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Abstract

Clinical trial registry reviews can reveal cru-
cial insights into medical research quality and
scope. The current process for generating re-
ports from these registries relies heavily on
manual data curation, which includes categoriz-
ing trials by disease type and classifying drugs.
These tasks are time-consuming and prone to
human error. In the present work, we explore
the use of automated techniques for extracting
drug and disease information, as well as their
linking to a medical ontology. By improving
the data capture and curation, our aim is to
contribute to the development of new systems
for reviewing and monitoring clinical trial reg-
istries. All resources are available on GitHub'.

1 Introduction

Public clinical trial registries, such as ClinicalTri-
als.gov, are essential resources that enable stake-
holders—including researchers, patients, health-
care providers, and policymakers—to navigate the
landscape of drug development. These registries
allow for the monitoring of emerging therapeutic
targets and substances, and ensuring that new treat-
ments meet safety and efficacy standards. Addition-
ally, they can facilitate the tracking of adverse drug
reactions and support the evaluation of clinical trial
design quality (Saberwal, 2021).

However, extracting information from these re-
sources is challenging due to large data volume, in-
complete and unstructured reporting and variability
in terminology (Tse et al., 2018; Pillamarapu et al.,
2019; Shi and Du, 2024). While the Aggregate
Analysis of ClinicalTrials.gov database (AACT)?
has been released in 2011 to enhance access to
the data, it provides little automated validation and
harmonization of data elements (Tasneem et al.,
2012). For example, a recent study found that the
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interventions section of ClinicalTrials.gov included
non-drug-related terms, hindering comprehensive
drug trend analysis (Namiot et al., 2023). There-
fore, the current process of evidence synthesis from
trial registries relies heavily on manual data cura-
tion, including the tasks of categorizing trials by
disease type and classifying drugs (Hirsch et al.,
2013; Liu et al., 2018). This approach is time-
consuming and prone to human error, which might
result in inconsistencies and missed information.

Computational methods, especially natural lan-
guage processing (NLP), can support clinical evi-
dence synthesis by structuring, standardizing, and
semantically analyzing data (Marshall et al., 2017;
Thomas et al., 2017). Techniques like Named En-
tity Recognition (NER) identify and categorize text
elements such as drug and disease names (Wang
et al., 2018). Complementary, Entity Linking (EL)
matches these identified elements to unique iden-
tifiers in knowledge bases and enables entity nor-
malization, i.e., their uniform representation (Shen
et al., 2015; Shi et al., 2023).

Thus, we used NER to explore ways of enhanc-
ing the existing condition and intervention fields
in ClinicalTrials.gov. We compared neural NER
outputs with the existing AACT manual annota-
tions and evaluated a state-of-the-art method for
linking entities to the Systematized Nomenclature
of Medicine Clinical Terminology (SNOMED CT)
(Cornet and de Keizer, 2008).

2 Methods

2.1 Reference Corpus

We worked with a dataset of annotated trials from
ClinicalTrials.gov (NeuroTriaINER)? . This dataset
includes entity-level annotations in trial titles and
summaries, identifying entities like disease names
(called “conditions”) and drugs. We analyzed the
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https://anonymous.4open.science/r/NeuroTrialDataCuration-3F46/
https://anonymous.4open.science/r/NeuroTrialDataCuration-3F46/
https://aact.ctti-clinicaltrials.org/
https://anonymous.4open.science/r/NeuroTrialNER-2FFC/

test set of 153 trials, focusing on those with condi-
tion annotations (144 trials, 345 annotations) and
drug annotations (50 trials, 100 annotations).

2.2 Named Entity Recognition
2.2.1 Model

We used BioLinkBERT as the model reported to
achieve the best results on the test set for condition
(F1 0.85) and drug name recognition (F1 0.90) (Ya-
sunaga et al., 2022). In previous work the model
was fine-tuned on the NeuroTrialNER train set, and
we ran inference on a local CPU.

2.2.2 Evaluation

We were interested to understand what are the dif-
ferences between the entities extracted from the
text using BioLinkBERT, and the existing values
provided in the ClinicalTrials.gov (AACT) records.

For each clinical trial, we aggregated the token-
wise NER extractions into unique entities at the
abstract level to enable comparison with AACT.
We then determined whether each unique entity
from AACT and BioLinkBERT appeared in one or
both annotations. Overlaps were identified based
on exact or partial token matches, with partial
matches defined by significant character overlap,
as described in the Appendix A.

To better understand cases where entities were
present only in AACT or the BioLinkBERT extrac-
tions, we sampled 20 instances where an entity was
returned by only one system. Each instance was
manually reviewed and classified either as a syn-
onym, false positive, or as a unique true positive
for one system, thus a false negative for the other.

2.3 Named Entities Linking
23.1

NeuroTrialNER did not include annotations for
linking named entities to SNOMED nomenclature.
To assess performance, two annotators indepen-
dently linked each manually annotated condition
and drug entity from the test set to the ontology en-
tries using the SNOMED CT web browser*. They
identified the most accurate matches, extracting the
concept name and concept IDs. The process is de-
tailed in Appendix B. Inter-annotator agreement
(IAA) was measured using Cohen’s kappa statistic,
and we report the 95% confidence intervals (CI)
(Cohen, 1960).

Manual Annotation

*SNOMED CT Browser

2.3.2 Dictionary Lookup

We used a names dictionary based technique as a
simple baseline for the entity linking task. We
combined reference terminology from multiple
knowledge bases, detailed in Appendix C. This re-
sulted in a dictionary of 25,933 unique drug names
and 18,458 unique condition names, including syn-
onyms and lexical variations.

Following the method outlined in Wood (2023),
we linked entity words that matched entries from
our dictionary. This approach did not accommodate
misspellings.

2.3.3 SapBERT and SNOMED

We utilized the Self-alignment Pretraining for
BERT (SapBERT) model from the Huggingface li-
brary, pre-trained on PubMedBERT full texts, with-
out further fine-tuning or change to the hyperparam-
eters®. Inference with the model was performed on
local CPU.

We acquired SNOMED CT data from NIH®, iso-
lating concepts and synonyms in the categories
disorder, finding, procedure and medicinal product.
SapBERT vector representations were created for
each SNOMED concept and synonym.

For each named entity from the test set, we
generated a SapBERT embedding and used it to
match the closest SNOMED concepts based on Eu-
clidean distance (Huang et al., 2008). Note that his
setup did not take the mention’s context into ac-
count (Kartchner et al., 2023). The top five closest
matches and their distances (cdist) were retrieved.

2.3.4 Evaluation

The assessment of the linking quality was per-
formed in terms of precision, recall and the F1-
measure, as defined in (Shen et al., 2015) and
shown in Appendix D .

2.3.5 Experiments

The “cdist” value can be interpreted as an indicator
of the match’s accuracy, with larger distances sug-
gesting lower confidence in the match. We aimed
to determine an optimal “cdist” threshold, above
which entities should not be linked to SNOMED
due to a high likelihood of being false positives. To
achieve this, we explored various threshold values.

Moreover, it is possible that the manually anno-
tated SNOMED target is not the top match returned
by the system but falls within the top k closest

5 /cambridgeltl/SapBERT-from-PubMedBERT-fulltext
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matches (k=2,3,4,5). We therefore analyzed how
performance varies when considering whether the
target entity is among these closely matched enti-
ties.

3 Results

3.1 Named Entity Recognition

The UpSet plot in Figure 1 A shows the intersec-
tion of condition entities extracted by AACT and
BioLinkBERT. Around 35% (254) of the entities
were recognized by both methods. AACT and Bi-
oLinkBERT also uniquely returned 218 and 228
conditions, respectively. For drug entities, 52 drug
names were overlapping (Figure 1 B). Addition-
ally, BioLinkBERT uniquely identified 54 drugs,
while AACT uniquely identified 32 drugs.

To understand the discrepancies between the
methods, we manually reviewed a random sam-
ple of the entities recognized by only one of the
systems and identified the following patterns (see
also Table 1 in Appendix E):

* Different entity surface forms: The methods
identified the same entity, but they had lexical
variations. This was more frequent with drug
entities (57%) than conditions (42%).

* Unique entity by one method: BERT de-
tected more detailed conditions and interven-
tion information. AACT contained entities
that BERT could not extract because they were
not mentioned in the trial descriptions.

* False Positives: AACT had only 2% false
positives, while BERT had 15% for conditions
and 5% for drugs.

3.2 Named Entity Linking
3.2.1

The Cohen’s kappa score between the two anno-
tators for linking drug entities was 0.85 (CI: 0.78,
0.92), and for linking conditions, it was 0.79 (CI:
0.75, 0.84). The two annotators manually reviewed
the disagreements and reached a consensus on the
final target SNOMED entity, which was then used
for model evaluation.

Manual Linking

3.2.2 Dictionary Lookup

Of the 100 drug mentions, 52% were successfully
linked using the exact string matching dictionary
lookup strategy. This method also successfully
linked 123 (36%) of the annotated condition en-
tities. Linking conditions was more challenging

because the annotations included extra disease char-
acteristics such as stage and severity, which were
not present in our target disease knowledge bases.

3.2.3 Optimal Entity Linking Performance

The highest F1 scores were obtained at a cdist
threshold of 7.73 for conditions, achieving an F1
score of 0.76 (Figure 2 A). For drug entities, the
highest F1 score of 0.92 was achieved at a cdist
threshold of 8.18 (Figure 3 A in Appendix F).

As seen in Figure 2 B, at lower cdist thresh-
olds, the model was more stringent, accepting only
very close matches. This resulted in higher preci-
sion but lower recall, as the model missed some
true matches that had a higher Euclidean distance.
Conversely, at higher cdist thresholds, the model
was less strict, which increased recall by including
more true matches, but also decreased precision
due to the inclusion of more false positives.

3.2.4 Performance at different k

Figure 2 B demonstrates the relationship between
the number of included closest entities (k) and
the performance of the entity linking model. The
results showed that while precision and recall in-
crease with the number of closest entities consid-
ered. This indicates that the correct entity is fre-
quently found within the top 5 closest entities, sug-
gesting that these entities are closely related. Simi-
lar results were obtained for for drug entities, see
Figure 3 B in Appendix F.

4 Discussion

Analysis of entities unique to either AACT or
BERT revealed that the same entity often appeared
in both extractions with different surface forms,
highlighting the challenge of handling extensive
synonyms in the biomedical domain (Kartchner
et al., 2023). The neural NER approach offered
more detailed and standardized annotations. For
example it included disease stages and severity
grades, while excluding drug dosage information.
This suggests the potential for using this technique
to automatically extract and standardize entities
from trial descriptions, enhancing the granularity
and completeness of the data.

We also showed that a neural entity linker to
a standard medical vocabulary could address the
challenge of different entity surface forms. This
would facilitate data aggregation across different
trials and enable analysis at various hierarchical
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Figure 1: Named entities comparison. Horizontal bars show the total number of unique entities (sets) recognized by
each method. The vertical bars indicate the size of intersections between sets. A single filled dot means the set is
coming from only one of the outputs, and a connecting line indicates overlapping entities.
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Figure 2: Entity linking experiments for condition. A: Impact of different Euclidean distance (cdist) threshold
values. B: Performance change when considering a k number of closest entities.

levels. However, our experiments also uncov-
ered two challenges. The first was the insufficient
coverage of concepts in SNOMED. For example,
while “Everolimus” is correctly categorized as a
substance, its well-known brand name, “Afinitor”,
is missing, as well as the drug “Priopidine”. The
second challenge stemmed from the lack of con-
textual information when using SapBERT, which
made it difficult to determine the correct target of
the entities. Specifically, for disease names, it was
challenging to decide whether an entity referred
to a disease or a symptom/finding without the con-
text it appeared in. For example, human annotators
preferred “Depressive disorder (disorder)” for the
entity “depressive”, whereas SapBERT returned
“Symptoms of depression (finding)”.

5 Conclusion

This study evaluated the impact and limitations of
NLP-based techniques for automated data extrac-
tion from clinical trial registry data. Our findings

indicate that NER can retrieve entities from trial
titles and summaries, potentially replacing or com-
plementing the manually provided data in AACT.
Additionally, we explored linking entities to struc-
tured representations in an ontology and standard-
ize variations, addressing a gap in AACT.

Future work could expand upon these findings
in several directions. First, we identified the need
for additional ontologies or knowledge bases to
address the issue of missing entities. Second, while
we tested a single entity linking approach, there is
a need for a more comprehensive benchmarking of
different methodologies.

A promising future application would be inte-
grating these techniques into existing trial registry
platforms. This could enhance the data capturing
and curation process, making it more complete,
standardized and less prone to human errors, thus
enhancing the usability and interoperability of the
data for downstream tasks, such as monitoring and
evidence synthesis.



Limitations

Our research was limited to trials in neuroscience
from ClinicalTrials.gov. However, we believe that
the methodologies and approaches we employed
could be adapted for use with other clinical trial
registry platforms and medical domains.

The estimation of optimal parameters for en-
tity linking was exploratory and conducted on the
test set of the NeuroTriaNER corpus. However,
it would be more rigorous to annotate the valida-
tion corpus, optimize the parameters based on that,
and then report the performance scores on the test
set. Furthermore, the manual annotations for en-
tity linking did not take into account the context in
which the entity appeared. It might be necessary
to refine the annotation guidelines and differentiate
more clearly between target SNOMED concepts
such as disorders and findings.

Finally, our research was conducted exclusively
using English-language data. Expanding this work
to include other languages could enrich the dataset
and offer more comprehensive insights into global
clinical practices.
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A NER Overlap Calculation Details

The partial match similarity assessment was cal-
culated considering both the number of matching
characters and their positions within the strings to
determine the closeness of the match’. For instance,
if the AACT annotation is “hemiplegic cerebral
palsy”, and the BioLinkBERT prediction is “cere-
bral palsy”, this qualifies as a partial match.

B Annotation Guideline for Entity
Linking

Guidelines

1. Read the entity from the list of extracted NERs
(e.g., column unique_condition_target).

2. If the entity is not clear, look up the clinical
trial from which it was extracted and read the
context in which it appears.

2.1. If the linking would be possible only
through the context, add this as a flag in
the designated column of the annotations
file (column context_required).

3. If it is clear what concept is represented,
search for it in the SNOMED browser.

3.1. If the concept is found:

3.1.1. Preferably look for (disease) or (sub-
stance) main concept; e.g., for the
entity "tic", prefer "Tic disorder (dis-
order)" instead of "Tic (finding)".

and the
columns
and

. Copy the concept
concept ID into
target_snomed_concept
target_snomed_concept_id.

"We used the get_close_matches function with cutoff=0.6
from: https://docs.python.org/3/library/difflib.html

. Always keep the semantic tag, even
if the concept is of another semantic
tag, e.g., (procedure) - this will be
used to know which other semantic
concept to include in the SNOMED
graph.

. If more than one entity is extracted,
add all the corresponding matches for
linking, separated with a comma.

3.2. If the concept is not found:

3.2.1. Try to reduce the entity to its main
components, e.g., if the entity was
"post-operative atrial fibrillation" and
this returns no hits from the database,
look for "atrial fibrillation" only;
also, if the entity is an adjective, try
with the noun form, e.g., if the entity
was "acromegalic", try looking for
"acromegaly".

3.2.2. Consider using a synonym.

3.2.3. If a more generic concept is returned,
then use this generic concept in-
stead, e.g., for the entity "autoim-
mune neurological diseases", the re-
sulting match is "Autoimmune dis-
ease (disorder)".

If there is still no meaning-

ful concept returned,  write

n.a. for snomed_concept and

snomed_concept_id.

3.24.

C Dictionary Sources for EL

For a comprehensive list of neurological and
psychiatric diseases, we combined two primary
sources: the International Classification of Dis-
eases 11th Revision® (ICD-11) and the MeSH terms
list?. This integration resulted in a list of 18,458
unique disease names, including synonyms and
lexical variations, categorized under “Mental, be-
havioural or neurodevelopmental disorder” and
“Neurologic Manifestations”. For drug names, we
compiled data from DrugBank'?, Wikipedia, Med-
linePlus, and MeSH terms'!.

D Linking Evaluation Measures

Following (Shen et al., 2015), we measured the
following metrics to assess the entity linking per-

8https://icd.who.int/icdapi

Version 2023 obtained as an XML file from
https://www.nlm.nih.gov/databases/download/mesh.html

https://go.drugbank.com/

"https://pypi.org/project/drug-named-entity-recognition/
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formance.

Precision measures the accuracy of the entity
linking system by evaluating the proportion of cor-
rectly linked entity mentions out of all mentions
linked by the system.

.. |correctly linked entity mentions|
Precision =

[linked mentions generated by system)|

Recall assesses the completeness of the entity link-
ing system by evaluating the proportion of cor-
rectly linked entity mentions out of all mentions
that should have been linked.

Recall — |correctly linked entity mentions|

lentity mentions that should be linked|

The F1 score is combines precision and recall to
provide a single score for evaluation:

2. ision - 11
Fl = precision - reca

precision + recall

E Overview of NER Discrepancies

Table 1 presents various types of discrepancies ob-
served in the extraction of condition and drug en-
tities using BioLinkBERT and AACT. The evalua-
tion was based on 20 randomly sampled entities for
each type of disagreement, totaling 40 examples
per entity category (drug and disease).

F Linking Performance for DRUG

Figure 3 A illustrates the performance of the en-
tity linking model for drug entities at various em-
beddings distance (cdist) thresholds. As the cdist
threshold increases, the model becomes less strin-
gent, which impacts these metrics. The highest F1
score of 0.92 is achieved at a cdist threshold of 8.18,
indicating an optimal balance between precision
and recall at this point.

Figure 3 B shows the entity linking performance
for drug entities as a function of the number of
included closest entities (k). As the number of clos-
est entities increases from 1 to 5, both Recall and
F1 Score improve, reaching their peak at k=4 and
k=5 with an F1 Score of 0.964. Precision remains
high and stable throughout, indicating that includ-
ing more closest entities improves recall without
significantly compromising precision.



Conditions Drug
Difference Type Frequency  Example (BERT vs AACT) Frequency  Example (BERT vs AACT) C
Both extractions represent spine cancer vs dextrose vs Often the BERT extractions
s ; 17 (42%) . N 23 (57%) i . contained less noise and could be
the same entity spinal bone metastases dextrose 5% in water -
more easily aggregated.
Correct entity available no annotation vs migraine medications vs In all cases, those entities were
. Y 7 (18%) . 7 (18%) & . . not available in the title of trial brief
only in AACT ovarian cancer verapamil + paroxetine descrinti
escription.
BERT’s extractions contained more
Correct entity available 8 (20%) respiratory muscle dysfunction vs 6 (15%) clozapine vs fine-grained details for conditions.
only in BERT o muscle weakness v nmdae plus aifa Also, interventions tested together with
a new intervention are annotated.
False positives AACT 1 (2%) ketamine 1(2%) blood sampling i)l:::rved entities that do not belong to the
.. . Observed extraction errors from BERT, e.g.,
False positives BERT 6 (15%) post-, lack 2 (5%) 5 (from dextrose 5% in water) partial extractions of an entity (2 cases).

Table 1: Types of discrepancies for condition and drug entities extraction using BioLinkBERT and AACT. The
evaluation of the results for each entity type was based on 20 randomly sampled entities for each disagreement type,
i.e., 20 examples where entity extracted only by BERT and not by AACT, and 20 examples where only by AACT
but not by BERT.

Entity Linking Performance for Drug 10 Entity Linking Performance @k for Drug
1.0 ' 0.964 0.964
0.94 0.957
0.91
0.9 0.9
0.8 0.8
0.7
0.7
0.6 —— F1 Score
—— Precision 0.6 —— Precision
0.5 —— Recall ’ —— Recall
O Highest F1: 0.92 (cdist=8.18) —— F1 Score
0 2 4 6 8 10 12 14 05 1 2 3 4 5
Embeddings distance (cdist) threshold value Number of included (k) closest entities

Figure 3: Entity linking experiments for drug. A: Impact of different Euclidean distance (cdist) threshold values. B:
Performance change when considering a k number of closest entities.
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