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Abstract

Open-set object detection (OSOD), a task involving the detection of unknown1

objects while accurately detecting known objects, has recently gained attention.2

However, we identify a fundamental issue with the problem formulation employed3

in current OSOD studies. Inherent to object detection is knowing “what to detect,”4

which contradicts the idea of identifying “unknown” objects. This sets OSOD5

apart from open-set recognition (OSR). This contradiction complicates a proper6

evaluation of methods’ performance, a fact that previous studies have overlooked.7

Next, we propose a novel formulation wherein detectors are required to detect8

both known and unknown classes within specified super-classes of object classes.9

This new formulation is free from the aforementioned issues and has practical10

applications. Finally, we design benchmark tests utilizing existing datasets and11

report the experimental evaluation of existing OSOD methods. As a byproduct,12

we introduce a taxonomy of OSOD, resolving confusion prevalent in the literature.13

We anticipate that our study will encourage the research community to reconsider14

OSOD and facilitate progress in the right direction.15

1 Introduction16

Open-set object detection (OSOD) is the problem of correctly detecting known objects in images17

while adequately dealing with unknown objects (e.g., detecting them as unknown). Here, known18

objects are the class of objects that detectors have seen at training time, and unknown objects are19

those they have not seen before. It has attracted much attention recently [22, 5, 16, 14, 30, 15, 40].20

Early studies [22, 21, 5] consider how accurately detectors can detect known objects, without being21

distracted by unknown objects present in input images, which we will refer to as OSOD-I in what22

follows. Recent studies [16, 14, 30, 15, 40] have shifted the focus to detecting unknown objects as23

well. They follow the studies of open-set recognition (OSR) [27, 2, 24, 33, 41] and aim to detect any24

arbitrary unknown objects while preserving detection accuracy for known-classes, which we will25

refer to as OSOD-II.26

In this paper, we point out a fundamental issue with the problem formulation of OSOD, which many27

recent studies rely on, specifically OSOD-II as defined above. OSOD-II requires detectors to detect28

both known-class and unknown-class objects. However, since unknown-class objects belong to an29

open set and can encompass any arbitrary classes, it is impossible for detectors to be fully aware of30

what to detect and what not to detect during inference. To address this, a potential approach is to31

design a detector that detects any “objects” appearing in images and classifies them as either known32
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Table 1: Proposed categorization of OSOD problems. “Det. target” indicates the target of detection.
K and U indicate known and unknown objects, respectively.

Type Det. target Unknown Evaluation

OSOD-I[22, 5] K Any classes Feasible
OSOD-II[16, 15] K+U Any classes Hard

OSOD-III K+U
Any sub-classes in

a known super-class
Feasible

OSOD-I OSOD-II OSOD-III

Target UnknownTarget Known

Figure 1: Illustration of OSOD-I, -II, and -III. OSOD-I: The interest is in detecting known objects
without being distracted by unknown objects. OSOD-II: The interest is in detecting known and
unknown objects as such. OSOD-III: The interest is in detecting known and unknown objects
belonging to the same super-class as such.

or unknown classes. However, this approach is not feasible due to the ambiguity in the definition of33

“objects.” For instance, should the tires of a car be considered as objects? It is important to note that34

such a difficulty does not arise in OSR since it is classification. Additionally, the aforementioned35

issue makes it hard to evaluate the performance of methods. Existing studies employ metrics such36

as A-OSE [22] and WI [5], which primarily measure the accuracy of known object detection (i.e.,37

OSOD-I) and are not suitable for evaluating unknown object detection with OSOD-II.38

Based on the above considerations, we propose a more practical formulation of OSOD, which we39

name OSOD-III. OSOD-III considers only unknown classes that belong to the same super-classes as40

the known classes, which distinguishes it from OSOD-II. This difference addresses the above issues41

of OSOD-II. Importantly, any method designed for OSOD-II can be applied to OSOD-III without42

modification. Figure 1 and Table 1 explain the concept of OSOD-III.43

We design benchmark tests for OSOD-III using three existing datasets: Open Images [18], Caltech-44

UCSD Birds-200-2011 (CUB200) [34], and Mapillary Traffic Sign Dataset (MTSD) [7]. Thus,45

we evaluate the performance of four recent methods (designed for OSOD-II), namely ORE [16],46

Dropout Sampling (DS) [22], VOS [6], and OpenDet [15]. We also test a naive baseline method that47

classifies predicted boxes as known or unknown based on a simple uncertainty measure computed48

from predicted class scores. The results yield valuable insights. Firstly, the previous methods known49

for their good performance in metrics such as A-OSE and WI performed similarly or even worse than50

our simple baseline when they are evaluated with average precision (AP) in unknown object detection,51

a more appropriate performance metric. It is worth mentioning that our baseline employs standard52

detectors trained conventionally, without any additional training steps or extra architectures. Secondly,53

and more importantly, additional improvements are necessary to enable practical applications of54

OSOD(-III).55

Our contributions are summarized as follows:56

• We highlight a fundamental issue with the problem formulation used in current OSOD57

studies, which renders it ill-posed and makes proper performance evaluation difficult.58

• In response, we introduce a new formulation of OSOD named OSOD-III, which addresses59

these concerns and offers practical applications.60
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Table 2: The class split employed in the standard benchmark test employed in recent studies of OSOD
[16, 14, 15, 39, 40, 35]. Split1 consists of 20 PASCAL VOC classes. Split2, 3, and 4 consist of all the
COCO classes but those of Split1. A typical setting is to use Split1 as known categories and Split2-4
as unknown categories. Note the dissimilarity between the known and unknown categories.

Split1 Split2 Split3 Split4

Classes
PASCAL VOC

objects (20)

Outdoor(5), Accessories(5),

Appliance(5), Animal(4), Truck
Sports(10), Food(10)

Electronic(5), Indoor(7),

Kitchen(6), Furniture(2)

• We develop benchmark tests using existing public datasets. Our experimental evaluation of61

existing OSOD methods demonstrates their unsatisfactory performance levels.62

2 Rethinking Open-set Object Detection63

2.1 Formalizing Problems64

We first formulate the problem of open-set object detection (OSOD). Previous studies refer to two65

different problems as OSOD without clarification. We use the names of OSOD-I and -II to distinguish66

the two, which are defined as follows.67

OSOD-I The goal is to detect all instances of known objects in an image without being distracted68

by unknown objects present in the image. We want to avoid mistakenly detecting unknown object69

instances as known objects.70

OSOD-II The goal is to detect all instances of known and unknown objects in an image, identifying71

them correctly (i.e., classifying them to known classes if known and to the “unknown” class otherwise).72

OSOD-I and -II both consider applying a closed-set object detector (i.e., a detector trained on a73

closed-set of object classes) to an open-set environment where the detector encounters objects of74

unknown class. Their difference is whether or not the detector detects unknown objects. OSOD-I75

does not; its concern is with the accuracy of detecting known objects. This problem is first studied in76

[5, 21, 22]. On the other hand, OSOD-II detector detects unknown objects as well, and thus their77

detection accuracy matters. OSOD-II is often considered as a part of open-world object detection78

(OWOD) [16, 14, 39, 30, 35].79

The existing studies of OSOD-II rely on OWOD [16] for the problem formulation, which aims to80

generalize the concept of OSR (open-set recognition) to object detection. In OSR, unknown means81

“anything but known”. Its direct translation to object detection is that any arbitrary classes of objects82

but known objects can be considered unknown. This formulation is reflected in the experimental83

settings employed in these studies. Table 2 shows the setting, which treats the 20 object classes84

of PASCAL VOC [8] as known classes and non-overlapping 60 classes from 80 of COCO [19] as85

unknown classes. This class split indicates the basic assumption that there is little relation between86

known and unknown objects.87

However, this OSOD-II’s formulation has an issue, making it ill-posed. It is because the task is88

detection. Detectors are requested to detect only objects that should be detected. It is a primary89

problem of object detection to judge whether or not something should be detected. What should not90

be detected include objects belonging to the background and irrelevant classes. Detectors learn to91

make this judgment, which is feasible for a closed set of object classes; what to detect is specified.92

However, this does not apply to OSOD-II, which aims at detecting also unknown objects defined as93

above. It is infeasible to specify what to detect and what not for any arbitrary objects in advance.94

A naive solution to this difficulty is to detect any objects as long as they are “objects.” However, it is95

not practical since defining what an object is itself hard. Figure 2 provides examples from COCO96

images. COCO covers only 80 object classes (shown in red rectangles in the images), and many97

unannotated objects are in the images (shown in blue rectangles). Is it necessary to consider every98
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Labeled in COCO Not labeled

Figure 2: Example images showing that “object”
is an ambiguous concept. It is impractical to
cover an unlimited range of object instances with
a finite set of predefined categories.
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Figure 3: A-OSE (a) and WI (b) of different
methods at different detector operating points.
Smaller values mean better performance for both
metrics. The horizontal axis indicates the confi-
dence threshold for selecting bounding box can-
didates. Methods’ ranking varies on the choice
of the threshold.

one of them? Moreover, it is sometimes subjective to determine what constitutes individual “objects.”99

For instance, a car consists of multiple parts, such as wheels, side mirrors, and headlights, which we100

may want to treat as “objects” depending on applications. This difficulty is well recognized in the101

prior studies of open-world detection [16, 14] and zero-shot detection [1, 20].102

2.2 Metrics for Measuring OSOD Performance103

The above difficulty also leads to make it hard to evaluate how well detectors detect unknown objects.104

The previous studies of OSOD employ two metrics for evaluating methods’ performance, i.e., absolute105

open-set error (A-OSE) [22] and wilderness impact (WI) [5]. A-OSE is the number of predicted106

boxes that are in reality unknown objects but wrongly classified as known classes [22]. WI measures107

the ratio of the number of erroneous detections of unknowns as knowns (i.e., A-OSE) to the total108

number of detections of known instances, given by109

WI =
PK

PK∪U
− 1 =

A-OSE

TPknown + FPknown
, (1)

where PK indicates the precision measured in the close-set setting; PK∪U is that measured in the110

open-set setting; and TPknown and FPknown are the number of true positives and false positives for111

known classes, respectively.112

These two metrics are originally designed for OSOD-I; they evaluate detectors’ performance in113

open-set environments. Precisely, they measure how frequently a detector wrongly detects and114

misclassifies unknown objects as known classes (lower is better).115

Nevertheless, previous studies of OSOD-II have employed A-OSE and WI as primary performance116

metrics. We point out that these metrics are pretty insufficient to evaluate OSOD-II detectors since117

they cannot evaluate the accuracy of detecting unknown objects, as mentioned above. They evaluate118

only one type of error, i.e., detecting unknown as known, and ignore the other type of error, detecting119

known as unknown.120

In addition, we point out that A-OSE and WI are not flawless even as OSOD-I performance metrics.121

That is, they merely measure the detectors’ performance at a single operating point; they cannot122

take the precision-recall tradeoff into account, the fundamental nature of detection. Specifically,123

previous studies [16] report A-OSE values for bounding boxes with confidence score ≥ 0.051. As124

for WI, previous studies [16, 14, 15, 30] choose the operating point of recall = 0.8. Thus, they125

show performance only partially since the setting is left to end users. Figures 3(a) and (b) show126

the profiles of A-OSE and WI, respectively, over the possible operating points of several existing127

OSOD-II detectors. It is seen that the ranking of the methods varies depending on the choice of128

confidence threshold.129

1This is not clearly stated in the literature but can be confirmed with the public source code in GitHub
repositories, e.g., https://github.com/JosephKJ/OWOD.
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In summary, A-OSE and WI are insufficient for evaluating OSOD-II performance since i) they merely130

measure OSOD-I performance, i.e., only one of the two error types, and ii) they are metrics at a131

single operating point. To precisely measure OSOD-II performance, we must use average precision132

(AP), the standard metric for object detection, also to evaluate unknown object detection. It should be133

noted that while all the previous studies of OSOD-II report APs for known object detection, only a134

few report APs for unknown detection, such as [15, 35], probably because of the mentioned difficulty135

of specifying what unknown objects to detect and what not.136

3 A More Practical Formulation137

This section introduces another application formulation of OSOD. Although it has been overlooked138

in previous studies, we frequently encounter the scenario in practice. It is free from the fundamental139

issue of OSOD-II, enabling practical evaluation of methods’ performance and probably making the140

problem easier to solve.141

3.1 OSOD-III: Open at Class Level and Closed at Super-class level142

Consider building a smartphone app that detects and classifies animal species. It is unrealistic to deal143

with all animal species at its initial deployment since there are too many classes. Thus, consider a144

strategy to start the app’s service with a limited number of animal species; after its deployment, we145

want to add new classes by detecting unseen animal classes. To do this, we must design the detector146

to detect unseen animals accurately while correctly detecting known animals. After detecting unseen147

animals, we may collect their training data and retrain the detector using them. There will be many148

similar cases in real-world applications.149

This problem is similar to OSOD-II; we want to detect unknown, novel animals. However, unlike150

OSOD-II, it is unnecessary to consider arbitrary objects as detection targets. In brief, we consider151

only animal classes; our detector does not need to detect any non-animal object, even if it has been152

unseen. In other words, we consider the set of object classes closed at the super-class level (i.e.,153

animals) and open at the individual class level under the super-class.154

We call this problem OSOD-III. The differences between OSOD-I, -II, and -III are shown in Fig. 1155

and Table 1. The problem is formally stated as follows:156

OSOD-III Assume we are given a closed set of object classes belonging to a single super-class.157

Then, we want to detect and classify objects of these known classes correctly and to detect every158

unknown class object belonging to the same super-class and classify it as “unknown.”159

It is noted that there may be multiple super-classes instead of a single. In that case, we need only160

consider the union of the super-classes. For the sake of simplicity, we only consider the case of a161

single super-class in what follows.162

3.2 Properties of OSOD-III163

While the applicability of OSOD-III is narrower than OSOD-II by definition, OSOD-III has two good164

properties2.165

One is that OSOD-III is free from the fundamental difficulty of OSOD-II, the dilemma of determining166

what unknown objects to detect and what to not. Indeed, the judgment is clear with OSOD-III;167

unknowns belonging to the known super-class should be detected, and all other unknowns should168

not. As a result, OSOD-III no longer suffers from the evaluation difficulty. The clear identification of169

detection targets enables the computation of AP also for unknown objects.170

2Any OSOD-III problems can be interpreted as OSOD-II. However, it should always be beneficial to
formulate it as OSOD-III if possible.
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The other is that detecting unknowns will arguably be easier owing to the similarity between known171

and unknown classes. In OSOD-II, unknown objects can be arbitrarily dissimilar from known objects.172

In OSOD-III, known and unknown objects share their super-class, leading to their visual similarity.173

It should be noted here that what we regard as a super-class is arbitrary; there is no mathematical174

definition. However, as far as we consider reasonable class hierarchy as in WordNet/ImageNet [9, 4] ,175

we may say that the sub-classes will share visual similarities.176

4 Experimental Results177

Based on the above formulation, we evaluate the performance of existing OSOD methods on the178

proposed OSOD-III scenario. In the following section, we first introduce our experimental settings to179

simulate the OSOD-III scenario and then report the evaluation results.180

4.1 Experimental Settings181

4.1.1 Datasets182

We use the following three datasets for the experiments: Open Images Dataset v6 [18], Caltech-183

UCSD Birds-200-2011 (CUB200) [34], and Mapillary Traffic Sign Dataset (MTSD) [7]. For each,184

we split classes into known/unknown and images into training/validation/testing subsets as explained185

below. Note that one of the compared methods, ORE [16], needs validation images (i.e., example186

unknown-class instances), which may be regarded as leakage in OSOD problems. This does not187

apply to the other methods.188

Open Images Open Images [18] contains 1.9M images of 601 classes of diverse objects with189

15.9M bounding box annotations. It also provides the hierarchy of object classes in a tree structure,190

where each node represents a super-class, and each leaf represents an individual object category. For191

instance, a leaf Polar Bear has a parent node Carnivore. We choose two super-classes, Animal and192

Vehicle, in our experiments because of their appropriate numbers of sub-classes, i.e., 96 and 24 in the193

“Animal” and “Vehicle” super-class, respectively. We split these sub-classes into known and unknown194

classes. To mitigate statistical biases, we consider four random splits and select one for a known-class195

set and the union of the other three for an unknown-class set.196

We construct the training/validation/testing splits of images based on the original splits provided197

by the dataset. Specifically, we choose the images containing at least one known-class instance198

from the original training and validation splits. We choose the images containing either at least199

one known-class instance or at least one unknown-class instance from the original testing split. For200

the training images, we keep annotations for the known objects and eliminate all other annotations201

including unknown objects. It should be noted that there is a risk that those removed objects could be202

treated as the “background” class. For the validation and testing images, we keep the annotations for203

known and unknown objects and remove all other irrelevant objects. See the supplementary material204

for more details.205

CUB200 Caltech-UCSD Birds-200-2011 (CUB200) [34] is a 200 fine-grained bird species dataset.206

It contains 12K images, for each of which a single box is provided. We split the 200 classes randomly207

into four splits, each with 50 classes. We then choose three to form a known-class set and treat the208

rest as an unknown-class set. We construct the training/validation/testing splits similarly to Open209

Images with two notable exceptions. One is that we create the training/validation/test splits from the210

dataset’s original training/validation splits. This is because the dataset does not provide annotation211

for the original test split. The other is that we remove all the images containing unknown objects212

from the training splits. This will make the setting more rigorous. See the supplementary material for213

more details.214

MTSD Mapillary Traffic Sign Dataset (MTSD) [7] is a dataset of 400 diverse traffic signs from215

different regions around the world. It contains 52K street-level images with 260K manually annotated216
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Table 3: Detection accuracy of known (APknown) and unknown objects (APunk) of different methods
on four benchmark tests (i.e., OpenImages-Animal/Vehicle, CUB200, and MTSD), for each of which
the averages over all the splits are shown; see the supplementary material for more details.

Datasets
Open Images-Animal Open Images-Vehicle CUB200 MTSD

APknown APunk APknown APunk APknown APunk APknown APunk

ORE [16] 37.6± 2.8 15.6± 2.7 33.7± 8.5 0.3± 0.1 53.2± 1.3 19.8± 2.2 41.2 0.4± 0.3

DS [22] 41.1± 2.9 15.0± 2.5 40.1± 7.9 2.7± 2.3 61.5± 0.9 21.5± 1.1 50.4 5.1± 1.7

VOS [6] 39.5± 2.2 16.0± 1.8 40.9± 7.8 9.1± 2.2 59.4± 1.0 8.7± 0.6 49.1 4.7± 1.5

OpenDet [15] 36.9± 8.1 33.0± 4.5 38.7± 7.8 14.4± 3.3 63.3± 1.1 27.0± 3.0 51.8 9.9± 3.9

FCOS [32] 30.3± 4.7 41.8± 3.6 30.7± 12.0 18.7± 4.5 53.5± 2.1 24.7± 1.3 41.7 4.4± 1.6

Faster RCNN [26] 37.8± 3.1 35.3± 3.9 39.9± 8.7 17.0± 5.2 62.2± 1.0 24.2± 1.9 50.0 3.1± 1.2

traffic sign instances. For the split of known/unknown classes, we consider a practical use case of217

OSOD-III, where a detector trained using the data from a specific region is used in another region,218

which might have unknown traffic signs. As the dataset does not provide region information for each219

image, we divide the 400 traffic sign classes into clusters based on their co-occurrence in the same220

images. Specifically, we apply normalized graph cut [28] to obtain three clusters, ensuring any pairs221

of the clusters share the minimum co-occurrence. We then use the largest cluster as a known-class set222

(230 classes). Denoting the other two clusters by unknown1 (55) and unknown2 (115), we test three223

cases, i.e., using either unknown1, unknown2, or their union (unknown1+2) for an unknown-class set.224

We report the results for the three cases. We create the training/validation/testing splits in the same225

way as CUB200. See the supplementary material for more details.226

4.1.2 Evaluation227

As discussed earlier, the primary metric for evaluating object detection performance is average228

precision (AP) [10, 8]. Although we must use AP for unknown detection, the issue with OSOD-II229

makes it impractical. OSOD-III is free from the issue, and we can use AP for unknown object230

detection. Therefore, following the standard evaluation procedure of object detection, we report AP231

over IoU in the range [0.50, 0.95] for known and unknown object detection.232

4.2 Compared Methods233

In our benchmark testing, we consider four state-of-the-art methods; ORE [16], Dropout Sampling234

(DS) [22], VOS [6], and OpenDet [15]. Although these methods were originally developed for235

OSOD-II, they can be applied to OSOD-III without modification. See the supplementary material for236

more details of each method’s configurations.237

In addition to these existing methods, we also consider a naive baseline for comparison. It merely238

uses the class scores that standard detectors predict for each bounding box. It relies on an expectation239

that unknown-class inputs should result in uncertain class prediction. Thus we look at the prediction240

uncertainty to judge if the input belongs to known/unknown classes. Specifically, we calculate241

the ratio of the top-1 and top-2 class scores for each candidate bounding box and compare it with242

a pre-defined threshold γ; we regard the input as unknown if it is smaller than γ and as known243

otherwise. We use the sum of the top three class scores for the unknown object detection score. In our244

experiments, we employ two detectors, FCOS [32] and Faster RCNN [26]. We use ResNet50-FPN245

as their backbone, following the above methods. For Open Images, we set γ = 4.0 for FCOS and246

γ = 15.0 for Faster RCNN. For CUB200 and MTSD, we set γ = 1.5 for FCOS and γ = 3.0 for247

Faster RCNN. We need different thresholds due to the difference in the number of classes and the248

output layer design, i.e., logistic vs. softmax. We report the sensitivity to the choice of γ in the249

supplementary material.250

4.3 Results251
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Figure 4: Example outputs of OpenDet [15] and our baseline method with Faster RCNN [26] for
Open Images with Animal and Vehicle super-classes and MTSD, respectively. Red and blue boxes
indicate detected unknown-class and known-class objects, respectively; “Unk” means “unknown”.

Table 3 presents the results, specifically mAP for known-class objects (APknown) and AP for252

unknown objects (APunk). The table shows the average and standard deviation values across all253

splits for each dataset. Performance results for individual splits can be found in the supplementary254

material.255

For Open Images dataset, we can see from the table that the compared methods attain similar256

APknown (except the FCOS-based baseline due to the difference in the base detector). However, they257

show diverse performances in unknown object detection measured by APunk. Specifically, ORE, DS,258

and VOS yield inferior performance. While the rest of the methods achieve much better performance,259

we can observe that the two baseline methods outperform OpenDet, the current state-of-the-art. This260

good performance of these baseline methods is remarkable, considering that they do not require261

additional training or mechanism dedicated to unknown detection.262

For the results of CUB200, we have similar observations with a few minor differences. Differences263

are that ORE works better for this dataset and OpenDet achieves the best performance. However, the264

gap between OpenDet and the baseline methods is not large with APknown and APunk.265

Similar to the other datasets, for MTSD, all the methods maintain the good performance of known266

object detection; APknown’s are high. OpenDet performs the best unknown detection performance267

with noticeable margins to others for this dataset.268

Figure 4 shows selected examples of detection results by OpenDet and our baseline with Faster269

RCNN. There are erroneous detection results of treating unknown as known and vice versa, in270

addition to simple false negatives of unknown detection. These are consistent with the quantitative271

results in Table 3, indicating the unsatisfactory performance of existing methods.272

4.4 Analysis on Failure Cases273

The above results indicate that the detectors frequently misclassify between known and unknown274

instances. To address this, we examined the effect of applying non-maximum suppression (NMS) to275

these detectors.276

In the above experiments, NMS was applied individually to each category, both known and unknown.277

This is consistent with the standard object detection procedure where NMS is typically used among278

the predicted bounding boxes (BBs) of a specific category. As shown in Fig 4, overlapping BBs279

between known and unknown categories remained. However, the appropriateness of treating the280

unknown category similarly to known categories in OSOD is debatable. As such, we expanded our281

approach to apply NMS across both known and unknown category predictions.282

Figure 5 shows the mAP for the known category predictions and AP for the unknown, evaluated283

at varying IoU thresholds for NMS. In Fig 5, an IoU threshold of 1.0 represents results obtained284
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Figure 5: Detection accuracy at various IoU thresholds for NMS between known and unknown
predictions: mAP for known categories and AP for unknown. The results for (a) CUB200 and (b)
MTSD.

without NMS between known and unknown predictions. Results for other values reflect the impact of285

NMS. It is clear that aggressive NMS reduces APs for both categories. This observation suggests two286

things: i) Predicted known and unknown BBs frequently overlap, and ii) The scores of these bounding287

boxes do not consistently reflect prediction accuracy. Ideally, when BBs overlap, the highest scoring288

one should indicate the correct prediction. However, in our results, bounding boxes that misclassify289

known (or unknown) instances often score higher than the accurate ones. In summary, while the290

detectors are adept at detecting unknown instances, they regularly misidentify between known and291

unknown instances.292

5 Related Work293

5.1 Open-set Recognition294

For the safe deployment of neural networks, open-set recognition (OSR) has attracted considerable295

attention. The task of OSR is to accurately classify known objects and simultaneously detect unseen296

objects as unknown. Scheirer et al. [27] first formulated the problem of OSR, and many following297

studies have been conducted so far [2, 12, 23, 31, 24, 29, 33, 41].298

The work of Bendale and Boult [2] is the first to apply deep neural networks to OSR. They use outputs299

from the penultimate layer of a network to calibrate its prediction scores. Several studies [12, 23, 17]300

found generative models are effective for OSR, where unseen-class images are synthesized and used301

for training. Another line of OSR studies focuses on a reconstruction-based method using latent302

features [38, 36], class conditional auto-encoder [24], and conditional gaussian distributions [31].303

5.2 Open-set Object Detection304

We can categorize existing open-set object detection (OSOD) problems into two scenarios, OSOD-I305

and -II, according to their different interest in unknown objects, as we have discussed in this paper.306

OSOD-I Early studies treat OSOD as an extension of OSR problem [22, 21, 5]. They aim to307

correctly detect every known object instance and avoid misclassifying any unseen object instance308

into known classes. Miller et al. [22] first utilize multiple inference results through dropout layers309

[11] to estimate the uncertainty of the detector’s prediction and use it to avoid erroneous detections310

under open-set conditions. Dhamija et al. [5] investigate how modern CNN detectors behave in an311

open-set environment and reveal that the detectors detect unseen objects as known objects with a312

high confidence score. For the evaluation, researchers have employed A-OSE [22] and WI [5] as the313

primary metrics to measure the accuracy of detecting known objects. They are designed to measure314

how frequently a detector wrongly detects and classifies unknown objects as known objects.315
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OSOD-II More recent studies have moved in a more in-depth direction, where they aim to correctly316

detect/classify every object instance not only with the known class but also with the unknown class.317

This scenario is often considered a part of open-world object detection (OWOD) [16, 14, 39, 30, 35].318

In this case, the detection of unknown objects matters since it considers updating the detectors by319

collecting unknown classes and using them for retraining. Joseph et al. [16] first introduces the320

concept of OWOD and establishes the benchmark test. Many subsequent works have strictly followed321

this benchmark and proposed methods for OSOD. OW-DETR [14] introduces a transformer-based322

detector (i.e., DETR [3, 42]) for OWOD and improves the performance. Han et al. [15] propose323

OpenDet and pay attention to the fact that unknown classes are distributed in low-density regions324

in the latent space. They then perform contrastive learning to encourage intra-class compactness325

and inter-class separation of known classes, leading to performance gain. Similarly, Du et al. [6]326

synthesize virtual unseen samples from the decision boundaries of gaussian distributions for each327

known class. Wu et al. [35] propose a further challenging task to distinguish unknown instances as328

multiple unknown classes.329

5.3 Open Vocabulary Object Detection330

It is noteworthy to highlight the difference/similarity between OSOD-III (which is formulated in331

this paper) and open vocabulary object detection (OVD) [37, 13, 25]. OVD involves detecting332

novel objects by providing only their names as texts (i.e., class names) without explicit training data333

(i.e., image-text pairs). Thus, one could argue that it shares some similarities with OSOD-III, as it334

requires detectors to detect novel objects within an assumed super-class. However, they are clearly335

different. Firstly, OVD provides information, albeit limited to texts, about the objects to detect,336

whereas OSOD-III provides no such information. Secondly, in OVD, the detector’s backbone has the337

opportunity to learn about the novel objects during its pretraining phase, either explicitly (i.e., with338

direct image-text pairs) or implicitly (i.e., by aligning image and text feature spaces). In contrast,339

detectors for OSOD-III have no such opportunity to learn about the novel classes; what we assume340

for the super-class is not transferred to the detectors.341

6 Conclusion and Discussions342

In this paper, we have considered the problem of open-set object detection (OSOD). We categorize343

previous formulations of OSOD into two types: OSOD-I and OSOD-II. Firstly, we highlight the344

ill-posedness of OSOD-II, where it is difficult to determine what to detect and what not for unknown345

objects. This difficulty makes the evaluation infeasible; as a result, the previous studies employ346

insufficient metrics, A-OSE and WI, for evaluating methods’ performance, designed originally for347

OSOD-I and not measuring the accuracy of unknown object detection.348

We have then introduced a new scenario, OSOD-III. It considers the detection of unknown objects349

belonging to the same super-class as the known objects. This formulation is free from the above350

issues. We can determine what to detect or not in advance and then appropriately evaluate methods’351

performance using a standard AP metric for known and unknown detection. We have also designed352

benchmark tests tailored to the proposed scenario and evaluated the existing OSOD methods and a353

baseline method we designed in this paper on them. While they provide a few valuable insights, the354

main conclusion is that current methods attain only limited unknown detection performance. There is355

a lot of room for further improvement in OSOD-III.356

The analysis in Sec. 4.4 indicates that future research should address the prevalent issue of misclassi-357

fying known and unknown instances. While detecting BBs of unknown instances isn’t particularly358

challenging, the issue arises in classification: BBs predicted for unknown instances are often mis-359

labeled as known, and vice-versa. Moreover, simply applying NMS to both known and unknown360

predictions isn’t a comprehensive solution. The primary challenge appears to be in comparing361

their respective confidence scores. This discrepancy is likely because the scores aren’t consistently362

calibrated between the known and unknown categories.363
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