demonstrate direct
sequence-to-sequence EMG-to-text conversion at the phonemic level without rely-
ing on time-aligned audio. All data, code, and model checkpoints are open-sourced
at GITHUB + DATA REPOSITORY.

1 Introduction

Electromyographic (EMG) signals collected from the orofacial neuromuscular system during the
silent articulation of speech in an alaryngeal manner can be synthesized into personalized audible
speech, potentially enabling individuals without vocal function to communicate naturally. Moreover,
such systems could seamlessly interface with virtual environments where audible communication
may be disruptive (e.g., multiplayer games) or to facilitate telephonic conversations in noisy settings.
A key enabler of these advancements is the rich information encoded in EMG signals recorded
from multiple spatially distributed locations, capturing muscle activation patterns across different
muscles. This richness allows for the decoding of subtle and intricate articulatory details, potentially
offering higher bandwidth and lower latency compared to exocentric or allocentric modalities, such
as video-based lip-to-speech synthesis. By leveraging this information, EMG-based systems offer a
promising foundation for natural and efficient communication across a range of applications.

The works in [1] and [2] present invasive speech brain computer interfaces (BCI). While invasive
methods are viable for individuals with anarthria or amyotrophic lateral sclerosis, our EMG-based
non-invasive speech prosthesis is appropriate for individuals who have undergone laryngectomy or
experience dysarthria or dysphonia. Work in [3] demonstrates a non-invasive BCI where listened
speech segments are reconstructed from magnetoencephalography (MEG) or electroencephalography
(EEG) signals. However, such systems are not suitable for initiating communication (e.g., through
speech).
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Unlike invasive methods [1, 2], which record neural activity at single-neuron resolution with high
signal-to-noise ratios, EMG captures the aggregated activity of multiple muscle motor units, with
signals further distorted as they propagate through the subcutaneous tissue and skin. These distortions
lead to spatial signal correlations across electrodes, where activity at one sensor can influence
measurements at others. To model this structure, we introduce symmetric positive definite (SPD)
matrix representations that encode second-order inter-channel correlations, providing a compact and
discriminative representation of EMG signals. In contrast to prior approaches [3, 4, 5], which learn
representations by mapping time-aligned MEG, EEG, or EMG signals to corresponding audio, we
further improve the translation pipeline by directly predicting phoneme sequences from EMG without
requiring time-aligned audio. This is achieved using connectionist temporal classification (CTC) loss
[6], enabling alignment-free sequence prediction akin to standard speech-to-text (S2T) translation.

2 Prior work

The current benchmark in silent speech interfaces is established by [4, 5]. Using electromyographic
(EMG) signals collected during silently articulated speech (ES) and audibly articulated speech (EA),
along with corresponding audio signals (A), they develop a recurrent neural transduction model to map
time-aligned features of EA or ES to A. In their baseline model, joint representations between EA

and A are learned during training, and the model is tested on ES . To improve performance, a refined
model aligns ES with EA, and subsequently uses the aligned features to learn joint representations
with A. The methods described above have significant shortcomings that limit their practicality for
real-world deployment. These include: 1⃝ the unavailability of good-quality EA and A in individuals
who have lost vocal and articulatory functions; 2⃝ the need for a 2x sized training corpus for learning
x representations (requiring both EA and ES); and 3⃝ the requirement for aligned features, which
are computationally expensive and time-consuming to obtain, making near real-time implementation
challenging. We overcome these challenges by training a model using only ES and corresponding
phonemic transcriptions, without any alignments, employing CTC loss.

Another notable approach is presented in [7], which demonstrates that, unlike images and audio -
which are functions sampled on Euclidean grids - EMG signals are defined by a set of orthogonal
axes, with the manifold of SPD matrices as their natural embedding space. We build upon the
methods described in [7] in our analysis and introduce the following key improvements: 1⃝ we
train a recurrent model for EMG-to-phoneme sequence-to-sequence generation, as opposed to the
classification models proposed in [7], 2⃝ we operate in the sparse graph spectral domain, effectively
circumventing bottlenecks associated with repeated eigenvalue computation in neural networks,
which, due to their iterative nature, often have limited parallelization capabilities on GPUs, and
3⃝ demonstrate EMG-to-language conversion on continuously articulated speech as opposed to

individual words or phonemes.

A substantial body of prior work [8, 9, 10, 11, 12, 13] has laid the groundwork for the development
of silent speech interfaces. While these studies have been instrumental in shaping the field, they place
less emphasis on understanding the data structure or implementing parameter- and data-efficient
approaches. Moreover, we open-source eight hours of EMG data collected during silent speech
articulation.

3 Methods

EMG signals are collected by a set of sensors V and represented as functions of time t. A sequence
of EMG signals ES corresponding to silently articulated speech, associated with an audio signal A
and phonemic content L, is represented as ES = {fv(t)}∀ v∈V . Here, fv(t) denotes the EMG signal
captured at sensor node v as a function of time t. The audio signal A encodes both phonemic (lexical)
content and expressive aspects of speech, such as volume, pitch, prosody, and intonation, while
L represents purely the phonemic content—a sequence of phonemes. For example, the phonemic
content L of the word <FRIDAY> is denoted by the phoneme sequence <F-R-IY-D-AY>. To model
the mapping from ES to L, we employ a sequence-to-sequence model trained using CTC loss.
This approach enables training with unaligned pairs of ES and L, eliminating the need for precise
alignment between input signals and their corresponding phoneme sequences. During testing, a
sample ES not seen during training produces probabilities over all possible phonemes (40 in our
case) at each time step, and we construct L using beam search.
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We represent EMG signals by constructing a complete graph G = (V, E(τ)) that captures their
functional connectivity, where E(τ) denotes the set of edges over a time window τ = [tSTART, tEND].
The edge weight between two nodes v1 and v2 ∈ V within this time window is defined as e12 = e21 =
fTv1 fv2 , corresponding to the covariance of the signals at those nodes over the interval. Consequently,
the edge (adjacency) matrix E(τ) is symmetric and positive semi-definite. To ensure positive
definiteness, we convert the semi-definite adjacency matrices to definite matrices by applying the
transformation E ← (1− η)E + η trace(E) I, where I is the identity matrix of the same dimension
as E . We empirically found that η = 0.1 suffices for all our data. We then model these symmetric
positive definite (SPD) matrices using a Riemannian geometry approach via Cholesky decomposition,
as described in [14]. (We provide background on the Riemannian geometry of SPD matrices in
appendix A.)

For any adjacency matrix E , we can express it as E = UΣUT , where U is the matrix of eigenvectors
and Σ is a diagonal matrix containing the corresponding eigenvalues. Instead of recalculating U for
each E at every time step τ , we fix an approximate common eigenbasis Q derived from the Fréchet
mean F [14] of all adjacency matrices (across different time points) in the training set. Specifically,
we compute F as the geometric mean of all E , and decompose it as F = QΛQT , where Q contains
the eigenvectors of F and Λ is a diagonal matrix of its eigenvalues. Using this fixed eigenbasis
Q, any adjacency matrix E can be approximately diagonalized as QTEQ, yielding a sparse matrix
σ. This formulation allows us to work in an approximate graph spectral domain with a consistent
orthogonal basis across all time windows τ . For our task, we compute graph spectral sequences σ
for all time windows τ and use them as inputs for EMG-to-language translation. We illustrate these
concepts in figure 1 in appendix A. We implement a gated recurrent unit (GRU) architecture [15] for
EMG-to-phoneme sequence-to-sequence modeling. The input to the GRU consists of a sequence of
approximately diagonalized matrices σ, derived over different time windows τ .

4 Data and results

We adapt the language corpora from [1], who demonstrated a speech brain–computer interface by
translating neural spikes from the motor cortex into speech. The dataset comprises an extensive
English corpus containing approximately 6,500 unique words and 11,000 sentences. Unlike [4, 5],
we collect only ES (excluding EA and A) and perform ES-to-language translation without time
alignment to EA or A. The corpus includes sentences of varying lengths, with the subject articulating
at a normal speaking rate, averaging 160 words per minute. Timestamps were used solely to mark
sentence boundaries: the subject clicked a computer mouse at the start of articulation and again at its
completion. Details of electrode placement and the experimental setup are provided in appendix B.

Table 1: Mean PER and WER. Lower values indi-
cate better performance.

MODEL PER(% ↓) WER(% ↓)

BASELINE
(SPECTROGRAM) 89.25 100

MATRICES σ(τ)
(OURS) 48.47 73.53

We use a timestep τ of 20 ms, implemented as a
sliding window with 50 ms of overlapping con-
text and a 20 ms step size, to compute E(τ) and
σ(τ), both of which are SPD matrices of size
31 × 31. The matrices σ(τ) are then used as
input to a GRU for EMG-to-phoneme sequence
translation. We also compare our approach with
a baseline method that uses EMG spectrograms
similar to [16], where the spectrograms are pro-
vided as input to a GRU model (see appendix
C.1 for further explanation). The dataset is di-
vided into training, validation, and test sets containing 8000, 1000, and 1970 sentences, respectively.
Sentences in the test set are not included in either the training or validation sets.

The model shown in figure 1 (see appendix A) is trained with three GRU layers for 100 epochs,
and the checkpoint corresponding to the lowest validation loss is selected. In table 1, we report the
phoneme error rate (PER) and word error rate (WER), computed using the Levenshtein distance
between the original and reconstructed sequences. As shown in table 1, our method significantly
outperforms the baseline. Words are reconstructed from phoneme sequences using weighted finite-
state transducer (WFST)–based decoding, in which the CTC topology (H), lexicon (L), and a 4-gram
language model (G) are composed into a single search graph (HLG) following [17]. Further details
are provided in appendix C.
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4.1 Comparison with prior work

To the best of our knowledge, no prior work has performed ES-to-language conversion without using
EA or A on large English language corpora with CTC loss. Therefore, we compare our methods on
the EMG2QWERTY dataset introduced by [16]. In this dataset, subjects wear EMG wristbands on
both hands and type on a QWERTY keyboard. The task is to decode the resulting EMG signals into a
sequence of characters using CTC loss. Although the physical actions in EMG-to-speech decoding
and EMG2QWERTY differ, the underlying machine learning principles are similar.

To ensure a fair comparison, we conduct controlled experiments in which we replace the original
log-spectrogram features from [16] with matrices σ(τ). Apart from substituting the features, we omit
their SPECAUGMENT data augmentation strategy—this should not compromise the fairness of the
comparison, as SPECAUGMENT was shown to improve their performance. Additionally, we train our
models for 250 epochs (compared to 150 in their setup, where the model converged early) and apply
a weight decay of 10−3 to the Adam optimizer to ensure stable training. We focus on a specific case
from [16] in which personalized models are trained independently for each subject, starting from
random weight initialization. Other paradigms—such as zero-shot transfer, where a model is trained
on 100 subjects and evaluated on 8 unseen individuals, or personalized fine-tuning, where individual
models are initialized with generic weights pretrained on 100 subjects—are beyond the scope of this
work. In this paper, we restrict our investigation to personalized models trained from scratch.

The results are summarized in table 2, with per-subject performance shown in figure 4 (appendix C).
As shown, our proposed method outperforms the baseline reported by [16]. Without a language
model, we achieve an 8.8% relative improvement in CER over the baseline. With a language model,
the relative improvement increases to 16.8%2.

Table 2: Comparison between our proposed methods and those presented by [16], with all results
averaged over 8 subjects. Model size and FLOPs are identical across all three models. Lower CER is
better. The CER improvement arising out of our method is statistically significant (p < 0.015).

NO LM 6-GRAM CHAR-LM
VAL CER (% ↓) TEST CER (% ↓) VAL CER (% ↓) TEST CER (% ↓)

BASELINE
(SPECTROGRAM) [16] 15.65± 5.95 15.38± 5.88 11.03± 4.45 9.55± 5.16

MATRICES σ(τ) (OURS) 14.33± 5.27 14.03± 5.27 9.61± 3.84 7.95± 4.54

5 Conclusion and discussion

We show that EMG signals collected from orofacial muscles can be efficiently converted into text
through phonemic decoding. This demonstrates that a complex task such as speech can be decoded
non-invasively from EMG at a fine temporal resolution of 20 ms, where the expected chance phoneme
error rate is approximately 98%, compared to a much lower error rate of 49% achieved by our
method—without requiring time alignment with audio or regression to the acoustic domain. This
stands in contrast to other non-invasive neural decoding approaches, such as EEG- and MEG-based
systems, which—even when restricted to closed-set classification tasks over small vocabularies and
evaluated under favorable conditions (e.g., when alignment between neural signals and audio is
provided)—still yield high error rates. For example, decoding listened speech from high density
EEG results in error rates around 95%, while MEG-based methods report rates near 59% [3]. In
comparison, our approach performs phoneme-level decoding on large-vocabulary corpora with error
rates around 50%, underscoring the potential of EMG as a more accurate and scalable non-invasive
alternative for individuals with clinical conditions that impair voicing and articulator movement.

2For reference, in personalized-finetuning paradigm, [16] trained a generic model on 100 subjects (nearly
100× more data) and finetuned it on 8 individual subjects, achieving a CER of 11.29% without a language model
and 6.95% with a 6-gram character LM. This 6.95% result represents a strong performance ceiling achieved
with large-scale pretraining. In comparison, our 7.95% CER—obtained using only per-subject training (100×
less data)—is already close to this ceiling, highlighting the effectiveness of our approach.
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A Background on Riemannian geometry of SPD matrices

Speech articulation involves the coordinated activation of multiple muscles, with their activation
patterns governed by the functional connectivity of the underlying neuromuscular system. Conse-
quently, EMG signals collected from spatially distributed muscle sites exhibit a time-varying graph
structure. [7] demonstrates that the graph edge matrices corresponding to orofacial movements under-
lying speech articulation are inherently distinguishable on the manifold of SPD matrices. Through
experiments with 16 subjects, [7] shows the effectiveness of using SPD manifolds as an embedding
space for these edge matrices. Building on this foundation, we investigate the temporal evolution of
graph connectivity using edge matrices to enable EMG-to-language translation. The overall decoding
pipeline is illustrated in figure 1.

Figure 1: LEFT: EMG-to-phoneme translation pipeline. Bandpass-filtered and z-normalized EMG
signals are converted into SPD edge matrices E(τ), which are approximately diagonalized to σ(τ)
and passed through a BiGRU. The model outputs phoneme probabilities P (τ) every 20 ms. The
most probable phoneme sequence is decoded using beam search. RIGHT: Illustration of the geometry
of SPD matrices in 3D. Edge matrices from individuals A (blue) and B (green) are shown on a
convex cone manifold, with their corresponding Fréchet means in purple and yellow, respectively.
The tangent spaces at A and B differ (because the surface is curved), and the induced transformations
in R|V| reflect a change of basis. Inset: eigenvectors of individual A.

Since SPD matrices (E(τ), σ(τ)) inherently encode articulatory information, directly feeding them
into a neural network that models temporal dependencies (such as a GRU) enables effective decoding
of continuously articulated speech at the phonemic level. This aligns with the fact that phonemes are
determined by articulatory placement. In contrast, spectrogram features do not exhibit this property
and perform significantly worse than SPD-based representations, as shown in table 1. Furthermore,
figure 2 illustrates that the relationship between phoneme error rate (PER) and model size approxi-
mately follows a power law, consistent with the scaling behavior described by [18] for large language
models. Specifically, when trained with sufficient data, the error E can be expressed as E = α

Nβ ,
where N is the model size and α, β > 0 are constants. This scaling relationship allows us to predict
model performance based on size. Notably, even a single-layer model achieves a reasonably low
PER of 0.56, while deeper models further improve performance. These findings demonstrate that our
approach is both effective and theoretically well grounded.

A.1 Fréchet mean

Given a set of SPD edge matrices E(τ) over different time windows τ , we first calculate their
corresponding Cholesky decompositions L(τ) = CHOLESKY(E(τ)), such that E(τ) = L(τ)L(τ)T .
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Figure 2: Model size versus PER for EMG-to-phoneme translation.

Then, the Fréchet mean of the Cholesky decomposed matrices L(τ) is given by

FCHOLESKY =
1

n

n∑
i=1

⌊L(τi)⌋ + exp

(
1

n

n∑
i=1

log(D(L(τi)))

)
[14] .

The Fréchet mean F on the manifold of SPD matrices is calculated as

F = FCHOLESKYFT
CHOLESKY.

In the above equation, ⌊L(τ)⌋ is the strictly lower triangular part of the matrix L(τ), and D(L(τ)) is
the diagonal part of the matrix L(τ).
Previous work in [19] demonstrated the effectiveness of SPD matrices in decoding discrete hand
gestures from EMG signals collected from the upper limb. Furthermore, SPD matrix representations
have been extensively utilized to model electroencephalogram (EEG) signals, although they have
never been applied to complex tasks such as sequence-to-sequence speech decoding. For example,
[20, 21] employed Riemannian geometry frameworks for classification tasks in EEG-based brain-
computer interfaces, while [22] developed regression models based on Riemannian geometry for
biomarker exploration using EEG data.

The novelty of our work lies in the algebraic interpretation of manifold-valued data through linear
transformations, and the development of models for complex sequence-to-sequence tasks. This
approach moves beyond the conventional applications of classification and regression.

A.2 Geometric perspective aligns well with biology

We model multivariate EMG signals recorded at |V| sensor nodes over different time windows τ using
symmetric edge matrices E(τ) ∈ R|V|×|V|, which capture pairwise relationships between sensor
channels. Each matrix E(τ) can be interpreted as defining a linear transformation of the sensor space
R|V|, reflecting the spatial structure of EMG activity at time τ . This transformation admits a spectral
interpretation: when E(τ) is symmetric, it can be diagonalized as

E(τ) = UΣ(τ)U⊤,

where U is an orthonormal matrix whose columns are the eigenvectors of E(τ), and Σ(τ) is a
diagonal matrix of eigenvalues. In this eigenbasis coordinate system, the transformation of space is
expressed as a weighted combination of the eigenvectors, with the eigenvalues in Σ(τ) serving as
scaling coefficients. To reduce variability across time and to enable sequential modeling, we fix an
approximate eigenbasis Q ∈ R|V|×|V|, and project each edge matrix into this basis:

σ(τ) = Q⊤E(τ)Q,

yielding an approximately diagonal matrix σ(τ). The diagonals of σ(τ) approximate the eigenvalues
of E(τ) in the shared basis Q, providing a compact summary of the EMG activity at each time
window. These sequences of approximate eigenvalues can then be modeled using a recurrent neural
network to capture temporal dynamics. This formulation aligns with the physiological origin of EMG
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Figure 3: LEFT: Electrode placement on the left side of the neck. MIDDLE: Electrode placement on
the right side of the neck. RIGHT: Electrode placement on the left cheek.

signals: the surface EMG measurement arises from an additive superposition of motor unit action
potentials, resulting in a structure that is naturally well-represented in an eigenbasis. This contrasts
with modalities like speech, which are better modeled as time-varying filters applied to time-varying
sources [16]. Importantly, the choice of eigenbasis Q is subject-specific. EMG signals from different
individuals yield different underlying transformations E(τ) and, consequently, different eigenspaces
due to anatomical and physiological variability—including differences in subcutaneous fat, muscle
fiber composition, conduction velocities, and neural drive properties. As a result, signal distribution
shifts across individuals can be interpreted as changes of basis in the underlying space R|V|.

B Experimental details

We collect EMG signals from 31 sites on the neck, chin, jaw, cheek, and lips using monopolar
electrodes. An ACTICHAMP PLUS amplifier and associated active electrodes from BRAIN VISION
(Brain Vision) are used to record EMG signals at 5000 Hertz. To ensure proper contact between the
skin surface and electrodes, we use SUPERVISC, a high-viscosity electrolyte gel from EASYCAP
(Easycap). We develop a software suite in a PYTHON environment to provide visual cues to subjects
and to collate and store timestamped data. For time synchronization, we use lab streaming layer
(LSL). See figure 3 for electrode placement. Besides 31 data electrodes, we also have a GROUND
electrode (marked as GND) and a REFERENCE electrode (marked as 32). GROUND electrode is placed
on the left ear lobe and the REFERENCE electrode is placed on the right ear lobe.

Before signal acquisition, participants were briefed on the experimental protocol and seated
comfortably in a chair. For silent speech data (ES), participants were instructed to articulate naturally
but inaudibly. The start and end of the sentence are timestamped using mouse clicks from the subject.
When a subject is ready to articulate a sentence, they click the mouse, prompting the sentence to
appear on the screen. Once articulation is complete, they click the mouse again to indicate the end,
causing the sentence to disappear from the screen—thus allowing them to articulate at their own pace.

The data collection environment was carefully controlled to eliminate AC electrical interference.
EMG signals underwent minimal preprocessing. The signal from the REFERENCE channel (electrode
32) was subtracted from all other EMG data channels. The resulting signals were then bandpass
filtered using a third-order Butterworth filter between 80 and 1000 Hz and segmented according to
sentence start and end times based on synchronized timestamps. The segmented sentences were
subsequently z-normalized along the time dimension for each channel. The preprocessed EMG
signals were then used to construct a fully connected sensor graph, E(τ), and its approximately
diagonalized form, σ(τ).

The electrodes are positioned over regions that directly overlay muscle groups involved in speech
articulation, providing coverage of key articulators such as the tongue, jaw, lips, and larynx. Electrode
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locations 19, 21, 3, and 1 approximately overlie the hyoglossus, palatoglossus, and styloglossus
muscles. These muscles, located in the lower cheek region, play a vital role in tongue movement
and are consistently recruited across a wide range of articulatory gestures. Muscles in the upper and
posterior cheek regions—such as the masseter and temporalis, which control jaw motion, and the
zygomaticus, involved in upper lip elevation—are associated with electrode regions approximately
around nodes 22, 18, 17, and 15 in figure 3. Electrodes located beneath the jaw capture activity
from muscles involved in tongue protrusion and jaw–tongue coordination, such as the genioglossus
(near electrodes 8, 9, 23, and 25) and the digastric. Additionally, electrodes near the laryngeal
region (nodes 6, 7, 10, 11, 26, and 27) reflect the activity of muscles that modulate laryngeal and
hyoid position—such as the sternohyoid, stylohyoid, and digastric—which are instrumental in pitch
control, vowel shaping, and jaw movement.

C Additional technical details

For calculation of the phoneme error rate (PER) in section 4, we use beamsearch over the CTC output
probabilities without incorporating a language model, with a beam width of 50.

For phoneme-to-word decoding in section 4, we use the LibriSpeech-100 transcripts [23], which
contain roughly 38000 sentences and 35000 unique words. From these, we construct a lexicon
finite-state transducer (FST), L, mapping words to their phonemic transcriptions. A grammar FST,
G, is built from a 4-gram language model trained with KenLM [24]. The CTC topology FST, H ,
encodes allowable symbol sequences under the CTC criterion. These components are then composed
into the decoding graph HLG = H ◦ L ◦ G, which integrates the acoustic model constraints
(H), lexicon mapping (L), and language model probabilities (G). During inference, we perform
beam search over HLG with a beam width of 50, and compute the word error rate (WER) as the
normalized Levenshtein distance between the reference and the transcribed sequences.

C.1 Spectrogram representations lack sufficient phonemic structure

Unlike matrices σ(τ), which inherently encode articulatory structure and enable a vanilla GRU to
learn meaningful temporal dependencies, raw spectrograms lack such structure. Using spectrograms
as GRU inputs caused the model to collapse to a few phoneme sequences regardless of the input,
making phoneme-to-word decoding infeasible and resulting in a WER of 1 (table 1). To ensure a fair
comparison, we matched the temporal resolution of the spectrograms to that of the SPD features (50
ms window and 20 ms hop). We computed an STFT with nFFT = 256 (129 linear-frequency bins) and
then average-pooled the frequency axis down to 31 bins per channel. This produced per-frame tensors
of shape (31 channels)× (31 frequency bins), paralleling the 31× 31 shape of σ(τ). Spectrogram
inputs did not support robust temporal modeling, whereas σ(τ) enabled the vanilla GRU to learn
stable and discriminative dynamics (table 1).

C.2 Individual results on EMG2QWERTY dataset.

In figure 4, we present subject-wise results for the EMG2QWERTY dataset described in subsection
4.1. Our SPD covariance matrices with approximate diagonalization (matrices σ(τ)) outperform the
baseline spectrogram features for all subjects except USER6.
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Figure 4: Results for individual subjects in EMG2QWERTY dataset. Each dot represents an individual
test subject, with connecting lines indicating within-subject performance across different models.
The boxplots summarize the median and interquartile range of the results. Our method improves
performance for all subjects except USER6.
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