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A B S T R A C T

In the field of chemical engineering, understanding the dynamics and probability of drop coalescence is not just
an academic pursuit, but a critical requirement for advancing process design by applying energy only where
it is needed to build necessary interfacial structures, increasing efficiency towards Net Zero manufacture. This
research applies machine learning predictive models to unravel the sophisticated relationships embedded in
the experimental data on drop coalescence in a microfluidics device. Through the deployment of SHapley
Additive exPlanations values, critical features relevant to coalescence processes are consistently identified.
Comprehensive feature ablation tests further delineate the robustness and susceptibility of each model.
Furthermore, the incorporation of Local Interpretable Model-agnostic Explanations for local interpretability
offers an elucidative perspective, clarifying the intricate decision-making mechanisms inherent to each model’s
predictions. As a result, this research provides the relative importance of the features for the outcome of drop
interactions. It also underscores the pivotal role of model interpretability in reinforcing confidence in machine
learning predictions of complex physical phenomena that are central to chemical engineering applications.
. Introduction

Microfluidic technologies have caused a significant paradigm-shift
n the manipulation and analysis of fluids across a range of fields,
ncluding chemistry, biology, and material science [1]. One of the
ey operations in flow microfluidics is coalescence of dispersed phase
roplets. This operation has been widely studied using both passive
ethods, where it is facilitated by the device geometry, and active
ethods, involving, for instance, the use of electric fields [2–10].
icrofluidics serve as a unique platform for studying coalescence under
ell-controlled conditions related to various industrial applications,

uch as emulsion formulation, which is crucial in sectors like food
rocessing, cosmetics, pharmaceutics, transport, and separation pro-
esses [11–14]. While on industrial scale drop break up and coalescence
re often studied under conditions of turbulent flow on large volumes
f emulsion by tracking changes in drop size distribution and number
f drops in the unit of volume over time [15], microfluidic approach
nables monitoring the large amounts of individual pairs of drops with
ell-defined positions and velocities for each pair.
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Coalescence is also broadly used in microfluidic synthesis and anal-
ysis [16–18]. Despite considerable research in this domain [19,20],
reliable prediction of passive coalescence is still impeded [21,22] due
to the large number of parameters involved, such as device geometry,
chemical composition and viscosity of the continuous and dispersed
phase, interfacial tension, temperature, droplet approach velocities
and contact time, making it difficult to achieve desirable outcomes
without external interventions [23]. For instance, higher temperatures
can amplify the coalescence frequency, as detailed by Bera et al. [24].
Similarly, changes in fluid viscosity or flow rate can affect droplet sizes
and coalescence occurrence, requiring real-time adjustments to main-
tain desired outcomes [25]. Therefore, the development of methods
enabling prediction and control of drop coalescence in microfluidic
devices is of great importance for multiple applications.

Traditionally, the analysis of factors influencing droplet coalescence
relies on trial-and-error methods or analytical models [26,27]. Serving
as the antithesis to conventional methodologies, Machine Learning
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Main Notations

Notation Description
𝐋 Channel width at the entrance to chamber
𝐇 Channel height
𝐖 Chamber wall to wall width
𝐐 Flow rate
𝐕 Average velocity in the channel
𝐃 Equivalent drop diameters
𝐒 Measured areas of the drops
𝐱 𝐷

𝑊 1+ 𝐷
𝑊 2 Size of doublet as related to the chamber

size
𝐱
|

𝐷
𝑊 1− 𝐷

𝑊 2| Disparity in the sizes of droplets
𝐱𝑑𝑡 Time interval between the successive en-

trance of droplets into chamber
𝐱flow Total flow rate in the each of input into

chamber
𝐱Heff The effective height of the channel
𝐱scaled Scaled feature results after normalizing
𝐟 Function of original predictive model
𝐠 Function of interpretable surrogate model
𝜙0 Base value of all predictions
𝜙𝑖 SHapley Additive exPlanations (SHAP)

value for the 𝑖-th feature
𝐍 Total set of features
𝐁 Subset of 𝑁 that includes selected features
𝐙 The family of interpretable models
𝜋𝑥 Proximity measure
𝜉 Final explanation model in LIME
 Loss function in LIME
𝛺 Measure of complexity of the explanation

model

(ML) functions as a powerful tool for modeling intricate systems and
proffering predictions for dimensional data [28–30]. Owing to their
ability to assimilate information from data, machine learning algo-
rithms excel in capturing sophisticated relationships that traditional
methodologies are impotent to attain [31]. In the domain of chemical
engineering, ML algorithms are being increasingly utilized. They pro-
vide robust support for addressing complex and critical problems, such
as the capability to generate synthetic data to balance inherently imbal-
anced datasets which cannot be attained in physical experiments [32].
The gambit of applications spans not only quantum chemistry re-
search and molecular reaction kinetics, but also extends to process
optimization and control, which is imperative for enhancing efficiency
and safety of chemical processes [33–35]. Our hypothesis here is that
starting from initial conditions in a microfluidics device, ML algorithms
can furnish reliable predictions of coalescence and insights into the
conditions underlying this phenomenon; this can complement data and
observations obtained from physical experiments. .

The application of ML algorithms to coalescence, however, brings
forth challenges tied to model transparency. An example of these
challenges is provided by the use of deep neural networks (often
referred to as ‘‘black boxes’’ due to their opaque nature) which can yield
remarkably accurate predictions yet but no clarity on their underlying
decision-making mechanisms [36,37]. In critical domains like drop
coalescence, where a comprehensive understanding of the dynamics is
vital for both research and industrial applications, this opacity has sig-
nificantly negative implications. The ensuing gap in transparency and
interpretability can inhibit the wider adoption of these models, affect-
2

ing the trust they garner among practitioners [38]. Based on this, the
demand for more interpretable ML models, which do not compromise
on predictive efficiency, is on the rise across engineering disciplines. In
response to this overarching need, attention has been shifting towards
the domain of Explainable Artificial Intelligence (XAI) [39–41]. These
explainable models not only strengthen trust in the predictive outcomes
of ML models but also assist researchers in discerning the pivotal factors
influencing complex engineering phenomena.

In the realm of microfluidic applications, the relevance of XAI stands
out sharply. Intricate behaviors are often observed in microfluidic
experiments, such as the optimization of membraneless microfluidic
fuel cells, the fusion dynamics of coalescing droplets, shear-induced
phase transitions, and the nuanced mechanisms of droplet breakup at
T-junctions [42–45]. Given that each of these applications involves
a wide array of parameters and features, gaining a comprehensive
understanding of key influencing factors and learning how to adeptly
adjust operational parameters become increasingly indispensable. For
example, while the study by Seemann et al. [46] provides a comprehen-
sive understanding of how geometry and wetting properties influences
droplet generation in microfluidic channels, the application of XAI
could offer additional layers of insight. XAI could break down the com-
plex computational models into interpretable components, allowing
researchers to pinpoint how subtle changes in variables such as channel
roughness or surface wettability interact to affect droplet formation
rates. Through visualizations and interpretive algorithms, XAI can fa-
cilitate a more nuanced understanding of these relationships, thereby
complementing traditional research methods. As research intensifies in
microfluidic processes, the clarifications brought forth by explainable
models are instrumental in guiding improved experimental designs,
ensuring more dependable predictions leading to the development of
more reliable microfluidic applications.

In this work, we employ a two-pronged strategy that integrates
explainability into ML models to investigate the coalescence of aqueous
droplets in oil within microfluidic devices. The first phase involves the
design and construction of a suite of ML models, specifically Random
Forest, XGBoost, and Multilayer Perceptrons (MLPs), each fine-tuned
through hyperparameter optimization. These models are employed to
predict the coalescence behavior of droplets under varying experi-
mental conditions. The subsequent phase is dedicated to augmenting
explainability by scrutinizing the model’s predictive outcomes and asso-
ciated features. The goal is to offer a clear understanding of which spe-
cific attributes or conditions, such as channel geometry or flow rates,
most effectively contribute to the successful coalescence of aqueous
drops in oil that can optimize resource allocation in subsequent exper-
iments and minimize superfluous operations. This is achieved through
the deployment of widely-used post-hoc explainability methodologies,
such as SHAP and Local Interpretable Model-agnostic Explanations
(LIME) [47–49]. Additionally, feature ablation testing is utilized to
validate the influence and relevance of each feature on the droplet
coalescence phenomena.

Our contribution lies in the novel integration of explainability
within ML models specifically targeting the study of droplet coalescence
in microfluidic systems. By employing XAI techniques, this integration
enhances the trustworthiness and practical utility of our machine
learning models [50]. Hence, our work does more than just provide
accurate predictive models; it also offers actionable insights that are
poised to catalyze advances in both academic research and industrial
applications concerning droplet coalescence in microfluidic systems.

2. Experiments and dataset

In this section, we delve into the experimental procedures for
droplet coalescence conducted within microfluidic devices and examine
the distribution of the resulting dataset. Additionally, we provide a

clear overview of the data pre-processing techniques employed.
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Fig. 1. Microfluidic device used in experimental studies: 1 — cross-junctions for drop formation, 2 — additional oil inputs through side channels, 3 — coalescence chamber, 4 -
water inlets, 5 — main oil inlets, 6 — additional oil inlets, 7 — outlet.
2.1. Experimental procedure

Experimental studies of drop coalescence are carried out in mi-
crofluidic devices with rectangular channels made of PDMS using stan-
dard soft lithography [51]. The outline of the device is shown in
Fig. 1. The device has two symmetrical cross-junctions where drops
of dispersed phase, double distilled water from water still Aquatron
A 4000 D, are formed by hydrodynamic flow-focusing [52] using a
continuous phase of mineral oil (Sigma). After formation, the drops
flow along the straight channels towards the coalescence chamber.
There are side channels for an additional oil input enabling control
of the distance between drops and the total flow rate at the chamber
inlet. The drops meet within a coalescence chamber, which has a square
shape with two symmetrical inlets and two outlets at the vertices of the
square, as shown in the inset in Fig. 1.

The type of chamber described above has been shown to be bene-
ficial for studying coalescence between pairs of drops in microfluidic
device [8,29,32,53]. Three devices with some differences in sizes,
mostly in channel height, are used. The first one has channel width at
the entrance to chamber 𝐿 = 414 ± 4 μm, channel height 𝐻 = 226 ± 13
μm, and chamber wall-to-wall width 𝑊 = 1085 ± 4 μm. The second
and third devices have 𝐿 = 428 ± 23 μm, 𝐻 = 160 ± 5 μm, 𝑊 =
1073 ± 76 μm, and 𝐿 = 394 ± 1 μm, 𝐻 = 117 ± 3 μm, 𝑊 = 985 ± 2
μm respectively. The presented sizes are the averages from several sets
of experiments, each set comprising 100 measurements. The drop size is
always larger than the channel height, therefore drops have a pancake
shape enabling a sizeable contact area with the top/bottom wall. To
minimize wetting issues on drop formation and coalescence, the devices
are hydrophobised with Aquapel.

The liquids are supplied to 3 pairs of symmetrical inlets of the mi-
crofluidic device (4, 5 and 6 in Fig. 1) by syringe pumps Al-4000, World
Precision Instruments. In this study, the flow rate of the dispersed phase
is kept at 2 μL/min, that of the main flow of the continuous phase
is kept at 10 μL/min, whereas the flow rate for additional oil input
is varied between 1.5 and 8 μL/min. Considering that syringe pumps
provide an oscillatory flow [54,55], the pumps equipped by two plastic
syringes (5 mL, Fisher) are used for each pair of symmetrical inlets
to synchronize the drop production. Nevertheless, flow oscillations
as well as inevitable deviations in channel sizes and occasional drop
coalescence in the channels result in a certain distribution of drop sizes
3

advantageous for this study. In particular, the normalized drop diam-
eters are used in the machine learning models. The deviations in the
channel sizes inevitable in PDMS devices result also in a time difference
between the drops arrival to the chamber. This time difference will be
another feature of the models.

It is well known that most organic liquids, including mineral oil used
in this study, cause PDMS swelling, resulting in the change of channel
sizes. To minimize the effect of the swelling, the devices are primed
with mineral oil for several days before their use. As there are still
changes in the channel sizes due to oil exposure during the study, the
wall-to-wall chamber width is measured for each series of experiments,
and drop diameters from the series are normalized by this value. So the
drop sizes used in the model are the sizes relative to the chamber size.
Beside the width of the chamber, which is easily measurable, there are
also changes in the chamber height that affect the drop contact area
with the chamber. It is impossible to measure the height on the working
device but as will be shown below this is an important feature of drop
coalescence. Therefore, the effective height is introduced as one of the
features. This is calculated as 𝐻𝑒𝑓𝑓 = 𝑄∕(𝑉 × 𝐿), where 𝑄 is the flow
rate determined as sum of readings from the syringe pumps supplying
the liquids to device and 𝑉 is the average velocity in the channel.
Considering that the drop length in the channel in this study is in the
range of (1–1.5)L, we accept that the drop velocity in the channel near
the entrance to the chamber is given by 𝑉 to be a good approximation.
The velocity is calculated as an average from at least 10 drops (5 from
the each of input channels) with a standard deviation of no more than
10%.

Drop movement and coalescence are recorded using a high-speed
video camera (Photron SA-5) connected to an inverted microscope
(Nikon Eclipse Ti2-U) at 1000 frames per second and an exposure of
0.05 ms with a 1024 × 1024 pixel field of view. The lens (Nikon Plan
Fluor 10×) provides a spatial resolution of 2 μm per pixel. The images
are processed using ImageJ [56]. The equivalent drop diameters, 𝐷,
are calculated from the measured areas of the drops in the field of
observation, 𝑆. The drop velocities are calculated as the distance the
leading edge of the drop moves inside the channel to the entrance
to the chamber divided by the corresponding time. Considering the
contraction/expansion structure of the flow field in the chamber [32],
drops are first brought together, form a doublet, then rotate and can be
detached from each other when the angle between the line connecting
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Table 1
Distribution of instances of coalescence and non-coalescence among the training and
testing datasets.

Coalescence Non-coalescence Balance ratio (BR) Total

Total dataset 782 719 1.09 1501
Training dataset 625 575 1.09 1200
Testing dataset 157 144 1.09 301

the drop centers and the axis of output channels becomes smaller than
45◦. Drops can coalesce either in the compression or expansion stages.
In this study, we do not distinguish between these modes of coales-
cence, but the vast majority of coalescence occurs in the expansion
stage, often at the instant when drops are about to detach. This is
in line with previous observations of drop coalescence in extensional
flow [8,53].

2.2. Dataset

This study investigates an experimental tabular dataset comprising
1501 samples, inclusive of five features and one label, 𝑦:

{𝑥 𝐷
𝑊 1+ 𝐷

𝑊 2, 𝑥| 𝐷
𝑊 1− 𝐷

𝑊 2|, 𝑥𝑑𝑡, 𝑥flow, 𝑥Heff}

he probability of coalescence depends on many factors, such as rhe-
logical properties of continuous and dispersed phase, their density,
nterfacial tension, shear stress, flow conditions etc [15]. Here, the
onditions of laminar extensional flow with fixed densities, viscosities
nd interfacial tension are used. Effect of the last three parameters is a
ubject of an ongoing study, while the focus of the present study is the
ffect of stresses applied to drops due to position of drops encounter,
low intensity and drop confinement. These experimental factors are
epresented by the following features:

• 𝑥 𝐷
𝑊 1+ 𝐷

𝑊 2 refers to the sum of two droplet diameters (D1 and D2)
normalized by the width of the coalescence chamber between two
walls (W). This feature shows the size of doublet as related to the
chamber size.

• 𝑥
|

𝐷
𝑊 1− 𝐷

𝑊 2| is the absolute value of the difference between two
normalized diameters. This is an indicator of the disparity in the
sizes of droplets.

• 𝑥𝑑𝑡 represents a temporal element in the experiment, i.e. the
time interval between the successive entrance of droplets into
chamber.

• 𝑥flow refers to the total flow rate in the each of input into chamber.
• 𝑥Heff is the effective height of the channel explained in experi-

mental section.

urthermore, the label 𝑦 is classified into two categories: ‘‘Coales-
ence’’ and ‘‘Non_coalescence’’. The experimental dataset in this study
s a balanced dataset, comprising 782 instances of ‘‘Coalescence’’ and
719 instances of ‘‘Non-Coalescence’’. For robust evaluation of the ML
models, we partition the original dataset into two subsets: a training
dataset and a testing dataset, which are stratified by approximately
1.09 balance ratio (i.e., the ratio between ‘‘Coalescence’’ and ‘‘Non-
Coalescence’’ samples in the dataset) and the details are shown in
Table 1. This partitioning is performed using a shuffle strategy, metic-
ulously maintaining the original label distribution ratio, thus ensuring
the same stratification. Furthermore, it is unnecessary to create a
separate validation dataset because 𝑘-fold cross-validation is utilized in
he training process. This strategy can assess the generalization ability
f predictive models and prevent over-fitting during training [57,58].

The distribution of all features for Coalescence and Non-coalescence
s displayed in Fig. 2. Figs. 2(a)–2(e) illustrate the distribution of
he five features within the dataset, specifically categorized under the
abels ‘‘Coalescence’’ and ‘‘Non-Coalescence’’. These distributions are
valuated using the kernal density estimation method [59–61], with
4

the solid lines in each plot representing the estimated distribution
trends accordingly. Fig. 2(f) demonstrates the distribution ratio of
instances for this binary classification task. It attests to a near-equal
distribution of instances, with ‘‘Coalescence’’ constituting 52.1% and
‘‘Non-Coalescence’’ making up 47.9% of the data. This near-parity
distribution proves that we have a well-balanced dataset, which ensures
a fair representation of both classes, thereby eschewing biases and
facilitating an objective evaluation of the proposed machine learning
models.

2.3. Data pre-processing

The raw tabular data, pertaining to the coalescence phenomena
of aqueous droplets in a mineral oil, need pre-processing to ensure
its amenability for the ensuing analytical phase. A key pre-processing
step involves the execution of min–max normalisation thereby rescaling
data to a predefined range of [0, 1].

𝑥scaled =
𝑥 − 𝑥min

𝑥max − 𝑥min
, 𝑥 ∈ {𝑥 𝐷

𝑊 1+ 𝐷
𝑊 2, 𝑥| 𝐷

𝑊 1− 𝐷
𝑊 2|, 𝑥𝑑𝑡, 𝑥flow, 𝑥Heff} (1)

where 𝑥max and 𝑥min are the maximum and minimum value of the fea-
ture 𝑥, respectively, and 𝑥scaled is the scaled results after normalization.
This normalization technique functions not merely to mitigate potential
discrepancies in the scale across different features, but rather it can
preserve the relative relationships amongst individual sample points in
the feature space [62].

3. Methodology

In this section, the construction and evaluation of machine learning
models involved in the first phase, as well as methods falling under
the domain of XAI, are elaborated in details. The contents encompass
two kinds of tree-based models, Random Forest and XGBoost, a type of
Deep Neural Networks (DNNs), Multilayer Perceptrons (MLPs), hyper-
parameter space search methods, and interpretability techniques such
as SHAP and LIME.

3.1. Predictive models

3.1.1. Random forest and xgboost
Random Forest and XGBoost are both ensemble machine learning

algorithms that utilize decision trees as their fundamental building
blocks, albeit with different methods [63]. Random Forest creates an
series of decision trees, each constructed independently through the
utilization of bootstrapped samples from the dataset in a concurrent
process [64]. Conversely, XGBoost constructs trees in a sequential
manner, whereby each successive tree seeks to ameliorate the errors
perpetrated by its predecessor [65]. Consequently, XGBoost frequently
attains better performance; however, it is more computationally de-
manding and necessitates meticulous tuning of hyperparameters in
comparison to random forest. In contrast, random forest is typically
more flexible in training, exhibits robustness, and often delivers sat-
isfactory performance with default configurations [66]. Moreover, due
to these two tree-based methods always showing a powerful ability to
process tabular data in small or medium-sized datasets, they are applied
in this research with the expectation that they can demonstrate better
performance than neural networks [67]. The intuitive representation of
these two models is shown in Fig. 3.

3.1.2. Deep neural networks and multilayer perceptron
Deep Neural Networks (DNNs), inclusive of the widely utilized

Multilayer Perceptron (MLPs), are marked by their layered structure
and copious count of artificial neurons. The depth of these networks,
coupled with the nonlinear activation functions employed within their
hidden layers, equips them with the capability to discern and repli-
cate highly complex patterns within data, thus demonstrating their
proficiency in modeling nonlinear relationships [68]. However, their
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Fig. 2. Feature distribution comparison between Coalescence and Non-coalescence; see text for the definition of the features.
large parameter space renders them computationally demanding [69].
Nevertheless, their capacity to adeptly handle various types of data
has fostered their wide application across diverse tasks, such as ma-
chine translation, sentiment analysis, image and speech recognition,
anomaly detection, text classification, as well as various regression and
classification problems [70,71].

3.2. Grid search method

Grid search is a technique for exploring a predefined set of hy-
perparameters to optimize a machine learning algorithm [72]. It can
5

carefully traverse multiple combinations of hyperparameter configura-
tions, performing cross-validation to determine the configuration that
yields the best performance. In this study, the Grid Search method is
employed to optimize both tree-based models and MLPs, utilizing 5-fold
cross-validation for model training.

3.3. SHapley Additive exPlanations (SHAP)

SHAP values serve to interpret the influence of features on a specific
prediction by computing the average marginal contribution of each
feature across all conceivable permutations. This method is based on
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Fig. 3. Visualization of tree-based predictive models.
cooperative game theory and is utilized for interpreting the outcomes
of machine learning models [73,74]. In the context of SHAP, features
are treated as ‘‘players’’ that ‘‘contribute’’ to the prediction. The accu-
mulated contribution of all features constitutes the ultimate prediction
results of the model [75]. The outcome of the original predictive model,
defined as a function of the input vector 𝑥, is given by

𝑓 (𝑥) = 𝑔(𝑥′) = 𝜙0 +
𝑀
∑

𝑖=1
𝜙𝑖𝑥

′
𝑖 (2)

which can be a high-dimensional feature vector and 𝑔(𝑥′) represents an
interpretable surrogate model that approximates 𝑓 (𝑥) but is expressed
in terms of 𝑥′, a simplified or lower-dimensional version of 𝑥. The trans-
formation between 𝑥 and 𝑥′ is often achieved through feature selection
or dimensionality-reduction techniques, making 𝑔 more straightforward
to interpret than 𝑓 . The parameter 𝜙0 acts as a base value from which
the contributions of individual features are added or subtracted, and 𝜙𝑖
is the SHAP value for the 𝑖th feature:

𝜙𝑖 =
∑

𝐵⊆𝑁⧵{𝑖}

|𝐵|!(|𝑁| − |𝐵| − 1)!
|𝑁|!

[𝑓 (𝐵 ∪ {𝑖}) − 𝑓 (𝐵)] (3)

where 𝜙𝑖 is the Shapley value, representing the contribution of feature
𝑖 to the prediction; 𝑁 is the total set of features, which corresponds
to all the elements in the feature vector 𝑥; 𝐵 is a subset of 𝑁 that
includes selected features from the original feature vector 𝑥. The subset
𝐵 does not contain the elements of feature represented by 𝑖; 𝑓 (𝐵) is
the predictive function with features in 𝐵. The term |𝐵|!(|𝑁|−|𝐵|−1)!

|𝑁|! is
the weighting factor, representing the number of permutations that
include feature 𝑖. For any given sample, the feature possessing the
larger absolute Shapley value wields a more substantial influence on
the prediction result for that sample. The magnitude and sign of these
Shapley values give insight into how significantly, and in what direc-
tion each feature influences a given prediction [76]. Specifically, a
positive (negative) Shapley value suggests that the corresponding fea-
ture contributes positively (negatively) towards the model’s predicted
value [77,78].

In terms of global interpretability, SHAP provides an aggregated
view across all samples, allowing researchers to discern the overall
importance of each feature in the model. By analyzing the distribution
of SHAP values for a particular feature, people can visualize not only
the magnitude of its importance but also the direction of its effect on
model predictions. Features with higher absolute SHAP values are typ-
ically more influential, and their consistent positive or negative values
indicate a systematic increase or decrease in the model’s prediction,
6

respectively. Consequently, SHAP’s global interpretability improves the
identification of potential feature interactions and nonlinear dependen-
cies [79]. The details of black-box model’s and explainable model’s
interactions are shown in Fig. 4.

3.4. Local Interpretable Model-agnostic Explanations (LIME)

LIME is another explanatory method designed to clarify the pre-
dictions provided by any classifier or regressor in an understandable
and faithful way [80]. It achieves this objective by approximating the
model with a local surrogate model that is inherently interpretable, thus
improving comprehension of the model’s decisions in the vicinity of the
instance under consideration [81]. It is worth noting that although both
SHAP and LIME are designed to enhance the interpretability of machine
learning models, they employ distinct approaches to achieve this objec-
tive. SHAP provides a global interpretability method with a theoretical
foundation grounded in cooperative game theory. In contrast, LIME
focuses on local interpretability by approximating the model’s behav-
ior near each individual prediction, typically by constructing a local
linear surrogate model to explain each prediction. The mathematical
formulation of LIME is provided by Eq. (4) [80]:

𝜉(𝑥) = argmin
𝑧∈𝑍

(𝑓, 𝑧, 𝜋𝑥) +𝛺(𝑧) (4)

where 𝑍 generally refers to the family of models that are considered
‘‘interpretable’’ and can act as local surrogate models to approximate
the behavior of the more complex model 𝑓 . In the specific context
of this study, which focuses on drop coalescence classification tasks,
‘LimeTabularExplainer’ is utilized. Consequently, 𝑍 is restricted to
linear models. Specifically, each 𝑧 ∈ 𝑍 is a logistic regression model
that is trained to provide a faithful local approximation of 𝑓 ’s decision-
making process in a localized region surrounding the data instance
𝑥; 𝜋𝑥 is the proximity measure between the instance 𝑥 and the data
instances used to learn the explanation model. In this implementation,
the measure metric is the Euclidean distance; 𝜉(𝑥) represents the ex-
planation model for the instance 𝑥. Essentially, 𝜉(𝑥) is the optimized
local linear surrogate model 𝑧 that best approximates the original model
𝑓 within a predefined local neighborhood around 𝑥, according to the
minimization of the loss function (𝑓, 𝑧, 𝜋𝑥) and the complexity term
𝛺(𝑧); (𝑓, 𝑧, 𝜋𝑥) is a measure of how unfaithfully 𝑧 approximates 𝑓 in
the vicinity of instance 𝑥, defined by 𝜋𝑥; 𝛺(𝑧) is a measure of complexity
of the explanation model 𝑧, which aims to keep the explanation as
simple as possible.
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Fig. 4. Visual representation of the SHapley Additive exPlanations (SHAP).
Fig. 5. Visual representation of ocal Interpretable Model-agnostic Explanations (LIME).
LIME learns the explanation model 𝑧 by minimizing the loss function
(𝑓, 𝑧, 𝜋𝑥) and the complexity measure 𝛺(𝑧), effectively ensuring that
𝑧 is locally faithful to 𝑓 and is interpretable [80]. The Fig. 5 intuitively
illustrates schematic representation of LIME’s methodology, i.e. exploit-
ing local linearity within a complex, globally nonlinear dataset. Despite
the global distribution of data points depicts a nonlinear relationship,
through zooming in a specific subset or a selected local region of the
dataset, a simplified linear relationship can be observed. The transition
from nonlinear complexity to linear simplicity underlines the versatility
of LIME in deciphering the decision boundaries set by complex models.
By focusing on the local view, rather than the global view, LIME can
generate reasonable explanations that align with the simpler linear
relationship, which is more comprehensible to humans and can keep
local fidelity.

3.5. Performance metrics

The confusion matrix serves as a visualization tool for evaluating
the performance of machine learning models which are mentioned
7

in Section 3.1. A confusion matrix, in its simplest form, is a two-
dimensional matrix that visualizes the performance of a supervised
learning algorithm. For binary classification task, it has four entries:

• True Positives (TP): Occurrences in which both the actual out-
come and the model’s prediction are positive.

• True Negatives (TN): Occurrences in which both the actual out-
come and the model’s prediction are negative.

• False Positives (FP): Occurrences where the model erroneously
classifies a negative instance as positive.

• False Negatives (FN): Occurrences where the model erroneously
classifies a positive instance as negative.

These entries can be used to calculate various performance metrics [82].
The primary metric, accuracy, gauges the proportion of correct predic-
tions. However, precision, recall, and the F1 score are also crucial for
a more nuanced understanding of the model’s performance. Precision
focuses on the correctness of positive predictions, while recall assesses
how well the model captures all actual positive cases. The F1 score
harmonizes these two metrics, offering a balance between them. Four
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Fig. 6. Validation heatmaps for the tuning hyperparameters of tree-based predictive models. The selected hyperparameters are highlighted by the red frames.
performance metrics are defined as Eqs. (5)–(8):

Accuracy = TP + TN
TP + TN + FP + FN

(5)

Precision = TP
TP + FP

(6)

Recall = TP
TP + FN

(7)

F1-score = 2 ⋅ Precision × Recall
Precision + Recall (8)

4. Results and analysis

In this section, we implement the three models mentioned in Sec-
tion 3 and train them on the pre-processed dataset to calculate the
accuracy scores for both validation and testing. Subsequently, we ap-
ply XAI techniques to conduct ablation tests aiming to comparatively
analyze which features exert a substantial impact on the coalescence of
aqueous droplets in oil.

4.1. Implementation details

In the modeling phase, the raw microfluidic droplet coalescence
dataset is pre-processed following the pipelines delineated in Sec-
tion 2.3. Due to this pre-processing, the dataset is divided into two
balanced subsets with same balance ratio: a training set and a test
set. Three distinct machine learning algorithms, Random Forest, XG-
Boost, and a Multi-Layer Perceptron (MLP) are then optimized through
Grid Search method. This method is strategically employed to iden-
tify an optimal set of hyperparameters in predefined hyperparameter
space, ensuring the most favorable performance on the extant dataset.
Throughout the whole training process, a five-fold cross validation
technique is consistently applied. Both the F1-Score and accuracy are
adopted as the principal performance metrics. After a series of calcu-
lated iterations adjusting the hyperparameters, the optimal combina-
tion that yields the peak validation accuracy is selected for the final
model’s architecture.

The key hyperparameters of random forest and XGBoost are
n_estimators and max_depth. In this study, we investigate the
n_estimators parameter in the range of 10 to 151 and the max_depth
parameter in the range of 3 to 50 for the random forest model. For
the XGBoost model, due to its mechanism of calculating the next layer
through weights, we set the range for n_estimators as 10 to 160 and
for max_depth as 2 to 60. Finally, we set the optimal parameters
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for both the random forest and XGBoost models as [n_estimators =
145,max_depth = 7] and [n_estimators = 15,max_depth = 2], respec-
tively. As illustrated in Fig. 6, the outcomes of hyperparameter tuning
for both Random Forest and XGBoost algorithms are presented.

In the presented visualizations, the deep blue regions signify areas
where the model achieves higher validation accuracy. Comparing the
visualization heatmaps of the two models, it is evident that the Random
Forest model exhibits a more extensive deep blue region. This promi-
nence of deeper shades in the Random Forest heatmap underscores its
superior adaptability on the droplet coalescence dataset in comparison
to XGBoost. The broader coverage of this high-accuracy zone suggests
that Random Forest might be inherently more suited for the intricacies
and nuances of this particular dataset because its bagging strategy
can result in the model being more resilient to over-fitting than using
boosting strategy.

In our quest to optimize the MLPs, we recognize the necessity of
fine-tuning an extensive array of hyperparameters. This requirement
arises due to the inherent complexity of the MLPs model, as compared
to more traditional machine learning counterparts. Consequently, we
explore a diverse set of hyperparameters to achieve optimal perfor-
mance in Table 2. The hyperparameters that are ultimately selected for
the final implementation are denoted in bold within Table 2.

4.2. Predictive results

To assess the predictive performance of the considered machine
learning models on coalescence events after training with 5-fold cross-
validation, we present the predictive results and their confusion ma-
trices on testing dataset. The predictive results for all three models
are shown in Table 3. From the highlighted figures in Table 3, it is
evident that the Multilayer Perceptron (MLP) consistently outperforms
the tree-based models in metrics like precision, accuracy, and F1-score
on the testing dataset. This superior performance underscores MLP’s
effectiveness for the droplet coalescence dataset. It indicates that, for
this specific dataset, the MLP is more adept at generalizing its learnings
from the training data to unseen samples. The intricacies of the data
might be captured better by the MLP model structure than by the
tree-based counterparts. Within the context of this study, Coalescence
is designated as the positive class (1) whilst Non-Coalescence serves
as the negative class (0). Accordingly, Fig. 7 presents the respective
metrics from the confusion matrix, offering an intuitive insight into the
predictive capabilities of the models.

Upon evaluating the classification between coalescence and non-
coalescence events using three models, distinct performance metrics
are observed. The Random Forest model displayed in Fig. 7(a) yields
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Fig. 7. Confusion metrics of three predictive models.
Table 2
Hyperparameters tuning for MLP.

Hyperparameter Options

Activation functions relu, tanh, sigmoid, linear
Optimizers adam, sgd, rmsprop
Learning rates 0.001, 0.01, 0.1
L2 rates 0.0, 0.001, 0.01, 0.1
Dropout rates 0.0, 0.1, 0.2, 0.3
Epochs 10, 50, 100, 150, 200,

250, 300, 400, 450, 500, 800,
1000, 1500, 2000, 2500, 3000
Table 3
Model performance metrics for optimal hyperparameters on testing dataset.

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Random Forest 75.64 75.16 75.40 74.42
XGBoost 72.78 73.25 73.02 71.76
MLP 90.27 64.97 75.56 78.07

a recall of 75% and a precision of 76%, reflecting its capability to
identify coalescence events with a balanced accuracy, as further ev-
idenced by its F1 score. The XGBoost model presented in Fig. 7(b)
exhibits a recall of 73% with a precision of 73%, indicating a consistent
balance in its predictions. In contrast, in Fig. 7(c), the MLP model
has the highest precision among the three models, yet exhibits lowest
recall, indicating a model that is highly accurate but not exhaustive
in capturing all coalescence events. Elaborating further, the model’s
precision is calculated as ‘ 𝑇𝑃

𝑇𝑃+𝐹𝑃 = 102
102+11 = 90%’. This high precision

suggests that the model is reliable in its positive classifications, ideal
for applications where false positives are costly. On the other hand,
its recall is 𝑇𝑃

𝑇𝑃+𝐹𝑁 = 102
102+55 = 65%. This could be a concern in

scenarios where missing a true event is risky. Additionally, the model’s
specificity, calculated as 𝑇𝑁

𝑇𝑁+𝐹𝑃 = 133
133+11 = 92%, reveals that it is

also proficient in correctly identifying non-coalescence events, making
it versatile in its predictions.

4.3. Selection criteria for interpretability tools

In this project, it is important to carefully consider the function of
explainable AI technologies, focusing on their suitability for different
types of analytical tasks. To this end, the distinction between SHAP and
LIME in terms of their applicability to global versus local importance
analysis becomes particularly relevant.

Regarding the strengths of SHAP, it is grounded in cooperative game
theory, which is adept at allocating ‘credit’ to features in a model’s
prediction. By enabling the aggregation of SHAP values, it provides
a clear global view of feature impact across a dataset. Additionally,
its consideration of feature interactions allows for a comprehensive
understanding of how combined features affect model predictions. This
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approach aligns with the needs for consistent and transparent global
interpretation, making SHAP an ideal tool for global feature importance
analysis [83,84].

Conversely, LIME is tailored for local importance analysis. It ex-
plains individual model predictions by creating a local surrogate model
around a specific instance. By using perturbations and weighting them
based on proximity to the original data point, LIME excels in pro-
viding flexible and effective explanations in specific regions of the
feature space. This makes it particularly suitable for analyzing why
a model made a particular decision for a given instance, focusing on
the rationale behind individual predictions rather than overall model
behavior [85,86].

Therefore, based on the aforementioned analysis, we use SHAP for
the analysis of Global Interpretability and favor LIME for Local Inter-
pretability in our subsequent tasks. This strategic decision leverages
the distinct advantages of each tool: SHAP’s proficiency in aggregating
feature contributions for an overarching dataset perspective and LIME’s
capability in creating detailed, localized models. This approach guar-
antees a thorough and equitable strategy for interpretability in our AI
applications within chemical engineering, adeptly addressing both the
overarching and detailed aspects of global and local analysis.

4.4. Global interpretability

The SHAP framework is initialized in our computational environ-
ment to facilitate the subsequent analysis. For each pre-trained model,
a corresponding SHAP explainer is instantiated. The TreeExplainer is
employed for tree-based models, while the KernelExplainer is used
for the MLP model [87]. These explainers are adept at decomposing
model predictions into individual feature contributions. By deploying
the respective SHAP explainers tailored to each pre-trained predictive
model, the SHAP values for our entire testing dataset are computed.
This computational step involves iteratively evaluating the change in
the model’s output attributable to the inclusion of each feature, relative
to a baseline output. The result of this calculation is a comprehensive
array of SHAP values that provide a granular view of how each feature
shifts the model’s prediction away from a base value, thus display-
ing the individual feature’s predictive influence. These values are not
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Fig. 8. SHAP plot for tree-based models.
only indicative of the feature’s importance but also its directional
impact, i.e., whether it increases or decreases the likelihood of droplet
coalescence.

In assessing global feature importance using SHAP values, each
feature’s contribution to model predictions is quantified through the
aggregation of every single SHAP values. By considering the absolute
values of these SHAP values and calculating their mean across the
dataset, one can robustly assess the overall impact of each feature, ir-
respective of whether it increases or decreases the model’s output [88].
The features are then ranked based on these mean absolute SHAP
values, with higher values indicating greater significance in affecting
the model’s predictions.

The SHAP summary plots in Fig. 8 provide global interpretability
for both the tree-based models and the MLP, showing the influence
of features on predictions. These images show the list of important
features ranked from most significant to least significant (top to bot-
tom). The abscissa, denoted as the 𝑋-axis, represents the impact on the
label 1 (coalescence), where positive SHAP values connote a beneficial
impact, whereas negative values signify a detrimental effect. The color
bar indicates the quantity level of the original feature value, with red
indicating high feature values, blue dots marking low feature values,
and purple dots representing medium feature values. In these sub-
figures, each datum point within the plot corresponds to a specific
sample from the test dataset, which is utilized for explanatory purposes.

In Figs. 8(a) and 8(b), the feature importance rank are analyzed as
‘Heff’, ‘ 𝐷𝑊 1 + 𝐷

𝑊 2’, ‘flow’, ‘| 𝐷
𝑊 1 − 𝐷

𝑊 2|’, and ‘dt’. Furthermore, higher
values of ‘ 𝐷𝑊 1+ 𝐷

𝑊 2’ correspond to positive SHAP values for both mod-
els, indicating that as this ratio increases, the model’s prediction is more
likely to lean towards the positive class (Coalescence). Conversely, for
the remaining features, lower values generally lead to positive SHAP
values, suggesting an inverse relationship with positive predictions. A
pellucid observation is the clustering of SHAP values for ‘| 𝐷

𝑊 1 − 𝐷
𝑊 2|’

and ‘dt’ around the origin (zero value on the abscissa). This indicates
that these features might have a neutral or varied impact on the
predictions, reflecting their potential limited discriminative power in
these models. The consistency in patterns across both the Random
Forest and XGBoost models can be attributed to their shared tree-based
structure. Both models employ a methodology of recursively splitting
data based on feature thresholds, possibly leading to similar patterns
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in data. The ensemble nature of both models, which derive predictions
from multiple decision trees, could also contribute to this similarity.

When compared with tree-based models, both the MLP and tree-
based models unanimously identify ‘Heff’ as the most influential fea-
ture, indicating its universal significance across different modeling
techniques. However, some notable discrepancies emerge in the rank-
ing of other features and their impact partition pattern. In the MLP
model, ‘flow’ is elevated to the second position, displacing 𝐷

𝑊 1 +
𝐷
𝑊 2 which holds this rank in the tree-based models. This reshuffling
highlights differing interpretations of feature importance between MLP
and tree-based models. This variation in ranking could be due to the
differing algorithmic mechanics: tree-based models use hierarchical
partitioning of the feature space, while MLPs implement continuous,
nonlinear transformations. As a result, features like ‘flow’ can gain
prominence within the MLP’s framework. Further distinguishing the
MLP model’s SHAP outcomes is its clear partition between features with
positive and negative impacts. This is in contrast to tree-based models
where such delineation is often less distinct. This sharp separation
offers a more discerning view of feature contributions, which could be
particularly useful when a detailed understanding of different feature
impacts is required.

Moreover, there is a general agreement between the MLP and tree-
based models on the directional influence of features on the output.
Specifically, both types of machine learning models suggest that an
increase in the value of ‘ 𝐷𝑊 1 + 𝐷

𝑊 2’ is positively correlated with the
outcome. On the other hand, for most other features, higher values
are linked to a negative impact on the outcome. This consistency in
feature influence across different modeling approaches strongly support
the idea that these patterns are inherently stable and reliable in the
data. Nonetheless, the nuanced disparities also demonstrate unique
internal workings and sensitivities inherent to different model archi-
tectures. Simultaneously, MLP delineates the influence of SHAP values
more distinctly compared to the other two models. This observation
indicates that the MLPs model is more proficient in segregating and
distinguishing the contributions of individual features.

4.5. Feature ablation testing

Feature ablation is used to determine the impact of specific features
on ML model’s performance. By systematically removing or altering
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Table 4
Feature ablation testing (evaluated by accuracy).

Model Baseline w/o Heff w/o 𝐷
𝑊
1 + 𝐷

𝑊
2 w/o flow w/o |

𝐷
𝑊
1 − 𝐷

𝑊
2| w/o dt

Random Forest 74.42% 72.09% 70.10% 74.09% 72.09% 70.10%
XGBoost 71.76% 66.11% 72.43% 72.09% 72.43% 74.09%
MLP 78.07% 69.77% 75.08% 76.08% 76.74% 75.75%
S

a feature and then evaluating the model’s performance, we can gain
insights into the true significance of that feature for the model’s pre-
dictions. It essentially provides a way to validate feature importances
derived from XAI techniques. The feature ablation testing results are
shown in Table 4.

For the Random Forest model, the SHAP analysis placed ‘Heff’ as the
primary influential feature. However, the results from the feature abla-
tion suggest a modest performance drop when this feature is removed.
This difference between the expected and observed impact of ‘Heff’ im-
plies the inherent robustness of Random Forests. The ensemble nature
of Random Forests, consisting of a multitude of decision trees, might
allow it to adapt to the absence of even a critical feature. Each individ-
ual tree captures different facets of the dataset, and collectively, they
may maintain performance levels even when a significant feature is
missing. This resilience may cause a divergence between the perceived
importance from techniques like SHAP and the empirical results from
feature ablation. Nevertheless, it is notable that removing ‘dt’ leads to a
more considerable performance decrease, from 74.42% to 70.10%. This
discrepancy between the SHAP analysis and the feature ablation results
suggests that ‘dt’ has a more intricate role than previously assumed.

In contrast, the XGBoost model exhibits a unique trend compared
to the other models. While the removal of most features enhances its
performance relative to the baseline, ‘Heff’ stands as a clear exception.
The omission of ‘Heff’ incurs a significant drop in performance, high-
lighting its importance, which is consistent with the SHAP rankings.
The improved performance upon the removal of ‘ 𝐷𝑊 1+ 𝐷

𝑊 2’ and ‘flow’,
despite their indicated significance by SHAP, implies the possibility that
these features, in the presence of other variables, introduce complexity,
or ambiguity, which the XGBoost model finds hard to navigate. In
simpler terms, the model might achieve clearer and more accurate
decision boundaries when these features are absent. Even more in-
triguing is the noticeable enhancement in performance upon excluding
‘dt’. This could suggest that ‘dt’, within the context of the XGBoost
model, may be contributing a level of noise, or might be entangled with
other features in a manner that hampers the model’s predictive clarity.
Moreover, according to Table 4 and Fig. 8(b), it is evident that XGBoost,
although structurally similar to Random Forest as a tree-based model,
reacts more sensitively to the omission of vital features. This distinction
could be attributed to the boosting mechanism of XGBoost, which
sequentially constructs trees to correct the errors of the preceding
outputs. Consequently, each tree is more reliant on crucial features to
correct the previous errors and enhance the model’s predictive capacity.

Upon examining the MLP’s results, one notes a distinct pattern that
diverges from the tree-based models. First, the removal of ‘Heff leads
to a significant drop in accuracy, which stands in alignment with the
SHAP results, denoting its importance. Nevertheless, when evaluating
the performance implications of ‘ 𝐷𝑊 1 + 𝐷

𝑊 2’ and ‘flow’, it is observed
that despite their altered rankings in SHAP importance, the exclusion
of either feature from the MLP model causes merely a moderate impact
on performance. This suggests that, within the MLP structure, these
features may exhibit an interconnected influence, possibly sharing
redundant information or compensating for one another when absent
according to all three models’ results. Lastly, the exclusion of ‘dt’
also presents an abnormal scenario. Although SHAP results suggest its
relative insignificance, the model’s accuracy actually declines when this
feature is neglected. This counters the expectation based on the SHAP
analysis, suggesting that ‘dt’ has a hidden or nonlinear contribution
that is not fully captured by the importance ranking. This finding can
also be proved by random forest’s results and indicates the complex
interplay and hidden dependencies that might exist between ‘dt’ and
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other features within the densely connected MLPs framework.
4.6. Local interpretability

To gain a more nuanced understanding of our models’ decision-
making processes for specific instances, we employ LIME (Local In-
terpretable Model-agnostic Explanations), an approach which provides
local model-agnostic explanations. LIME functions by generating a
perturbed dataset around a chosen instance and learning a locally
interpretable model from this new dataset. Specifically, LIME initiates
its process by randomly sampling new data points in the vicinity of
the instance under examination, introducing small variations to the
original feature values. This sampling generates a localized region
around the instance, capturing the behavior of the complex model in
this constrained space.

Subsequently, LIME assigns weights to these newly generated sam-
ples based on their proximity to the original instance. Closer samples
are given higher weights, indicating their greater relevance in approxi-
mating the local decision boundary. This weighting mechanism ensures
that the explanations focus predominantly on the area immediately
surrounding the instance of interest. The next critical step involves
training a simple, interpretable model – typically, a linear model –
on this weighted, perturbed dataset. The simplicity of this surrogate
model is in stark contrast to the often opaque and complex nature of
the original model (such as MLPs). The linear model attempts to mimic
the behavior of the original model but only within this local, weighted
context. It is crucial that the interpretability comes from the fact that
this model is a local approximation and is not intended to capture the
global dynamics of the original model [89].

The rationale for using LIME to understand local interpretability is
that while the machine learning models may exhibit complex, non-
linear behaviors globally in our drop coalescence dataset, they can
exhibit approximately linear behaviors in the immediate vicinity of
specific instances. This local linearity allows LIME to provide clear,
interpretable insights into some specific predictions results.

Upon reviewing the LIME analyses for the two instances labeled
’Non-Coalescence’ and ‘Coalescence’, several observations can be dis-
cussed in Fig. 9. Importantly, it is worth noting that the probabilities for
‘Coalescence’ (C) and ’Non-Coalescence’ (NC) are generated using the
LIME algorithm, rather than being directly an output from the original
machine learning models, such as Random Forest, XGBoost, or MLP.
For each specific instance under study, LIME creates a set of locally
perturbed samples around the instance and obtains predictions from the
original complex model for these samples. Subsequently, a weighted
linear model is fitted to this localized set of samples. The weights
are determined by how close each perturbed sample is to the original
instance. This simpler, interpretable model is then used to estimate the
probabilities for ‘C’ and ‘NC’, offering a localized explanation for the
predictive decisions made by the original, more complex models.

For the ’Non-Coalescence’ instance, all three models – Random
Forest, XGBoost, and MLP – produce predictions that align well with the
true label, yielding probabilities of 0.71, 0.62, and 0.62, respectively.
Although there are slight differences in how each model arrives at its
prediction, there is a consistent emphasis on the features ‘Heff’, ‘ 𝐷𝑊 1 +
𝐷
𝑊 2’, and ‘flow’ across all models. In drawing parallels with previous
HAP analyses, it is noteworthy that the features ‘Heff’, ‘ 𝐷𝑊 1+ 𝐷

𝑊 2’, and
‘flow’ are similarly emphasized as significant contributors to prediction
outcomes. This recurrent emphasis across different analytic methods
substantiates the robustness of these features in the decision-making
process. Moreover, the feature ablation tests conducted earlier reveal
that when these features are individually removed from the model,
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Fig. 9. LIME Plot for two instances. NC means the actual label for instance is Non-Coalescence, and C means the actual label for instance is Coalescence.
a marked degradation in prediction accuracy is observed. This aligns
seamlessly with the feature importance indicated by both LIME and
SHAP analyses.

The consistency in feature importance suggests a stable and strong
relationship between these features and the predicted outcomes, and
12
this matches the findings from the previous SHAP analysis. For the ‘Co-
alescence’ instance, the models again provide predictions that closely
match the true label, with probabilities of 0.71, 0.70, and 0.78. Again,
the features ‘Heff’, ‘ 𝐷𝑊 1 + 𝐷

𝑊 2’, and ‘flow’ are highlighted as key
determinants in the decision-making process across all models. Another
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Fig. 10. Local fidelity of LIME for ML models: Precision retention with low standard deviation perturbations.
point of note is the similarity in predicted probabilities across the
three models. This consistent performance across different predictive
model architectures indicates that, despite potential differences in how
they process the dataset, their conclusions are consistent. it is worth
recalling that the SHAP and feature ablation tests produced similar
overarching themes, strengthening this claim. Such alignment across
models suggests that the findings are not an outcome of a particular
model but are likely reflective of the underlying data patterns.

4.6.1. Local fidelity and effectiveness
In evaluating the local effectiveness and fidelity of linear surrogate

models derived from LIME, the provided Fig. 10 presents a clear
depiction of their performance within the framework of LIME. When
assessing the local fidelity, a point from the test set is randomly
selected, around which, in line with LIME’s methodology, five hundred
perturbed points are generated to simulate LIME’s computational ap-
proach. The surrogate model’s weights and intercept, derived directly
from the LIME explainer, are applied to calculate the outcomes for
these perturbed instances. This allows for a direct comparison with
the labels predicted by the original complex machine learning model,
ensuring a rigorous evaluation of the surrogate model’s interpretability.
The Fig. 10 indicates that at lower ranges of standard deviation (0
to 0.1), there is a notable congruence between the precision of the
surrogate linear model and the original machine learning model. Such
high precision within this narrow perturbation scope reflects the linear
surrogate model’s capacity to accurately capture the original model’s
decision boundary, affirming the high local fidelity of LIME. This effec-
tive functioning of the linear model in close proximity to the selected
instance underscores LIME’s core principle: to approximate the complex
model well within a local context.

Furthermore, Figs. 11(a) and 11(b) illustrate the differences be-
tween the probabilities predicted by the original models and those
estimated by the LIME linear surrogate model. The distribution of resid-
uals along the zero line (no difference) would indicate high accuracy of
the surrogate model in approximating the original model’s predictions.
The narrow spread of residuals around the zero line, especially with a
majority of data points clustering close to it, indicates that the LIME
model’s explanations are highly consistent with the original models’
predictions.

The Figs. 11(c) and 11(d) complement this observation by quan-
tifying the accuracy of the LIME model’s classifications. An accuracy
rate of 87% with XGBoost and 97% with MLP demonstrates that
LIME not only approximates the overall probability distribution well
but also maintains high accuracy in individual predictions, confirming
its effectiveness for generating reliable local explanations in complex
machine learning scenarios.
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4.7. Observation and discussion

This section summarizes key insights from our XAI analysis on three
machine learning models: Random Forest, XGBoost, and MLP, focusing
on feature importance and model sensitivity to feature ablation.

4.7.1. SHAP feature rankings
• Random Forest: Heff > 𝐷

𝑊 1 + 𝐷
𝑊 2 > flow > |

𝐷
𝑊 1 − 𝐷

𝑊 2| > dt
• XGBoost: Heff > 𝐷

𝑊 1 + 𝐷
𝑊 2 > flow > |

𝐷
𝑊 1 − 𝐷

𝑊 2| > dt
• MLP: Heff > flow > 𝐷

𝑊 1 + 𝐷
𝑊 2 > |

𝐷
𝑊 1 − 𝐷

𝑊 2| > dt

4.7.2. General observations
• ‘Heff’ consistently appears as the most crucial feature across all

models and interpretability methods, aligning with its top SHAP
ranking in each model.

• ‘ 𝐷𝑊 1 + 𝐷
𝑊 2’ and ‘flow’ are also frequently significant but their

importance ranking varies between models, as indicated by SHAP.
• The importance of ‘dt’ is consistently lowest across all models

in SHAP rankings, but its actual effect, particularly in the MLP
model, suggests more complex relationships.

• Different models react differently to feature omission despite hav-
ing similar SHAP rankings, highlighting their unique sensitivities
and structural differences.

• There is a strong alignment between the features that are signif-
icant globally (via SHAP and feature ablation) and locally (via
LIME), suggesting the robustness of these features.

4.7.3. Discussion
• Feature Robustness: ‘Heff’ consistently maintains its top SHAP

ranking and shows significant impact in both local (LIME) and
global (feature ablation) interpretability analyses, confirming its
critical role. Similarly, the features ‘ 𝐷𝑊 1 + 𝐷

𝑊 2’ and ‘flow’ are
not only statistically significant but also practically significant,
making substantial contributions in both local and global inter-
pretability analyses.

• Model Sensitivity: Although Random Forest and XGBoost share
similar SHAP rankings, they exhibit different resilience to fea-
ture omission, highlighting the nuanced differences between their
tree-based architectures. Specifically, Random Forest’s ensemble
mechanism lends it robustness to the absence of critical features,
while XGBoost’s boosting technique makes it more sensitive to
such omissions.
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Fig. 11. Probability residuals and confusion matrix analysis for LIME and ML models.
• Hidden Dependencies in MLP: The lowest SHAP ranking of
‘dt’ in all models contrasts with its actual impact on model
performance, hinting at complex, hidden dependencies. This dis-
crepancy in MLP suggests that ‘dt’ may interact nonlinearly with
other features, a behavior more easily captured by the densely
connected architecture of MLPs. Therefore, ‘dt’’s role is more
nuanced than linear methods like SHAP can reveal, reflecting the
intricate feature interdependencies inherent to neural networks

• Congruence Across Methods: The congruence between LIME,
SHAP, and feature ablation tests speaks to the reliability and
validity of these critical features in the dataset. The consistency
across different analytical methods and predictive models reaf-
firms that these features hold not just statistical but also practical
significance in the phenomena being studied.

• Local vs Global Interpretability: The consistency between LIME
and SHAP rankings for significant features suggests that these
models, although complex, may behave linearly or at least pre-
dictably in the vicinity of specific instances. This adds a layer of
trust to the predictive power and interpretability of these models.

Overall, the MLP model emerges as the most effective in predicting
microfluidic droplet coalescence, outperforming its tree-based counter-
parts, Random Forest and XGBoost, in both accuracy and resilience
to feature ablation. While the tree-based models share similar SHAP
rankings, they display unique sensitivities to feature exclusion due to
14
their internal architectures. MLP, however, stands out for its superior
ability to capture complex feature interdependencies, as evidenced by
its performance when the lowest-ranking feature ‘dt’ is removed.

5. Conclusions

In chemical engineering, understanding of the dynamics of drop
coalescence in microfluidic devices is of considerable importance for
understanding both the fundamentals and in optimization of process de-
sign. This study investigates the predictive capabilities of three preva-
lent machine learning models – Random Forest, XGBoost, and Multi-
Layer Perceptron (MLP) – to elucidate the data patterns associated
with ‘Coalescence’ and ’Non-Coalescence’ events. Feature importance
is first gauged using SHAP values. In this context, the effective height
of the channel, the normalized sum of two droplet diameters relative
to the size of coalescence chamber (both features reflect the doublet
confinement), and the total flow rate into each channel consistently
emerge as pivotal determinants across all models examined. These
are important findings for engineers looking to optimize the design
of processes involving droplet coalescence. Further scrutiny through
feature ablation testing explores the sensitivity and robustness of each
model when these key features are omitted. Complementing this, local
interpretability through LIME not only corroborates the overarching
importance of the identified features but also offers specific insights
into each model’s inferential logic, thereby reinforcing the global inter-
pretability insights obtained from SHAP. Collectively, this multifaceted
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approach integrates global and local interpretability with feature ab-
lation, enhancing a profound understanding of the decision-making
mechanics within the chosen models and amplified the trustworthiness
of their predictions.

In looking ahead, the study identifies several avenues for future
research. Future research can adapt this methodology to other fluid
dynamics challenges in chemical engineering, such as emulsion sta-
bility and mass transfer. Additionally, exploring advanced neural net-
works may improve prediction accuracy. Importantly, tailor-made in-
terpretability frameworks for chemical engineering could further en-
hance the practical utility of machine learning in the field, facili-
tating the development of increasingly transparent, accountable, and
verifiable ML applications for complex engineering systems.
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