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Abstract

Clinical trial registry reviews can reveal cru-001
cial insights into medical research quality and002
scope. The current process for generating re-003
ports from these registries relies heavily on004
manual data curation, which includes categoriz-005
ing trials by disease type and classifying drugs.006
These tasks are time-consuming and prone to007
human error. In the present work, we explore008
the use of automated techniques for extracting009
drug and disease information, as well as their010
linking to a medical ontology. By improving011
the data capture and curation, our aim is to012
contribute to the development of new systems013
for reviewing and monitoring clinical trial reg-014
istries. All resources are available on GitHub1.015

1 Introduction016

Public clinical trial registries, such as ClinicalTri-017

als.gov, are essential resources that enable stake-018

holders—including researchers, patients, health-019

care providers, and policymakers—to navigate the020

landscape of drug development. These registries021

allow for the monitoring of emerging therapeutic022

targets and substances, and ensuring that new treat-023

ments meet safety and efficacy standards. Addition-024

ally, they can facilitate the tracking of adverse drug025

reactions and support the evaluation of clinical trial026

design quality (Saberwal, 2021).027

However, extracting information from these re-028

sources is challenging due to large data volume, in-029

complete and unstructured reporting and variability030

in terminology (Tse et al., 2018; Pillamarapu et al.,031

2019; Shi and Du, 2024). While the Aggregate032

Analysis of ClinicalTrials.gov database (AACT)2033

has been released in 2011 to enhance access to034

the data, it provides little automated validation and035

harmonization of data elements (Tasneem et al.,036

2012). For example, a recent study found that the037

1https://anonymous.4open.science/r/
NeuroTrialDataCuration-3F46/

2https://aact.ctti-clinicaltrials.org/

interventions section of ClinicalTrials.gov included 038

non-drug-related terms, hindering comprehensive 039

drug trend analysis (Namiot et al., 2023). There- 040

fore, the current process of evidence synthesis from 041

trial registries relies heavily on manual data cura- 042

tion, including the tasks of categorizing trials by 043

disease type and classifying drugs (Hirsch et al., 044

2013; Liu et al., 2018). This approach is time- 045

consuming and prone to human error, which might 046

result in inconsistencies and missed information. 047

Computational methods, especially natural lan- 048

guage processing (NLP), can support clinical evi- 049

dence synthesis by structuring, standardizing, and 050

semantically analyzing data (Marshall et al., 2017; 051

Thomas et al., 2017). Techniques like Named En- 052

tity Recognition (NER) identify and categorize text 053

elements such as drug and disease names (Wang 054

et al., 2018). Complementary, Entity Linking (EL) 055

matches these identified elements to unique iden- 056

tifiers in knowledge bases and enables entity nor- 057

malization, i.e., their uniform representation (Shen 058

et al., 2015; Shi et al., 2023). 059

Thus, we used NER to explore ways of enhanc- 060

ing the existing condition and intervention fields 061

in ClinicalTrials.gov. We compared neural NER 062

outputs with the existing AACT manual annota- 063

tions and evaluated a state-of-the-art method for 064

linking entities to the Systematized Nomenclature 065

of Medicine Clinical Terminology (SNOMED CT) 066

(Cornet and de Keizer, 2008). 067

2 Methods 068

2.1 Reference Corpus 069

We worked with a dataset of annotated trials from 070

ClinicalTrials.gov (NeuroTrialNER)3 . This dataset 071

includes entity-level annotations in trial titles and 072

summaries, identifying entities like disease names 073

(called “conditions”) and drugs. We analyzed the 074

3Developed within our group, the work is currently under
anonymized review. See Anonymous GitHub.
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test set of 153 trials, focusing on those with condi-075

tion annotations (144 trials, 345 annotations) and076

drug annotations (50 trials, 100 annotations).077

2.2 Named Entity Recognition078

2.2.1 Model079

We used BioLinkBERT as the model reported to080

achieve the best results on the test set for condition081

(F1 0.85) and drug name recognition (F1 0.90) (Ya-082

sunaga et al., 2022). In previous work the model083

was fine-tuned on the NeuroTrialNER train set, and084

we ran inference on a local CPU.085

2.2.2 Evaluation086

We were interested to understand what are the dif-087

ferences between the entities extracted from the088

text using BioLinkBERT, and the existing values089

provided in the ClinicalTrials.gov (AACT) records.090

For each clinical trial, we aggregated the token-091

wise NER extractions into unique entities at the092

abstract level to enable comparison with AACT.093

We then determined whether each unique entity094

from AACT and BioLinkBERT appeared in one or095

both annotations. Overlaps were identified based096

on exact or partial token matches, with partial097

matches defined by significant character overlap,098

as described in the Appendix A.099

To better understand cases where entities were100

present only in AACT or the BioLinkBERT extrac-101

tions, we sampled 20 instances where an entity was102

returned by only one system. Each instance was103

manually reviewed and classified either as a syn-104

onym, false positive, or as a unique true positive105

for one system, thus a false negative for the other.106

2.3 Named Entities Linking107

2.3.1 Manual Annotation108

NeuroTrialNER did not include annotations for109

linking named entities to SNOMED nomenclature.110

To assess performance, two annotators indepen-111

dently linked each manually annotated condition112

and drug entity from the test set to the ontology en-113

tries using the SNOMED CT web browser4. They114

identified the most accurate matches, extracting the115

concept name and concept IDs. The process is de-116

tailed in Appendix B. Inter-annotator agreement117

(IAA) was measured using Cohen’s kappa statistic,118

and we report the 95% confidence intervals (CI)119

(Cohen, 1960).120

4SNOMED CT Browser

2.3.2 Dictionary Lookup 121

We used a names dictionary based technique as a 122

simple baseline for the entity linking task. We 123

combined reference terminology from multiple 124

knowledge bases, detailed in Appendix C. This re- 125

sulted in a dictionary of 25,933 unique drug names 126

and 18,458 unique condition names, including syn- 127

onyms and lexical variations. 128

Following the method outlined in Wood (2023), 129

we linked entity words that matched entries from 130

our dictionary. This approach did not accommodate 131

misspellings. 132

2.3.3 SapBERT and SNOMED 133

We utilized the Self-alignment Pretraining for 134

BERT (SapBERT) model from the Huggingface li- 135

brary, pre-trained on PubMedBERT full texts, with- 136

out further fine-tuning or change to the hyperparam- 137

eters5. Inference with the model was performed on 138

local CPU. 139

We acquired SNOMED CT data from NIH6, iso- 140

lating concepts and synonyms in the categories 141

disorder, finding, procedure and medicinal product. 142

SapBERT vector representations were created for 143

each SNOMED concept and synonym. 144

For each named entity from the test set, we 145

generated a SapBERT embedding and used it to 146

match the closest SNOMED concepts based on Eu- 147

clidean distance (Huang et al., 2008). Note that his 148

setup did not take the mention’s context into ac- 149

count (Kartchner et al., 2023). The top five closest 150

matches and their distances (cdist) were retrieved. 151

2.3.4 Evaluation 152

The assessment of the linking quality was per- 153

formed in terms of precision, recall and the F1- 154

measure, as defined in (Shen et al., 2015) and 155

shown in Appendix D . 156

2.3.5 Experiments 157

The “cdist” value can be interpreted as an indicator 158

of the match’s accuracy, with larger distances sug- 159

gesting lower confidence in the match. We aimed 160

to determine an optimal “cdist” threshold, above 161

which entities should not be linked to SNOMED 162

due to a high likelihood of being false positives. To 163

achieve this, we explored various threshold values. 164

Moreover, it is possible that the manually anno- 165

tated SNOMED target is not the top match returned 166

by the system but falls within the top k closest 167

5/cambridgeltl/SapBERT-from-PubMedBERT-fulltext
6NIH SNOMED CT International Edition, April 1, 2024
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matches (k=2,3,4,5). We therefore analyzed how168

performance varies when considering whether the169

target entity is among these closely matched enti-170

ties.171

3 Results172

3.1 Named Entity Recognition173

The UpSet plot in Figure 1 A shows the intersec-174

tion of condition entities extracted by AACT and175

BioLinkBERT. Around 35% (254) of the entities176

were recognized by both methods. AACT and Bi-177

oLinkBERT also uniquely returned 218 and 228178

conditions, respectively. For drug entities, 52 drug179

names were overlapping (Figure 1 B). Addition-180

ally, BioLinkBERT uniquely identified 54 drugs,181

while AACT uniquely identified 32 drugs.182

To understand the discrepancies between the183

methods, we manually reviewed a random sam-184

ple of the entities recognized by only one of the185

systems and identified the following patterns (see186

also Table 1 in Appendix E):187

• Different entity surface forms: The methods188

identified the same entity, but they had lexical189

variations. This was more frequent with drug190

entities (57%) than conditions (42%).191

• Unique entity by one method: BERT de-192

tected more detailed conditions and interven-193

tion information. AACT contained entities194

that BERT could not extract because they were195

not mentioned in the trial descriptions.196

• False Positives: AACT had only 2% false197

positives, while BERT had 15% for conditions198

and 5% for drugs.199

3.2 Named Entity Linking200

3.2.1 Manual Linking201

The Cohen’s kappa score between the two anno-202

tators for linking drug entities was 0.85 (CI: 0.78,203

0.92), and for linking conditions, it was 0.79 (CI:204

0.75, 0.84). The two annotators manually reviewed205

the disagreements and reached a consensus on the206

final target SNOMED entity, which was then used207

for model evaluation.208

3.2.2 Dictionary Lookup209

Of the 100 drug mentions, 52% were successfully210

linked using the exact string matching dictionary211

lookup strategy. This method also successfully212

linked 123 (36%) of the annotated condition en-213

tities. Linking conditions was more challenging214

because the annotations included extra disease char- 215

acteristics such as stage and severity, which were 216

not present in our target disease knowledge bases. 217

3.2.3 Optimal Entity Linking Performance 218

The highest F1 scores were obtained at a cdist 219

threshold of 7.73 for conditions, achieving an F1 220

score of 0.76 (Figure 2 A). For drug entities, the 221

highest F1 score of 0.92 was achieved at a cdist 222

threshold of 8.18 (Figure 3 A in Appendix F). 223

As seen in Figure 2 B, at lower cdist thresh- 224

olds, the model was more stringent, accepting only 225

very close matches. This resulted in higher preci- 226

sion but lower recall, as the model missed some 227

true matches that had a higher Euclidean distance. 228

Conversely, at higher cdist thresholds, the model 229

was less strict, which increased recall by including 230

more true matches, but also decreased precision 231

due to the inclusion of more false positives. 232

3.2.4 Performance at different k 233

Figure 2 B demonstrates the relationship between 234

the number of included closest entities (k) and 235

the performance of the entity linking model. The 236

results showed that while precision and recall in- 237

crease with the number of closest entities consid- 238

ered. This indicates that the correct entity is fre- 239

quently found within the top 5 closest entities, sug- 240

gesting that these entities are closely related. Simi- 241

lar results were obtained for for drug entities, see 242

Figure 3 B in Appendix F. 243

4 Discussion 244

Analysis of entities unique to either AACT or 245

BERT revealed that the same entity often appeared 246

in both extractions with different surface forms, 247

highlighting the challenge of handling extensive 248

synonyms in the biomedical domain (Kartchner 249

et al., 2023). The neural NER approach offered 250

more detailed and standardized annotations. For 251

example it included disease stages and severity 252

grades, while excluding drug dosage information. 253

This suggests the potential for using this technique 254

to automatically extract and standardize entities 255

from trial descriptions, enhancing the granularity 256

and completeness of the data. 257

We also showed that a neural entity linker to 258

a standard medical vocabulary could address the 259

challenge of different entity surface forms. This 260

would facilitate data aggregation across different 261

trials and enable analysis at various hierarchical 262

3
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Figure 1: Named entities comparison. Horizontal bars show the total number of unique entities (sets) recognized by
each method. The vertical bars indicate the size of intersections between sets. A single filled dot means the set is
coming from only one of the outputs, and a connecting line indicates overlapping entities.
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Figure 2: Entity linking experiments for condition. A: Impact of different Euclidean distance (cdist) threshold
values. B: Performance change when considering a k number of closest entities.

levels. However, our experiments also uncov-263

ered two challenges. The first was the insufficient264

coverage of concepts in SNOMED. For example,265

while “Everolimus” is correctly categorized as a266

substance, its well-known brand name, “Afinitor”,267

is missing, as well as the drug “Priopidine”. The268

second challenge stemmed from the lack of con-269

textual information when using SapBERT, which270

made it difficult to determine the correct target of271

the entities. Specifically, for disease names, it was272

challenging to decide whether an entity referred273

to a disease or a symptom/finding without the con-274

text it appeared in. For example, human annotators275

preferred “Depressive disorder (disorder)” for the276

entity “depressive”, whereas SapBERT returned277

“Symptoms of depression (finding)”.278

5 Conclusion279

This study evaluated the impact and limitations of280

NLP-based techniques for automated data extrac-281

tion from clinical trial registry data. Our findings282

indicate that NER can retrieve entities from trial 283

titles and summaries, potentially replacing or com- 284

plementing the manually provided data in AACT. 285

Additionally, we explored linking entities to struc- 286

tured representations in an ontology and standard- 287

ize variations, addressing a gap in AACT. 288

Future work could expand upon these findings 289

in several directions. First, we identified the need 290

for additional ontologies or knowledge bases to 291

address the issue of missing entities. Second, while 292

we tested a single entity linking approach, there is 293

a need for a more comprehensive benchmarking of 294

different methodologies. 295

A promising future application would be inte- 296

grating these techniques into existing trial registry 297

platforms. This could enhance the data capturing 298

and curation process, making it more complete, 299

standardized and less prone to human errors, thus 300

enhancing the usability and interoperability of the 301

data for downstream tasks, such as monitoring and 302

evidence synthesis. 303

4



Limitations304

Our research was limited to trials in neuroscience305

from ClinicalTrials.gov. However, we believe that306

the methodologies and approaches we employed307

could be adapted for use with other clinical trial308

registry platforms and medical domains.309

The estimation of optimal parameters for en-310

tity linking was exploratory and conducted on the311

test set of the NeuroTrialNER corpus. However,312

it would be more rigorous to annotate the valida-313

tion corpus, optimize the parameters based on that,314

and then report the performance scores on the test315

set. Furthermore, the manual annotations for en-316

tity linking did not take into account the context in317

which the entity appeared. It might be necessary318

to refine the annotation guidelines and differentiate319

more clearly between target SNOMED concepts320

such as disorders and findings.321

Finally, our research was conducted exclusively322

using English-language data. Expanding this work323

to include other languages could enrich the dataset324

and offer more comprehensive insights into global325

clinical practices.326
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A NER Overlap Calculation Details424

The partial match similarity assessment was cal-425

culated considering both the number of matching426

characters and their positions within the strings to427

determine the closeness of the match7. For instance,428

if the AACT annotation is “hemiplegic cerebral429

palsy”, and the BioLinkBERT prediction is “cere-430

bral palsy”, this qualifies as a partial match.431

B Annotation Guideline for Entity432

Linking433

Guidelines434

1. Read the entity from the list of extracted NERs435

(e.g., column unique_condition_target).436

2. If the entity is not clear, look up the clinical437

trial from which it was extracted and read the438

context in which it appears.439

2.1. If the linking would be possible only440

through the context, add this as a flag in441

the designated column of the annotations442

file (column context_required).443

3. If it is clear what concept is represented,444

search for it in the SNOMED browser.445

3.1. If the concept is found:446

3.1.1. Preferably look for (disease) or (sub-447

stance) main concept; e.g., for the448

entity "tic", prefer "Tic disorder (dis-449

order)" instead of "Tic (finding)".450

3.1.2. Copy the concept and the451

concept ID into columns452

target_snomed_concept and453

target_snomed_concept_id.454

7We used the get_close_matches function with cutoff=0.6
from: https://docs.python.org/3/library/difflib.html

3.1.3. Always keep the semantic tag, even 455

if the concept is of another semantic 456

tag, e.g., (procedure) - this will be 457

used to know which other semantic 458

concept to include in the SNOMED 459

graph. 460

3.1.4. If more than one entity is extracted, 461

add all the corresponding matches for 462

linking, separated with a comma. 463

3.2. If the concept is not found: 464

3.2.1. Try to reduce the entity to its main 465

components, e.g., if the entity was 466

"post-operative atrial fibrillation" and 467

this returns no hits from the database, 468

look for "atrial fibrillation" only; 469

also, if the entity is an adjective, try 470

with the noun form, e.g., if the entity 471

was "acromegalic", try looking for 472

"acromegaly". 473

3.2.2. Consider using a synonym. 474

3.2.3. If a more generic concept is returned, 475

then use this generic concept in- 476

stead, e.g., for the entity "autoim- 477

mune neurological diseases", the re- 478

sulting match is "Autoimmune dis- 479

ease (disorder)". 480

3.2.4. If there is still no meaning- 481

ful concept returned, write 482

n.a. for snomed_concept and 483

snomed_concept_id. 484

C Dictionary Sources for EL 485

For a comprehensive list of neurological and 486

psychiatric diseases, we combined two primary 487

sources: the International Classification of Dis- 488

eases 11th Revision8 (ICD-11) and the MeSH terms 489

list9. This integration resulted in a list of 18,458 490

unique disease names, including synonyms and 491

lexical variations, categorized under “Mental, be- 492

havioural or neurodevelopmental disorder” and 493

“Neurologic Manifestations”. For drug names, we 494

compiled data from DrugBank10, Wikipedia, Med- 495

linePlus, and MeSH terms11. 496

D Linking Evaluation Measures 497

Following (Shen et al., 2015), we measured the 498

following metrics to assess the entity linking per- 499

8https://icd.who.int/icdapi
9Version 2023 obtained as an XML file from

https://www.nlm.nih.gov/databases/download/mesh.html
10https://go.drugbank.com/
11https://pypi.org/project/drug-named-entity-recognition/
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formance.500

Precision measures the accuracy of the entity501

linking system by evaluating the proportion of cor-502

rectly linked entity mentions out of all mentions503

linked by the system.504

Precision =
|correctly linked entity mentions|

|linked mentions generated by system|
505

Recall assesses the completeness of the entity link-506

ing system by evaluating the proportion of cor-507

rectly linked entity mentions out of all mentions508

that should have been linked.509

Recall =
|correctly linked entity mentions|

|entity mentions that should be linked|
510

The F1 score is combines precision and recall to511

provide a single score for evaluation:512

F1 =
2 · precision · recall
precision + recall

513

E Overview of NER Discrepancies514

Table 1 presents various types of discrepancies ob-515

served in the extraction of condition and drug en-516

tities using BioLinkBERT and AACT. The evalua-517

tion was based on 20 randomly sampled entities for518

each type of disagreement, totaling 40 examples519

per entity category (drug and disease).520

F Linking Performance for DRUG521

Figure 3 A illustrates the performance of the en-522

tity linking model for drug entities at various em-523

beddings distance (cdist) thresholds. As the cdist524

threshold increases, the model becomes less strin-525

gent, which impacts these metrics. The highest F1526

score of 0.92 is achieved at a cdist threshold of 8.18,527

indicating an optimal balance between precision528

and recall at this point.529

Figure 3 B shows the entity linking performance530

for drug entities as a function of the number of531

included closest entities (k). As the number of clos-532

est entities increases from 1 to 5, both Recall and533

F1 Score improve, reaching their peak at k=4 and534

k=5 with an F1 Score of 0.964. Precision remains535

high and stable throughout, indicating that includ-536

ing more closest entities improves recall without537

significantly compromising precision.538
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Conditions Drug
Difference Type Frequency Example (BERT vs AACT) Frequency Example (BERT vs AACT) Comment

Both extractions represent
the same entity 17 (42%) spine cancer vs

spinal bone metastases 23 (57%) dextrose vs
dextrose 5% in water

Often the BERT extractions
contained less noise and could be
more easily aggregated.

Correct entity available
only in AACT 7 (18%) no annotation vs

ovarian cancer 7 (18%) migraine medications vs
verapamil + paroxetine

In all cases, those entities were
not available in the title of trial brief
description.

Correct entity available
only in BERT 8 (20%) respiratory muscle dysfunction vs

muscle weakness 6 (15%) clozapine vs
nmdae plus aifa

BERT’s extractions contained more
fine-grained details for conditions.
Also, interventions tested together with
a new intervention are annotated.

False positives AACT 1 (2%) ketamine 1 (2%) blood sampling Observed entities that do not belong to the
class.

False positives BERT 6 (15%) post-, lack 2 (5%) 5 (from dextrose 5% in water) Observed extraction errors from BERT, e.g.,
partial extractions of an entity (2 cases).

Table 1: Types of discrepancies for condition and drug entities extraction using BioLinkBERT and AACT. The
evaluation of the results for each entity type was based on 20 randomly sampled entities for each disagreement type,
i.e., 20 examples where entity extracted only by BERT and not by AACT, and 20 examples where only by AACT
but not by BERT.
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Figure 3: Entity linking experiments for drug. A: Impact of different Euclidean distance (cdist) threshold values. B:
Performance change when considering a k number of closest entities.
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