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Abstract
Prompt optimization aims to find the best001
prompt to a large language model (LLM) for a002
given task. LLMs have been successfully used003
to help find and improve prompt candidates for004
single-step tasks. However, realistic tasks for005
agents are multi-step and introduce new chal-006
lenges: (1) Prompt content is likely to be more007
extensive and complex, making it more diffi-008
cult for LLMs to analyze errors, (2) the impact009
of an individual step is difficult to evaluate,010
and (3) different people may have varied pref-011
erences about task execution. While humans012
struggle to optimize prompts, they are good013
at providing feedback about LLM outputs; we014
therefore introduce a new LLM-driven discrete015
prompt optimization framework PROMST that016
incorporates human-designed feedback rules to017
automatically offer direct suggestions for im-018
provement. We also use an extra learned heuris-019
tic model that predicts prompt performance020
to efficiently sample from prompt candidates.021
This approach significantly outperforms both022
human-engineered prompts and several other023
prompt optimization methods across 11 repre-024
sentative multi-step tasks (an average 10.6%-025
29.3% improvement to current best methods on026
five LLMs respectively). We believe our work027
can serve as a benchmark for automatic prompt028
optimization for LLM-driven multi-step tasks.029

1 Introduction030

The performance of large language models (LLMs)031

on a given task is sensitive to the prompt, so prompt032

engineering aims to create prompts that fully lever-033

age the capabilities of LLMs. Due to the lack of034

access to model parameters for black-box LLMs,035

techniques for automatic prompt optimization have036

primarily focused on searching over the vast dis-037

crete space of tokenized language inputs (Cheng038

et al., 2023). Recent studies have shown that LLMs,039

combined with evolutionary algorithms, can help040

with this search by reasoning over errors made us-041

ing existing prompts to suggest edits or generate042

new candidate prompts (Pryzant et al., 2023; Wang 043

et al., 2023; Yang et al., 2023). These approaches 044

have been evaluated on relatively simple one-step 045

tasks, such as mathematical calculations (Roy and 046

Roth, 2016; Cobbe et al., 2021), instruction in- 047

duction (Honovich et al., 2022), and factual analy- 048

sis (Wu et al., 2023b). The associated prompts are 049

also relatively short, usually one to three sentences. 050

In this work, we aim to optimize prompts for 051

LLM-driven agents solving multi-step tasks and 052

propose a method called PRompt Optimization in 053

Multi-Step Tasks (PROMST). In these tasks, an 054

LLM is used to decide a system’s actions (e.g., vir- 055

tual software Wu et al. 2023a; Zhou et al. 2023a or 056

real robots Chen et al. 2023a; Firoozi et al. 2023) 057

as it interacts with an environment over multiple 058

steps (Abdulhai et al., 2023). Engineering good 059

prompts is hard due to the typical prompt length 060

(300+ tokens) and individual task constraints and 061

rules. The prompts needed for multi-step tasks 062

are more complex to judge the long-horizon cor- 063

rectness of a single action. This difficulty hinders 064

LLMs from automatically reasoning over errors 065

and producing better prompts, which in turn re- 066

duces the effectiveness of current methods for auto- 067

mated prompt optimization. Prompt optimization 068

in multi-step tasks is still an open challenge. 069

Considering that humans excel in analyzing er- 070

rors and incorporating relevant domain knowledge 071

into feedback, we formalize PROMST as a frame- 072

work involving human input, as shown in Figure 1. 073

Here, during the multi-step agent-environment in- 074

teractions, the agent (indicated by ’TaskLLM’ in 075

Figure 1) sometimes makes errors and fails the task. 076

While some work has used LLMs to evaluate errors, 077

we instead use human-designed feedback rules con- 078

structed a priori that address different types of er- 079

rors. Depending on the error, feedback is automati- 080

cally generated and passed as additional context to 081

an LLM that is responsible for producing a new set 082

of candidate prompts (indicated by ’PromptLLM’ 083
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in Figure 1). A score is assigned to each prompt084

indicating the agent’s task performance given that085

prompt. Since the evaluation of many candidate086

prompts for multi-step tasks in environments can087

be expensive, we fine-tune a score prediction model088

online using prompt-score pairs which can be used089

as a heuristic to select a subset of the candidate090

prompts to evaluate.091

Our experiments in 11 tasks show that the in-092

tegration of human feedback and the score model093

greatly improves the prompt optimization process094

(10.6%-29.3% relative improvements over all base-095

line methods across different LLMs). PROMST096

achieves the best performance on most tasks.097

PROMST has also been shown to perform bet-098

ter in multi-trial settings when combined with dy-099

namic approaches. We further show that the human-100

designed evaluation rules can be used to help align101

task performance with human preferences. Ex-102

tensive experiments are conducted to validate the103

framework and investigate the underlying reasons104

why some prompts are more effective than others.105

In summary, our contributions are : (1) To our106

best knowledge, PROMST is the first to explore107

automatic prompt optimization in multi-step agent108

tasks. We release all codes and prompts for 11109

multi-step environments, which may serve as a110

benchmark for future research. (2) We show that111

the integration of human feedback and a fine-tuned112

score model outperforms existing methods across113

various tasks and LLMs. (3) Our research indicates114

that PROMST is orthogonal and integrates well115

with established dynamic approaches. (4) We find116

that human-designed rules for task evaluation help117

align optimized prompts with human preferences.118

2 Related Work119

Prompt Optimization To improve performance120

of black-box API models, it is useful to engineer121

the discrete prompts for downstream tasks. Various122

’best practices’ have emerged for human-designed123

task prompts, such as including examples (Brown124

et al., 2020) or promoting reasoning chains (Ko-125

jima et al., 2022; Wei et al., 2022). However,126

manually designing prompts requires extensive hu-127

man trial-and-error and is sub-optimal; thus, many128

recent works focus on automating this process.129

Some methods approximate the gradients (Diao130

et al., 2022) or emulate them via natural language131

(Pryzant et al., 2023). Others use edit operators132

to modify an initial prompt, driven either by rein-133

forcement learning (Zhang et al., 2023) or score- 134

guided search (Prasad et al., 2023). To help bal- 135

ance exploration and exploitation of prompts, sev- 136

eral approaches have used LLM-driven evolution 137

(Guo et al., 2023a; Fernando et al., 2023; Ma et al., 138

2023; Ye et al., 2023). In several works, LLMs 139

are directly used to generate prompt candidates 140

(Zhou et al., 2023b) often with feedback about par- 141

ent prompts (Wang et al., 2023; Ma et al., 2023). 142

Our work focuses on domains that include complex 143

multi-step tasks, in which the evaluation and reflec- 144

tion processes are more challenging so that score 145

prediction models and human feedback rules are 146

introduced in order to mitigate this problem. 147

LLM Based Agents for Multi-Step Tasks 148

There are many recent works that use LLMs for 149

multi-step planning. LLMs are used to interact 150

with softwares and websites (Ma et al., 2024; Wu 151

et al., 2023a; Zhou et al., 2023a), plan robot actions 152

(Chen et al., 2023b; Ahn et al., 2022; Huang et al., 153

2022a; Ma et al., 2023; Aghzal et al., 2023), and 154

connect to external tools (Liu et al., 2023; Chen 155

et al., 2023a; Qin et al., 2023). Instead of careful 156

design of lengthy prompts to capture all the con- 157

straints, our approach uses prompt optimization 158

to transition from a simple initial human-provided 159

prompt to a high-performing prompt. 160

LLM Self-reflection from Feedback In plan- 161

ning domains, it is useful to provide feedback about 162

syntactic errors (Silver et al., 2023; Skreta et al., 163

2023), potential infinite loops (Silver et al., 2023), 164

failed action execution (Huang et al., 2022b), and 165

generated trajectories (Chen et al., 2023a). Other 166

recent work has shown that LLM-generated feed- 167

back via self-evaluation can improve performance 168

on a variety of tasks (Yang et al., 2022; Welleck 169

et al., 2022; Madaan et al., 2023), including prompt 170

engineering (Wang et al., 2023) and reinforcement 171

learning (Shinn et al., 2023; Ma et al., 2023). Com- 172

pared to above works, our work combines LLM 173

self-reflection with human-provided feedback tem- 174

plates to help improve performance on the more 175

challenging multi-step tasks. Another type of meth- 176

ods is to utilize self-reflection for online dynamic 177

feedback during task execution, such as Reflexion 178

(Shinn et al., 2024). While Reflexion needs multi- 179

ple trials for online optimization of action memory 180

for each single test, our method PROMST only 181

needs one trial for task execution and the prompt 182

is optimized offline across multiple tests. In Sec- 183

tion 4.4, we find that PROMST outperforms the 184

offline variation of Reflexion and can perform bet- 185
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Figure 1: The PROMST framework. Given an initial human-designed prompt and the state of the
environment for the current task, the TaskLLM iteratively generates an action and executes it until either
an error occurs or the task is complete. Human-designed feedback rules automatically generate feedback
about errors that is then provided as context to the PromptLLM when generating new prompt candidates.
The task performance is scored according to a human-designed score function; this score can be used with
the prompt to train a score prediction model online. Given new prompt candidates, this score prediction
model is used to select a subset of candidates to evaluate for the next generation.

ter when combining with online Reflexion in the186

multi-trial setting.187

3 Methodology188

3.1 Problem Formulation189

Given a base LLM B and a target task T , the goal190

of prompt optimization is to craft an optimized191

natural language prompt P that maximizes the per-192

formance of B on T . Here the prompt P consists193

of multiple components, such as a task description,194

scoring rules, and safety constraints. In multi-step195

tasks, the state information of the environment at196

each step will be transformed into a text string S197

and provided to the LLM B to make decisions. The198

history of state (S), action (a), and environment199

feedback (e) will also be reported to LLM. For the200

ith testing trial on a particular task, the probability201

of an action sequence [ai,1, ai,2, ..., ai,j] is:202

pB([ai,1, ai,2, . . . , ai,j ]) =

j∏
k=1

pB(ai,k|Si,k, P,

Si,k−1, ai,k−1, ei,k−1, . . . ,

Si,1, ai,1, ei,1)
(1)203

The sequence [ai,1, ai,2, ..., ai,j] is executed in204

the task environment and assigned a score based205

on human-designed rules or functions R. The goal206

of prompt optimization is to find the optimal nat-207

ural language prompt P ∗ that maximizes a score208

function R: 209

P ∗ = arg max
P∈A

∑
i∈U

R(pB([ai,1, ai,2, ..., ai,j ])),

(2) 210

where A denotes the vast and complex space of all 211

possible natural language prompts and U denotes 212

the set of all the testing trials in a specific task. 213

3.2 PROMST Framework 214

Figure 1 illustrates the general framework of 215

PROMST. The goal is to more efficiently and 216

strategically search over the vast space of possible 217

prompts while integrating human-designed feed- 218

back of candidate prompt performance. LLMs 219

are used in two key steps of PROMST: (1) the 220

execution of the task via the current candidate 221

prompt (’TaskLLM’) and (2) the generation of new 222

candidate prompts given any available feedback 223

about the current prompt’s performance on the task 224

(’PromptLLM’). We refer to a single execution in 225

a testing case of a task as a trial. In each trial, the 226

TaskLLM executes the task over multiple rounds of 227

interaction with the environment; for each round, 228

the TaskLLM is provided both the current candi- 229

date prompt and the current trial’s execution history 230

and generates the next action for the agent to take. 231

Task execution terminates when an error is detected 232

or the task is complete. The candidate prompt P 233

is assigned a score for that trial via the human- 234

designed score function. Each candidate prompt is 235
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evaluated over multiple trials in which the initial en-236

vironment state (e.g. number of objects, number of237

agents) is varied, resulting in a final average score238

calculated over all the trials. Once the candidate239

prompts have all been evaluated and assigned auto-240

matic feedback, the top performers are selected as241

parents for a new generation of candidate prompts.242

The PromptLLM uses each parent prompt and its243

feedback to generate new candidate prompts. This244

process is also described in Algorithm 1, 2, 3 in245

Appendix B.246

Score Prediction Model In general, produc-247

ing more candidate prompts per generation allows248

for more exploration over the space of possible249

prompts; however, there is a trade-off between the250

number of candidates per generation and the cost of251

evaluation, and multi-step tasks can be much more252

expensive to evaluate (we query the TaskLLM for253

each next action). To help mitigate the evalua-254

tion cost for a generation, we learn a score predic-255

tion model online that functions as a heuristic with256

which to choose a subset of the generated candidate257

prompts for actual evaluation.258

Algorithm 2 in Appendix B shows the process
of implementing the score prediction model as a
heuristic for filtering candidate prompts. We fine-
tune a task-specific bidirectional Longformer-base
(148M) (Beltagy et al., 2020) model. The prompt-
score pairs on which we fine-tune are collected
online during early iterations of PROMST; there-
fore, the score prediction model is not applied until
sdth generation, where sd is a hyperparameter. We
continue to update the learned model at each gen-
eration with the new prompt-score pairs. To miti-
gate variance, we fine-tune multiple models on five
rounds with the collected data following a random
4:1 train/test split. The generated prompt candidate
p′ will be selected for task evaluation if:

(3)E[Mk(p
′)] + Var[Mk(p

′)] + E[errork]
≥ hyper_M×max(D.score())

where E[Mk(p
′)] and Var[Mk(p

′) are the mean and259

variance of predicted scores for p′ from five models.260

The E[errork] is the average testing error of five261

score models. The max(D.score()) is the highest262

score of existing prompts. To balance efficient ex-263

ploration and conservative filtering, we only filter264

prompt candidates when the score prediction model265

is sufficiently confident. When the variance of the266

prediction model is high, we want to be conserva-267

tive in its application in order to reduce the chance268

that we filter out a good candidate. Similarly, we 269

choose to be conservative in our filtering when the 270

error is high. Equation 3 is therefore one formu- 271

lation that incorporates these general ideas. The 272

hyperparameter hyper_M allows this conservative- 273

ness to be tuned by users. 274

Human-Designed Feedback Rules During 275

task execution, the TaskLLM may encounter an 276

error, resulting in the task being terminated. It is 277

useful for the PromptLLM to have context about 278

this error when generating new prompt candidates. 279

Since automatic error analysis via LLMs is diffi- 280

cult for multi-step tasks (e.g. an agent stuck in an 281

action loop), we instead use human-designed rules 282

to automatically synthesize feedback, as shown in 283

Figure 2. Some types of errors can be common 284

across all tasks (e.g. syntactic errors), while others 285

are task-specific. For types of human feedback in 286

each task, see Appendix A. Note that the designing 287

process of human feedback templates is simple and 288

intuitive, without hard trial-and-error efforts, which 289

is further discussed in Section 4.4. 290

Figure 2: Eight examples of human-designed feed-
back templates. The blue-colored text represents
the content specific to each instance of an error.

Candidate Prompt Generator We produce 291

new candidate prompts from a parent prompt in 292

two steps: (1) summarizing feedback via an LLM 293

(’SumLLM’) and (2) generating new prompt candi- 294

dates via an LLM provided with the summarized 295

feedback as context (’GenLLM’). In order to en- 296

courage exploration over more diverse candidate 297

prompts, we randomly choose 10 instances of feed- 298
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back. This random selection also likely promotes299

more frequent errors. Given the selected feedback,300

SumLLM produces a summary that is included as301

context to GenLLM for generating new candidates.302

See Algorithm 3 in Appendix B for another de-303

scription of this process and Appendix C for the304

meta-prompts used for SumLLM and GenLLM.305

4 Experiments306

4.1 Environments307

As shown in Figure 3, we test on 11 multi-step308

tasks requiring strong logical, geometrical, sci-309

entific, and commonsense reasoning capabilities310

(Zhou et al., 2023a; Shridhar et al., 2020; Wang311

et al., 2022; Chen et al., 2023b; Aghzal et al., 2023;312

Valmeekam et al., 2023). Each environment re-313

quires the LLM agent to determine the next action314

in the large discrete action space. Please refer to315

Appendix D for a complete description of all tasks.316

Figure 3: An illustration of the 11 environments
used for multi-step task evaluation. See Ap-
pendix D for more details.

4.2 Baselines317

We compare PROMST with six recent representa-318

tive methods: Automatic Prompt Engineer (APE)319

(Zhou et al., 2023b), Automatic Prompt Optimiza-320

tion (APO) (Pryzant et al., 2023), PromptAgent321

(Wang et al., 2023), LLM-As-Optimizer (Yang322

et al., 2023), PromptBreeder (Fernando et al.,323

2023), and Evolutionary Prompt Optimizer (Guo324

et al., 2023b). All the methods under comparison325

involve iterative optimization of prompts. Some326

methods require error feedback through LLM self-327

reflection, while others do not. For methods328

that need error feedback, we randomly select 10329

instances of feedback, similar to the PROMST 330

method but without the rules of human feedback. 331

We also compare with the dynamic approach Re- 332

flexion (Shinn et al., 2024) by modifying it into an 333

offline framework. 334

4.3 Experimental Setups 335

For a fair comparison, all methods start the op- 336

timization from initial human-designed prompts; 337

where possible, we use the provided publicly avail- 338

able prompts for each method. In all cases, we 339

set the LLM sampling temperature to 0. For each 340

method, we report the score of the best perform- 341

ing prompt on each task; in this case, the score is 342

computed as: 343

S = num(sub-goalsuccess)/num(sub-goalall),
(4) 344

where the score S is the ratio of the number 345

of successfully completed sub-goals/sub-steps to 346

the total number of sub-goals/sub-steps, i.e., the 347

task progress score. Note that the task completion 348

score can also serve as the metric, while it may be 349

sparse in some situations. Both types of scores are 350

positively correlated as shown in Appendix Table 9. 351

In Section 4.4, we also preliminarily test the impact 352

of changing the scoring function S. 353

Model Types One interesting feature of these 354

methods is that the LLM used to execute the task 355

(’TaskLLM’) and the LLM used to generate new 356

candidate prompts (’PromptLLM’) do not need 357

to be the same model. We mainly test two com- 358

binations of models. The first uses GPT-3.5 as 359

the TaskLLM and GPT-4 (Achiam et al., 2023) as 360

the PromptLLM, and the second uses GPT-4 for 361

both the TaskLLM and PromptLLM. To verify the 362

effectiveness of PROMST in varied models, we 363

also evaluate it using Claude 3 Opus (Anthropic, 364

2024), Mixtral-8x7B, and Mixtral-Large (Jiang 365

et al., 2024) as both TaskLLM and PromptLLM. 366

Mixtral-8x7B is an open model, while all the others 367

are closed. We also explore whether the optimized 368

prompts specialized for one type of LLM can gen- 369

eralize better performance to other types of LLMs. 370

Context Window Limit The constraint of the 371

model’s context window is an issue for LLM-based 372

agents, especially for longer multi-step tasks. Rely- 373

ing on the intuition that recency is important, in all 374

the tested methods we use a sliding window of the 375

history of state-action-feedback tuples, truncating 376

the history by pruning older parts of the history 377
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that extend beyond the window length, which is a378

common technique used in LLM agent researches.379

Hyperparameters For a fair comparison, we380

standardize all hyperparameters across methods, al-381

lowing each to explore the same number of prompt382

candidates at an equivalent level. The expansion383

number n controls the number of kid prompts gen-384

erated based on each parent prompt, which is set385

to 20 in the first level and 8 for all additional lev-386

els. In each level, top k = 5 current prompts are387

selected as the parent prompts for further optimiza-388

tion. Search terminates once the recent three levels389

do not have any score improvements. In PROMST,390

we set hyper_M = 0.8 in Equation 3 to filter out391

prompts with low scores.392

4.4 Results and Analysis393

Overall Better Performance Table 1 and Ta-394

ble 2 show the main experimental results. Note395

that BoxLift task is not included in Table 2 since396

we find GPT-4 can already achieve a full score with397

the initial human prompt. Table 3 shows the ex-398

perimental results on other three types of LLMs.399

Due to limited computational resources, we only400

select four representative tasks and two strongest401

baseline methods (APO, PromptAgent) when eval-402

uating other LLMs. Table 7 and Table 8 in Ap-403

pendix E test the performance of the optimized404

prompts trained from one LLM with other types of405

TaskLLMs.406

The main takeaways are: 1) PROMST performs407

the best in most tasks. On average, PROMST408

outperforms strongest baseline PromptAgent with409

GPT-3.5-0613 (0.27 vs 0.32), GPT-4 (0.61 vs 0.69),410

Claude-3-opus (0.36 vs 0.46), Open-Mixtral-8x7B411

(0.12 vs 0.15), and Mixtral-large (0.30 vs 0.34). 2)412

When testing the best prompts trained from GPT-413

3.5-0613 and GPT-4 with a different TaskLLM, we414

find that they still outperform human prompts. 3)415

However, each LLM does best with the prompts416

optimized on it. For example, the best prompts ac-417

quired when using GPT-3.5-0613 as the TaskLLM418

do not further improve performance when applied419

to GPT-4, and vice versa. 4) PROMST performs420

well when the TaskLLM and PromptLLM are the421

same LLM, showing that it does not rely on a422

stronger PromptLLM to pass extra knowledge into423

prompts, which can be regarded as cheating.424

Effects of Score Model To analyze the effects425

of the score model, we use BoxLift as a represen-426

tative example, as shown in Figure 4. Figure 4a427

shows the distribution of prompt scores explored428

Figure 4: Several results inspecting the learned
score prediction model. (a) The distribution/ratio
of prompt scores with/without the score prediction
model. (b) The prediction error of the model on the
training data and heldout test data as the amount of
training data increases. (c) A plot of the predicted
score vs the actual score for various prompts; blue
are the prompts that were chosen as parents for new
candidates. (d) The trend of the best performing
prompt during optimization for increasing itera-
tions both with and without using the learned score
prediction model.

in all the levels (1-8) with and without the score 429

prediction model implemented, respectively. The 430

implementation of the score prediction model truly 431

makes the exploration more efficient since less low- 432

scored prompts are explored. Figure 4b shows the 433

training and testing errors of the score model versus 434

different amounts of collected training data. The 435

overfitting effect decreases with increasing data 436

number. Figure 4c tests the fine-tuned score mod- 437

els on levels 5-8. We also evaluate the prompts that 438

were filtered out by the score model and plot the 439

predicted and actual scores. We find that nearly 440

all chosen prompt candidates achieve scores higher 441

than 0.4, and the filtered prompts have reliably 442

low scores. We compare the evolution curves for 443

PROMST with/without the score model, as shown 444

in Figure 4d. The results show that both the train- 445

ing and testing paths converge faster and achieve 446

better scores using the score model. The ablation 447

experiments in other environments also have the 448

same trend (shown in Appendix G). Overall, we 449

find the score prediction models improves the effi- 450

ciency and effectiveness of prompt search. 451

Ablation on Methods of Score Model In- 452

stead of fine-tuning a pre-trained Longformer-base 453
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Table 1: Scores for initial (human) and optimized prompts on various multi-step tasks for different methods.
P.Agent, LLMOP, P.Breeder, and P.Evolution refer to PromptAgent, LLM-As-Optimizer, PromptBreeder,
Evolutionary Prompt Optimizer, respectively. GPT-3.5-0613 for TaskLLM and GPT-4 for PromptLLM.

GPT-3.5-0613-AS-TASKLLM, GPT-4-AS-PROMPTLLM
TASK HUMAN APE APO P.AGENT LLMOP P.BREEDER P.EVOLUTION PROMST

WEBARENA 0.22 0.35 0.31 0.37 0.29 0.25 0.27 0.39
ALFWORLD 0.075 0.24 0.23 0.24 0.14 0.12 0.16 0.30

SCIENCEWORLD 0.18 0.19 0.19 0.23 0.19 0.20 0.22 0.21
BOXNET1 0.076 0.093 0.16 0.13 0.098 0.11 0.12 0.25
BOXNET2 0.044 0.075 0.16 0.17 0.086 0.090 0.075 0.22
BOXLIFT 0.31 0.69 0.70 0.74 0.55 0.58 0.62 0.90

WAREHOUSE 0.0 0.012 0.012 0.036 0.008 0.008 0.004 0.028
GRIDWORLD1 0.23 0.30 0.35 0.32 0.28 0.26 0.24 0.38
GRIDWORLD2 0.036 0.093 0.17 0.15 0.065 0.078 0.13 0.12

BLOCKSWORLD 0.19 0.25 0.42 0.48 0.29 0.22 0.27 0.60
LOGISTICS 0.083 0.083 0.12 0.12 0.083 0.083 0.12 0.18
AVERAGE 0.13 0.22 0.26 0.27 0.19 0.18 0.20 0.32

Table 2: Scores for initial (human) and optimized prompts on various multi-step tasks for different
methods. GPT-4 for both TaskLLM and PromptLLM.

GPT-4-AS-TASKLLM, GPT-4-AS-PROMPTLLM
TASK HUMAN APE APO P.AGENT LLMOP P.BREEDER P.EVOLUTION PROMST

WEBARENA 0.57 0.59 0.64 0.60 0.58 0.58 0.59 0.62
ALFWORLD 0.45 0.49 0.50 0.53 0.50 0.47 0.49 0.57

SCIENCEWORLD 0.70 0.72 0.74 0.76 0.71 0.73 0.76 0.81
BOXNET1 0.65 0.72 0.72 0.77 0.74 0.67 0.70 0.79
BOXNET2 0.34 0.38 0.36 0.35 0.40 0.37 0.40 0.42

WAREHOUSE 0.16 0.18 0.27 0.34 0.30 0.25 0.22 0.51
GRIDWORLD1 0.73 0.78 0.82 0.89 0.83 0.76 0.80 0.86
GRIDWORLD2 0.26 0.50 0.44 0.41 0.41 0.31 0.29 0.60

BLOCKSWORLD 0.71 0.74 0.83 0.87 0.76 0.75 0.77 0.95
LOGISTICS 0.50 0.53 0.58 0.61 0.54 0.53 0.56 0.74
AVERAGE 0.51 0.56 0.59 0.61 0.58 0.54 0.56 0.69

Figure 5: (a) Comparison of score prediction errors
for few-shot GPT-4 vs finetuning Longformer for
increasing amount of few-shot examples or training
data, respectively. (b) An ablation study of the
impact of the human-designed feedback rules on
task performance for four multi-step tasks.

model, another way to acquire score prediction454

models is few-shot learning via GPT-4. Figure 5a455

compares these two methods under varied train-456

ing/example data number. GPT-4 is given randomly457

selected prompt-score pairs as examples during458

the study. We find that the performance of GPT-4459

few-shot learning cannot improve with the increas- 460

ing number of examples. The fine-tuning method 461

surpasses GPT-4 few-shot learning once the data 462

number increases over 40. 463

Ablation on SumLLM Component Since 464

TaskLLM and GenLLM are necessary in the whole 465

framework, we compare PROMST with/without 466

SumLLM component in Table 4 to verify its effec- 467

tiveness. The integration of SumLLM improves the 468

performance on all the three representative tasks. 469

Ablation on Human Feedback We compare 470

the method with/without human feedback, both 471

without the learned score model. As seen in Fig- 472

ure 5b, human feedback contributes to much higher 473

scores across four tasks. In our work, the original 474

human feedback templates did not require itera- 475

tions via trial-and-error over possible versions. To 476

demonstrate that designing human feedback rules 477

is straightforward and requires minimal efforts, we 478

test other four feedback templates in Table 5. The 479

7



Table 3: Evaluation of different LLMs on a subset of the mutli-step tasks. The same LLM was used for
the TaskLLM and PromptLLM in each case.

CLAUDE-3-OPUS-20240229 OPEN-MIXTRAL-8X7B
TASK HUMAN APO P.AGENT PROMST HUMAN APO P.AGENT PROMST

ALFWORLD 0.32 0.40 0.42 0.49 0.055 0.074 0.071 0.10
BOXNET2 0.42 0.47 0.44 0.53 0.078 0.21 0.20 0.24

WAREHOUSE 0.21 0.26 0.27 0.36 0.020 0.093 0.13 0.16
GRIDWORLD2 0.13 0.29 0.34 0.44 0.013 0.038 0.075 0.10

AVERAGE 0.27 0.36 0.37 0.46 0.041 0.10 0.12 0.15

MIXTRAL-LARGE-2402
HUMAN APO P.AGENT PROMST

0.28 0.33 0.33 0.45
0.26 0.31 0.36 0.30
0.16 0.23 0.28 0.31
0.12 0.32 0.25 0.28
0.21 0.30 0.30 0.34

Table 4: Ablation studies on SumLLM.

GPT-3.5-AS-TASKLLM, GPT-4-AS-PROMPTLLM
TASK W SUMLLM WO SUMLLM

ALFWORLD 0.30 0.23
BOXNET2 0.22 0.18
BOXLIFT 0.90 0.85

results show that variability over the wording of the480

templates has little impact on the performance of481

PROMST. Thus, including the response in the feed-482

back template is a useful task- and error-agnostic483

guiding principle. Appendix H articulates more484

specifically on the designing of four compared hu-485

man feedback templates and the reasons why de-486

signing feedback rules is effortless.487

Preference Alignment via Score Function488

The choice of score functions impacts prompt op-489

timization, in which humans may have different490

preferences for the same task. In Appendix J, we491

explore the impacts of varied score functions and492

find that PROMST can well align with human pref-493

erences by modifying score function formats.494

Explanability for Better Prompts We also495

try to dig out some mechanisms why the optimized496

prompts are better. In Figure 13, we plot prompt497

score vs. token length and perplexity, which im-498

plies some clues that longer prompts may be better.499

Meanwhile, when viewing through the discovered500

best prompts in Appendix M, we find some clues501

about better component emergence, i.e., the best502

prompts tend to list all the careful points one by503

one clearly. We conduct an ablation study by sum-504

Table 5: Ablation studies on the templates used for
human feedback.

GPT-3.5-AS-TASKLLM, GPT-4-AS-PROMPTLLM
TASK ORIGINAL PARAPHRASED RANDOM

BOXNET2 0.22 0.20 0.23
BOXLIFT 0.90 0.93 0.97

WO RESPONSE COMPONENT WO STUCK IN LOOP

0.17 0.18
0.73 0.87

marizing detailed careful points into varying token 505

lengths using GPT-4 and evaluating their perfor- 506

mance. The results indicate that task scores consis- 507

tently decline as token lengths decrease, underscor- 508

ing the importance of clearly listing detailed points. 509

More specific discussion is shown in Appendix K. 510

Comparison and Combination with Reflexion 511

In Appendix L we find that PROMST outperforms 512

the dynamic approach, Reflexion, in prompt opti- 513

mization and achieves enhanced performance when 514

Reflexion is integrated in a multi-trial setting. 515

5 Conclusion 516

In this work we introduce an automatic prompt 517

optimization framework for complex, multi-step 518

agent tasks: PROMST. To handle the issues of task 519

complexity, judging long-horizon correctness of 520

individual actions, high prompt exploration cost, 521

and human preference alignment, we propose the 522

integration of human feedback, a learned score pre- 523

diction model, and the modification of task score 524

functions. Our approach generally outperforms six 525

representative baselines on 11 different task envi- 526

ronments over all the five LLMs. PROMST is or- 527

thogonal and combinatorial to existing dynamic ap- 528

proaches. The discovered best prompts have some 529

inspiring characteristics for better performance. 530
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6 Limitations531

The limitations and potential societal risks of this532

work are as follows:533

534

Huge resource consumption of API calls535

Automatic prompt optimization requires significant536

computing resources and LLM API queries due to537

its search-based nature, which is a common issue538

in this research track. Though the introduction of539

score model makes the searching more efficient,540

the around 100 prompt candidate exploration is541

still a large burden.542

543

Score model increases computing demands544

of local devices The fine-tuned score prediction545

model trades-off the number of API queries for546

on-device computation by selecting good candidate547

prompts. Still, the training of extra score models548

increases the computing demands on local devices.549

550

Fine-tuning score model requires enough551

data points The fine-tuning process of score552

models typically requires around 100 prompt-score553

pairs, which is suitable for black box prompt554

searching since over 100 data points are truly555

needed for satisfying performance. However, the556

score model may not be suitable if in the future a557

more efficient searching method appears so that558

data points are not such much.559

560
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A Types of human feedback for each task 822

This table displays the types of errors and corresponding human feedback for each testing task. The 823

specific contents of each feedback is shown in Figure 2. 824

Webarena Syntactic error; Stuck in the loop; Failure over query time limit; Invalid action
Alfworld Syntactic error; Stuck in the loop; Failure over query time limit; Invalid action
Scienceworld Syntactic error; Stuck in the loop; Failure over query time limit; Invalid action
BoxNet1 Syntactic error; Stuck in the loop; Failure over query time limit
BoxNet2 Syntactic error; Stuck in the loop; Failure over query time limit; Collision
BoxLift Syntactic error; Stuck in the loop; Failure over query time limit
Warehouse Syntactic error; Stuck in the loop; Failure over query time limit; Collision
Gridworld1 Syntactic error; Stuck in the loop; Failure over query time limit; Collision; Move out

of the grid;
Gridworld2 Syntactic error; Stuck in the loop; Failure over query time limit; Collision; Move out

of the grid; Wrong picking up order;
Blocksworld Syntactic error; Stuck in the loop; Failure over query time limit; Invalid action
Logistics Syntactic error; Stuck in the loop; Failure over query time limit; Invalid action;

Wrong object action

Table 6: Types of human feedback for each task

B Algorithms 825

Algorithm 1 PRompt Optimization in Multi-Step Tasks (PROMST)

Require: Bi: list of best prompts in level i; D: dictionary of prompts recording corresponding scores,
human feedbacks, and ancestor prompts; feed_rules: human pre-defined feedback rules; p0: initial
prompt; k: beam width; d: search level depth; n: expansion number; sd: depth when score model
training starts

1: B0 ← {p0}; D ← {}
2: D[p0]← feed_rules(TaskLLM(p0)) ▷ [prompt, score, feed, AnP]
3: for i← 1 to d− 1 do
4: for all p ∈ Bi do
5: Pnew ← NewPrompt(p,D, i, sd, n)
6: for all pnew ∈ Pnew do
7: D[pnew]← feed_rules(TaskLLM(pnew)) ▷ Dictionary to record all prompt trials and

information
8: end for
9: end for

10: Bi+1 ← Topk(D) ▷ Select top k prompts by scores
11: Output Bi+1

12: end for
13: p̂← argmaxp∈Bd

score(p) ▷ The best prompt
14: Output p̂
15: return p̂

13



Algorithm 2 NewPrompt() - line 5 of Algorithm 1

Require: p: input prompt; D: dictionary of all prompts; i: current depth level; sd: depth level number
when score model training starts; n: expansion number

1: [feed,AnP ]← D[p] ▷ Human feedback and ancestor prompts (prompt trajectory leading to the
current one)

2: if i ≥ sd then
3: Mk ← finetune(D), k = 1, ..., 5 ▷ Score model, input: prompt, output: score
4: Pnew ← {}
5: iter ← 0
6: while len(Pnew) < n and iter < 3n do
7: iter += 1
8: p′ = PromptLLM(p, feed,AnP, 1)
9: if E[Mk(p

′)] + V ar[Mk(p
′)] + E[errork] ≥ hyper_M ∗max(D.score()) then

10: Pnew.add(p′)
11: end if
12: end while
13: return Pnew

14: else
15: {p′1, ..., p′n} = PromptLLM(p, feed,AnP, n)
16: return {p′1, ..., p′m}
17: end if

Algorithm 3 PromptLLM() - line 8 and 15 of Algorithm 2

Require: p: input prompt; feed: list of human feedbacks; AnP : list of prompt trajectory leading to the
current one; n: expansion number

1: Pnew ← {}
2: for i← 1 to n do
3: feed2← random_select(feed,min(10, len(feed))
4: {type1, type2, ...} ← classify_concat(feed2)
5: feed2LLM =′

6: for all feed_type ∈ {type1, type2, ...} do
7: feed2LLM += SumLLM(p, feed_type) ▷ Summarize each type of feedback
8: end for
9: Pnew.add(GenLLM(p, feed2LLM,AnP ))

10: end for
11: return Pnew
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C Meta-prompts of SumLLM and GenLLM 826

Meta-prompt of SumLLM
Imagine you are a prompt optimizer based on the human feedback and task execution feedback.
I’m writing prompts for a language model designed for a task.

My current prompt of task specification is: {current_prompt}, but this prompt gets the following
examples wrong: {feedback_type}

Based on all these errors and feedback, summarize the reasons and list all the aspects that can
improve the prompt. Keep your summary concise and clear.

827

Meta-prompt of GenLLM
Imagine you are a prompt optimizer based on the feedback from the human and task execution
feedback. Here is the prompt of task description: {prompt_task_explain}

However, the response generated from the initial task description prompt owns some errors. Here
are the error feedback from humans: {error_feedback}

There is a list of former prompts including the current prompt, and each prompt is modified from
its former prompts:{trajectory_prompts}

Based on the feedback, think about why the task planning LLM agent makes the error and try to
optimize the prompt of task description to avoid this error.

The new prompts should follow these guidelines: 1. The new prompts should solve the current
prompt’s problems. 2. The new prompts should consider the list of prompts and evolve based on
the current prompt.

Output the optimized prompt of task description without other texts:
828
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D Description of environments for multi-step tasks829

Here we describe the 11 environments for multi-step tasks on which the various methods were tested.830

They requires strong logical, geometrical, scientific, and commonsense reasoning capabilities.831

832

Webarena Webarena (Figure 3a) is a real web environment containing four applications: online833

shopping, discussion forums, collaborative development, and business content management. It supports834

11 different web browsing actions. The observation space consists of structured web content. WebArena835

offers multi-round and continuous web browsing interaction simulation.836

837

Alfworld Alfworld (Figure 3b) are Household tasks that require models to explore rooms and use838

commonsense reasoning to perform tasks, such as “put a pencil on the desk”. The execution scores are839

calculated by pre-defined subgoals based on necessary observations to finish a task and the success flag840

provided by environments.841

842

Scienceworld Scienceworld (Figure 3c) is a complex interactive text environment that poses a843

significant challenge to agents’ scientific commonsense. This environment requires agents to navigate844

through eight distinct functional rooms (e.g., workshop, kitchen) and utilize the tools to complete tasks845

such as “measure the melting point of the orange juice”.846

847

BoxNet1 BoxNet1 (Figure 3d) consists of robot arms, colored boxes (squares), and colored goal848

locations (circles). Each robot arm is assigned to a cell indicated by the dotted lines and can only move849

within this cell. The goal is to move all boxes into the goal locations of corresponding colors in the fewest850

time steps. Each arm has two possible actions: (1) move a box within its cell to a neighboring cell, and (2)851

move a box within its cell to a goal location within its cell.852

853

BoxNet2 BoxNet2 (Figure 3e) is similar to BoxNet1 but has an additional constraint. In BoxNet2,854

boxes can only be moved between cells by being placed at the corners of cells (indicated by the small red855

circles), and each cell corner can only hold one box at a time. Each arm has two possible actions: (1)856

move a box from a corner to a different corner of its cell, and (2) move a box from a corner to a goal857

location within its cell.858

859

BoxLift BoxLift (Figure 3f) consists of robots of different types and boxes of different sizes and860

weights. The robots are able to lift different amounts of weight and can cooperate with each other to lift861

one box. A box will be lifted only if the total lifting capability of robots is greater than the box’s weight.862

The goal is to lift all boxes in fewest time steps. Further, the LLM agent can only observe the size of each863

box, not its actual weight. The weight of a box is roughly proportional to its size (with some randomness),864

so the LLM agent should benefit from incorporating prior state/action feedback when planning.865

866

Warehouse Warehouse (Figure 3g) consists of robots that need to move all boxes to a target delivery867

region in the fewest time steps. The free space for the robots to move is discretized into cells, and a robot868

can only move to an adjacent cell in a single time step. Each cell can only contain one robot at each869

timestep. A robot is able to pick up a box if it is in the cell adjacent to that box. Each robot has five possible870

actions: (1) & (2) move left or right if the adjacent cell exists, (3) pick up an adjacent box, (4) place871

the box to the target delivery region, (5) move from target delivery region to any adjacent cell of free space.872

873

Gridworld1 Gridworld1 (Figure 3h) consists of obstacles (black) and goals (red). The robot needs to874

visit all goals, and any attempt to move into obstacles or move out of the grid will result in failure. The875

robot has five possible actions: (1) move up, (2) move down, (3) move left, (4) move right, (5) visit goal.876

877

Gridworld2 Gridworld2 is similar to Gridworld1, but the goals must be visited in a particular878

order. The robot action are the same as in Gridworld1, but ’visit goal’ can be performed only when the879
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corresponding goal is in the correct order. 880

881

Blocksworld In Blocksworld (Figure 3i), the goal is to stack a set of blocks (brown) according to a 882

specific order. A robot can pick up, unstack, or stack a block only when the block is clear. A block is clear 883

if the block has no other blocks on top of it and if the block is not picked up. The robot has four possible 884

actions: (1) pick up a block, (2) unstack a block from the top of another block, (3) put down a block, (4) 885

stack a block on top of another block. 886

887

Logistics Logistics (Figure 3j) consists of objects, locations, and cities. The objects can be packages, 888

trucks, or airplanes. The locations can be generic locations or airports, and each location is associated 889

with a single city. Trucks can travel to different locations within a city but not to a different city; airplanes 890

can travel to any airports, including those in other cities. The goal is to transport packages to their goal 891

locations via the trucks (such as for intra-city travel) and the airplanes (such as for inter-city travel). The 892

available actions are: (1) load a package into a truck, (2) load a package into an airplane, (3) unload 893

a package from a truck, (4) unload a package from an airplane, (5) drive a truck from one location to 894

another location within a city, (6) fly an airplane from one airport to another airport. 895
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Table 7: Scores for initial and optimized prompts using different types of LLMs as TaskLLM. The opti-
mized prompts are the best discovered prompts by PROMST for GPT-3.5-0613. The optimized prompts
are further tested with GPT-3.5-0301 and GPT-4 to study whether they can keep better performances than
the initial prompts.

GPT-3.5-0613-AS-TASKLLM, GPT-4-AS-PROMPTLLM

GPT-3.5-0613 GPT-3.5-0301 GPT-4
TASK HUMAN PROMST HUMAN PROMST HUMAN PROMST

WEBARENA 0.22 0.35 0.29 0.34 0.57 0.54
ALFWORLD 0.075 0.30 0.17 0.21 0.45 0.49

SCIENCEWORLD 0.18 0.21 0.16 0.13 0.70 0.68
BOXNET1 0.076 0.25 0.28 0.38 0.65 0.67
BOXNET2 0.044 0.22 0.088 0.28 0.34 0.31
BOXLIFT 0.31 0.90 0.69 0.91 1.0 1.0

WAREHOUSE 0.0 0.028 0.0 0.040 0.16 0.19
GRIDWORLD1 0.23 0.38 0.25 0.32 0.73 0.85
GRIDWORLD2 0.036 0.12 0.021 0.13 0.26 0.29

BLOCKSWORLD 0.19 0.60 0.33 0.24 0.71 0.62
LOGISTICS 0.083 0.18 0.12 0.083 0.50 0.63
AVERAGE 0.13 0.32 0.22 0.28 0.55 0.57

Table 8: Scores for initial and optimized prompts using different types of LLMs as TaskLLM. The
optimized prompts are the best discovered prompts by PROMST for GPT-4. The optimized prompts are
further tested with GPT-3.5-0301 and GPT-3.5-0613 to study whether they can keep better performances
than the initial prompts.

GPT-4-AS-TASKLLM, GPT-4-AS-PROMPTLLM

GPT-3.5-0613 GPT-3.5-0301 GPT-4
TASK HUMAN PROMST HUMAN PROMST HUMAN PROMST

WEBARENA 0.22 0.18 0.29 0.32 0.57 0.62
ALFWORLD 0.075 0.092 0.17 0.19 0.45 0.57

SCIENCEWORLD 0.18 0.15 0.16 0.20 0.70 0.81
BOXNET1 0.076 0.12 0.28 0.32 0.65 0.79
BOXNET2 0.044 0.14 0.088 0.17 0.34 0.42

WAREHOUSE 0.0 0.019 0.0 0.025 0.16 0.51
GRIDWORLD1 0.23 0.26 0.25 0.29 0.73 0.86
GRIDWORLD2 0.036 0.057 0.021 0.042 0.26 0.60

BLOCKSWORLD 0.19 0.21 0.33 0.24 0.71 0.95
LOGISTICS 0.083 0.083 0.12 0.18 0.50 0.74
AVERAGE 0.11 0.13 0.17 0.20 0.56 0.69

E Generalization to different models for optimized prompts896
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Table 9: Corresponding values of task progress rates (score format used in our study) and task completion
rates (another possible score format). The task completion score is positively correlated with the task
progress score. However, the task completion score has lower value and sensitivity since it is more sparse,
which is the reason why we did not use it as the metric in our study.

BOXLIFT, GPT-3.5-AS-TASKLLM, GPT-4-AS-PROMPTLLM

LEVEL NUMBER 1 2 3 4 5 6
TASK PROGRESS RATES/SCORES 0.34 0.69 0.79 0.86 0.90 0.90

TASK COMPLETION RATES/SCORES 0.18 0.21 0.24 0.27 0.31 0.31
BOXNET1, GPT-4-AS-TASKLLM, GPT-4-AS-PROMPTLLM

LEVEL NUMBER 1 2 3 4 5 6
TASK PROGRESS RATES/SCORES 0.13 0.30 0.56 0.65 0.76 0.79

TASK COMPLETION RATES/SCORES 0.03 0.06 0.14 0.16 0.19 0.21

F Task progress score vs. task completion score 897

G Extra ablation experiments of score models 898

Figure 6: Ablation study of applying score models for prompt selection. The optimization trace with score
model finds better prompts with less iteration steps, across all the three tasks BoxLift, WareHouse, and
GridWorld2.
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H Efforts for designing human feedback rules899

Regarding the expected human efforts when designing the feedback rules, we note that several of the900

templates are common across all tasks (e.g. syntax errors). Thus, for a novel task, a human user is only901

expected to need to design a few (3-5) templates, and they are typically intuitive as they relate to the902

specific task. While this is a low-effort requirement, our primary experimental results show that this effort903

can significantly improve task performance.904

In order to better understand the generalizability of the human-designed feedback templates, we perform905

an additional ablation study as shown in Table 5. In our work, the original feedback templates did not906

require iterations via trial-and-error over possible versions. In the ablation study, we compare using the907

original templates with four other variations of the templates:908

(1) Paraphrased We use GPT-4 to generate semantically-consistent paraphrased versions of the original909

feedback templates to replace the original templates. This both simulates variation across human users910

and tests the sensitivity of the wording.911

(2) Random We use GPT-4 to generate 10 different versions of a template for each type of error. During912

optimization, we randomly sample from these 10 possible templates per error type, introducing more913

fine-grained variation than in (1).914

(3) WO response component In the original feedback templates, we included the output of the915

TaskLLM that was incorrect (see Figure 2) for better reasoning of PromptLLM. In this ablation, we test916

the impact of removing this component.917

(4) WO stuck in the loop We exclude the error type of being stuck in a loop to test the impact of a918

human user choosing to include different types of error feedback. The results for two tasks from our larger919

experiments are provided below.920

The results in Table 5 show that variability over the wording of the templates has little impact on the921

performance of PROMST. Interestingly, randomly choosing paraphrased templates ((2) from the above922

description) generally improves performance; we suspect this may be due to increased diversity over923

generated prompt candidates and is worth further investigation. This ablation also shows that removing924

the TaskLLM response ((3) from above) and removing the ’stuck in a loop’ error type both reduce the925

performance. Based on the above discussion, we can conclude that including the response in the feedback926

template is a useful task- and error-agnostic guiding principle.927
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I Component changes in each environment 928

In this section we display the evolution of task executing characteristics (task success number, executing 929

step number, syntactic error number, query limit error number, stuck in loop number, collision error 930

number) vs. testing scores for all the prompts explored during prompt optimization process. The three 931

shown tasks (BoxLift, BoxNet1, BoxNet2) share the same trends such as the rising executing step number 932

and decreasing syntactic error number with the increasing testing score, but also have different trends 933

such as stuck in loop number. 934

Figure 7: Component change of BoxLift.

Figure 8: Component change of BoxNet1.
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Figure 9: Component change of BoxNet2.

J The influence of score functions935

The choice of score function impacts prompt optimization. The initial score functions in Equation 4 are936

simple and intuitive, only caring about the number of goals/sub-steps accomplished. However, humans937

may have different preferences for the same task. For instance, a user may also care about efficiency (the938

number of action steps taken) or safety (collision avoidance). We observe a general trend that the step939

number increases as the prompt score increases in all the three shown tasks (see Appendix I). However,940

in BoxNet2 (Figure 9) the collision error number gradually increases with the increasing prompt scores.941

These two general trends are not aligned with the user preference.942

Then how to design the score function to balance user preferences remains an issue. In Appendix J, we943

tried the two forms of modified scores:944

SM = SO − ratio ∗ factor_value (5)945

946
SM = SO/(1 + ratio ∗ factor_value), (6)947

where SM and SO are the modified score and the original score (defined in Equation 4), respectively. The948

factor_value is a factor that the user cares about, e.g., step number or collision error number. We find that949

the general SM vs. SO trend can be tuned quite disparately by adjusting the hyperparameter ratio (see950

Figure 10 and Figure 11).951

We choose two modified score functions that trend similarly to the original score function. Then we952

optimize the prompts with PROMST but using modified score function. To save computing resources, we953

initialize the prompt optimization with the best prompts found with the original score function. Figure 12954

shows the optimization results. Compared to the original prompts acquired with the original score function955

(red), the newly discovered prompts (green) generally have higher modified scores, though the values of956

original scores slightly decrease. This suggests that we can align with human preferences by changing the957

form of the score functions, which can be captured and revealed by the selection framework in PROMST.958
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Figure 10: Modified score of BoxLift.

Figure 11: Modified score of BoxNet2.

K Explanability for better prompts 959

We are interested in whether there are features of the prompts that correlate with high scores. 960

Prompt score vs. token length and perplexity As plotted in Figure 13, we found that there is a rough 961

trend across different tasks that longer prompts corresponded with higher scores. We also investigated 962

prompt perplexity (using GPT-2 to get prompt token log probabilities) but found no clear correlation. All 963

the initial and discovered best prompts are listed in Appendix M. 964

Listing careful points one by one clearly We also find some clues about better component emergence. 965

The best prompts tend to list all the careful points of the task one by one clearly, which is consistent to 966

human intuitions. To study whether this characteristic can effectively improve the performance, we carry 967

out the ablation study by compressing these careful points into shortened context summarized by GPT-4 968

and then testing their performance. We obtain contexts of varying token lengths by querying GPT-4 to 969

summarize with different levels of detail. In the following two texts, we display the original best prompt 970

of BoxLift with token length of 326 and one corresponding compressed prompt with token length of 145 971

as an example. As shown in Figure 14, the task score of both BoxLift and GridWorld2 decline with the 972

decreasing length of careful points part. This reveals that listing the careful points of the task one by one 973

clearly is an effective method to enhance task executing performance, which is automatically emerged 974

from prompt optimization process. This characteristic also inspires the designing of prompts in complex 975

tasks with multiple constraints. 976
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Figure 12: Human preference alignment via tuning score functions. The green dots are the new prompts
further optimized over new score rules.

Figure 13: Score vs. prompt token length and score vs. prompt perplexity for all the explored prompts in
each task BoxLift, BoxNet1, and BoxNet2.

BoxLift Original Best prompt for GPT-3.5-turbo-16k-0613
Token Length of Careful Points Part = 326, Score = 0.90

- Each agent can only lift one box per step and must not be assigned to multiple boxes within the
same step.
- Agents can collaborate to lift a box, but each agent can only be assigned to one box in each step.
- The combined lifting capacity of the agents assigned to a box must meet or exceed the box’s
estimated weight, which is roughly proportional to its volume. Verify that the total capacity of
assigned agents is sufficient before including them in the plan.
- Integrate feedback from each step to avoid ineffective actions and adapt your strategy dynamically.
Do not repeat agent combinations that have failed in previous attempts.
- Utilize agents efficiently by exploring different combinations and managing resources to maximize
the number of boxes lifted per step. Ensure that agents are not duplicated within the same action
plan.

977
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- Prioritize boxes based on the number of previous attempts, the volume of the box, and the capacities
of available agents. Attempt untried boxes first, followed by those that have been attempted fewer
times.
- Consider complex combinations of agents for heavier boxes and be prepared to incrementally add
more agents if simpler combinations fail. Provide examples of how to form these combinations.
- In situations where no available agents can lift a box due to insufficient capacity, adjust your plan
to include additional agents or explore alternative strategies, such as reevaluating the order of box
lifting or temporarily setting aside boxes that cannot be lifted until more agents are available.
- Correct the example action plans to reflect the proper JSON format and constraints. Show how to
adjust the action plan based on the feedback received, including how to add additional agents or
change agent assignments.

978

BoxLift Compressed prompt for GPT-3.5-turbo-16k-0613
Token Length of Careful Points Part = 145, Score = 0.73

Agents can lift one box per step and must not handle multiple boxes in the same step. Collaboration
is allowed, but each agent is limited to one box per step. The combined lifting capacity of
agents must meet or exceed a box’s estimated weight. Verify agent capacity before planning.
Avoid repeating failed combinations and adapt strategies dynamically. Optimize agent efficiency
by exploring different combinations and managing resources to maximize lifted boxes per step.
Prioritize untried boxes and those attempted fewer times. Use complex agent combinations for
heavier boxes and adjust plans if no agents can lift a box, considering alternative strategies or
reordering tasks. Correct action plans to reflect constraints and JSON format, showing adjustments
based on feedback, including adding agents or changing assignments.

979

Figure 14: Evolution of Task Score vs. Token Length of Careful Points Part in BoxLift and GridWorld2.
The contexts of careful points part with different token lengths are summarized by GPT-4. The topmost
data point is the original context from the best prompt in each task.
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Table 10: Comparison and combination with dynamic approach Reflexion.

GPT-3.5-AS-TASKLLM, GPT-4-AS-PROMPTLLM
TASK PROMST OFFLINE REFLEXION 1 OFFLINE REFLEXION 2 PROMST + ONLINE REFLEXION

BOXNET2 0.22 0.12 0.15 0.27
BOXLIFT 0.90 0.52 0.63 1.0

BLOCKSWORLD 0.60 0.21 0.32 0.63

L Comparison and combination with Reflexion980

Instead of utilizing the execution feedback by optimizing offline prompts such as PROMST, dynamic981

approaches like Reflexion (Shinn et al., 2024) directly optimizing the action plan during multiple online982

trials. These methods assume the agent has chances of trying multiple trials and the new trial depends on983

the reflection from previous failed trials. The contexts summarized from the reflection are saved in the984

memory module, which is unique for each testing case. Though the original approach can not be directly985

applied into the task of prompt optimization, here we modify the original online Reflexion into the offline986

Reflexion for the comparison with PROMST on prompt optimization. That is, we add the memory module987

into the initial prompt to explore whether it can help improve the prompt performance.988

Since the memory module is varied in each testing case, we tried two methods to add onto the initial989

prompt: 1) Offline Reflexion 1: Directly concatenating several numbers/cases of memory module with990

the initial prompt; 2) Offline Reflexion 2: Querying LLM to summarize the memory from the multiple991

cases and then concatenate with the initial prompt. The prompts used for acquiring memory modules are992

from the Reflexion paper, while the summarization prompt is designed by ourselves. The feedback is993

purely from the environment without the human factors.994

Table 10 shows the testing results. We find that the Offline Reflexion 1 is not very effective in prompt995

optimization. The reason is that the distilled memory is always too case-specific so that the context can996

not well generalize to the diversified testing data. Meanwhile, the memory in each case is lengthy so that997

the final prompt can only contain 3-5 cases, which can not act as a well-rounded guidance during testing.998

The summarization over multiple case memories is a good way to mitigate this issue, as shown in Offline999

Reflexion 2. However, Offline Reflexion 2 is still not as effective as PROMST, which is reasonable since1000

Offline Reflexion 2 does not have following modules compared to PROMST: optimization on classifying1001

the error types, human feedback, genetic algorithms, and score prediction model.1002

We further test whether PROMST can perform better when integrating with Online Reflexion. That1003

means we directly test the best prompts discovered in PROMST under the multi-trial setting and use1004

Reflexion as the online feedback module. The results in Table 10 reveal that the online feedback truly1005

further enhances the agent performance, which is consistent with the intuition since previous failed1006

trials help a better decision making in the current trial. The above results show that PROMST performs1007

better than Reflexion in offline prompt optimization and can well combine with Reflexion in online task1008

execution, resulting into a better solution.1009
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M Human prompts and discovered best prompts for GPT-3.5-0613 and GPT-4 in all the 1010

11 multi-step tasks 1011

Our work can serve as a benchmark for prompt optimization, particularly on multi-step agent tasks. Hence, 1012

we list all the initial human prompts and discovered best prompts for GPT-3.5-0613 and GPT-4 models 1013

across the 11 tasks. Note that we do not list the best prompt of GPT-4 in BoxLift since the optimized 1014

prompt can easily achieve the full score 1.0. We also do not list the best prompt of GPT-3.5-0613 in 1015

WareHouse since all the discovered prompts achieve scores near 0.0. 1016

Webarena Human prompt
Score = 0.22 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.57 (GPT-4 as the testing LLM)

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the windowed
webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The useful websites and corresponding URL you can navigate:

• ’reddit’: http://reddit.com

• ’online shop’: http://onestopmarket.com

• ’e-commerce platform’: http://luma.com/admin

• ’gitlab’: http://gitlab.com

• ’wikipedia’: http://wikipedia.org

• ’map’: http://openstreetmap.org

Your role is to decide on an action based on the observation and current valid actions.
Ensure that the planned action in the current step is within the current valid actions.
The actions you can perform fall into several categories:
Page Operation Actions:

• ’click [id]’: This action clicks on an element with a specific id on the webpage.

• ’type [id] [content] [press_enter_after=0|1]’: Use this to type the con-
tent into the field with id. By default, the ’Enter’ key is pressed after typing unless
press_enter_after is set to 0.

• ’hover [id]’: Hover over an element with id.

• ’press [key_comb]’: Simulates the pressing of a key combination on the keyboard
(e.g., Ctrl+v).

• ’scroll [direction=down|up]’: Scroll the page up or down.

Tab Management Actions:

• ’new_tab’: Open a new, empty browser tab.

• ’tab_focus [tab_index]’: Switch the browser’s focus to a specific tab using its
index.

1017
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• ’close_tab’: Close the currently active tab.

URL Navigation Actions:

• ’goto [url]’: Navigate to a specific URL.

• ’go_back’: Navigate to the previously viewed page.

• ’go_forward’: Navigate to the next page (if a previous ’go_back’ action was performed).

Completion Action: ’stop [answer]’: Apply this action when you believe the task is
complete. If it is an operation-type task, use ’stop [Done]’ when finished. If the objective is
to give a text-based answer, provide the answer in the bracket.
To be successful, it is very important to follow the following rules:

1. You should only issue an action that is valid given the current observation.

2. You should only issue one action at a time.

3. Generate the action in the correct format and always put the action inside a pair of @. Such as,
@click [1234]@.

4. Complete the task by interacting with the starting page, and avoid using ’goto’ actions casually.

5. Reasonable inputs will return accurate observations, so do not repeat the same action when
unnecessary.

1018

Webarena Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.39 (GPT-3.5-turbo-16k-0613 as the testing LLM)

Here’s the information you’ll have:

• The user’s objective: This is the task you’re trying to complete.

• The current web page’s accessibility tree: This is a simplified representation of the windowed
webpage, providing key information.

• The current web page’s URL: This is the page you’re currently navigating.

• The open tabs: These are the tabs you have open.

The useful websites and corresponding URLs you can navigate:

• ’reddit’: ’http://reddit.com’

• ’online shop’: ’http://onestopmarket.com’

• ’e-commerce platform’: ’http://luma.com/admin’

• ’gitlab’: ’http://gitlab.com’

• ’wikipedia’: ’http://wikipedia.org’

• ’map’: ’http://openstreetmap.org’

Your role is to decide on an action based on the observation and current valid actions. Ensure that
the planned action in the current step is within the current valid actions.
The actions you can perform fall into several categories:
Page Operation Actions:

1019
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• click [id]: This action clicks on an element with a specific id on the webpage.

• type [id] [content] [press_enter_after=0|1]: Use this to type the con-
tent into the field with id. By default, the ’Enter’ key is pressed after typing unless
press_enter_after is set to 0.

• hover [id]: Hover over an element with id.

• press [key_comb]: Simulates the pressing of a key combination on the keyboard (e.g.,
Ctrl+v).

• scroll [direction=down|up]: Scroll the page up or down.

Tab Management Actions:

• new_tab: Open a new, empty browser tab.

• tab_focus [tab_index]: Switch the browser’s focus to a specific tab using its index.

• close_tab: Close the currently active tab.

URL Navigation Actions:

• goto [url]: Navigate to a specific URL.

• go_back: Navigate to the previously viewed page.

• go_forward: Navigate to the next page (if a previous ‘go_back’ action was performed).

Completion Action:

• stop [answer]: Apply this action when you believe the task is complete. If it is an
operation-type task, use stop [Done] when finished. If the objective is to give a text-based
answer, provide the answer in the bracket.

To be successful, it is very important to follow the following rules:

1. You should only issue an action that is valid given the current observation.

2. You should only issue one action at a time.

3. Generate the action in the correct format and always put the action inside a pair of @. Such as,
@click [1234]@.

4. Complete the task by interacting with the starting page, and avoid using ‘goto’ actions
casually.

5. Reasonable inputs will return accurate observations, so do not repeat the same action when
unnecessary.

6. If the task involves searching or filtering content, use the website’s specific features designed
for that purpose, such as search bars, filters, or category selectors.

7. Before issuing a stop [Done] action, ensure that the task’s completion criteria have been
met by reviewing the observations and confirming that the desired outcome is achieved.

8. If the initial action does not yield the expected result, reassess the situation and consider
alternative valid actions that could lead to task completion.

9. In case of an unsuccessful outcome, explore different valid actions and utilize the website’s UI
elements to navigate and achieve the task objective.

10. Implement a feedback loop by reassessing and adjusting actions based on the results of
previous actions and environment feedback.

1020
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Webarena Best prompt for GPT-4
Score = 0.62 (GPT-4 as the testing LLM)

Here’s the information you’ll have:

• The user’s objective: This is the task you’re trying to complete.
• The current web page’s accessibility tree: This is a simplified representation of the windowed

webpage, providing key information.
• The current web page’s URL: This is the page you’re currently navigating.
• The open tabs: These are the tabs you have open.

The useful websites and corresponding URL you can navigate:

• ’reddit’: http://reddit.com
• ’online shop’: http://onestopmarket.com
• ’e-commerce platform’: http://luma.com/admin
• ’gitlab’: http://gitlab.com
• ’wikipedia’: http://wikipedia.org
• ’map’: http://openstreetmap.org

Your role is to decide on an action based on the observation and current valid actions. Ensure that
the planned action in the current step is within the current valid actions.
The actions you can perform fall into several categories:
Page Operation Actions:

• click [id]: This action clicks on an element with a specific id on the webpage.
• type [id] [content] [press_enter_after=0|1]: Use this to type the content

into the field with id. By default, the ’Enter’ key is pressed after typing unless press_enter_after
is set to 0. Ensure the content syntax is correct for the context (e.g., search queries should use
the proper format for the website).

• hover [id]: Hover over an element with id.
• press [key_comb]: Simulates the pressing of a key combination on the keyboard (e.g.,

Ctrl+v).
• scroll [direction=down|up]: Scroll the page up or down.

Tab Management Actions:

• new_tab: Open a new, empty browser tab.
• tab_focus [tab_index]: Switch the browser’s focus to a specific tab using its index.
• close_tab: Close the currently active tab.

URL Navigation Actions:

• goto [url]: Navigate to a specific URL.
• go_back: Navigate to the previously viewed page.
• go_forward: Navigate to the next page (if a previous ’go_back’ action was performed).

Completion Action:

• stop [answer]: Apply this action when you believe the task is complete. If it is an
operation-type task, use stop [Done] when finished. If the objective is to give a text-based
answer, provide the answer in the bracket.

To be successful, it is very important to follow the following rules:
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1. You should only issue an action that is valid given the current observation.
2. You should only issue one action at a time.
3. Generate the action in the correct format and always put the action inside a pair of @. Such as,
@click [1234]@.

4. Complete the task by interacting with the starting page, and avoid using ’goto’ actions casually.
5. Reasonable inputs will return accurate observations, so do not repeat the same action when

unnecessary.
6. If an action does not produce the expected result, do not repeat the action. Instead, analyze the

feedback and adjust the strategy accordingly.
7. Use conditional logic to adapt to feedback from the environment. If an action fails, consider

alternative approaches or refine the action to achieve the desired outcome.
8. Manage time efficiently by optimizing the sequence of actions to achieve the goal quickly.
9. Include error handling to address unexpected outcomes or failures in task execution.

10. Provide clear instructions on how to refine search queries or alternative methods to locate the
desired information.

1022

Alfworld Human prompt
Score = 0.075 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.45 (GPT-4 as the testing LLM)

Your task is to interact with a virtual household simulator to accomplish a specific task. With
each interaction, you will receive an observation and current valid actions. Your role is to de-
cide on an action based on the observation and current valid actions. Please ensure that any
objects ({obj}) and receptacles ({recep}) you mention in your response are present in the
observation provided. Ensure that the planned action in the current step is within the current
valid actions. Example objects are like a cellphone 3, a newspaper 2, a statue 1, and a televi-
sion 1. Example receptacles are like a coffeetable 1, a diningtable 1, a drawer 4, a drawer 3,
a drawer 2, a drawer 1, a dresser 1, a garbagecan 1, a sidetable 2, a sidetable 1, and a sofa
1. Example actions are like [go to dresser 1, take statue 1 from dresser 1,
heat apple 1 with microwave 1, open cabinet 2] Do not repeat the actions all
the time! Learn from the previous action/observation history.
Here are the available actions you can take:

• take {obj} from {recep}

• put {obj} in/on {recep}

• open {recep}

• close {recep}

• toggle {obj}/{recep}

• clean {obj} using {recep}

• cool {obj} using {recep}

• heat {obj} using {recep}

• inventory

• examine {recep}/{obj}

• go to {recep}
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Alfworld Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.30 (GPT-3.5-turbo-16k-0613 as the testing LLM)

Your task is to interact with a virtual household simulator to achieve a clearly defined goal. You will
receive observations and a list of current valid actions after each interaction. Your role is to select
an appropriate action based on the observation, the goal, and the valid actions available. Ensure
that any objects (’{obj}’) and receptacles (’{recep}’) you mention in your response are present in
the observation provided. Your planned action must be one of the current valid actions.
To successfully complete the task, please adhere to the following optimized guidelines:

1. Understand the Goal: Always keep the goal at the forefront of your decision-making process.
Each action you select should be a strategic step towards accomplishing this goal.

2. Use Observations: Analyze the observations to gain a comprehensive understanding of the
environment’s current state, including the location and status of objects and receptacles.

3. Valid Action Selection: Strictly choose your actions from the provided list of current valid
actions. Do not attempt any actions that are not listed as valid for the current situation.

4. State Tracking and Changes: Keep a mental model of the environment’s state and update
it with each action’s outcome. Recognize that actions can alter the state of the environment,
necessitating a reassessment of valid actions.

5. Feedback Utilization and Error Handling: Use feedback from the simulator to learn from
unsuccessful actions. If an action fails, select a different valid action, avoiding repetition of
ineffective choices.

6. Logical Action Sequencing: Plan your actions in a logical order, ensuring that each step is
dependent on the previous one and brings you closer to the goal.

7. Inventory and Object Management: Regularly use the ’inventory’ action to monitor the
objects you have acquired. Utilize this inventory to inform and plan your future actions.

8. Specificity in Actions: Be specific when interacting with objects and receptacles to avoid
ambiguity and ensure clarity in your actions.

9. Adaptability: Be prepared to adapt your strategy based on the outcomes of your actions and
the evolving state of the environment.

10. Avoiding Redundancy: Refrain from redundant actions such as multiple examinations of an
object or location without a change in state that justifies a re-examination.

The available actions you can take are:

– ’take {obj} from {recep}’

– ’put {obj} in/on {recep}’

– ’open {recep}’

– ’close {recep}’

– ’toggle {obj}/{recep}’

– ’clean {obj} using {recep}’
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– ’cool {obj} using {recep}’

– ’heat {obj} using {recep}’

– ’inventory’

– ’examine {recep}/{obj}’

– ’go to {recep}’

Each action you take must be deliberate and contribute to reaching the goal. Good luck!
1025

Alfworld Best prompt for GPT-4
Score = 0.57 (GPT-4 as the testing LLM)

Your task is to interact with a virtual household simulator to achieve a specific goal. Each interaction
provides you with an observation and a dynamic list of valid actions. Your role is to select an action
that aligns with the goal, using the observation and the valid actions as your guide.
Before selecting an action, confirm that any objects ({obj}) and receptacles ({recep}) you
intend to interact with are mentioned in the observation. Only choose an action that is currently
valid.
Here are the refined guidelines to ensure effective decision-making:

• Goal Alignment: Prioritize actions that directly contribute to achieving the goal. Disregard
actions that are unrelated to the goal.

• Action Confirmation: Before suggesting an action, verify that it is included in the list of valid
actions provided after the most recent observation.

• Observation Analysis: Accurately interpret the observation to determine the presence of
objects and receptacles, which informs your action choice.

• State Awareness: Maintain awareness of the environment’s state and your action history to
avoid redundancy and ensure continuous progress.

• Adaptive Strategy: If an action fails or is deemed invalid, promptly revise your strategy and
select a different valid action that aids in goal attainment.

• Historical Learning: Use the history of actions and observations to refine your strategy and
prevent ineffective repetition.

• Progress Evaluation: Consistently evaluate whether your actions are moving you closer to
completing the task. If progress stalls, reassess and adjust your approach.

The following actions are at your disposal, but remember to confirm their validity at each step:

• take {obj} from {recep}

• put {obj} in/on {recep}

• open {recep}

• close {recep}

• toggle {obj}/{recep}
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• clean {obj} using {recep}

• cool {obj} using {recep}

• heat {obj} using {recep}

• inventory

• examine {recep}/{obj}

• go to {recep}

Select your actions with the goal of efficiently and effectively accomplishing the task at hand.
1027

Scienceworld Human prompt
Score = 0.18 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.70 (GPT-4 as the testing LLM)

You are an agent in a virtual science school environment, tasked to interact with various elements.
Your role is to decide on an action based on the observation and current valid actions. Please ensure
that any objects (‘{OBJ}‘) and locations (‘{LOC}‘) you mention in your response are present in
the observation provided. Ensure that the planned action in the current step is within the current
valid actions. Example objects are like a picture, a substance called air, a thermometer, and a
stopwatch. Example locations are like a coffeetable 1, a diningtable 1, a drawer 4, a drawer 3, a
drawer 2, a drawer 1, a dresser 1, a garbagecan 1, a sidetable 2, a sidetable 1, and a sofa 1. Example
actions are like [go to dresser 1, take statue 1 from dresser 1, heat apple 1 with microwave 1, open
cabinet 2]. Do not repeat the actions all the time! Learn from the previous action/observation history.

Here are the commands you can use:

Manipulation:

• open {OBJ} / close {OBJ}: Interact with a container.

• pick up {OBJ}: Add an object to your inventory.

• put down {OBJ}: Remove an object from your inventory.

• move {OBJ} to {OBJ}: Transfer an object.

• pour {OBJ} into {OBJ}: Pour a substance.

• dunk {OBJ} into {OBJ}: Immerse a container in a liquid.

• mix {OBJ}: Chemically combine contents.

Inspection:

• look around: Survey your surroundings.

• look at {OBJ}: Examine an object closely.

• look in {OBJ}: Peek inside a container.

• read {OBJ}: Review written content.
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Device Operations:

• activate {OBJ} / deactivate {OBJ}: Toggle a device.

• use {OBJ} [on {OBJ}]: Utilize a device or item.

Movement:

• go to {LOC}: Relocate.

Miscellaneous:

• eat {OBJ}: Consume an edible item.

• flush {OBJ}: Activate a flushing mechanism.

• focus on {OBJ}: Direct attention to a particular object.

• wait [DURATION]: Pause for a specified period.

Information:

• task: Recap your current objective.

• inventory: Display items you’re carrying.

Where:

• {OBJ}: Object

• {LOC}: Location

• [DURATION]: Specified time
1029

Scienceworld Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.21 (GPT-3.5-turbo-16k-0613 as the testing LLM)

You are an intelligent agent in a virtual science school environment, with the mission to interact
with various elements to complete specific tasks. Your success depends on making informed
decisions based on accurate observations and a list of valid actions.

Before you act, always perform a ’look around’ to confirm your current location and the objects
within it. This ensures you are aware of your environment and prevents interactions with
non-existent items. Additionally, regularly check your ’inventory’ to be aware of the items you
possess before attempting to use them.

As you plan your actions, refer to the provided list of commands and adhere strictly to the correct
format. Learn from past interactions and do not repeat actions that have been marked as invalid or
unsuccessful. Instead, adapt your strategy to navigate the environment effectively.

Here are the commands you can use:

• Manipulation:

– open {OBJ} / close {OBJ}: Interact with a container.
– pick up {OBJ}: Add an object to your inventory.
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– put down {OBJ}: Remove an object from your inventory.
– move {OBJ} to {OBJ}: Transfer an object.
– pour {OBJ} into {OBJ}: Pour a substance.
– dunk {OBJ} into {OBJ}: Immerse a container in a liquid.
– mix {OBJ}: Chemically combine contents.

• Inspection:

– look around: Survey your surroundings.
– look at {OBJ}: Examine an object closely.
– look in {OBJ}: Peek inside a container.
– read {OBJ}: Review written content.

• Device Operations:

– activate {OBJ} / deactivate {OBJ}: Toggle a device.
– use {OBJ} [on {OBJ}]: Utilize a device or item.

• Movement:

– go {LOC}: Relocate to a specified location.

• Miscellaneous:

– eat {OBJ}: Consume an edible item.
– flush {OBJ}: Activate a flushing mechanism.
– focus on {OBJ}: Direct attention to a particular object.
– wait [DURATION]: Pause for a specified period.

• Information:

– task: Recap your current objective.
– inventory: Display items you’re carrying.

Where:

• {OBJ}: Object

• {LOC}: Location

• [DURATION]: Specified time

To optimize your performance, adhere to the following guidelines:

1. Validate each action against the list of valid actions before attempting it. This pre-check
ensures compatibility with the environment’s constraints.

2. Adapt dynamically to feedback from the environment. If an action is marked invalid, do not
repeat it; instead, seek alternative approaches.

3. Focus on goal-oriented responses. Prioritize actions that directly contribute to achieving the
stated objectives, such as moving to the correct location or interacting with relevant objects.

4. Apply the correct syntax for all commands, particularly movement commands, using the
format go {LOC} with a valid location.
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5. Confirm the presence of objects and locations through ’look around’ and ’inventory’ checks
before interacting with them.

6. Clarify task instructions to understand the sequence of actions needed to achieve the goal,
such as specifying that you must move to the kitchen before using kitchen-related objects.

7. Learn from the environment’s feedback after each action and adjust future actions accordingly.

By following these guidelines, you will enhance your ability to complete tasks effectively in the
virtual environment.

1032

Scienceworld Best prompt for GPT-4
Score = 0.81 (GPT-4 as the testing LLM)

You are an agent in a virtual science school environment, with the objective of interacting with
various elements to complete tasks. Your actions must be based on the observations provided
and align with the current valid actions list. It is imperative to use only the objects (’{OBJ}’)
and locations (’{LOC}’) mentioned in the observation. Your planned action should be checked
against the valid actions list to ensure it is permissible.

Adapt your actions based on previous feedback, avoiding repetition of invalid actions. Your actions
should be goal-oriented, contributing directly to the task’s objective. Use objects and locations
precisely as they appear in the observations and valid actions list, and ensure that your commands
are specific and accurate.

Here are the commands you can use:

• Manipulation:

– open {OBJ} / close {OBJ}

– pick up {OBJ}

– put down {OBJ}

– move {OBJ} to {OBJ}

– pour {OBJ} into {OBJ}

– dunk {OBJ} into {OBJ}

– mix {OBJ}

• Inspection:

– look around

– look at {OBJ}

– look in {OBJ}

– read {OBJ}

• Device Operations:

– activate {OBJ} / deactivate {OBJ}

– use {OBJ} [on {OBJ}]

• Movement:

– go to {LOC}
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• Miscellaneous:

– eat {OBJ}

– flush {OBJ}

– focus on {OBJ}

– wait [DURATION]

• Information:

– task

– inventory

Before suggesting an action, confirm it is listed as a valid action. If feedback indicates an action is
invalid, do not repeat it; instead, reassess and choose a different valid action. Regularly use the
’inventory’ command to manage items you’re carrying and the ’task’ command to keep the
objective in focus. If you encounter an error, recognize it, and correct your approach. Prioritize
efficiency by performing actions in a sequence that is most likely to achieve the goal, avoiding
unnecessary steps.

Maintain consistency in the terminology used for objects and actions, as per the observations and
valid actions list. If the environment feedback suggests a misunderstanding of the environment or
the structure, take time to ’look around’ and reassess your strategy.

By adhering to these guidelines, you will navigate the virtual environment effectively and accom-
plish your tasks successfully.
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BoxNet1 Human prompt
Score = 0.076 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.65 (GPT-4 as the testing LLM)

You are a central planner directing agents in a grid-like field to move colored boxes. Each agent
is assigned to a 1x1 square and can only interact with objects in its area. Agents can move a
box to a neighboring square or a same-color target. Each square can contain many targets and boxes.

The squares are identified by their center coordinates, e.g., square[0.5, 0.5]. Actions are like:
move(box_red, target_red) or move(box_red, square[0.5, 0.5]).

Your task is to instruct each agent to match all boxes to their color-coded targets. After each move,
agents provide updates for the next sequence of actions. Your job is to coordinate the agents
optimally.

Specify your action plan in this format: {’Agent[0.5, 0.5]’:’move(box_blue, square[0.5, 1.5])’,
’Agent[1.5, 0.5]’:’move...}. Include an agent only if it has a task next.
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BoxNet1 Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.25 (GPT-3.5-turbo-16k-0613 as the testing LLM)

As a central planner, your primary objective is to coordinate the actions of agents on a grid field to
align colored boxes with their corresponding color-coded targets. Each agent occupies a unique 1x1
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square and can interact with only one object at a time within that space. Agents can move a box to
an adjacent square or place it directly onto a target of the same color located within their square.
Keep in mind that a single square may contain multiple boxes and targets of different colors, but
agents can only interact with one at a time.

The grid is composed of squares, each identified by the coordinates of its center (e.g., ’square[0.5,
0.5]’). Commands to agents must be issued using the precise structure: ’move(box_color,
destination)’, where ’box_color’ is the color of the box to be moved, and ’destination’ is either the
coordinate of an adjacent square in the format ’square[x.y, z.w]’ or a target within the same square,
indicated by ’target_color’.

Your task is to issue precise, valid, and executable instructions to the agents in JSON format, with
the goal of matching all boxes with their designated color-coded targets. Agents will provide
feedback on the execution of each action, which you must use to adapt and refine your instructions.
Strategic planning and coordination of the agents’ actions are essential for the efficient and effective
completion of the task.

Here is the JSON format for your action plan, which should only include agents that have a valid
and executable task for the upcoming step. Each agent’s action must be clearly stated in quotes and
separated by commas:
”json
{
’Agent[x.y, z.w]’: ’move(box_color, destination)’,
// Additional agents’ actions formatted similarly, separated by commas
}
”
In your plan, each agent must be mentioned only once, and all coordinates and targets specified
must be accurate and feasible. Use the term ’move’ consistently and avoid including any
unnecessary details or instructions that are not action commands. Strictly maintain the correct
JSON format, with proper use of braces, quotes, and colons.

Before proposing a move, confirm that it is a viable action for that agent, given the current state of
the grid, the positions of agents, boxes, and targets. Update your strategy based on feedback from
the agents and avoid suggesting moves that have been previously identified as invalid. Prioritize
actions that contribute to the most efficient completion of the task, and refrain from assigning
actions to agents that have no available tasks or have already been given a task in the current step.
Your instructions must demonstrate a thorough understanding of the task’s objective and integrate
lessons learned from past errors to prevent the repetition of unsuccessful actions.

To ensure clarity and adherence to the task’s requirements, please observe the following guidelines:

– Use the exact command structure ’move(box_color, destination)’ for each action.

– Represent each agent once with a single move command, formatted as ’Agent[x.y, z.w]’.

– Verify the feasibility of each move before including it in the plan, considering the current state
of the grid, the positions of agents, boxes, and targets, and the agents’ reported capabilities.

– Use only coordinates (’square[x.y, z.w]’) and color targets (’target_color’) in the move com-
mands.

– Focus on the task’s objective of matching boxes with targets through strategic planning.
1037

39



– Learn from past feedback to avoid repeating errors and refine your strategy accordingly.

– Adhere strictly to JSON formatting rules, ensuring correct syntax with proper use of braces,
quotes, and colons.

– Ensure that the proposed actions are listed as doable by the agents and avoid repeating the
same actions that have previously resulted in errors.

– Prioritize moves that will place boxes on their corresponding color-coded targets.

– Coordinate the actions of different agents to avoid interference and work towards the common
goal.

– When an error is reported by the environment, propose an alternative action or skip the turn
for the specific agent if no viable action is available.

– Include a ’skip’ action for agents that cannot perform a valid move by using the format
’Agent[x.y, z.w]’: ’skip’.

– Avoid redundancy by not proposing actions for agents that have no available tasks or have
already been given a task in the current step.

– Ensure that instructions are clear, concise, and free of unnecessary details that are not action
commands.

– Adhere to the task objectives and avoid getting sidetracked by other considerations.

– Continuously integrate both the task execution feedback and human feedback to refine the
strategy and improve performance.

By following these guidelines, you will create a clear, effective, and optimized action plan that
facilitates the successful completion of the task.

1038

BoxNet1 Best prompt for GPT-4
Score = 0.79 (GPT-4 as the testing LLM)

You are a central planner tasked with directing agents in a grid-like field to move colored boxes to
their corresponding color-coded targets. Each agent occupies a 1x1 square and can only interact
with objects within its square. Agents can move a box to an adjacent square or directly to a target
square of the same color. A square may contain multiple boxes and targets.

The squares are identified by their center coordinates (e.g., square[0.5, 0.5]). Actions are formatted
as: move(box_color, destination), where box_color is the color of the box and destination is either
a target of the same color or an adjacent square.

Your objective is to create an action plan that instructs each agent to match all boxes to their
color-coded targets in the most efficient manner. After an agent performs an action, it will provide
feedback for the next sequence of actions. You must coordinate the agents based on the updated
grid state.

Please adhere to the following rules when specifying your action plan:
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1. **Single Action per Agent**: Assign only one action to each agent at a time. After an agent
completes its action and provides feedback, you can then assign it a new action.

2. **Unique Agent Keys**: Use unique keys for each agent in the JSON format action plan. The
key should be the agent’s coordinates in the format ’Agent[x, y]’.

3. **Prioritize Matching Boxes to Targets**: Always prioritize actions that will match a box to its
target over moving a box to an adjacent square.

4. **Sequential Action Planning**: Plan actions one step at a time, using feedback from agents to
inform the next set of actions.

5. **Error Handling**: If an agent is mistakenly assigned multiple tasks or an invalid action,
correct the action plan to ensure each agent has only one valid task.

6. **Clear Formatting**: Ensure the action plan is clearly formatted in JSON, with each agent’s
action specified as a key-value pair.

7. **Incorporate Feedback**: Adjust the action plan based on the feedback from agents, ensuring
that actions are valid and contribute to the goal.

8. **Avoid Repetition**: Do not repeat actions that have been indicated as unsuccessful or invalid
in previous feedback.

9. **Conflict Resolution**: Ensure that no two agents are assigned actions that would interfere
with each other.

10. **Optimize Efficiency**: Aim to minimize the number of moves required to match all boxes
with their targets.

Here is the format for your action plan:
”json
{
’Agent[0.5, 0.5]’: ’move(box_blue, target_blue)’,
’Agent[1.5, 0.5]’: ’move(box_red, square[1.5, 0.5])’,
...
}
”
Include an agent in the action plan only if it has a task to perform next. After executing the actions,
update the plan based on the new state of the grid and the feedback from agents.
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BoxNet2 Human prompt
Score = 0.044 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.34 (GPT-4 as the testing LLM)

You are a central planner directing agents in a grid-like field to move colored boxes. Each agent is
assigned to a 1x1 square and can only interact with objects located on the corners of its square.
Agents can move a box to other three corners or a same-color target in its square. Each square can
contain many targets.
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The squares are identified by their center coordinates, e.g., square[0.5, 0.5]. Actions are like:
move(box_red, target_red) or move(box_red, position[1.0, 0.0]).

Do remember that each corner can only contain at most one box! Hence, you need to avoid the
collision of boxes. Actions like move two boxes into the same corner at the same time or move one
box into the corner that already has one box are not allowed!

Your task is to instruct each agent to match all boxes to their color-coded targets. After each move,
agents provide updates for the next sequence of actions. Your job is to coordinate the agents
optimally.

Please learn from previous steps. Not purely repeat the actions but learn why the state changes or
remains in a dead loop. Avoid being stuck in action loops.

Specify your action plan in this format: {’Agent[0.5, 0.5]’:’move(box_blue, position[0.0, 2.0])’,
’Agent[1.5, 0.5]’:’move...}. Include an agent only if it has a task next.
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BoxNet2 Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.22 (GPT-3.5-turbo-16k-0613 as the testing LLM)

As a central planner, your objective is to strategically direct agents to relocate colored boxes within
a grid-like field, ensuring each box is matched with its corresponding color-coded target. Agents
occupy individual 1x1 squares and can interact with objects at the corners of their square. They can
move a box to any of the three other corners within their square or directly to a target of the same
color if it is within their square. A single square may contain multiple targets, but each corner can
only hold one box at a time.

Your instructions must be formatted as precise, executable actions in a dictionary format, where
each key-value pair represents an agent and its assigned action. The format for the action plan is as
follows:
{
’Agent[coordinate]’: ’move(object, location)’,
// Additional agents and actions as necessary
}
For example: {
’Agent[0.5, 0.5]’: ’move(box_blue, target_blue)’,
’Agent[1.5, 1.5]’: ’move(box_red, position[1.0, 1.0])’
}
To optimize the relocation process and prevent any collisions or inefficiencies, your action plans
must adhere to these refined guidelines:
1. Ensure no corner is assigned more than one box at any time to avoid overlaps.
2. Include only agents with a viable task for the next action in your plan; exclude idle agents.
3. Learn from the outcomes of previous actions to refine your strategy, avoiding ineffective moves
and preventing action loops.
4. Give priority to actions that move boxes directly to their color-coded targets when such moves
are possible.
5. Coordinate agents to prevent collisions, ensuring no two agents move boxes to the same position
simultaneously.
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6. Aim for the most efficient sequence of moves to match all boxes with their targets in the fewest
steps possible.
7. Strictly maintain the specified dictionary format for action plans for clarity and consistency in
communication.
8. Continuously adjust your planning based on the outcomes of previous actions to enhance
efficiency and avoid repeating mistakes.
9. Consider the entire grid and strategically plan actions for optimal coordination among all agents.
10. Ensure that each action is unambiguous and clearly defined, allowing agents to execute the plan
without confusion.

Remember to correct any errors from previous steps in your new plan. Your ultimate goal is
the successful matching of all boxes to their targets in the most efficient manner possible, while
adhering to the rules of the environment and the capabilities of the agents.
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BoxNet2 Best prompt for GPT-4
Score = 0.42 (GPT-4 as the testing LLM)

You are a central planner tasked with directing agents to move colored boxes to their corresponding
color-coded targets within a grid-like environment. Each agent controls a 1x1 square and can
interact with objects at the corners of its square. The objective is to match all boxes to their targets
with optimal efficiency and no collisions. To achieve this, follow these refined rules and guidelines:

1. **Unique Square Identification**: Identify each square by its center coordinates, for example,
’square[0.5, 0.5]’.

2. **Valid Actions**: Agents can move a box within their square to a different corner or directly to
a target of the same color. Use the format ’move(box_color, target_color)’ for moving to a target
within the same square, and ’move(box_color, position[x, y])’ for moving to a corner within the
same square, where ’x’ and ’y’ are relative corner coordinates.

3. **Direct Target Moves**: Prioritize moving boxes directly to their same-color targets within the
agent’s square to minimize the number of moves.

4. **Collision Avoidance**: Ensure no two boxes are moved to the same corner within or across
squares. No box should be moved to an already occupied corner.

5. **Action Plan Format**: Present the action plan in JSON format, with entries for active agents
as ’Agent[x, y]’: ’action’. Exclude agents without tasks.

6. **Learning and Adaptation**: Refine the strategy based on the outcomes of previous actions,
avoiding ineffective moves or loops. Adjust the action plan according to state changes and agent
feedback.

7. **State Representation and Tracking**: Maintain an up-to-date representation of the grid’s state,
including the positions of boxes and targets.

8. **Feedback Integration**: Use feedback from agents after each move to refine the action plan
for the next sequence of actions.
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9. **Error Handling**: Correct any invalid actions suggested in the subsequent planning steps to
prevent the repetition of errors.

10. **Complex Scenario Management**: For scenarios requiring multiple moves or a series of
actions, provide clear instructions that consider the entire sequence needed to achieve the goal.

11. **Optimization**: Formulate an action plan that minimizes the number of moves and ensures
efficient matching of boxes to targets.

12. **Omission of Inactive Agents**: Exclude agents without tasks from the action plan to
maintain clarity.

13. **Environmental Data Requirement**: Include the current state of the grid, with the exact
locations of boxes, agents, and targets, in the prompt.

14. **Strict JSON Format Adherence**: Follow the JSON format strictly, with correct key-value
pairs and no comments.

15. **Action Specificity**: Base actions on the agents’ current tasks and the state of the
environment. Avoid vague or speculative actions.

16. **Rule Adherence**: All actions must follow the provided rules and guidelines, including
collision avoidance and prioritizing direct target moves.

17. **Feedback Utilization**: Integrate feedback from agents to refine the action plan continuously.

18. **Error Correction**: Proactively correct any invalid actions in the planning steps.

19. **Complexity Management**: Provide clear, sequential instructions for managing complex
scenarios.

20. **Optimization Emphasis**: Minimize the number of moves and maximize efficiency in
matching boxes to targets.

21. **Agent Inclusion**: Include only agents with tasks in the action plan.

22. **Unique Identification**: Ensure each agent and box is uniquely identified to avoid assigning
multiple actions to the same entity within a single planning step.

Your action plan should resemble the following example, with modifications based on the current
state of the grid and the rules outlined above:
”json
{
’Agent[0.5, 0.5]’: ’move(box_blue, target_blue)’,
’Agent[1.5, 1.5]’: ’move(box_red, position[1.0, 1.0])’
}
”
The goal is to match all boxes to their color-coded targets with optimal efficiency and no collisions.
Ensure that each action is valid, efficient, and adheres to the rules, avoiding any form of collision or
invalid move.
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BoxLift Human prompt
Score = 0.31 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.92 (GPT-4 as the testing LLM)

You are a central planner directing lifting agents in a warehouse to lift boxes. Each agent has
different lifting capability and can cooperate with each other to lift one box. In summation of
lifting capability, the agents can lift all boxes.

The boxes are identified by their volume, e.g., box[1.4V]. The agents are identified by their
lifting weight capability, e.g., agent[1.5W]. Actions are like: ’box[1.7V]’:’agent[2.5W]’,
’box[6.0V]’:’agent[1.5W], agent[2.5W]’.

Your task is to divide the group of each agent to lift all the boxes. After each step, environments
provide updates for the left boxes. Your job is to coordinate the agents optimally to minimize the
step number.

Note that the agents can only lift one box at a time. Each lifting agent can be used only once
in each step! You can combine multiple agents to lift one box like ’box[3.0V]’:’agent[1.5W],
agent[2.5W]’! Try to combine many agents to lift one box together once you find it can not be
lifted.

[The volume of the box is roughly proportional to the weight of the box, but with some randomness.
Thus, the planner should guess the box weight based on the box volume and previous state/action
feedback.]

Specify your action plan in the JSON format: ’box[1.7V]’:’agent[1.5W]’,
’box[3.0V]’:’agent[1.5W], agent[2.5W], agent[5.5W]’. Include a box only if it has lifting
agents to lift it next.
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BoxLift Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.90 (GPT-3.5-turbo-16k-0613 as the testing LLM)

As the central planner in our warehouse, your primary goal is to efficiently coordinate the lifting of
boxes by assigning agents with specific lifting capacities. Each box is marked by its volume (e.g.,
’box[1.4V]’), and each agent by their lifting capacity (e.g., ’agent[1.5W]’). Your task is to create an
action plan that minimizes the number of steps required to lift all boxes, adhering to the following
updated constraints and guidelines:

- Each agent can only lift one box per step and must not be assigned to multiple boxes within the
same step.
- Agents can collaborate to lift a box, but each agent can only be assigned to one box in each step.
- The combined lifting capacity of the agents assigned to a box must meet or exceed the box’s
estimated weight, which is roughly proportional to its volume. Verify that the total capacity of
assigned agents is sufficient before including them in the plan.

Your action plan must be provided in strict JSON format, with agent assignments within the JSON
object in an array format, even if there is only one agent lifting a box. Ensure that the JSON keys
and values are properly quoted with double quotes, and that arrays use square brackets. Here is an
example of how to structure your plan correctly:
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”json
{
’box[1.7V]’: [’agent[1.5W]’],
’box[3.0V]’: [’agent[1.5W]’, ’agent[2.5W]’]
}
”
After each lifting step, you will receive feedback on the remaining boxes. It is imperative to
incorporate this feedback to refine your strategy. Avoid repeating combinations of agents that have
previously failed to lift a box. Instead, explore alternative combinations and incrementally add
more agents if necessary.

Prioritize boxes based on a clear set of criteria, including the number of previous attempts, the
volume of the box, and the capacities of available agents. Attempt untried boxes first, followed
by those that have been attempted fewer times. If a box cannot be lifted due to insufficient agent
capacity, adjust your plan in the subsequent step to include additional agents.

To ensure the effectiveness of your strategy, please adhere to these updated guidelines:

- Integrate feedback from each step to avoid ineffective actions and adapt your strategy dynamically.
Do not repeat agent combinations that have failed in previous attempts.
- Utilize agents efficiently by exploring different combinations and managing resources to maximize
the number of boxes lifted per step. Ensure that agents are not duplicated within the same action
plan.
- Prioritize boxes based on the number of previous attempts, the volume of the box, and the
capacities of available agents. Attempt untried boxes first, followed by those that have been
attempted fewer times.
- Consider complex combinations of agents for heavier boxes and be prepared to incrementally add
more agents if simpler combinations fail. Provide examples of how to form these combinations.
- In situations where no available agents can lift a box due to insufficient capacity, adjust your plan
to include additional agents or explore alternative strategies, such as reevaluating the order of box
lifting or temporarily setting aside boxes that cannot be lifted until more agents are available.
- Correct the example action plans to reflect the proper JSON format and constraints. Show how to
adjust the action plan based on the feedback received, including how to add additional agents or
change agent assignments.

By following these guidelines and structuring your action plans as demonstrated, you will optimize
the lifting process and achieve our goal of lifting all boxes in the fewest steps possible.
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WareHouse Human prompt
Score = 0.0 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.16 (GPT-4 as the testing LLM)

You are a central planner directing mobile transporting agents in a warehouse to pick boxes and
place them into the target place.

Agent can only walk on horizontal tracks and enter specific regions for picking up boxes. Each
agent can only hold one box each time. Each agent can do the actions:
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1) When the robot is on the track, it can pick up one box whose location is 0.5 away from the robot
(either location difference in x or y.). For example, ’pick box_1.5_1.0’Note that the agent can
only pick the box near its location, their row locations should have difference of 0.5, and column
difference should be 0.0, e.g., agent0 is in track_1 and column_3 and can do ’pick box_1.5_3.0’ or
’pick box_0.5_3.0’.

2) When the robot is on the track, it can move its position with distance 1 either to the left or to the
right. For example, ’move left’, ’move right”

3) When the robot is on the target, it can move its position to the track to get onto the track and
carry the boxes. For example, ’move to track_1”

4) When the robot is on the track, it can move its position to the target to pour the box into the
target. For example, ’move to target’Note that robots without box on it can also move to target to
avoid being obstacle of other robots. All robots moving to the target will pour their boxes. Hence,
the final goal is to pour all the boxes into the target. Multiple robots can locate in target in the same
time, but cannot be in the same track position in the same time.
The warehouse playground has left side column 0 and right side, if the agent column is at these two
sides, they can only move right or move left but not both directions.
If the agent in the target, it can move to the left side of all the tracks
If the agent is in the left side of the track, it can move to the target and drop the box.

Your task is to assign each agent the task in the next step. After each step, environments provide
updates for each agent and the state of left boxes. Your job is to coordinate the agents optimally to
minimize the step number.

[Do remember that each position(track and column locations) can only accommodate one agent
each step! Hence, you need to avoid the collision with other agents. Actions like move two agents
into the same position at the same time or move one agent into the position that already has one
agent are not allowed!]

Specify your action plan in this format: {’agent0’:’move left’, ’agent1’:’move to track_1’,
’agent2’:’pick box_1.5_1.0’, ’agent3’:’move to target’, ’agent4’:’move right’, ’agent5’:’pick
box_1.5_3.0’}. Include an agent only if it has actions in the next step.
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WareHouse Best prompt for GPT-4
Score = 0.512 (GPT-4 as the testing LLM)

You are a central planner tasked with the strategic coordination of autonomous mobile agents
within a warehouse environment. Your primary goal is to orchestrate the movement of these agents
to efficiently transport boxes from their initial locations to a designated target area. Each agent can
carry only one box at a time. To successfully accomplish this task, agents must adhere to a set of
rules and constraints that govern their actions.

The agents can perform the following actions, under specific conditions:

1) Pick Up Box: An agent can pick up a box if it is directly adjacent to it on the track, specifically
0.5 units away either in the x or y direction. For instance, an agent positioned at track_1, column_3,
can execute ’pick box_1.5_3.0’ or ’pick box_0.5_3.0’ if the box is present and the agent is not
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already carrying a box.

2) Move Horizontally: An agent on the track can move horizontally by one unit either to the left or
to the right, unless it is at the extremities of the tracks (column 0 or the last column), where it can
only move away from the extremity. Use the commands ’move left’ or ’move right’ to direct this
action.

3) Move to Track: An agent in the target area can move to the leftmost side of any track. The
command ’move to track_X’ positions the agent at the leftmost point of track_X.

4) Move to Target: An agent carrying a box can move to the target area to deposit the box using
’move to target’ when the agent is at the leftmost side of the track.

The following constraints must be observed:

- An agent not carrying a box may move to the target area to prevent obstructing the path of other
agents.
- Multiple agents can occupy the target area simultaneously, but they must not be positioned on the
same track and column at the same time.
- Agents at the extremities of the tracks are restricted to moving in one direction only (to the right
from column 0 and to the left from the last column).
- Collision avoidance is mandatory: no two agents are allowed to occupy the same track and column
position at the same time.

Your responsibility is to devise a plan for the next move of each agent with the aim of minimizing
the total number of steps required. After each move, you will receive updated information about
the positions of each agent and the locations of the remaining boxes. Use this information to refine
your strategy and prevent collisions.

Action plans must be formatted as follows: {’agent0’:’move left’, ’agent1’:’move to track_1’,
’agent2’:’pick box_1.5_1.0’, ’agent3’:’move to target’, ’agent4’:’move right’, ’agent5’:’pick
box_1.5_3.0’}. Include an agent in your action plan only if it needs to take action in the next step.

The overarching objective is to transport all boxes to the target area with maximum efficiency, in
compliance with the established rules and constraints. Your planning must be reflective of the
current warehouse conditions, including the agents’ positions, whether they are carrying a box, and
the box locations, to ensure seamless operations. Use feedback from the environment to adjust
future actions, avoiding repetition of actions that were previously indicated as not doable, and
ensure that the action plan is precise and includes only necessary agent movements.
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Gridworld1 Human prompt
Score = 0.23 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.73 (GPT-4 as the testing LLM)

You (the robot) are in a grid-like field to pick up all the goals in order and avoid all the obstacles.
Each goal and obstacle is assigned to a 1x1 square.

The robot can move in four directions: up, down, left, and right. The robot can move to a square
only if it is not occupied by an obstacle.
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If the robot is in the same square with a goal, you can pick up the goal and the square becomes empty.

[(1) Note that the coordinate system is different from the Cartesian coordinate system. The origin
is at the top left corner. The coordinate representation is [row_number, column_number].
For example, if you are in the square [3,2], Move up leads to [2,2], Move down leads to [4,2],
Move left leads to [3,1], and Move right leads to [3,3].
(2) In your response, you can only use {} to specify your action. For example, {Move up}. Do not
add any other words or symbols in your response. Also use {} only once in your whole response so
that we know what is next action without ambiguity.]

Please learn from previous steps. Not purely repeat the actions but learn why the state changes or
remains in a dead loop. Avoid being stuck in action loops.

Do remember do not move to the square occupied by an obstacle! Do remember do not move out
of the field! Plan your action in each step based on your relative distance to goals.

All the possible actions are: Move up, Move down, Move left, Move right, Pick goal

Specify your action in this format at the end of your answer: {Move up}, {Move down}, {Move
left}, {Move right}, {Pick goal}.
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Gridworld1 Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.38 (GPT-3.5-turbo-16k-0613 as the testing LLM)

You (the robot) are tasked with navigating a grid-like field to sequentially collect all goals while
avoiding obstacles. Each goal and obstacle occupies a distinct 1x1 square on the grid. Your current
position is known, and you must use this information to make strategic decisions that adhere to the
following optimized, clarified, and refined rules:

1. **Immediate Goal Collection**: If a goal is located on your current square, immediately collect
it with the action {Pick goal} before considering any movement.

2. **Enhanced Obstacle and Boundary Avoidance**: Before planning a move, confirm that the
intended path is free of obstacles and within the grid limits. The grid’s origin is at the top left
corner, with coordinates [row_number, column_number]. Do not attempt to move into a square
with an obstacle or beyond the grid boundaries.

3. **Strategic Goal Pursuit**: Identify the location of the nearest goal using the most efficient
path calculation and plan a path towards it, circumventing any obstacles as necessary. Your moves
should be calculated to reduce the distance to the nearest goal unless an obstacle dictates a detour.

4. **Dynamic Strategy Adaptation**: Reflect on the outcomes of previous actions to enhance
your decision-making process. Avoid actions that have previously led to collisions or have not
progressed you towards a goal. Adjust your strategy to be more effective.

5. **Prioritization of Actions**: The collection of goals is your primary mission. Move only if it is
strategic for goal acquisition or essential for obstacle circumvention.
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6. **Continuous State Assessment and Adjustment**: Consistently verify and update your current
state after each action. This includes your position, the positions of goals, and the locations of
obstacles to ensure your next action is based on the most current information.

7. **Feedback-Driven Action Refinement**: Integrate feedback from the environment and your
previous actions to refine your approach. If an action was ineffective or incorrect, adopt a different
strategy that complies with the established rules.

8. **Explicit and Valid Action Execution**: If an invalid action is attempted, acknowledge the
mistake and select a valid and strategic action instead.

9. **Precise Obstacle Mapping**: Maintain a clear and updated understanding of obstacle
positions relative to your current location to avoid any prohibited moves.

10. **Boundary Awareness and Compliance**: Always be aware of the grid boundaries to prevent
any attempts to move outside the grid.

11. **Error Identification and Strategic Correction**: Recognize any errors in action promptly and
correct your course of action to align with the goal-oriented strategy.

12. **Effective Feedback Application**: Utilize feedback from the environment to continuously
improve your actions, particularly after an unsuccessful or ineffective move.

13. **Nearest Goal Prioritization**: Always determine the nearest goal’s location from your
current position before planning your next move. This ensures that your actions are optimized for
goal collection efficiency.

14. **State Verification Before Action**: Before planning your next move, verify your current
state, including the presence of goals and obstacles, to ensure that your next action is appropriate
and strategic.

15. **Avoidance of Ineffective Repetition**: Use feedback from the environment to avoid
repeating actions that have been proven ineffective or incorrect. Learn from past outcomes to make
better decisions.

16. **Clear Movement Decision Criteria**: When multiple movement options are available,
choose the direction that brings you closest to the nearest goal without violating obstacle and
boundary rules. If equidistant, prioritize moves in the following order: up, left, down, right.

17. **Loop Prevention and Progress Assessment**: If you find yourself oscillating between two or
more squares without making progress, reassess the situation and choose a different path to break
the loop. After each move, assess whether you are closer to the nearest goal to ensure progress is
being made.

18. **Action Execution Confirmation**: After performing an action, confirm its outcome to ensure
it was executed as intended and adjust your strategy accordingly.

19. **Proactive Error Prevention and Strategic Decision Making**: Before executing any action,
proactively consider potential errors and choose the action that has the highest likelihood of success
based on the current state and established rules. Make strategic decisions that prioritize goal
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collection and efficient navigation.

20. **Feedback Mechanism Accuracy**: Ensure that the feedback mechanism is correctly
interpreting the robot’s actions, particularly when collecting goals. If the feedback indicates an
error in goal collection when the action was correct, the mechanism should be adjusted to recognize
the successful collection.

21. **Boundary and Obstacle Confirmation**: Before each move, perform a boundary and
obstacle check to confirm that the intended path is valid. This check must be accurate to prevent
invalid moves that violate the rules.

22. **Goal Collection Confirmation**: When on a square with a goal, confirm the collection of the
goal before any movement is considered. This action must be prioritized over all others to align
with the mission’s primary objective.

23. **Error Recognition and Recovery**: The robot must be capable of recognizing when an error
has occurred, such as attempting to move into an obstacle or outside the grid, and take immediate
corrective action.

24. **Comprehensive State Verification**: Continuously verify the robot’s current state, including
its position, the positions of goals, and the locations of obstacles, before planning and executing the
next move.

25. **Valid Action Assurance**: Prior to action execution, ensure that the chosen action is valid
and possible within the current state of the environment.

26. **Intelligent Directional Decision**: When the robot is equidistant from a goal or has
multiple paths to choose from, it should consider the history of its moves and environmental
feedback to select a path that is most likely to be successful, avoiding previously unsuccessful paths.

27. **Goal Proximity Alert**: The robot should have an internal alert system that triggers when it
is adjacent to a goal, prompting it to prioritize the goal’s collection before any other action.

28. **Consistent Path Following**: When the robot has initiated a successful path towards a goal,
it should continue on that path unless an obstacle or boundary requires a change in direction.

Execute only one action per response in the specified format to maintain clarity and avoid ambiguity:
{Move up}, {Move down}, {Move left}, {Move right}, {Pick goal}. Your next action should be
clearly indicated using this format.
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Gridworld1 Best prompt for GPT-4
Score = 0.86 (GPT-4 as the testing LLM)

You (the robot) are tasked with navigating a grid-like field to collect all goals in sequence while
avoiding obstacles. Each goal and obstacle is located on a separate 1x1 square within the grid.

Your capabilities include moving in the four cardinal directions: up, down, left, and right. You are
only permitted to move onto a square if it is not occupied by an obstacle.
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When you reach a square that contains a goal, you must pick up the goal, which will then clear the
square.

Adhere to these optimized guidelines for navigation and task execution:

1. The grid’s origin is at the top left corner, with positions denoted by [row_number, col-
umn_number]. For example, from [3,2], Move up takes you to [2,2], Move down to [4,2], Move
left to [3,1], and Move right to [3,3].

2. Clearly communicate your intended action using braces , and limit your response to one action
for clarity, such as: Move up.

3. Use the history of your actions and the feedback received to avoid repeating ineffective moves
and to prevent looping behavior. Learn from past outcomes to improve your decision-making
process.

4. Before each move, check for obstacles in all four adjacent squares. Never attempt to move into a
square with an obstacle.

5. Stay within the grid’s boundaries to avoid moving off the field.

6. Prioritize goals based on proximity, and plan the most efficient route to the nearest goal, taking
into account the positions of all goals and obstacles. Use a heuristic such as the Manhattan distance
to determine the closest goal.

7. Once you have chosen a direction that brings you closer to a goal, continue moving in that di-
rection until you reach the goal, encounter an obstacle, or would move outside the grid’s boundaries.

8. When you reach a goal’s location, immediately pick up the goal with the action Pick goal.

9. Continuously update your knowledge of the grid’s current state, including the locations of goals,
obstacles, and your own position, to avoid repeating ineffective actions or entering into loops.

10. After each move, dynamically adjust your path based on new information and feedback to
ensure the most efficient completion of the task.

11. If a chosen path is blocked by an obstacle or leads to a dead end, backtrack and select an
alternative route that brings you closer to the nearest goal without revisiting recently occupied
squares unless it is part of an efficient path to a goal.

12. If you find yourself repeating the same action without progress, reassess your strategy and
consider all remaining goals and obstacles to find a new efficient path.

13. Implement a strategy to recognize when you are not making progress towards a goal, such as
visiting the same square multiple times without collecting a goal, and then reassess your path.

Your ultimate goal is to collect all goals in the most efficient manner possible, circumventing
obstacles and staying within the grid’s limits. Implement these optimized guidelines to dynamically
refine your path and ensure successful task completion.
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The permissible actions are: {Move up}, {Move down}, {Move left}, {Move right}, {Pick goal}.
1061

Gridworld2 Human prompt
Score = 0.036 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.26 (GPT-4 as the testing LLM)

You (the robot) are in a grid-like field to pick up all the goals in order and avoid all the obstacles.
Each goal and obstacle is assigned to a 1x1 square.

The robot can move in four directions: up, down, left, and right. The robot can move to a square
only if it is not occupied by an obstacle.

If the robot is in the same square with a goal, you can pick up the goal and the square becomes
empty. However, you should pick the goals in order, from 0 to larger.

If the goal in the current square is not the next goal, you can not pick it up. You should move to
other squares to find the next goal.

[(1) Note that the coordinate system is different from the Cartesian coordinate system. The origin
is at the top left corner. The coordinate representation is [row_number, column_number].
For example, if you are in the square [3,2], Move up leads to [2,2], Move down leads to [4,2],
Move left leads to [3,1], and Move right leads to [3,3].
(2) The robot should pick up all the goals in order, index from 0 to larger. For example, if there are
3 goals, the robot should pick up the goal_0 first, then the goal 1, and finally the goal 2.
(3) In your response, you can only use {} to specify your action. For example, Move up. Do not
add any other words or symbols in your response. Also use {} only once in your whole response
so that we know what is next action without ambiguity.]

Please learn from previous steps. Not purely repeat the actions but learn why the state changes or
remains in a dead loop. Avoid being stuck in action loops.

Do remember do not move to the square occupied by an obstacle! Do remember do not move out
of the field! Plan your action in each step based on your relative distance to goals.

All the possible actions are: Move up, Move down, Move left, Move right, Pick goal

Specify your action in this format at the end of your answer: {Move up}, {Move down}, {Move
left}, {Move right}, {Pick goal}.
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Gridworld2 Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.17 (GPT-3.5-turbo-16k-0613 as the testing LLM)

You (the robot) are tasked with navigating a grid-like field to collect a series of numbered goals
in the correct numerical sequence, from goal_0 to the highest-numbered goal, while avoiding
obstacles. Each goal and obstacle occupies a distinct 1x1 square on the grid.

Objective:
- Collect all goals in numerical order without violating any movement or collection rules.
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Movement Rules:
- You may move one square at a time in one of four directions: up, down, left, or right.
- You must not move into squares with obstacles or beyond the grid boundaries.

Goal Collection Rules:
- You must pick up a goal only if it is the next in sequence and you are on the same square as that
goal.
- Once a goal is picked up, the square it occupied becomes traversable.
- If you encounter a goal that is not the next in sequence, you cannot pick it up and must navigate to
find the correct goal.

Coordinate System:
- The grid’s origin is at the top left corner, with coordinates given as [row_number, column_number].
- Moving up decreases the row number, moving down increases the row number, moving left
decreases the column number, and moving right increases the column number.

Action Specification:
- Specify your action using only one of the following commands within curly braces: {Move up},
{Move down}, {Move left}, {Move right}, {Pick goal}.
- Do not include any additional words, symbols, or multiple actions within the braces.

Adaptive Learning and Error Correction:
- Learn from the outcome of each action to avoid ineffective or rule-violating moves.
- Continuously update your strategy based on your current position, the positions of remaining
goals, and the locations of obstacles.
- Avoid repeating a sequence of moves that does not change your state or bring you closer to the
next goal.
- If an action does not progress towards the goal or violates the rules, reassess and choose a different
action.

Action Planning and Efficiency:
- Before each move, verify your current position and assess the most efficient path to the next goal,
avoiding obstacles and grid edges.
- If you are on the same square as the next goal, the only valid action is {Pick goal}.
- If the next goal is not directly accessible, plan an alternative route that brings you closer to the
goal without violating movement rules.
- Prioritize picking up the goal over moving if you are on the goal square.

State Verification:
- Before suggesting an action, confirm your current position and the location of the next goal to
ensure the action is valid and efficient.

Your ultimate goal is to collect all goals in the correct sequence as efficiently as possible, adhering
strictly to the movement and collection rules.
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Gridworld2 Best prompt for GPT-4
Score = 0.60 (GPT-4 as the testing LLM)
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You (the robot) are tasked with navigating a grid-like field to sequentially collect goals, labeled
from goal_0 to the highest-numbered goal, while avoiding obstacles. Each goal and obstacle
occupies a distinct 1x1 square on the grid.

Your movements are limited to four directions: up, down, left, and right. You may only move onto
a square if it is not occupied by an obstacle.

**Critical Rule for Goal Collection**: You must collect goals in strict numerical order, starting
with goal_0. Before suggesting {Pick goal}, you must perform a state verification checkpoint. This
involves confirming that the goal is the next in the numerical sequence and that you are on the
correct square.

Adhere to these optimized rules for successful navigation and goal collection:

1. **Sequential Goal Collection**: Before suggesting {Pick goal}, explicitly state the number of
the goal you are attempting to collect and confirm it is the next in the sequence. Do not attempt to
collect a goal if it is not the correct one in the order.

2. **State and Position Awareness**: Continuously update your current position on the grid and
the location of the next goal. Plan your moves to efficiently reach the next goal, avoiding obstacles
and grid boundaries.

3. **Action Preconditions**: Only suggest Pick goal when you have verified that you are on the
correct goal square and that the goal is the next in the sequence. Provide a clear justification for
your action by stating your current position and the goal’s position.

4. **Learning from Errors**: If an action is ineffective, analyze the outcome, learn from the
mistake, and adjust your strategy to avoid repeating the error. State the reason for the error and the
adjustment you will make.

5. **Obstacle and Boundary Consideration**: Plan moves that avoid obstacles and stay within the
grid’s boundaries to ensure a clear path to the next goal.

6. **Strategic Path Planning**: Choose the most direct and efficient path to the next goal, avoiding
obstacles and boundaries. Re-evaluate your path after each move.

7. **Single Action Response**: Provide only one action in the specified format per response:
{Action}.

8. **Adaptive Strategy**: As goals are collected and the grid’s layout changes, adapt your strategy
to ensure continuous progress towards the next goal in sequence.

9. **Avoiding Action Loops**: Recognize and break free from loops of non-productive actions by
altering your approach. Implement a mechanism to detect repeated non-productive actions and
change strategy if necessary.

10. **Feedback Utilization**: Use feedback from the environment and previous errors to inform
your subsequent actions and improve your navigation strategy.
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11. **Explicit Change of Strategy**: If a strategy is not leading to success, explicitly state and
implement a new approach to find a path to the goal.

12. **Clear Movement Rules**: Adhere to the rules of movement and goal collection without
ambiguity, ensuring that each action is deliberate and aligns with the goal sequence.

Before suggesting an action, confirm your current position, the location of the next goal, and the
absence of obstacles in your path. Justify your action choice by referencing the goal sequence and
your current position relative to the next goal. If an error occurs, analyze why it happened and
adjust your strategy accordingly.

The coordinate system for the grid has its origin at the top left corner, with coordinates represented
as [row_number, column_number]. For example, from [3,2], {Move up} results in [2,2], {Move
down} in [4,2], {Move left} in [3,1], and {Move right} in [3,3].

Your possible actions are: {Move up}, {Move down}, {Move left}, {Move right}, {Pick goal}.
Respond with only one of these actions, formatted as shown, at the end of each turn. Before taking
an action, ensure it aligns with the goal sequence and the rules provided.

1067

Blocksworld Human prompt
Score = 0.19 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.71 (GPT-4 as the testing LLM)

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions
I can do
Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block is clear. A block is clear if the
block has no other blocks on top of it and if the block is not picked up.
I can only unstack a block from on top of another block if the block I am unstacking was really on
top of the other block.
I can only unstack a block from on top of another block if the block I am unstacking is clear.
Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the block being stacked.
I can only stack a block on top of another block if the block onto which I am stacking the block is
clear.
Once I put down or stack a block, my hand becomes empty.
Once you stack a block on top of a second block, the second block is no longer clear.

Please learn from previous steps. Not purely repeat the actions but learn why the state changes or
remains in a dead loop. Avoid being stuck in action loops. Specify your action in this format at the
end of your answer: pick up the {}, put down the {}, stack the {} on top of the {},unstack the {}
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from on top of the .
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Blocksworld Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.6 (GPT-3.5-turbo-16k-0613 as the testing LLM)

I am tasked with arranging a set of blocks into specific configurations through a block-stacking
activity. My available actions are:
- Pick up a block that is clear and on the table.
- Unstack a clear block from the top of another block.
- Put down a block onto the table, ensuring my hand is empty afterward.
- Stack a block onto another clear block, ensuring my hand is empty afterward.

To ensure successful completion of these actions, I must follow these rules:
1. I can only manipulate one block at a time.
2. My hand must be empty before I can pick up or unstack a block.
3. A block is considered clear and eligible to be picked up if it has no blocks on top of it, is on the
table, and is not being held.
4. I can unstack a block only if it is the topmost block on another and there are no blocks above it.
5. When I pick up or unstack a block, I will be holding it.
6. I can only put down or stack a block that I am currently holding.
7. A block can be stacked onto another only if the bottom block is clear.
8. My hand must be empty before and after I place or stack a block.
9. Stacking a block on top of another makes the bottom block non-clear.

To optimize task execution and avoid errors, I will adhere to the following strategies:
- Conduct a comprehensive state verification before each action to ensure all preconditions are met:
my hand is empty before picking up or unstacking; the block is clear, on the table, and not being
held for picking up; and I am holding a block before putting down or stacking.
- Maintain an accurate and constantly updated mental model of the block arrangement, noting the
clear status of each block, the current stack configurations, and whether my hand is empty or
holding a block.
- Develop a strategic action plan that is directly aligned with achieving the desired final block
configuration, taking into account the current state and the steps required to reach the goal.
- Integrate feedback after each action to assess the success of the action and to update my strategy,
ensuring that I do not repeat ineffective actions and that I learn from any mistakes to avoid
non-progressive loops.
- Communicate my intended actions clearly and precisely, using the format: ’pick up {color} block’,
’put down {color} block’, ’stack {color} block on top of {color} block’, ’unstack {color} block
from on top of {color} block’.
- Implement an enhanced loop detection mechanism to identify and interrupt any repetitive,
non-progressive action sequences, choosing a different action if necessary.
- Set and pursue intermediate goals that are necessary steps towards the final configuration, ensuring
that each action is deliberate and contributes to the end goal in an incremental fashion.
- Establish a timeout or step limit to prevent exceeding the query time limit without completing the
task, and reassess my strategy if progress stalls to ensure that I am always moving towards task
completion.
- Explicitly state the preconditions that have been verified before proposing an action, and clearly
communicate any adjustments made to the strategy based on feedback received.
- Introduce a robust error handling strategy that allows for backtracking or reassessment of the plan
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when an action fails, ensuring alternative actions adhere to the rules and contribute to the final goal.

By following these refined guidelines and continuously updating my approach based on the state of
the blocks and the feedback received, I aim to efficiently and effectively complete the block-stacking
task.
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Blocksworld Best prompt for GPT-4
Score = 0.95 (GPT-4 as the testing LLM)

To effectively arrange a set of blocks into the desired stacks, adhere to the following structured
approach, which has been refined based on previous feedback and identified errors:

1. **Evaluate the Goal State**: Examine the goal state configuration in detail and compare it with
the current state to discern the exact actions required to achieve the goal. Maintain a clear and
constant visualization of the final desired arrangement of blocks throughout the task.

2. **Action Sequence Planning**: Construct a strategic plan that delineates a sequence of actions
that will methodically transition the current state towards the goal state. Prioritize actions that
make definitive progress towards the goal and eliminate redundant or non-contributory steps.

3. **Preconditions Verification**: Before initiating any action, rigorously check that all
preconditions are satisfied. Confirm that your hand is empty before attempting to pick up or unstack
a block, and ensure that the block to be manipulated is unobstructed and either on the table or atop
another block.

4. **Execute Actions**: Implement the necessary actions, strictly following the prescribed format
and constraints:
- To pick up a block: ’pick up the {color} block.’
- To unstack a block: ’unstack the {color} block from on top of the {color} block.’
- To put down a block: ’put down the {color} block.’
- To stack a block: ’stack the {color} block on top of the {color} block.’

5. **Loop and Error Prevention**: Vigilantly observe your actions to identify any repetitive or
non-productive patterns. Upon detecting a loop, promptly reassess and revise the action plan.
Document past errors to prevent their recurrence.

6. **State Change Analysis**: After executing an action, conduct a state change analysis to verify
that the system is incrementally closer to the goal state. If the action does not yield the expected
progress, reevaluate and modify the plan.

7. **Continuous Learning**: Log the results of previous actions, noting both successes and
failures, to refine future strategies and enhance task efficiency.

8. **Clear Goal Specification**: Keep the goal state at the forefront of your strategy, ensuring that
every action is intentionally aimed at achieving that state.

9. **Feedback Integration**: After each action, incorporate feedback to improve your understand-
ing of the current state and to guide future actions.
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10. **Loop Detection and Correction**: Establish a robust mechanism to detect when you are in a
loop and to prompt a strategic reassessment of the action plan.

11. **Goal State Reassessment**: Frequently reevaluate both the goal state and the current state to
confirm that your actions are consistently aligned with the goal.

12. **Action Format Standardization**: Adhere to the specified action format with precision,
refraining from adding prefixes or narrative explanations unless the context demands it.

13. **State Change Verification**: Post-action, ensure that the state has altered as intended and
that the system is nearer to the goal state.

14. **Error Handling**: Enhance error handling protocols to avert the repetition of unsuccessful
actions.

15. **Optimize Query Time**: Employ methods to expedite the planning and execution of actions,
aiming for task completion with optimal efficiency.

This refined approach is designed to systematically guide you towards arranging the blocks into the
goal state configuration while minimizing errors and enhancing task performance.
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Logistics Human prompt
Score = 0.083 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.50 (GPT-4 as the testing LLM)

You have to plan logistics to transport packages within cities via trucks and between cities via
airplanes. Locations within a city are directly connected (trucks can move between any two such
locations), and so are the cities. In each city there is exactly one truck and each city has one
location that serves as an airport.

Here are the actions that can be performed:
Load a package into a truck at a location.
Load a package into an airplane at a location.
Unload a package from a truck at a location.
Unload a package from an airplane at a location.
Drive a truck from one location to another location within a city.
Fly an airplane from one location in a city to another location in another city.

The following are the restrictions on the actions:
A package can be loaded into a truck only if the package and the truck are in the same location.
Once a package is loaded into a truck, the package is not at the location and is in the truck.
A package can be loaded into an airplane only if the package and the airplane are in the same
location.
Once a package is loaded into an airplane, the package is not at the location and is in the airplane.
A package can be unloaded from a truck only if the package is in the truck.
Once a package is unloaded from a truck, the package is not in the truck and is at the location of
the truck.
A package can be unloaded from an airplane only if the package in the airplane. Once a package is
unloaded from an airplane, the package is not in the airplane and is at the location of the airplane.
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A truck can be driven from one location to another if the truck is at the from-location and both
from-location and to-location are locations in the same city. Once a truck is driven from one
location to another, it is not at the from-location and is at the to-location.
An airplane can be flown from one city to another if the from-location and the to-location are
airports and the airplane is at the from-location.
Once an airplane is flown from one city to another the airplane is not at the from-location and is at
the to-location.

Please learn from previous steps. Not purely repeat the actions but learn why the state changes or
remains in a dead loop. Avoid being stuck in action loops. Specify your action in this format at the
end of your answer: load {} into {} at {}, unload {} from {} at {}, drive {} from {} to {} in {}, fly
{} from {} to {}.
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Logistics Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.18 (GPT-3.5-turbo-16k-0613 as the testing LLM)

To optimize the logistics of transporting packages within cities using trucks and between cities
using airplanes, follow these enhanced and precise guidelines:

1. **Loading and Unloading Preconditions:**
- Load a package into a truck only when the package and the truck are co-located.
- Load a package into an airplane only at an airport, ensuring both the package and the airplane are
present.
- Unload a package from a truck only if it has been verified that the package is in that truck.
- Unload a package from an airplane only if it has been verified that the package is in that airplane.

2. **Movement Rules:**
- Trucks are restricted to travel within their respective city limits.
- Airplanes must fly between airports in different cities without exception.

3. **State Changes:**
- Reflect the package’s new location as inside the vehicle upon loading and at the vehicle’s location
upon unloading.

4. **Action Format:**
- Actions must be articulated as follows:
- For loading/unloading: ’load {package} into {vehicle} at {location}’ or ’unload {package} from
{vehicle} at {location}’
- For driving: ’drive {truck} from {from-location} to {to-location} in {city}’
- For flying: ’fly {airplane} from {from-airport} to {to-airport}’

5. **Feedback and Learning:**
- Update the state of packages, trucks, and airplanes with each action taken.
- Log unsuccessful actions due to precondition failures and avoid their repetition.
- Refine plans based on feedback to ensure all actions are valid and goal-aligned.

6. **Goal-Oriented Strategy:**
- Actions must form a logical sequence that advances a package towards its destination in the most
direct manner possible.
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7. **Avoiding Loops:**
- Exclude any action that has been attempted unsuccessfully.
- Keep a comprehensive log of actions to identify and prevent cyclical patterns, revising the strategy
as needed.

8. **Task Decomposition:**
- Segment the task into discrete sub-tasks, such as intra-city and inter-city package transfers.
- Tackle each sub-task systematically, one at a time.

9. **Time Management:**
- Streamline the planning process to ensure task completion within a set timeframe.
- Give precedence to actions that maximize time efficiency while complying with the above
guidelines.

By adhering to these updated guidelines, you will devise a logistics plan that is both accurate and
efficient, guaranteeing the successful delivery of packages to their designated locations.
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Logistics Best prompt for GPT-4
Score = 0.74 (GPT-4 as the testing LLM)

Your task is to manage the logistics of transporting packages within and between cities using
trucks and airplanes. Each city has a network of locations for truck movement and an airport
for airplane transfers. There is one truck per city for local deliveries and one airport per city for
intercity transfers.

To enhance logistics operations and avoid errors, follow these optimized steps:

1. **State Verification**: Prior to any action, rigorously confirm the current locations of all
packages, trucks, and airplanes. This step is crucial to ensure that all subsequent actions are based
on the most recent and accurate state information.

2. **Action Execution**: Execute actions strictly adhering to these preconditions:
- Load a package into a truck at a location only if the package and the truck are confirmed to be at
that location.
- Load a package into an airplane at an airport only if the package and the airplane are confirmed to
be at that airport.
- Unload a package from a truck at a location only if the package is confirmed to be in that truck.
- Unload a package from an airplane at an airport only if the package is confirmed to be in that
airplane.
- Drive a truck from one location to another within the same city only if the truck’s presence at the
starting location is confirmed.
- Fly an airplane from one city’s airport to another city’s airport only if the airplane’s presence at
the starting airport is confirmed.

3. **State Update**: Immediately after each action, update the environment state to reflect the
new locations of packages, trucks, and airplanes. This updated state must be used for verifying
preconditions for the next actions.
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4. **Efficient Planning**: Deliver all packages to their destinations using the fewest actions
possible. Prioritize the shortest routes and avoid any actions that do not directly contribute to
reaching the delivery goals.

5. **Adaptive Learning**: Utilize feedback from the outcomes of previous actions to continuously
refine planning strategies. Avoid repeating ineffective actions and adjust plans based on the latest
state information and feedback.

6. **Error Management**: If an action fails, quickly reassess the situation based on the current
state and propose a new, valid action that moves towards the delivery goals.

7. **Clear Action Formatting**: Clearly express actions using the specified structure to avoid
misunderstandings:

- load {package} into {truck/airplane} at {location/airport}
- unload {package} from {truck/airplane} at {location/airport}
- drive {truck} from {location} to {location} in {city}
- fly {airplane} from {airport} to {airport}

8. **Goal-Focused Actions**: Ensure every action is purposeful and directly contributes to the
final destination of the packages. Eliminate any actions that are not goal-oriented.

9. **Time-Efficient Queries**: Streamline the planning process to complete tasks within the query
time limit, maintaining a balance between swift operations and careful action validation.

10. **Simplified Instructions**: Provide instructions that are clear, concise, and easy to follow,
ensuring they are understood and executed correctly.

By diligently following these optimized guidelines, you will significantly improve the efficiency
and accuracy of the logistics operation for package delivery.

1079

62


	Introduction
	Related Work
	Methodology
	Problem Formulation
	PROMST Framework

	Experiments
	Environments
	Baselines
	Experimental Setups
	Results and Analysis

	Conclusion
	Limitations
	Types of human feedback for each task
	Algorithms 
	Meta-prompts of SumLLM and GenLLM
	Description of environments for multi-step tasks
	Generalization to different models for optimized prompts
	Task progress score vs. task completion score
	Extra ablation experiments of score models
	Efforts for designing human feedback rules
	Component changes in each environment
	The influence of score functions
	Explanability for better prompts
	Comparison and combination with Reflexion
	Human prompts and discovered best prompts for GPT-3.5-0613 and GPT-4 in all the 11 multi-step tasks

