Under review as a conference paper at ICLR 2025

COMPRESS THEN SERVE: SERVING THOUSANDS OF
LORA ADAPTERS WITH LITTLE OVERHEAD

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) with low-rank adaptations (LoRAs)
has become common practice, often yielding numerous copies of the same LLM
differing only in their LORA updates. This paradigm presents challenges for sys-
tems that serve real-time responses to queries that each involve a different LoRA.
Prior works optimize the design of such systems but still require continuous load-
ing and offloading of LoRAs, as it is infeasible to store thousands of LoRAs in
GPU memory. To mitigate this issue, we investigate the efficacy of model com-
pression when serving LoRAs. We propose a method for joint compression of
LoRAs into a shared basis paired with LoRA-specific scaling matrices. We ex-
tend our algorithm to learn clusters of LoRAs that are more amenable to joint
compression, allowing it to scale gracefully to large LoRA collections. Our ex-
periments with up to 500 LoRAs demonstrate that compressed LoRAs preserve
performance while offering major throughput gains in realistic serving scenarios
with over a thousand LoRAs, maintaining 80% of the throughput of serving a
single LoRA.

1 INTRODUCTION

The myriad uses for foundation models (FMs) have led to a proliferation of specialized models, each
fine-tuned to perform a downstream task. To avoid fine-tuning foundation models with billions of
parameters, more parameter-efficient fine-tuning (PEFT) algorithms were proposed. An especially
successful PEFT method is low-rank adaptation (LoRA) (Hu et al., 2021), which learns low-rank
additive changes to neural network matrices. Because of the low-rank parameterization, these ma-
trices (called adapter weights) contain orders-of-magnitude fewer parameters than the base model.
Still, LoRA can achieve performance on par with full fine-tuning (Hu et al., 2021).

LoRA’s popularity has triggered a growing need to serve large collections of LoRA adapters at
scale. For example, proprietary and open-source LLLM providers offer fine-tuning services (OpenAl,
2024; TogetherAl, 2024; Predibase, 2024) with user bases likely in thousands or even hundreds of
thousands. As each user wants to use their own fine-tuned version of the LLM, simply serving a
dedicated fine-tuned LLM per user becomes infeasible. To this end, S-LoRA (Sheng et al., 2023)
considers a system where only the base LLM is placed on an inference server and individual LoRA
adapters are switched as needed at inference time. S-LoRA optimizes the system’s inner workings
via custom CUDA kernels and memory management to increase the throughput when serving multi-
ple LoRAs. Such multi-LoRA system design has also been adopted in VLLM (Kwon et al., 2023), a
state-of-the-art LLM serving engine. Despite the optimized system design, serving LoRAs still has
a fundamental limitation: when the number of adapters is large, they need to be constantly loaded
and offloaded from GPU memory to accommodate incoming requests, degrading throughput.

The problem of accommodating multiple LoRA adapters is also apparent when placing LLMs on
edge devices, where smaller LLMs are fine-tuned for various tasks and the adapters are swapped
depending on the task at hand (Gunter et al., 2024). In this case, the amount of adapters is smaller,
e.g., a few dozen (Gunter et al., 2024), but the memory constraints are also tighter due to the limited
capacity of edge devices.

In this work, we consider the problem of compressing a collection of LoRAs. We have two key
objectives: (1) preserving the performance of the original LoRAs and (2) improving the throughput
of serving many LoRAs. We formulate LoRA compression as a reconstruction problem, where the
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goal is to approximate the original adapters via collections of matrices of a smaller total size. We
investigate an approach based on compressing LoRAs jointly by finding a shared basis and LoRA-
specific scaling matrices, and propose a joint diagonalization-based algorithm (JD). To improve
reconstruction error for large numbers of LoRAs while keeping the number of parameters in check,
we propose a clustering approach where each cluster is compressed independently using the joint
diagonalization algorithm. Our clustering algorithm is based on alternating between optimizing the
cluster assignments and the per-cluster reconstruction error.

We showcase the benefits of joint compression in 20| +
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80% of the throughput of serving the base LLM (ora Figure 1: Throughput gains when serving
single LoRA merged into the LLM). Detailed results 1000s of compressed LoRAs with vLLM.
are presented in Section 6.

‘We summarize our main contributions below:

* We formulate the problem of compressing a collection of LoRAs and propose a joint compression
scheme based on joint diagonalization.

* For large numbers of LoRAs, we scale the joint compression scheme by proposing a clustering
algorithm where each cluster is jointly compressed to minimize the overall reconstruction error.

* We establish theoretical guarantees for the reconstruction error central to our compression formu-
lation and verify the relation between reconstruction loss and performance empirically.

* We train a collection of 500 high-quality LoRAs for Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023a) on 500 natural instruction tasks (Wang et al., 2022) and demonstrate that our com-
pression techniques preserve the performance of the original LoRAs. We will release the 500
LoRAs to facilitate future work on LoRA compression as well as the code for our method.

* We incorporate LoORA compression into a state-of-the-art LLM serving system and demonstrate
that it is possible to serve over 1000 LoRAs across thousands of asynchronous requests with
throughput comparable to serving a single LoRA.

2 RELATED WORK

Parameter-efficient fine-tuning (PEFT) has become prevalent for updating foundation models thanks
to the need for efficiency in training and communication (Lialin et al., 2023). Many PEFT methods
have been proposed, e.g. (Houlsby et al., 2019; Liu et al., 2022) and LoRA (Hu et al., 2021) became
the standard, partially due to the ease of switching between LoRAs in inference time.

Several works improve LoRA (Liu et al., 2024; Wang et al., 2024), sometimes with algebraic meth-
ods like SVD (Meng et al., 2024; Zhang et al., 2023; Jiang et al., 2023b) or by leveraging its statis-
tical properties (Zhu et al., 2024; Zeng & Lee, 2024). Relatively few, however, accelerate inference
times. S-LoRA (Sheng et al., 2023) provides an efficient means of switching between LoRAs. (Wen
& Chaudhuri, 2024) adapts training to reduce batch multiplications, accelerating inference. Our
method achieves a similar outcome (see Appendix D) without changing the LoRA formulation or
requiring that LoRAs be trained in a dedicated way; future improvements to LoRA will also benefit
from this aspect of our work (e.g., Meng et al. (2024)).

Punica (Chen et al., 2023) introduces Segmented Gather Matrix-Vector Multiplication (SGMV) to
optimize multi-LoRA serving by parallelizing feature-weight multiplications in batches and group-
ing requests that utilize the same LoRA model. Our approach, by contrast, emphasizes parameter
reduction as a means to efficiently serve multiple LoRAs, providing an orthogonal strategy that
can be seamlessly integrated with Punica’s methods to further enhance performance. In our vLLM



Under review as a conference paper at ICLR 2025

experiments, we leveraged the Punica kernel for multi-LoRA implementation, demonstrating the
application of our method in conjunction with Punica’s optimizations.

There are many efforts to compress models (Cheng et al., 2017; Gholami et al., 2022; Sharma et al.,
2024; Li et al., 2018)—including some specifically for LoORAs—to accelerate inference. Predom-
inantly, pruning and sparsification methods delete weights (Yadav et al., 2023a), and quantization
methods reduce the weights’ precision (Dettmers et al., 2024). Some works compress weights to
reduce model size but typically require decompression and hence do not save GPU memory (Her-
shcovitch et al., 2024). Similarly to our work, while most methods increase speed at the cost of
performance, a few note increased performance and generalization after compression (Yadav et al.,
2023a; Nadjahi et al., 2023; Hershcovitch et al., 2024; Sharma et al., 2024).

Our work also relates to model merging (Choshen et al., 2022; Wortsman et al., 2022; Matena &
Raffel, 2021) and mixture of experts methods (Mugeeth et al., 2024; Yadav et al., 2024). These
methods reuse models trained by others (Choshen et al., 2023; Raffel, 2023), serving them together
as one compressed model. Despite this similarity, these methods create a single general model that
acts on any input, while our model allows for more performant per-task solutions.

3 RANK-BASED LORA COMPRESSION

LoRA updates are parameterized by pairs of matrices A, B, whose product BA updates the fixed
weight matrices W, € R%5*?4 of a neural network foundation model. Given an input z to a layer,
the output of the LoRA-updated model at this layer is (Wy + BA)zx.

In formulating our compression algorithms, we consider a collection of given LoRA adapters
{(4;, B;)}_, that we would like to serve. We let r; refer to the rank of the LoRA adapter-pair
(Ai, Bi), ie., B; € RdBX”, A; € Rrixda,

While our compression technique has access only to a collection of {(A;, B;)}, pairs, in our
experiments we will assess the efficacy of compression by comparing how the compressed matrices
perform relative to the uncompressed LoRAs on typical data. For this reason, although in this section
we optimize a Frobenius norm reconstruction error relative to the product B; A;, in reality this is a
proxy for the nonlinear and complex way that compression errors in the adapters impact transformer
performance. Our experimental evaluation will thus focus on the performance of the compressed
LoRAs against the uncompressed versions on real data in §6.

Our compression methods significantly reduce the overall number of parameters. Reducing param-
eters through compression theoretically accelerates storage and serving processes for a collection of
LoRAs. This reduction, however, alters the computational dynamics during inference, so parameter
reduction alone does not immediately imply faster throughput. In light of the complexities of GPU
optimization, we experimentally assess the throughput under realistic conditions in §6.3.

3.1 JOINT DIAGONALIZATION

For compression to scale to large numbers of LoRAs, the compressed number of parameters should
not scale linearly with n. Hence seeking to compress each LoRA individually (e.g., via SVD as
detailed in the experimental baselines) is inherently limited.

To address this, we suggest a Joint Diagonalization (JD) method, which optimizes a shared basis
onto which we can project the set of n LoRAs. This will allow structure to be shared, implicitly
grouping and/or merging the collection of LoRAs.

In this model, each LoRA product B; A; is factorized into the form UX;V, where U and V are
shared across all LoRAs and ¥; is specific to each LoRA. In this formulation, every X; shares the
same rank r. This allows U and V to be pre-loaded onto the GPU, with ¥; loaded when necessary
for each batch. The matrices X; can be either diagonal or small square matrices, accelerating the
forward pass compared to conventional multi-LoRA serving configurations.

Objective function. Motivated by the relationship of singular value decomposition to minimizing
the Frobenius norm of the reconstruction error, we also propose to minimize the Frobenius norm of
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the adapter matrix approximation error. Specifically, we use the following objective function:

n

i ST = USVT 0
¢ =1

i=17 i=
Note this problem is not solved by a single matrix SVD, since U and V' are shared among all terms
but the >3;’s are not. Using the Frobenius norm has the added benefit of making the objective convex
in each argument separately, suggesting the possibility of efficient optimization. This objective
function is underdetermined, however, so we consider two constrained regimes below.

Full ¥; approximation. The first method we call JD — Full. Without loss of generality, U and V
can be constrained to be orthogonal, so long as 3; remains an unconstrained full matrix. JD — Full
adopts this restriction to make the optimization better posed, but note it does not restrict the expres-
siveness of the objective equation 1. This setting yields the following optimization problem:

JD-Full,({B;A;}}-,) = argmin Z |B;A; —US V|2, (JD—Full) (2
{Zad i=
UTU=VTVI, !

An efficient alternating algorithm to solve this objective function can be found in Appendix A.

Diagonal X; approximation. As an alternative, we can leave U, V unconstrained (other than to
have r columns) and instead constrain the matrices X; to be diagonal (but not necessarily positive).
This formulation yields the following optimization problem:

JD-Diag, ({BiAi}j_,) = argmin Y |B;iA; — Udiag(2:)V " |, (JD — Diag)
{2, UV
(3)

An efficient alternating least squares algorithm to optimize this objective can be found in Appendix
A. This diagonal version has some per-LoRA parameter savings when compared to JD — Full, since
the diagonal ¥; only needs r parameters instead of 2.

3.2 CLUSTERING

As the number of LoRAs n grows and becomes more diverse, the rank  needed for Joint Diago-
nalization to achieve good performance will tend to increase. This increases the size and number
of parameters of each Y; that needs to be stored, especially for JD-Full which will require O(nr?)
storage for these matrices. If the necessary r is growing proportionally to n, then this storage will
eventually become the bottleneck.

To resolve this limitation with very large n, we propose to group the n LoRAs into |C}| clusters C/.
Each cluster is given its own rank r JD compression, and the clusters are chosen such that the overall
reconstruction error is minimized. Specifically, the overall objective is

min B; A, — U; %, V3|%,
{{cj}vUj,vj},{zf}zj:i% H iVillr

and we optimize this by alternating between cluster assignments and the JD of each cluster. The
algorithm details are in Appendix A.3. Typically, the goal with large n is to have |C;| grow with
n as r becomes fixed. Comparing k rank-r JD-Full clusters to a rank-kr JD-Full single cluster
compression, observe that the clustered approach requires O(dkr + nr?) parameters, while the
single-cluster approach requires O(dkr + nk?r?) parameters due to the increased sizes of the 3;s.
While these two approaches have the same rank, note that they may have different reconstruction
abilities. Empirically, we find that multiple clusters significantly aid performance for n > 100.
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4 THEORETICAL ANALYSIS

In this section, we seek to better understand the role of the joint diagonalization method presented
in §3.1 and how this understanding further motivates the clustering approach. We will focus on the
full-3; case with orthogonal U, V' matrices. Note that, for the same r, the r—JD — Diag has at least
as large reconstruction error as r—JD —Full since it imposes an additional constraint on the ;.

Firstly, note that perfect reconstruction can be achieved if and only if r is large enough, since there
exist U, V such that all the B;, A; are in the spans of U, V resp. if and only if r > 7:

Proposition 1. Suppose that for all i, rank(B; A;) = r;, and let
7 = max {rank([Al7 ..., Ay]), rank([B] ... ,B;])} )

Note max; r; <1 < 2?21 ri. Then JD — Full (equation 2) with r = 7 achieves lossless compres-
sion (perfect reconstruction), and using v < 7 will give nonzero reconstruction error.

Due to training noise, 7 will equal ) .-, r; almost always. This implies that in most realistic settings,
the joint diagonalization approach is a lossy reconstruction.

This reconstruction loss can be significant, as the following theorem shows (proved in Appendix B):
Theorem 1. Consider n LoRAs ({ A;, B;}_,) with r,n < d2, and form the matrix

L =] vec(B1A1) --- vec(B,A4,) |.

Let o be the singular values of L, sorted from largest to smallest, and let 7; be the singular values
ofz,i:1 B; A;. Then, using JD — Full (equation 2),

min(r?,n)

s n n
Y57 iR =D ISV R, < > o,
Jj=1 =1 =1 Jj=1

implying the sum of squared Frobenius norms of the reconstructed LoRAs satisfies

min(r?,n) o min(r?,n) o
S USV R 2= "0y M USRSV =Bidilf, o 2= 0
n = n =4 n = n .
i 1BiAillz, Zj:l UJQ' i 1BiAily, Zj:l UJQ'

In other words, if the singular values of L are not concentrated in the top 72 entries, significant
reconstruction error is unavoidable.

Remark 1 (Lower bound and merging). The lower bound Z;zl 65— could be achieved by setting
all the ¥; equal, i.e., using a fully merged model instead of only merging the subspaces U, V and
allowing %; to vary with 1.

Remark 2 (Upper bound and grouping). The upper bound is smallest when the LoRAs are relatively
clustered, i.e., when groups of vectors vec(B; A;) are similar. This situation raises the magnitude of
the largest singular values of L, raising the upper bound in the proposition. As the LoRAs are d x d
matrices that can be thought of as points in d* dimensional space, for typical values of d well into
the hundreds, it is likely that unrelated LoRAs will be unclustered, i.e., they will have relatively low
inner products with each other.

For the case of orthogonal LoRAs, the singular values of L are the norms of the LoRAs, and we
immediately have the following corollary:'

Corollary 1. Suppose (e.g., due to normalization) that the inputs to the joint diagonalization al-
gorithm all have unit Frobenius norm, i.e., | B;A;|lro = 1. Moreover, assume that the LoRAs are
all orthogonal in the sense tr((B;A;)(BjA;)T) = 0 for i # j. Then, using the JD — Full method
equation 2, we have 1 < >0 ||S;||3,, < min(r?, n), implying that the sum of squared Frobenius
norms of the reconstructed LoRAs satisfies

1 nNUS VT = B2 2
177 Z Z’LZI | - . ||Fr0 S 17m1n <7"71) .
n Zi:l HBZAZHFro n

' A result for isotropic Gaussian LoRAs could be obtained via the quantiles of the Marchenko-Pastur Law.
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This implies that for the common setting where 1% < n, the reconstructed LoRAs will be signifi-
cantly smaller than the original LoRAs and necessarily have significant reconstruction error.

The results in this section illustrate the tradeoffs of using joint diagonalization. If the LoRAs are
similar or well-clustered, reconstruction error will be low. On the other hand, if the LoRAs are
random and orthogonal, reconstruction error will be high.

Since the loss space of transformers is highly complex, increasing weight reconstruction error does
not necessarily imply degrading LLM performance. Interestingly, in Figure 3 below, we see that
while large reconstruction error rapidly decreases performance, moderate (but still relatively large, at
around 0.4) reconstruction error does not damage performance and may even slightly outperform the
zero-error setting. This observation motivates our focus on minimizing weight reconstruction error,
while also suggesting that our approach is capable of achieving something deeper than compression.
Specifically, the tendency of joint diagonalization is to find subspaces that are shared among many
LoRAs when r is large, and to merge subspaces when r is small. When r is particularly small, this
tendency towards averaging all or some of the LoRA signals directly connects to the concept of
merging LoRAs, whose empirical success (Shah et al., 2023; Huang et al., 2024) could explain the
success of our procedure despite the nonlinearity of transformers.

Experiments in Appendix G.9 explore this idea further, comparing reconstruction of real-world Lo-
RAs to reconstruction of randomly sampled LoRAs. The reconstruction error is generally large, but
significantly lower than the reconstruction error for random noise, indicating that there is a major
shared component between the LoRAs that is being successfully retained.

That said, as the number of LoRAs grows, the shared component may not be significant enough
to maintain sufficiently low reconstruction error with low rank 7. This motivates the introduction
of clustering in §3.2, since clustering seeks to find groups of LoRAs that are similar and better
compressible by joint diagonalization. In particular, if the number of clusters |C;| grows with n, the
reconstruction error may no longer degrade with n even when 7 is fixed.

In the extreme case where |C;| = n, each LoRA is compressed independently. By the Eckart-Young
Theorem, JD applied to a single LoRA reduces to an SVD, replacing each rank-r; LoRA adapter
B; A; with a reduced rank-r approximation, where typically r < % Z:-l:l T

SVD,(B;A;) =U;S;V,", Yi=1,...,n. 4)
As ¥; VT can be saved as a single matrix, this approach has rn(d 4 + dg) parameters. We refer to
this |C;| = n method as r — SVD and find that it underperforms our other methods, while outper-

forming the baseline uncompressed LoRAs significantly. This result parallels Jiang et al. (2023b)’s
observation that lowering LoRA ranks is beneficial for multi-task learning and model merging.

5 TRAINING LORAS & EVALUATING TASK PERFORMANCE

5.1 TRAINING

We trained LoRA adapters on 500 natural instruction tasks (Wang et al., 2022) using
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a) as the base model. All LoRA adapters
were configured with a rank of 16, i.e., Vi, r; = 16.

We selected 10 diverse tasks (Table 2 in Appendix C) manually for consistent evaluation across
experiments and randomly sampled an additional 490 tasks, resulting in a total of 500 tasks. These
tasks were exclusively in English (both input and output), ensuring higher quality and thorough
review (Wang et al., 2022). The tasks represent a realistic and varied set, not inherently clustered.
Each task dataset was divided into training, validation, and test sets.

Hyperparameters, such as early stopping, were tuned using the validation sets. Evaluation on the
test sets demonstrated that LoRA consistently outperformed the base model in terms of both Rouge
scores and loss metrics, as shown in Table 1. Details are provided in Appendix C.

5.2 EVALUATION

We evaluated multiple metrics for the natural instruction tasks, including cross-entropy loss, Rouge-
1, Rouge-L (Lin, 2004), exact match, and agreement between uncompressed and compressed LoRA.
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Table 1: Comparison of metrics before and after LoRA training across 500 tasks.

Metric Base Model LoRA
Loss 499 +3.11 0.43 +0.57
Exact Match 2.28 & 7.89 66.66 + 34.34
Rouge-1 20.38 = 18.90 76.74 4+ 24.89
Rouge-L 19.66 = 18.16  76.22 £ 25.27

Here, agreement measures the exact match in task-generations between the uncompressed LoRA
model and the compressed LoRA model, rather than comparing to ground truth data. While detailed
results and discussions for all metrics are provided in Appendix G, our primary focus in the main
text is on Rouge-L. We find that all metrics correlate, but Rouge-L correlates most strongly with
downstream utility. This finding aligns with prior work (Wang et al., 2022), which demonstrates
that Rouge-L correlates well with classification accuracy.

While cross-entropy is used for optimization during training, identical generation outputs across
models can yield different cross-entropy losses. Exact match is too rigid and does not account for
the variability in task responses. Similarly, agreement does not capture the inexactness associated
with most of our tasks, nor does it account for the performance gains or losses of the compressed
LoRAs. Arguably, practitioners are primarily concerned with task performance in the settings for
which the LoRA was designed, rather than exact generational agreement between models.

Joint diagonalization optimizes reconstruction error measured by the Frobenius norm, and our the-
oretical analysis in §4 bounds this reconstruction error. Empirically, reconstruction error and down-
stream Rouge-L performance correlate.

Instead of listing the absolute performance of different methods, we compute the performance dif-
ference between the base model and the LoRA model for each task. We present the ratio

method-performance

Performance relative to LORA :=
LoRA-performance

for the specific method in question, highlighting relative improvement with respect to the uncom-
pressed LoRA and the base model.

6 EXPERIMENTS

6.1 TASK PERFORMANCE

For each method, we vary the number of n LoRAs that are compressed and the compression rank
r. We run each experiment three times with different random seeds and report the mean and stan-
dard deviation. See Table 4 for results where we evaluate on the same ten manually selected tasks
(Table 2) across settings. Every compressed collection of LoRAs contains these 10 tasks (i.e., in-
distribution tasks), and each collection contains the smaller collections as subsets.

We normalize each LoRA adapter to have a Frobenius norm of one prior to running joint diagonal-
ization. This normalization enhances performance and reduces the variance in reconstruction error.
We restore the original norms of the LoRA adapters before reconstruction and testing.

Figure 2a illustrates the Total Parameter Saved Ratio versus the Number of Unique LoRAs served.
We only include methods that maintain over 99% of the original LoRA’s performance (as measured
by RougeL). Notably, our JD methods uniquely approach the compression efficacy of a single LoRA,
and with clustering, this aggressive reduction in size also maintains performance in larger LoRA
collections.

Figure 2b illustrates the Rouge-L scored of the compressed LoRAs divided by the Rouge-L score of
the uncompressed LoRAs. It is interesting to note that JD variants often increase generalization and
outperform the original LoRA. In Appendix G, we include multiple tables of results for additional
metrics, relative as well as absolute.
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Figure 2: Performance after compression. In (a), we only include methods that maintain over
99% of the original LoRA’s performance (as measured by RougeL). In (b), we compare the per-
formance of compressed LoRAs relative to uncompressed ones, with higher values on both axes
reflecting better performance. The Total Parameter Saved Ratio depicts the number of parame-

ters saved for a system with a large number n of different LoRAs. It is computed as: riptq; =
num. parameters after compression
num. parameters before compression

For efficiency, we limited the JD methods to ten iterations instead of pursuing full convergence.
While the alternating algorithm quickly reaches an approximation of the minimizer, squeezing out
the last few digits of precision takes many more iterations with limited to no performance gain. Ap-
pendix G.10 also evaluates an alternative eigenvalue iteration algorithm that more rapidly converges
once U, V are close to a minimizer, with minimal performance differences.

6.2 PERFORMANCE AND RECONSTRUCTION ERROR

Figure 3 relates reconstruction error and performance. The y-axis measures the mean performance
improvement of Rouge-L relative to uncompressed LoRA, and the z-axis quantifies the mean re-
construction error between the compressed reconstruction of the product BA and the original un-
compressed product BA. Although the relationship between performance and reconstruction error
is nonlinear, it demonstrates a generally decreasing, somewhat exponential trend. Notably, the min-
imal reconstruction error does not correlate with optimal performance, indicating that a degree of
lossy reconstruction may be advantageous for enhancing generalization.

To select hyperparameters (compression rank and number of clusters) for the clustering experi-
ments, we first assessed reconstruction error on a single LoORA module over a range of settings (see
Appendix F). These preliminary experiments enabled efficient selection of cluster counts and rank
values for compressing all LoRA modules.
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Figure 3: Reconstruction error vs. performance. Figure 4: Throughput ratio when serving

varying numbers of LoRAs with vLLM.

6.3 THROUGHPUT OF SERVING COMPRESSED LORAS

Results in the previous sections demonstrate how to select an appropriate joint compression setting
guided by the reconstruction error, such that the performance of the original LoRAs is preserved.
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Naturally, the rank and/or the number of clusters for the compression needs to increase as we com-
press larger LoRA collections to match LoRA performance.

In Figure 4 we study how throughput with various compression settings compares to the vLLM
multi-LoRA throughput with the matched GPU memory footprint. Specifically, for each number
of unique LoRAs served and each compression setting, we compute the corresponding number of
LoRAs to be placed on the GPU during serving and report the ratio of the two throughputs. For
example, when serving 64 unique LoRAs and using rank 64 JD-Full compression, we report the
ratio of throughputs of rank 64 JD-Full and vLLM multi-LoRA with 6 LoRAs allowed on the GPU
at a time (see Appendix E for details). As the number of unique LoRAs increases, vVLLM multi-
LoRA throughput degrades as it needs to schedule the requests and load and offload the adapters.
We note that vLLM multi-LoRA already employs many advanced system optimization techniques,
such as efficient scheduling and non-blocking CPU-GPU communication when swapping LoRAs
(Sheng et al., 2023; Kwon et al., 2023), but system optimization alone is not sufficient to fully
mitigate throughput degradation when serving many LoRAs.

In Figure 4 we see that across all LoRA collection sizes our compression techniques improve the
throughput of vVLLM multi-LoRA. Additionally, we highlight regions for each compression setting
where compression is sufficiently moderate to achieve 99%+ of LoRA performance, according to
the results in Section 6.2. We also note that compression with a larger rank or too many clusters does
not improve baseline throughput when serving a smaller number of LoRAs and should not be used
in such cases. For example, rank 16 JD-Full improves baseline throughput with 4 and 8 LoRAs, but
will underperform with more LoRAs, while 7 cluster rank 64 JD-Full does not improve throughput
with 64 or fewer LoRAs, but when serving 1000+ LoRAs it improves the throughput significantly
while maintaining the performance. To conclude, an appropriate joint compression setting improves
vLLM multi-LoRA throughput and preserves performance for LoORA collections of any size between
4 and 1024, as we showed in Figure 1. Specific compression settings for each LoRA collection size
are listed in Appendix E.

Finally, we note that vLLM extensively uses custom CUDA kernels. To accommodate our compres-
sion techniques, we minimally adjusted the vLLM code to generate additional kernels needed by the
compressed LoRAs while we utilized Punica (Chen et al., 2023) kernel to further accelerate matrix
multiplication. A pseudo code is given in E.4 to show how we utilize the batch multiplication kernel.
There likely is room for improvement to optimize the newly added kernels.

Additional details In this experiment we considered a varying number of rank-16 LoRAs, using
a dataset of Shakespeare sonnets as inputs? arriving asynchronously. We measured throughput, i.e.,
the number of requests served per second when generating ten tokens per request. The base model
was Mistral 7B Instruct as in the other experiments; we simulated random LoRAs and assigned
inputs to LoRAs at random. Experiments were conducted on H100 80GB GPU capped at 40%
memory consumption. This was done to reflect cost concerns in practical situations where a service
provider might want to serve many LoRAs from cheaper hardware with lower memory than higher-
end GPUs. This setting also takes into account the scenario where the LLM is large compared to the
size of GPU and yet a provider may want to serve many LoRAs efficiently using the same device.

6.4 RECOMMENDATIONS

JD-Full is generally preferred over JD-Diag, although for smaller numbers of LoRAs (less than
100), the performance difference is negligible. While JD-Full alone is effective up to 100 LoRAs,
incorporating clustering at scales of 500 LoRAs significantly enhances performance.

We recommend the following procedure for hyperparameter selection. For 100 or fewer LoRAs,
JD-Full can be utilized independently without substantial degradation, using a rank approximately
equal to (number of LoRAs/2) 4+ 7. Beyond 100 LoRAs, clustering becomes increasingly critical.
A robust method for any number of LoRAs up to 500 involves employing JD-Full with clustering.
Specifically, select a LoORA module from the middle of the network, apply a compression rank of 16,

https://www.kaggle.com/datasets/shivamshindel23/william-shakespeares—sonnet/
data
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and experiment with an exponentially increasing number of clusters. Compute the reconstruction
error for each setting on this module across all LoRAs—a computationally efficient process. Choose
the minimal number of clusters that achieves a reconstruction loss below 0.5, and then use these
settings to compress all LoORA modules. An example of this procedure applied to 500 LoRAs is
illustrated in Figure 5 in the Appendix.

We note that tuning hyperparameters as discussed above using reconstruction loss as a validation
metric is especially convenient since it can be done efficiently on CPU without having to perform
expensive LLM evaluation. As our experiments demonstrate, compression settings that achieve be-
low 0.5 reconstruction loss reliably translate into preserving 99% or more of the LoRA performance,
sometimes even outperforming the original LoRAs.

For inference, this procedure is executed as a preprocessing step before deploying our inference
server. As new LoRAs are submitted, they are initially served uncompressed. A background cron
job re-runs the compression algorithm on the CPU every six hours, and upon completion, updates
the served LoRA parameters with the compressed versions.

7 DISCUSSION

This study introduces approaches to LoRA compression, addressing significant challenges facing
foundation models and large language models. Our contributions include theoretical formulations,
empirical validation, and practical implementations that enhance the understanding and application
of LLMs in scalable environments.

The implications of our findings are manifold. Our theoretical guarantees for reconstruction error
not only increase confidence in the use of compressed models but also lay a groundwork for future
explorations in this area. Demonstrating that our compression techniques can preserve up to 100%
of the original LoRAs’ performance highlights the effectiveness of our methods. Furthermore, in-
tegrating LoORA compression into state-of-the-art LLM serving systems demonstrates the potential
for resource optimization, with throughput for thousands of LoRAs nearing that of a single LoRA.

The promising results of our study suggest several future research directions. First, further com-
pression may be possible via quantization. Our joint-diagonalization compression and quantization
are independent axes of approaching the problem and exploring a combined solution can be fruitful.
Second, when scaling to hundreds of thousands of LoRAs, joint compression, while effective, will
not be sufficient to fit all LoRAs onto the GPU, thus requiring a procedure to schedule the requests.
Our clustering variant offers opportunities to develop an efficient scheduling mechanism that takes
into account the cluster assignments of LoRAs corresponding to the incoming requests.

In conclusion, our research significantly advances the deployment of LLMs by providing robust,
scalable, and efficient compression solutions. The ability of compressed LoRAs to maintain high
performance while facilitating substantial resource savings opens new avenues for the broader appli-
cation and adoption of LLMs across various industries. We encourage the community to build upon
our findings and the shared LoRAs to further explore and enhance the utility of these technologies.
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A JOINT DIAGONALIZATION ALGORITHMS

A.1 ALTERNATING METHODS

Our goal is to derive algorithms that optimize equation 1. Common to both methods, we expand the
objective functional:

S IBiA; —USV [fo = > _tr((Bid; — US;V ) (BiA; — US;V'")T) by definition
= [r(B; A A BT ) = 2tx(B,AVE[UT) + tr(US,VTVEUT)]

=const. — 2> tr(B;A,VE[UT) + ) IUS VT3, (5)

Using this expansion, we now consider the two settings discussed in §3.1.

Case 1: Non-diagonal X ;, orthogonal U, V. Setting the derivative of equation 5 with respect to 3;
to zero, we find

% =%5(U,V)=U"B;AV. (6)
We simplify our objective function after plugging in this expression:
D IBiAi —USiV T |3y + const. = > [|[Si]lf, — 2tr(B;A; VS, UT)] from equation 5

%

= [tr(UTB;AVVTA] B]U) - 2tx(B;iAVV A B UUT)] from equation 6
i

=-> tr(B;AVVIABIUUT).

Substituting equation 6, we find

Uopt; Vopt = arg max U'B;AV||3, = arg max SHU) |- 7
pt: Vopt gUTU:IZH I8 gUTU:IZII U V)|l o

vvi=r =1 vvi=y =1

Note that

S NUTBA V|, = tr ((Z BiAiVVTAiTBiT> UUT>

i=1 i=1

= tr ( (Z Bl A UUTAiBZ) VVT> :

i=1

by the identity || A%, = tr(AT A). Hence, we optimize equation 7 by alternating between U and
%

e U iteration: Define M = >, B;A;VV A/ B. Parenthesizing this expression properly
requires only O((m + n)r) storage/computation time. With this definition, we maximize
tr(MUUT) over U satisfying UTU = I. Since M is positive semidefinite, the optimum is
to take U to be the r eigenvectors of M with largest eigenvalue, equivalent to an SVD problem.

« V iteration: Define N = Y, A/ B/UUT B;A;. Similarly to the previous step, we take V' to
contain the r eigenvectors of IV with largest eigenvalue, again solvable using an SVD.

This method decreases the objective in each step.
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Case 2: Diagonal ;. If constrain X; to be diagonal, we interpret our objective function equation 1
as a “triple least squares” problem. We compute gradients:

VoY Bidi —USV |}, =2) (USV' — BiA)VE]
Vv Y IBidi —USV |}, =2> (VE[UT — A BI)UY,

Ve, Y Bidi = US VT ||}, = 20T (USVT — BiA)V

(3

These expressions suggest efficient r X r linear systems to solve for U, V:
-1
U= (Z B A VE] ) (Z 23/3/2])
-1
V= (Z AiTBiTUZi> (Z ZiTUTUZi> .
i i

For »;, we extract the diagonal from our gradient above:
diag(UTUS,VTV),; = (UTUS,VTV),;
= (UTU)jmZimm (VT V)
m

= (U'UoVV)diag(%;)
diag(U " B;A;iV); = > (U By)jm(AiV)m;

=Y (UTB)jm(V A )jm

=(U"B;oVTA/ N
— diag(%;) = (U UoVTV)"{UTB; o VAN

Here o denotes the Hadamard product.

Combining these expressions, we use a simple coordinate descent algorithm cycling between the
following three steps:

. Solve for U

. Solve for V'

. Solve for the ¥;’s

. Optionally, normalize so Y, [|%; %, = 1

A W=

A.2 ADDITIONAL EIGENVALUE ITERATION ALGORITHM

For the first case in §A.1, we introduce an alternative algorithm that eschews the use of SVD. This
alternative is optimized for GPU execution, enabling tractable runs to convergence.

To derive this algorithm, we employ Lagrange multipliers to formulate the derived objective from
equation 7:

Uopt, Vopt = arg max UTB;AV Qro, 8
pts Vopt gUTU:I ZIH I ®)
vvi=r "=

yielding the expression
1 1 1
A= —§HUTBZ»AZ»V||§m - 5tr(XT(I ~U'U)) - 5tr(YT(I V). )
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Taking the derivatives gives

Voh ==Y Bi(AV)(VTANBU)+UX (10)
VyA=— EZ:A:(BZ-TU)(UTBZ-)(AZ-V) +VY (11)

Setting these derivatives to zero shows
> Bi(AV)(VTAN(B/U)=UX (12)
zl:AiT(BZTU)(UTB,;)(AiV) =VY. (13)

Here, one can show that the Lagrange multiplier matrices X and Y are diagonal and nonnegative,
since the problem reduces to an eigenvalue problem when either U or V is fixed; this is essen-
tially the argument behind the alternating algorithm in Appendix A. Hence, taking inspiration from
classical eigenvalue iteration, we use the following updates to improve our estimates of U and V:

U 3 B(A V) (V)T AT V(BT UW) (14)
D > AN B UM (UR)TB)(AVH) (15)
U+ orthogonalize(Uék+l)) (16)
yk+1) orthogonalize(‘/()(k+1)) 4

Here, the function orthogonalize orthogonalizes the columns of a matrix, e.g. by using the @)
part of the reduced-size Q R factorization. Although we lack a formal convergence proof, in practice
we find that this method reliably reaches a local optimum of our problem.

By executing matrix operations in the specified sequence, these computations can be rapidly per-
formed on GPUs. Note the expressions above are parenthesized to avoid constructing a large matrix
product as an intermediate computation.

A.3 CLUSTERING ALGORITHM

Initialization: We run joint diagonalization with a single U,V then perform k-means with |C}]|
clusters on the space of X;’s. This gives us our first clusters and we can use random initialization
U;, V; for each cluster but the 3J; can be maintained as initialization.

Step 1: Using the alternating JD algorithms from earlier in this section, we optimize the problem
ming; v, 5, Zz‘ecj [|1B;A; — Uj EJ/JTH% for each j independently.

Step 2: New cluster assignment for ¢ : min; miny,
we go to Step 1, else we have converged.

B;A;—U; EiVjT ||2.. If any assignment changes

B PROOF OF THEOREM 1

Proof. For the lower bound, note that by Jensen’s inequality,

2

)
Fro

U’ zn: BiAV

i=1

Z ||UTB1A1VH%r0 >

i=1

for any U, V. Hence,
n 2
Uy BiAV (18)

=1

n
sup Z |UTB; AV |3, >  sup
U, vest(k,d) ;=3 U,V St (k,d)

Fro
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By the definition of singular value decomposition, the right hand side of equation 18 is maximized
with U, V being the top r singular vectors of Y1 | B;A;, yielding |[UT Y7, BiAiVHi‘m =
Sy 2. Recalling that 3; = UT B;A;V yields the lower bound.

For the upper bound, recall that 32; = U " B; A;V. Rearranging,
vee(X;) = (VI @ UT)vec(B;A;).
Define

¥ = [vec(%), ..., vec(S,)].
By our previous simplification,
Y=(V'e@U")L.
Now

> Bl = [ZllE = tr (V@ U)(V @ U)T)(LLT))

Since U,V are orthogonal and size d x r, the top r2 eigenvalues of the symmetric matrix (V ®
U)(V @ U)T will be equal to 1, and the rest will equal 0. The eigenvalues of the symmetric matrix
LL" will be equal to the squared singular values of L. We can then apply the Von Neumann trace
inequality to obtain the upper bound.

The last statement follows from the Pythagorean theorem and the fact that the ¥; is a projection of
B; A; to the U, V subspace. O]

Note that we have only used the fact that the matrix (V ® U) has singular values equal to 1; we have
not used the fact that it has Kronecker product structure. On the other hand, each vector vec(B; 4;)
is a sum of r; Kronecker products and cannot be expressed as a Kronecker product. As a result,
while the upper bound in the Von Neumann trace inequality is achieved if the eigenvectors of the
two matrices align, the Kronecker product structure is a severe constraint and the upper bound we
have provided is generous.

C TRAINING LORAS

We trained LoRA adapters on 500 natural instruction tasks (Wang et al., 2022) using
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a) as the base model. All LoRA adapters
were configured with a rank of 16, i.e., Vi,r; = 16. We selected 10 diverse tasks manually for
consistent evaluation across experiments and randomly sampled an additional 490 tasks, resulting
in a total of 500 tasks. These tasks were exclusively in English (both input and output), ensuring
higher quality and thorough review (Wang et al., 2022). Each task dataset was divided into training,
validation, and test sets (80-10-10). Hyperparameters, such as early stopping, were tuned using the
validation sets; that is, we train for five epochs and take the best-performing epoch-checkpoint per
validation loss. Evaluation on the test sets demonstrated that LoRA consistently outperformed the
base model in terms of both Rouge scores and loss metrics (see Table 1).

Table 2: Main Evaluation Tasks

Task Number Name Type Domain
task280 stereoset_classification_stereotype_type classification stereoset
task190 snli_classification snli image captions
task391 causal_relationship commonsense cause and effect
task290 tellmewhy_question_answerability answerability story
task1391 winogrande_easy_answer_generation commonsense social and physical

task1342 amazon_us_reviews_title title generation amazon reviews
task442 com_qa_paraphrase_question_generation question generation  wikipedia
task620 ohsumed_medical_subject_headings_answer_generation = keyword tagging scientific
task1598 nyc_long_text_generation data to text restaurants
task039 qasc_find_overlapping_words overlap extraction natural science

In Table 3 we include all 500 tasks that were used.
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Table 3: List of Tasks

Task ID Deseription Task ID Description Task ID Description
1ask280 stereosét classification stereotype type task190 snli classification task391 causal relationship
task290 tellmewhy. question answerability task1391 winogrande easy answer generation task1342 amazon us reviews title
coma‘pataphrase question generation task620 ohsumed medical subject headings answer generation task1598 nyc long text generation
qasc find overlapping words task769 qed summarization task 1448 disease entity extraction ncbi dataset
dredm afister generation tasks13 argument stance classification task875 emotion classification
senteval odd word out task627 xlwic same meaning sentence generation task1534 daily dialog question classification
task1551 everyjifli element from kth element tasks83 udeps eng coarse pos tagging task1431 head qa answer generation
task270 csrg counterfactual context generation task1487 organism substance extraction anem dataset task679 hope edi english text classification
taskd56 matges ftention classification task385 socialiqa incorrect answer generation task1607 ethos text classification
task278 stereosel antistereotype sentence generation task022 cosmosqa passage inappropriate binary task210 logic2text structured text generation
task137 detoxifying-Ims classification toxicity taskS74 air dialogue sentence generation task629 dbpedia 14 classification
task1378 quare] Correct answer generation task1194 kith largest element task1529 scitail .1 classification
taskd53 swag answer generation task102 commongen sentence generation task460 qasper answer generation
task1204 atomic-Clasification hinderedby task1384 deal or no dialog classification task1572 samsum summary
1ask699 mmmlu high school biology answer generation task1631 openpi answer generation task1722 civil comments threat classification
taskS80 socialiga answer generation task605 longest common subsequence in lists task1152 bard analogical reasoning causation
task1283 hmgo quality classification task637 extract and sort unique digits in a list task723 mmmlu moral disputes answer generation
1ask084 babild) Stipporting fact identification task201 mali neutral classification 1ask956 leetcode strong password check
task167 stralegyqa question generation task1192 food flavor profile task300 storycloze order generation
task1714 convai3éntence generation task388 torque token classification task316 senteval conjoints inversion
task127 scan action command all generation task362 spolin yesand response classification task1158 bard analogical reasoning manipulating items
task322 jigsaw threat classification task697 mmmlu formal logic answer generation task1566 propara structured text generation
1ask076 splash eorrecting SQL mistake task1451 drug dose extraction task1135 Xest en commonsense me classification
task341 winomt.gender anti classification task267 concatenate and reverse elements from i to j task1720 civil comments toxicity classification
task1452 location efiity extraction bc corpus task131 scan action command long generation task685 mmmlu clinical knowledge answer generation
task727 mmmlu prehistory answer generation task1590 diplomacy text generation task1731 quartz question answering
task047 answéring science questions task929 products reviews classification task1592 yahoo answers topics classification
task1326 qa zre question generation from answer task615 moviesqa answer generation task1216 atomic classification causes
1ask689 mmfilikdllege mathematics answer generation task1156 bard analogical reasoning tools task1657 g00aq question generation
task833 poem sentiment classification task1206 atomic classification isbefore task1151 Swap max min
coutttelertients in set union task1562 zest text modification task043 essential terms answering incomplete questions
essential terms identifying essential words task722 mmmlu random topic answer generation task183 rhyme generation
discofuse answer generation task155 count nouns and verbs task353 casino negotiation elicit preference classification
colaclissification task1724, civil comments insult classification task288 gigaword summarization
check prime classification task707 mmmlu high school microeconomics answer generation tasks77 curiosity dialogs classification
Ihoestq fréquency answer generation task706 mmmlu high school mathematics answer generation task1401 obga sentence generation
superglue copa text completion task1198 atomic classification owant task966 ruletaker fact checking from context
task219 rocstories title answer generation task1211 atomic classification hassubevent task050 multirc answerability
task494 review polarity answer generation task1379 quarel incorrect answer generation task176 break decompose questions
task068 abdfdtivefali incorrect answer generation task566 circa classification task333 hateeval hate classification en
task593 scig explanation generation task667 mmmlu business ethics answer generation task130 scan action command long generation
task161 courltywords containing letter tasks07 position of numerical elements in list task1502 hatexplain classification
1ask505 count numierical elements in list task633 dbpedia 14 answer generation task1645 medical question pair classification
task1486 cell extraction anem dataset task1146 country capital task1380 quarel correct option generation
task1088 array of products task033 winogrande answer generation task085 unnatural addsub arithmetic
task1294 wiki.ga answer verification task080 piqa answer generation taskd89 mwsc question generation
task1721 civiledmments obscenity classification task1713 convai3 sentence generation task721 mmmlu medical genetics answer generation
task1403 check validity date mmddyyyy task746 yelp restaurant review classification task728 mmmlu professional accounting answer generation
1ask889 goefnblions classification task1583 bless meronym classification task1665 trianglecopa question generation
task708 mmmlu high school physics answer generation task1419 mathga gain task963 librispeech asr next word prediction
taskd54 swajiloftect answer generation task308 jeopardy answer generation all task828 copa cause effect commonsense
1asks79 socialiga classification task753 svamp addition question answering task 1404 date conversion
task1201 atortie GldSsification xintent task901 frecbase a category question generation task1567 propara question generation
task1319 couniry by barcode prefix task858 inquisitive span detection task1200 atomic classification xeffect
task492 mwge incorrect answer generation task675 google wellformed query sentence generation task094 conala calculate mean
task1506 celebrity minimal dob span task694 mmmlu econometrics answer generation task614 glucose cause event detection
task1390 wcfixed coreference task1355 sent comp summarization task714 mmmlu human sexuality answer generation
task457 matres conditional classification task1565 triviaqa classification task834 ‘mathdataset classification
task642 esnli classification task732 mmmlu public relations answer generation task1605 ethos text classification
1ask326 Jigsdw abstene classification task1292 yelp review full text categorization task716 mmmlu jurisprudence answer generation
task1479 organization entity extraction bte corpus task1147 country currency task153 tomga find location hard clean
task1495 advéise Uig event classification task1196 atomic classification oeffect task1489 sarcasmdetection tweet classification
1ask294 storycommonsense motiyv ext generation task157 count vowels and consonants task147 afs argument similarity gay marriage
task1197 atontie/ClaSsification oreact task754 svamp common-division question answering task1599 smealflow classification
task1420 mathqa general task1285 kpa keypoint matching tasks87 amazonfood polarity correction classification
task1338 peixjan-equity sentiment classifier task116 com2sense commonsense reasoning task713 mmmlu human aging answer generation
task431 sentevt object count task067 abductivenli answer generation task934 turk simplification
task617 amazonreyiew category text generation task696 mmmlu elementary mathematics answer generation task846 pubmedga classification
task933 wikiautbtyle transfer 1ask865 mawps addsub question answering task671 ambigga text generation
task1398 obga question generation task1518 limit answer generation task628 xlwic different meaning sentence generation
task1286 opefitaokqa question answering task1596 event2mind text generation 2 task298 storycloze correct end classification
task645 summarization task903 deceptive opinion spam classification task394 sciq question generation
task413 mickéyenbentence perturbation generation task719 mmmlu management answer generation task672 nummersense
task1418 bless semantic relation classification taskd75 yelp polarity classification task357 casino negotiation small talk classification
task1387 anli €3 Entailment task1711 poki text generation task304 numeric fused head resolution
task750 aqua maltiple choice answering task1320 country domain tid task034 winogrande question modification object
1ask692 mmmlu-computer security answer generation task1406 kth smallest element task119 semeval 2019 task10 geometric mathematical answer
task211 logie2text classification task363 sst2 polarity classification task 1087 two number sum
task083 babi t1 answer generation task1385 anli rl entailment task1308 amazonreview category classification
gooaq arisiver generation task892 gap reverse coreference resolution task499 extract and add numbers from st
dart text generation task1207 atomic classification atlocation tasks64 discofuse classification
task325 Jigsdw identity attack classification task206 collatz conjecture task890 gewd classification
task1520 qa srl answer generation task703 mmmlu high school geography answer generation task318 stereoset gender classification
synthéfic féturn primes task335 hateeval aggressive classification en task600 longest common substring in two strings
cls english dvd classification task138 detoxifying-Ims classification fluency task291 semeval 2020 taskd commonsense validation
squadlct question generation task1389 hellaswag completion task192 hotpotqa sentence generation
crows-pairs stereotype classification task1609 xquad en question generation task296 storycloze correct end classification
mmmly-astronomy answer generation task1582 bless hypernym generation task1728 web nlg data to text
mmmlrhigh school computer science answer generation task275 enhanced wsc paraphrase generation task107 splash question to SQL
conala concat strings task1157 bard analogical reasoning rooms for containers task1167 penn treebank coarse pos tagging
creak comimonsense inference task359 casino negotiation vouch fair classification tasks17 emo classify emotion of dialogue
5 winomt gender identifiability anti classification task964 librispeech asr text auto completion task904 hate speech offensive classification
task1148 maxitim ascii value task879 schema guided dste8 classification task636 extract and sort unique alphabets in a list
task1509 evalution antonyms task207 max element lists task228 arc easy answer generation

We use Huggingface (Wolf et al., 2020) in our implementation. For the base model, we use quanti-

zation with configuration:

BitsAndBytesConfig(

load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
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bnb_4bit_compute_dtype=torch.bfloatlb,
)

and LoRA configuration:

LoraConfig(
r=16,
lora_alpha=32,
target_modules=["g_proj", "k_proj", "v_proj"l,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
init_lora_weights=init_lora_weights,

D AVOIDING BATCHED MATRIX MULTIPLICATION (BMM)

Fast LoORA (Wen & Chaudhuri, 2024) aims to alleviate the batched matrix multiplication (BMM)
bottleneck when serving many LoRAs. They propose an adapter parameterization that replaces ad-
dition with elementwise multiplication, avoiding BMM and improving LoRA throughput at lower
ranks. Our JD LoRA formulation also circumvents or heavily reduces the impact of BMM as dis-
cussed below, and both individual and joint compression methods can be applied to Fast LoRAs.

In the envisioned deployment scenario, a service provider hosts a large collection of LoRAs. Upon
receiving a request, each user specifies both the input data and the desired LoRA identifier. The
provider then processes the base model augmented with the specified LoRA for each user’s data. As
a provider is batching a collection of requests for GPU parallelization, they can expect to frequently
have more than one unique LoRA identifier per batch.

Traditionally, a specific LoRA is integrated into the base model by transforming Wy — Wy + B; A;.
Serving multiple LoRAs conventionally would necessitate maintaining and executing a separate
copy of the base model for each LoRA, bringing substantial computational overhead. Alternatively,
the computation for Wyz and B; A;x can be performed independently and subsequently merged.
This strategy necessitates only a single instance of Wyx computation and storage of LoRA-specific
parameters rather than the entire base model.

Consider the batch processing of BAx, where boldface indicates that B;, A; are stacked into tensors
of dimensions (b x m x r) and (b X r X n) respectively, with batched data x shaped (b x [ x n):

Ax < (bxrxn)x (bxIxn)— (bx1lxr) bmm
B(Ax) < (bxmxr)x (bxlxr)—= (bxlxm) bmm.

Here, “bmm” denotes batched matrix multiplication, a known bottleneck in both throughput and
latency. Consider the corresponding operations for our joint compression scheme, UXV T x:

Vx4 (Fxn)x (bxlxn)— (bx1x7) broadcasted
SV %)< (bx7) x (bx1x7) = (bx1x7) broadcasted

U(ZV %) < (mx ) x (bx1x7) — (bx1xm) broadcasted

In our optimized setup, batched matrix multiplications can be completely circumvented if the ;
matrices are diagonal. If not, given that ¥ < m,n, any required batched matrix multiplication
remains computationally inexpensive.

E GPU MEMORY USAGE COMPUTATION FOR JD COMPRESSION

The GPU memory consumption is primarily influenced by the number of parameters that need to be
stored and processed during inference. In this section, we introduce the detail of how we compute
the GPU consumption of our method, and how we find the number of vLLM multi-LoRA that share
the same GPU utilization.
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* D: Hidden dimension size (e.g., D = 4098).

* r: Rank of the shared basis matrices for compression (e.g., r = 16, 32, 64).

e N: Maximum number of LoRA modules being served simultaneously (max_lora_num).

* ¢: Number of clusters in our clustering method (e.g., ¢ = 7, 10, 25).

In Figure 1, we use different JD-compression settings for serving different number of unique LoRAs.
Specifically:

* Serving 4 unique LoRAs:

Ours: rank 16 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 2.
* Serving 8 unique LoRAs:

Ours: rank 16 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 2.
e Serving 16 unique LoRAs:

Ours: rank 32 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 3.
* Serving 32 unique LoRAs:

Ours: rank 64 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 5.
e Serving 64 unique LoRAs:

Ours: rank 64 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 6.
* Serving 128 unique LoRAs:

Ours: 7 clusters, rank 16 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 8.
* Serving 256 unique LoRAs:

Ours: 10 clusters, rank 16 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 10.
* Serving 512 unique LoRAs:

Ours: 25 clusters, rank 16 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 26.
* Serving 1024 unique LoRAs:

Ours: 7 clusters, rank 64 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 60.

E.1 BASELINE GPU MEMORY USAGE

The baseline for our comparison is the standard LoRA method with a rank of 16. The total parameter
count for the baseline is given by:

Paramsp,geline = D X 2 x 16.

This accounts for the parameters in the LoRA-adapted layers, where the factor of 2 represents the
weights and biases.

E.2 GPU MEMORY USAGE FOR JD FULL METHOD

For the Joint Decomposition (JD) Full method without clustering, the total parameter count is:

ParamsJD_pu“ =Dx2xr+N x 7“2.

* D x 2 x r: Parameters for the base model adapted with rank-r LoRA.
» N x r2: Additional parameters introduced by each of the N LoRA modules, each of size r x .

The GPU memory usage ratio relative to the baseline is:
Params;p_pun Dx2xr+N xr?

GPU Usage Rati = -
Sage Ralloyp pun Paramspaseline D x2x16
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E.3 GPU MEMORY USAGE FOR CLUSTERING METHOD

When employing clustering, the parameter count changes due to the addition of cluster-specific
parameters:

ParamSCluslering =Dx2xrxc+ N x (7”2 + 1)

* D x 2 x r x c: Parameters for the base model adapted with rank-r LoRA across c clusters.
¢ N x (r? + 1): Additional parameters for each LoRA module and cluster assignments.

The GPU memory usage ratio is:
PaIamSClustering Dx2xrxc+ N x (7.2 + 1)

GPU U Rati = =
Sa8C BRalOCIustering Paramspseline D x2x 16

E.4 PUNICA

In our vLLM experiments, we specifically utilized the Punica kernel for implementing multi-
LoRA, applying our approach in conjunction with Punica’s capabilities. Our custom function,
add_lora_slice_with_sigma, implements the following key steps:

1. Initialize Buffers: Creates temporary storage for intermediate calculations if not already pro-
vided.

2. Apply Matrix A: Transforms x using matrix A, storing the result in buffer.

3. Apply Matrix Sigma: Further transforms buffer using Sigma, storing the result in
buffer_sigma.

4. Apply Matrix B and Update y: Finally, transforms buf fer_sigma using B, applies scaling,
and updates a slice of y in place.

Below is the pseudocode for add_lora_slice_with_sigma, illustrating the integration:

Listing 1: Pseudocode for ‘add_lora_slice_with_sigma*

Function add_lora_slice_with_sigma(y, x, wa_t_all, wb_t_all, wsigma_t_all
, indices, layer_idx, scale, y_offset, y_slice_size, buffer=None) :

# Init not provided

Initialize buffers if

if buffer is None:
buffer = create_tensor (shape=(x.size(0), R), dtype=float32)

buffer_sigma = create_tensor (shape=(buffer.size(0), R), dtype=
float32)
# Step 1: Apply matrix A

dispatch_bgmv_low_level (buffer, x, wa_t_all, indices, layer_idx,
scale=1.0)

# Step 2: Apply matrix Sigma

dispatch_bgmv_low_level (buffer_sigma, buffer, wsigma_t_all, indices,
layer_idx, scale=1.0)

) “rix B and update y slice
dispatch_bgmv_low_level (y, buffer_sigma, wb_t_all, indices, layer_idx

, scale, y_offset, y_slice_size)
End Function

4 < 2. Applt
# Step 3: Apply

F SELECTING NUMBER OF CLUSTERS

To identify optimal hyperparameters for the clusters compression method, we analyzed the relation-
ship between reconstruction error and the parameter saved ratio for a single LoORA module, as shown
in Figure 5. By comparing the results across different numbers of Low-Rank Adaptation (LoRA)
configurations (100 and 500, depicted in subfigures Sa and 5b), we were able to observe the trade-
off between model size reduction and reconstruction accuracy. Based on these findings, we selected
the rank and number-of-clusters hyperparameters that effectively balance these two objectives. The
chosen settings were then used to conduct full-scale experiments.
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Reconstruction Error vs Parameter Saved Ratio Reconstruction Error vs Parameter Saved Ratio

(a) Recon. Error vs Parameter Saved Ratio for 100 (b) Recon. Error vs Parameter Saved Ratio for 500
LoRAs LoRAs

Figure 5: Comparison of reconstruction error against the parameter saved ratio for different numbers
of LoRA configurations for a single LORA module. The left subplot shows results for 100 LoRAs,
while the right subplot displays results for 500 LoRAs. These plots illustrate the trade-off between
reconstruction accuracy and compression efficiency, providing insights into optimal parameter set-
tings for compression.

G ADDITIONAL RESULTS

This section elaborates on the results that underpin the figures presented in the main text and show-
cases a consistent correlation across various evaluation metrics. Additionally, we assess the signifi-
cance of achieving convergence and the performance of compression on new unseen LoRA models.

G.1 RELATIVE ROUGE-L PERFORMANCE AND COMPRESSION RATE
Table 4 presents comprehensive results from the experiments underlying Figure 2a for each eval-
uation task. Additionally, we incorporate results using the Ties-merging benchmark (Yadav et al.,

2023b), which consolidates all LoRA-adapters into a single adapter of identical configuration and
parameter count; this integration significantly compromises performance.

G.2 ABSOLUTE ROUGE-L PERFORMANCE AND COMPRESSION RATE

Table 5 provides the full results behind Table 4, but with Rouge-L scores instead of relative perfor-
mance compared to LoRA.

G.3 RELATIVE ROUGE-1 PERFORMANCE AND COMPRESSION RATE

Table 6 provides full results for relative performance of Rouge-1, which shows the same trends as
the results for relative performance of Rouge-L (Table 4).

G.4 ABSOLUTE ROUGE-1 PERFORMANCE AND COMPRESSION RATE

Table 7 provides full results for absolute performance of Rouge-1, which shows the same trends as
the results for absolute performance of Rouge-L (Table 5).

G.5 RELATIVE EXACT-MATCH PERFORMANCE AND COMPRESSION RATE

Table 8 provides full results for relative performance of exact-match, which shows the same trends
as the results for relative performance of Rouge-L (Table 4).

G.6 Loss AND COMPRESSION RATE

Table 9 provides full results for test loss (cross-entropy), which shows the same trends as the results
for relative performance of Rouge-L (Table 4).
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Average | Para. Saved

Model Type | Method Type | Tasks
| | @sk039 | wski90 | tsk280 | wsk290 | wsk39l | taskdd2 | task620 | taskl342 | task1391 | taski598 |

base 0.26 £000 | 0.02 000 | 0.19 000 | 0.42 +000 | 0.11 £000 | 0.47 +000 | 0.11 +000 | 0.23 +000 | 0.19 +000 | 0.77 +000 | 0.28 +021 1.00/1.00
lora 1.00 + 000 | 1.00 +000 | 1.00 =000 | 1.00 +000 | 1.00 +000 | 1.00 +000 | 1.00 000 | 1.00 +000 | 1.00 +000 | 1.00 000 | 1.00 +000 | 0.00/0.00
10 0.57 4002 | 0.45 £004 | 0.10 £001 | 0.83 001 | 0.47 £ 000 | 0.69 £001 | 0.57 +000 | 0.82 +001 | 0.85 £000 | 0.62 +023 | 1.00/1.00
50 0.41 +000 | 0.18 0.03 +001 | 0.91 001 | 0.31 +000 | 0.65+000 | 0.62 +000 | 0.32 +004 | 0.84 +000 | 0.48 +028 | 1.00/1.00
TIES 100 0.40 000 | 0.2 5| 0.01 002 | 0.88 £000 | 0.33 £000 | 0.64 000 | 0.57 £002 | 0.01 000 | 0.82 000 | 0.44 £030 | 1.00/1.00
500 0.26 £000 | 0.01 £000 | 0.00 £000 | 0.83 000 | 0.29 2000 | 0.57 2000 | 0.37 £000 | 0.01 £000 | 0.43 £000 | 0.31 £026 | 1.00/1.00
SVD2 1.07 £002 | 1.00 000 | 1.00 £000 | 1.00 =000 | 0.98 001 | 1.00 £001 | 1.00 £010 | 1.00 001 | 1.00 001 | 1.00 004 | 0.88/0.88
SVD SVD 4 1.04 001 | 1.00 000 | 1.00 000 | 1.00 001 | 1.00 £000 | 0.99 002 | 0.99 £008 | 0.99 001 | 1.00 001 | 1.00 £003 | 0.75/0.75
SVD 8 1.02 £001 | 1.00 000 | 1.00 £000 | 1.00 000 | 1.00 £000 | 1.0I £000 | 1.00 001 | 1.OI £o001 | 1.0l £000 | 1.00 £001 | 0.50/0.50
SVD 16 1.00 000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £0.00 | 1.00 £000 | 1.00 £0.00 | 1.00 £000 | 1.00 £000 | 0.00/0.00
16 1.01 +001 | 1.00 £000 | 1.00 001 | 0.99 £000 | 0.96 £000 | 1.02 £002 | 1.13 £003 | 0.99 £002 | 0.98 £001 | 1.01 £00s | 1.00/0.90
32D 1.05 +001 | 1.00 £000 | 0.99 +000 | 1.OL £001 | 0.99 £000 | 0.97 £001 | 1.05£003 | 1.00 001 | 1.00 £001 | 1.00 +£003 | 1.00/0.80
10 diagonal (D) 64D 1.03 £001 | 1.00 000 | 1.00 £000 | 1.00 000 | 1.00 000 | 1.01 £o001 | 0.99 001 | 1.01 £000 | 1.01 £000 | 1.00 +o0.01 1.00/0.60
128 D 101 +001 | 1.00 +000 | 1.00 +000 | 1.00 +000 | 1.00 £000 | L.OL 001 | 0.99 £001 | 1.00 £000 | 1.00 £000 | 1.00 001 | 1.00/0.20
256 D 1.00 000 | 1.00 000 | 1.00 =000 | 1.00 000 | 1.00 +000 | 1.00 £000 | 1.00 £0.00 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00/-0.60
16 F 1.02 £000 | 1.06 £001 | 1.00 £000 | 1.00 000 | 0.99 001 | 0.98 000 | 1.01 £002 | 1.07 £000 | 101 £001 | 1.00 £000 | 1.01 £003 | 1.00/0.90
32F 1.04 001 1.00 £ 000 | 1.00 000 | 0.99 £000 | 0.96 £001 | 1.00 £002 | 1.00 001 | 1.01 £000 | 1.00 £002 | 0.99/0.79
10 full (F) 64 F 1.03 + o001 1.00 +000 | 1.00 +000 | 1.00 £000 | 1.0I £001 | 0.98 001 | 1.01 £000 | 1.01 000 | 1.00 + 001 0.97/0.57
128 F 1.01 + 001 1.00 4000 | 1.00 +000 | 1.00 +000 | 1.00 000 | 0.99 +000 | 1.00 +000 | 1.00 +000 | 1.00 +000 | 0.88/0.07
256 F 1.00 4000 | 1.00 000 | 1.00 +000 | 1.00 000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00 £000 | 1.00 000 | 0.50/-1.10
16D 0.98 +001 | 1.00 000 | 0.92+006 | 0.84 +007 | 0.92 +002 | 0.68 +005 | 0.87 +0.10 | 0.88 +007 | 0.83 +002 | 0.89 +0.10 | 1.00/0.98
32D 1.02 +002 | 1.0 0.99 +000 | 0.96 001 | 0.95 £002 | 0.84 002 | 1.00 £013 | 0.98 £001 | 0.88 001 | 0.96 +007 | 1.00/0.96
50 diagonal (D) 64 D 1.05 002 | 1.00 £0.00 | 1.00 +000 | 0.99 001 | 0.97 £000 | 0.99 001 | 1.09 003 | 1.01 £001 | 0.90 £001 | 1.00 005 | 1.00/0.92
128D 1.08 001 | 1.00 £000 | 1.00 000 | 0.99 001 | 0.98 £000 | 0.98 001 | L.I1£003 | 1.00 £000 | 1.00 001 | 1.0l 004 | 1.00/0.84
256 D 1.01 =001 | 1.03 £001 | 1.00 =000 | 1.00 £000 | 1.00 001 | 1.00 £000 | 0.97 £003 | 1.01 £003 | 1.00 001 | 1.01 o001 | 1.00 002 | 1.00/0.68
16 F 0.99 £004 | 1.00 £001 | 1.00 £001 | 0.96 £ 001 | 0.95 002 | 0.94 001 | 0.64 010 | 1.01 015 | 0.97 002 | 0.87 000 | 0.93 £0.12 1.00/0.98
32F 1 1.00 + 0.02 1.00 000 | 0.98 £001 | 0.96 +000 | 0.95 +001 | 1.09 £002 | 1.OI £002 | 0.89 £001 | 0.99 £005 | 0.99/0.95
50 full (F) 64 F 1.02 £ 001 | 1.06 + 002 1.00 £000 | 0.99 001 | 0.98 o001 | 1.03 £o01 | 1.11 £000 | 1.00 £o001 | 0.98 002 | 1.02 £ 004 0.97/0.89
128 F 1.02 £ 000 | 1.06 +0.01 1.00 £000 | 1.00 £001 | 0.98 +000 | 0.98 +001 | 1.03 £004 | 1.00 001 | 1.00 000 | 1.01 £003 | 0.88/0.72
256 F 1.00 000 | 1.02 +000 | 1.00 =000 | 1.00 +000 | 1.00 +000 | 0.99 +000 | 1.OI +001 | 1.00 £000 | 1.0I £000 | 1.OL £000 | 1.00 +001 | 0.50/0.18
16 D 0.80 007 | 0.89 +006 | 0.93 £003 | 0.96 001 | 0.50 009 | 0.78 001 | 0.28 £007 | 0.52 010 | 0.78 £003 | 0.81 £002 | 0.72 022 | 1.00/0.99
32D 0.95 006 | 0.98 +001 | 1.0f 00 | 0.91 £006 | 0.80 014 | 0.89 006 | 0.60 £0.10 | 0.77 £026 | 0.91 +002 | 0.83 £002 | 0.86 014 | 1.00/0.98
100 diagonal (D) 64D 1.01 £003 | 101 001 | 1.00 000 | 0.98 002 | 0.96 001 | 0.94 =001 | 0.88 =005 | 1.11 008 | 0.96 £002 | 0.87 003 | 0.97 007 | 1.00/0.96
128 D 1.01 =000 | 1.02 £001 | 1.00 000 | 1.00 000 | 0.99 001 | 0.97 000 | 1.00 £003 | 1.11 002 | 0.99 £001 | 0.89 002 | 1.00 £005 | 1.00/0.92
256 D 1.00 000 | 1.06 000 | 1.00 000 | 1.00 £0.00 | 0.99 000 | 0.98 £000 | 1.00 001 | 1.11 £003 | 1.00 £001 | 0.98 £001 | 1.01 £004 | 1.00/0.84
16 F 0.95 +001 | 0.97 £003 | 0.97 £003 | 0.97 +003 | 0.93 2001 | 0.92 £001 | 0.64 +£003 | 0.89 +016 | 0.87 +002 | 0.83 £001 | 0.89 +o0.11 1.00/0.99
32F 1.00 + 002 | 0.99 +001 | 1.00 +000 | 1.00 +000 | 0.97 +001 | 0.95+000 | 0.86 +003 | 1.12 +003 | 0.96 +001 | 0.87 +000 | 0.97 +007 | 0.99/0.97
100 full (F) 64 F 1.02 £000 | 1.00 +002 | 1.00 000 | 1.00 £000 | 0.98 000 | 0.96 £000 | 0.99 001 | 1.09 £o001 | 0.99 +002 | 0.89 £000 | 0.99 + 005 0.97/0.93
128 F 1.01 o001 | 1.05 +001 | 1O 00 | 0.99 +000 | 1.00 +000 | 0.98 £000 | 1.03 £001 | 1.10 £001 | 101 £000 | 0.99 +001 | 1.02 +004 | 0.88/0.80
256 F 1.01 =001 | 1.03 001 | 100 =000 | 1.00 000 | 1.01 000 | 0.99 =000 | 0.98 =000 | 1.00 £003 | 101 £000 | 1.01 £000 | 1.00 001 | 0.50/0.34
100 wielusters (C) ‘ 16C5 ‘ 1.12 ‘ 1.02 ‘ 1.00 ‘ 1.00 ‘ 0.98 ‘ 0.96 ‘ 1.00 ‘ 1.20 ‘ 1.04 ‘ 0.90 ‘ 1.02 ‘ 1.00/0.95
16C7 1.12 1.02 1.00 1.00 1.00 0.97 1.01 1.30 1.03 0.92 1.04 1.00/0.93
16D 0.57 £007 | 0.55+003 | 0.83 £004 | 0.78 016 | 0.85 £ 004 | 0.68 007 | 0.24 001 | 0.43 001 | 0.76 006 | 0.79 001 | 0.65 +020 | 1.00/1.00
32D 0.61 £012 | 0.55+008 | 0.83 £002 | 0.84 +012 | 0.91 £002 | 0.71 +005 | 0.29 +005 | 0.47 £008 | 0.79 £ 004 | 0.79 £ 001 | 0.68 +020 | 1.00/1.00
500 diagonal (D) 64D 0.73 £ 002 | 0.63 o011 | 0.89 £004 | 0.97 £ 000 | 0.94 £000 | 0.83 005 | 0.45 £009 | 0.50 007 | 0.82 £ 002 | 0.80 £002 | 0.76 +0.18 1.00/0.99
128D 0.84 000 | 0.92 4002 | 0.97 003 | 0.98 001 | 0.94 000 | 0.88 +002 | 0.60 +0.15 | 0.53 +001 | 0.85+005 | 0.80 +002 | 0.83 +015 | 1.00/0.98
256 D 0.99 003 | 0.99 +000 | 1.00 000 | 1.00 000 | 0.96 000 | 0.92 £003 | 0.66 £006 | 0.84 £ 014 | 0.92 £002 | 0.84 £001 | 0.9 011 | 1.00/0.97
16 F 0.57 001 | 043 £007 | 0.78 £001 | 0.97 £000 | 0.96 000 | 0.83 001 | 0.64 2000 | 0.53 £003 | 0.83 £001 | 0.83 £000 | 0.75 +017 | 1.00/1.00
32F 0.79 =005 | 0.54 £ 004 0.98 £000 | 0.97 £000 | 0.90 £001 | 0.69 001 | 0.50 000 | 0.86 +002 | 0.83 £001 | 0.81 £016 | 0.99/0.99
500 full (F) 64 F 1.02 =000 | 0.96 + 001 1.00 £ 001 | 0.96 000 | 0.97 001 | 0.73 001 | 0.54 o001 | 0.91 001 | 0.86 £000 | 0.89 £014 | 0.97/0.96
128 F ot | 0.97 £002 1.00 000 | 0.98 +000 | 0.96 +000 | 0.87 +001 | 1.07 £002 | 0.98 £000 | 0.87 £000 | 0.97 £006 | 0.88/0.86
256 F 000 | 1.03 o001 1.00 000 | 0.99 +001 | 0.97 £001 | 0.99 +002 | 1.03 £o01 | 1.00 +001 | 0.87 £000 | 0.99 £00s | 0.50/0.47
16C7 1.09 1.00 0.99 1.00 0.98 0.95 0.72 0.87 0.98 0.90 0.95 1.00/0.98
16 C 10 1.10 1.01 1.00 0.99 0.97 0.93 0.70 1.30 1.02 0.88 0.99 1.00/0.98
500 w/clusters (C) 16C25 1.10 1.00 1.00 0.99 0.99 0.96 0.98 1.31 1.03 0.91 1.03 1.00/0.95
64C5 1.09 0.98 1.00 1.00 0.99 0.96 0.99 118 1.04 0.87 1.01 0.97/0.93
64C7 1.12 1.02 1.00 1.00 1.00 0.96 0.99 1.22 1.04 093 1.03 0.97/0.91

Table 4: Relative In-Distribution ROUGE-L scores for various tasks and methods

G.7 AGREEMENT AND COMPRESSION RATE

Table 10 provides full results for agreement, which shows the same trends as the results for rel-
ative performance of Rouge-L (Table 4). Note that agreement measures the exact match in task
generations between the uncompressed LoRA model and the compressed LoRA model, rather than
comparing to the task’s ground truth data. The comparison is very strict and requires an exact match
between the generations of the two models (LoRA and the compressed LoRA), comparing each
sample one at a time.

G.8 RECONSTRUCTION ERROR AND COMPRESSION RATE

Table 11 provides the full results of the experiments behind Figure 3 for every evaluation task.

G.9 RECONSTRUCTION ERROR: TRAINED VS. RANDOM

Table 12 provides the reconstruction error on random (untrained) LoRA matrices. Comparing with
Table 11, we find that reconstruction error is consistently higher on random (untrained LoRA) ma-
trices than on trained LoRA matrices. This demonstrates that after training, LoRAs have a shared
structure that JD exploits.
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Tasks

Average | Para. Saved

Model Type | Method Type |
| | task039 | task190 | task280 | task290 | task391 | task442 | task620 | taskI342 | task1391 | task1598 | |

base 2444 5000 | 160 £000 | 19.13 £000 | 3922 000 | 10.27 £000 | 35.46 £000 | 7.85£0m0 | 6.22 000 | 17.82 000 | 38.87 000 | 20.24 £ 1327 | 1.00/1.00

lora 95.00 £000 | 86.00 £000 | 99.00 000 | 93.67 000 | 94.33 +000 | 74.88 +000 | 7440 £000 | 26.68 +000 | 95.00 000 | 50.32 £000 | 78.87 £225 | 0.00/0.00

10 76.50 £000 | 49.00 + 173 | 4433 404 | 9.80 055 | 78.56 +09 | 3524 +000 | 5137 +067 | 1526 2012 | 77.67 = 115 | 42.72 <001 | 48.05 2361 | 1.00/1.00

50 55.80 £000 | 35.00 +000 | 18.00 520 | 242050 | 8578 09 | 23.03 000 | 48.03 +000 | 16.50 000 | 30.00 £ 345 | 42.47 x002 | 35.70 £2301 | 1.00/1.00

TIES 100 5243 £000 | 34.00 +000 | 19.67 +452 | 1.09 %166 | 8333 000 | 24.89 +000 | 47.52 4000 | 15.18 2042 | 1.00 000 | 41.19 <003 | 32.03 42450 | 1.00/1.00

500 35.18 000 | 2200 000 | 1.00+000 | 0.00 =000 | 78.00 £000 | 21.46 <000 | 4222 +004 | 993 2013 | 1002000 | 21.50 003 | 2327 +236¢ | 1.00/1.00

SVD2 93.15 £277 | 9224 4185 | 99.09 £ 015 | 9344 £o1s | 93.89 2035 | 7374 £ost | T455 +oss 95.06 + 135 | 5021 +o044 | 79.11 272 | 0.88/0.88

SVD SVD4 94.01 £360 | 89.21 +071 | 99.05 009 | 93.65 003 | 9466 1063 | 7489 03 | 7361 £ 115 93.98 £077 | 5047 £ost | 78.90 £ 2268 | 0.75/0.75
SVD3 95.00 £000 | 87.40 059 | 99.05 £009 | 93.65 003 | 9436 03 | 7458 £012 | 75.07 £ o0 9551 £ 109 | 5089 £007 | 81.01 £2174 | 0.50/0.50

SVD 16 | 9500000 | 86.00 £000 | 99.00 +000 | 93.67 +000 | 94.33 xoo0 | 74.90 £003 | 74.23 +ous 95.00 £ 000 | 5030 £002 | 78.36 £ 297 | 0.00/0.00

16D 96.67 £055 | 87.00 + 100 | 99.00 £000 | 9400 o7 | 93.11 x03s | 72.08 005 | 7626 £ 119 94.00 £ 173 | 4930 £o4s | 79.15 £ 2215 | 1.00/0.90

2D 95.67 058 | 90.00 + 100 | 99.00 000 | 93.00 +033 | 94.89 051 | 73.86 031 | 7192 +ost 94.67 +0s8 | 5036 +026 | 79.13 £ 2275 | 1.00/0.80

10 diagonal (D) 64D 95.00 +000 | 88.33 +0s8 | 99.00 000 | 93.67 000 | 9478 038 | 7461 013 | T497 +oss 96.00 000 | 5099 +006 | 79.37 2294 | 1.00/0.60
128D 95.00 £000 | 86.67 +0s8 | 99.00 000 | 93.67 000 | 9433 000 | 7492 +013 | T496 +os1 95.00 000 | 5021 +012 | 79.02 284 | 1.00/0.20
256 D 95.00 £000 | 86.00 +000 | 99.00 000 | 93.67 000 | 9433 000 | 7488 000 | 7440 +000 95.00 000 | 5027 +002 | 78.92 £ 2277 | 1.00/-0.60

16F 97.00 000 | 91.00 + 100 | 99.00 000 | 93.56 +019 | 93.56 +069 | 73.60 +036 | T4.94 +125 | 28.66 003 | 96.00 = 100 | 50.15 020 | 79.75 +2272 | 1.00/0.90

32F 96.67 058 | 89.33 4058 | 99.00 +000 | 93224010 | 9444 +019 | 741l +010 | 7174 +050 | 26.74 +050 | 9467 =058 | 50.63 <024 | 79.06 +2301 | 0.99/0.79

10 full (F) 64 F 95.00 +000 | 88.67 +0ss | 99.00 +000 | 93.67 000 | 94.56 +038 | 74.56 +013 | 7547 +0s8 | 2626 034 | 96.00 000 | 50.89 £0.17 | 79.41 £2207 | 0.97/0.57
128F 95.00 £000 | 86.67 +05s | 99.00 000 | 93.67 000 | 94.33 +000 | 75.04 003 | 7440 +000 | 26.53 013 | 95.00 000 | 50.36 £003 | 79.00 £ 2281 | 0.88/0.07

256 F 95.00 000 | 86.00 +000 | 99.00 000 | 93.67 +000 | 94.33 000 | 74.90 003 | 7429 +019 | 26.68 =000 | 95.00 000 | 50.30 =003 | 78.92 2277 | 0.50/-1.10

16D 9276 353 | 84.67 4115 | 99.00 £000 | 86.17 £551 | 79.68 +621 | 69.07 £ 154 | 5065 + 397 83.90 £ 643 | 41.86 £096 | 7110 2399 | 1.00/0.98

32D 95.33 208 | 87.33 4208 | 99.00 £000 | 9260 029 | 9032+ 104 | 7116 £ 147 | 6251 £ 164 9333 £ 115 | 4435 £oar | 7625 281 | 1.00/096

50 diagonal (D) 64D 97.00 £000 | 90.33 4153 | 99.00 000 | 9378 £019 | 93.00 +0ss | 7237 2035 | 7339 £093 | 29.06 2080 | 95.67 £0s8 | 45.43 £0as | 78.90 £2329 | 1.00/0.92
128D 96.33 £0s8 | 92.67 058 | 99.00 000 | 9356 £019 | 93.00 +0ss | 7332 026 | 73.03 £ 109 | 2051 2093 | 95.00 £000 | 50.16 £07s | 79.56 £2251 | 1.00/0.84

256 D 95.67 +0ss | 88.33 058 | 99.00 £000 | 9356 £019 | 9467 1067 | 7482 026 | 7236 £207 | 2690 075 | 95.33 £oss | 50.73 £oas | 79.14 £2290 | 1.00/0.68

16 F 94.06 354 | 85.67 + 115 | 98.67 058 | 9035 + 137 | 89.90 £ 191 | 7032 £ 066 | 47.62 £ 728 9233 £ 153 | 43.68 024 | 73.95 £ 2473 | 1.00/0.98

32F 97.00 £000 | 85.67 +1.53 | 99.00 £000 | 93.67 000 | 9222 060 | 71.88 030 | 7101 £ 102 95.67 + 153 | 4497 +oar | 78.02 £ 218 | 0.99/0.95

50 full (F) 64 F 96.67 038 | 91.00 +200 | 99.00 +000 93.22 £0s51 | 73.16 £041 | 76.28 +0s1 9533 058 | 4931 £ 100 | 79.72 £ 250 | 0.97/0.89
128F 97.00 £000 | 91.00 £ 100 | 99.00 +000 94.11 +0s1 02 | 7317 toss 95.00 £ 100 | 50.56 £006 | 79.42 £ 2205 | 0.88/0.72

256 F 95.00 £000 | 88.00 £000 | 99.00 000 | 93.67 000 | 9444 010 | 7425 o | 7497 toss 96.00 +000 | 50.86 £019 | 79.30 £ 252 | 0.50/0.18

16D 7643 £707 | 76.67 493 | 9161 +275 | 89.99 + 107 | 47.55 856 | 58.08 072 | 20.77 +550 | 13.90 279 | 73.93 £3.13 | 40.74 <085 | 58.97 265 | 1.00/0.99

2D 90.10 +585 | 84.00 + 100 | 99.00 +000 | 8552 4534 | 75.69 +1275 | 66.62 +415 | 4466 +726 | 2049 +7.07 | 86.67 = 156 | 42.01 <094 | 69.48 2514 | 1.00/0.98

100 diagonal (D) 64D 95.56 +249 | 86.67 058 | 99.00 000 | 9224 + 168 | 90.89 + 117 | 7035 +045 | 65.62 403 | 29.58 =202 | 9167 £231 | 43.64 %136 | 76.52 +2302 | 1.00/0.96
128D 96.00 +000 | 87.33 + 115 | 99.00 000 | 93.89 +019 | 93.00 058 | 72.70 030 | 7434 +207 | 29.66 05t | 93.67 xos8 | 44.82 x0s | 7844 +2287 | 1.00/0.92

256 D 95.00 £000 | 91.00 +000 | 99.00 +000 | 9356 +019 | 93.11 +019 | 73.05 020 | 7452 +095 | 29.67 =067 | 95.33 xoss | 49.42 xoes | 79.37 2238 | 1.00/0.84

16F 90.70 + 107 | 83.00 +265 | 96.00 300 | 9122 4294 | 87.94 +054 | 68.72 + 105 | 47.57 £25¢ | 23.75 433 | 8233 2208 | 41.51 zoe7 | 71.27 2423 | 1.00/0.99

32F 9533 £ 153 | 85.00 + 100 | 99.00 000 | 9350 +022 | 9144 +o0s4 | 70.94 002 | 63.64 + 198 os1 | 9167 +oss | 43.94 x01s | 76.43 £2301 | 0.99/0.97

100 full (F) 64 F 97.00 £000 | 85.67 4153 | 99.00 000 | 93.78 +019 | 92.56 4019 | 72.11 +00s | 7329 +064 | 29.15 024 | 9433 £ 153 | 44.97 £o0s | T8.18 £2303 | 0.97/0.93
128F 96.33 058 | 90.33 4058 | 99.00 000 | 93.00 +000 | 93.89 4019 | 73.11 4036 | 76.50 + 101 | 29.45 +035 | 96.00 £000 | 49.81 £034 | 79.74 £ 2247 | 0.88/0.80

256 F 96.33 058 | 88.67 058 | 99.00 000 | 93.67 000 | 94.89 4019 | 7440 +016 | 72.90 012 | 26.77 +06s | 96.00 =000 | 50.83 £009 | 79.35 £2304 | 0.500034

100 wiclusters (C) ‘ 16C5 ‘ 98.00 ‘ 88.00 ‘ 99.00 ‘ 93.38 ‘ 91.67 ‘ 72.02 ‘ 76.80 ‘ 2774 ‘ 96.00 ‘ 46.06 ‘ 78.87 ‘ 1.00/0.95
) 16C7 98.00 88.00 99.00 93.67 94.00 72.97 76.83 2991 95.00 47.33 79.47 1.00/0.93

16D 5444 +687 | 47.00 +283 | 82.21 +359 | 73.38 + 1497 | 80.08 +371 | 51.02 £531 17.49 + 1.10 11.58 021 | 72.67 603 | 39.65 +028 | 53.16 +2497 1.00/1.00

32D 58.08 £ 1152 | 47.00 £707 | 82.06 + 169 | 78.62 £ 1123 | 85.57 4148 | 5298 31 | 2173 £305 | 12 7533 404 | 3978 £oa2 | 55.66 £ 2545 | 1.00/1.00

500 diagonal (D) 64D 69.21 203 | 54.50 +9.19 | 8833 404 | OL1I +038 | 88.78 x03 | 6236 +352 | 3336 + 669 77.67 231 | 4042 £09s | 6216 £2605 | 1.00/0.99
128D 79.77 037 | 79.50 212 | 95.89 +253 | 91.89 £ 130 | 88.67 +000 | 65.92 4179 | 4498 + 1098 81.00 +500 | 4034 £os0 | 67.82 £2635 | 1.00/0.98

256 D 93.83 £252 | 85.00 £000 | 99.00 £000 | 93.78 £ 019 | 90.56 035 | 68.95 £ 192 | 4939 £a36 87.33 231 | 4215 +07 | 7283 +2593 | 1.00/097

16F 54.30 113 | 37.00 4566 | 77.67 058 | 9100 000 | 90.56 010 | 6247 079 | 47.56 +029 79.00 = 100 | 4158 +023 | 60.31 +2¢42 | 1.00/1.00

32F 75.10 £492 | 46.50 +35¢ | 9167 153 | 9156 +019 | 91.56 038 | 67.37 083 | SLI7 +ost 81.67 =153 | 4192 042 | 65.84 £256¢ | 0.99/0.99

500 full (F) 64 F 96.94 +04 | 82.50 +071 | 9333 + 058 | 9389 +009 | 90.67 x000 | 7230 +071 | 5463 +07 86.33 058 | 43.16 +00s | 7249 £ 2064 | 0.97/0.96
128F 97.67 058 | 83.50 +212 | 98.00 000 | 93.56 +019 | 92.00 +000 | 71.92 010 | 65.02 +0s1 93.00 =000 | 4385 +012 | 7647 277 | 0.88/0.86

256 F 98.00 000 | 88.50 +071 | 99.00 000 | 9378 +010 | 93.00 +0ss | 7245 +038 | 7377 +121 | 27.59 030 | 9533 xoss | 43.81 £017 | T8.18 2016 | 0.5000.47

16C7 95.00 86.00 98.00 93.67 91.67 7119 54.69 20.03 90.00 46.34 74.66 1.00/0.98

16C 10 96.00 87.00 99.00 93.00 91.33 69.93 53.48 30.09 94.00 44.89 75.87 1.00/0.98

500 wiclusters (C) | 16C 25 96.00 86.00 99.00 9271 93.00 72.13 74.59 3021 95.00 46.66 7853 1.00/0.95
64C5 95.00 84.00 99.00 93.67 92.67 72.32 75.60 27.17 96.00 44.43 77.99 0.97/0.93

64C7 98.00 88.00 99.00 94.00 93.33 72.18 75.83 28.14 96.00 47.68 79.22 097/0.91

Table 5: Absolute In-Distribution ROUGE-L scores for various tasks and methods

G.10 CONVERGENCE

Table 13 presents outcomes where the JD-Full algorithm is executed until convergence. Our conver-
gence criterion is defined as follows:

max (HUt+1 - UtUtTUt+l||Fro/||Ut+1HF‘roa ||Vi+1 - VtV;gTVi-i-lHFro/||Vt+1||Fro) <T (19)

where the tolerance threshold 7 is set to 0.001. Due to the slow per-iteration computation times
of the primary JD-Full algorithm, which quickly reaches an approximate optimum but then has a
long tail of convergence for final digits of precision, we devised an alternative eigenvalue iteration
algorithm (Appendix A.2) optimized for GPU acceleration. Our analysis indicates that adherence to
this convergence criterion does not significantly alter the results.

G.11 OUT-OF-DISTRIBUTION PERFORMANCE (LORA-HUB)

For completeness, we incorporate results using the protocol of LoRA-hub (Huang et al., 2024). That
is, 100 LoRA-adapters are sampled, independent of the evaluation task, representing a measure of
out-of-distribution performance. This also means that each result on a task is averaged across all
100 LoRA-adapters (as there is no a priori LoORA-to-task mapping). These results were obtained
without normalizing the LoRA-adapters before applying the JD algorithms, a step we later identified
as beneficial. We present performance comparison in Table 15. Table 14 presents the average
agreement between uncompressed and compressed LoRA across 10 evaluation tasks. Results per
task for JD-diagonal and JD-full are shown in Table 16 and Table 17, respectively.

From these tables, we find that the JD algorithms successfully maintain performance in this out-of-
distribution context.
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Model Type ‘ Method Type ‘ Tasks Average ‘ Para. Saved
| | task039 | task190 | task280 | (ask200 | task391 | taskd42 | task620 | task1342 | taskI391 | task1598 |

base 0.26 +000 | 0.02 +000 | 0.19 +000 | 042 +000 | 0.11 +000 | 0.51 +000 | 0.11 +000 | 0.26 +000 | 0.19 +000 | 0.80 +0.00 | 0.29 +0.22 1.00/1.00

lora 1.00 +0.00 | 1.00 +000 | 1.00 =000 | 1.00 +000 | 1.00 +000 | 1.00 +000 | 1.00 +000 | 1.00 +000 | 1.00 +0.00 | 1.00 000 | 1.00 000 | 0.00/0.00

10 0.81 £000 | 0.57 002 | 0.45 004 | 0.10 001 | 0.83 001 | 0.52 +000 | 0.71 001 | 0.58 000 | 0.82 x001 | 0.80 £000 | 0.62 +022 | 1.00/1.00

50 0.59 =000 | 0.41 £000 | 0.1 0.03 001 | 0.91 001 | 0.34 000 | 0.67 £000 | 0.62 =000 | 0.32 +004 | 0.78 000 | 0.48 £027 | 1.00/1.00

TIES 100 0.55 =000 | 0.40 £000 | 0.2 0.01 £002 | 0.88 £000 | 0.36 £000 | 0.65 +0.00 | 0.57 002 | 0.01 2000 | 0.78 =000 | 0.44 £029 | 1.00/1.00

500 0.37 £000 | 0.26 £000 | 0.01 £000 | 0.00 000 | 0.83 000 | 0.31 000 | 0.58 000 | 0.37 000 | 0.01 000 | 0.41 000 | 0.32 +026 | 1.00/1.00

SVD 2 0.98 £003 | 1.07 £002 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 0.99 000 | 1.01 o001 | 1.00 010 | 1.00 001 | 0.99 001 | 1.00 004 | 0.88/0.88

SVD SVD 4 0.99 004 | 1.04 £001 | 1.00 £000 | 1.00 £000 | 1.00 £001 | 1.00 000 | 0.99 +001 | 0.99 +008 | 0.99 +001 | 1.01 000 | 1.00 £003 | 0.75/0.75
SVD 8 1.00 + 000 | 1.02 +001 | 1.00 £ 000 | 1.00 +000 | 1.00 +000 | 1.00 000 | 1.0I £000 | 1.00 £001 | L.OI £001 | 1.0l £000 | 1.00 001 | 0.50/0.50

SVD 16 1.00 + 000 | 1.00 +000 | 1.00 +000 | 1.00 4000 | 1.00 000 | 1.00 +000 | 1.00 +000 | 1.00 000 | 1.00 +000 | 1.00 000 | 1.00 000 | 0.00/0.00

16D 1.02 001 | 1.01 + o001 1.00 4001 | 0.99 +000 | 0.97 £000 | 1.03 +002 | 1.12£003 | 0.99 £002 | 0.99 £000 | 1.01 £004 | 1.00/0.90

32D 1.01 o001 | 1.05 + 001 0.99 +000 | 1.01 £001 | 0.99 +000 | 0.97 001 | 1.04 +003 | 1.00 +001 | 1.0l 001 | 1.0I +002 | 1.00/0.80

10 diagonal (D) 64D 1.00 £0.00 | 1.03 001 1.00 £000 | 1.00 =000 | 1.00 000 | 1.01 £001 | 0.99 001 | 1.01 £000 | 1.01 000 | 1.00 +0.01 1.00/0.60
128D 1.00 £000 | 1.01 £001 1.00 +000 | 1.00 £000 | 1.00 000 | 101 £001 | 0.99 £001 | 1.00 £000 | 1.00 £000 | 1.00 £001 | 1.00/0.20
256 D 1.00 =000 | 1.00 +000 1.00 £000 | 1.00 £000 | 1.00 +000 | 1.00 £000 | 1.00 =000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00/-0.60

16 F 1.02 + 000 | 1.06 + 001 1.00 000 | 0.99 +001 | 0.99 +000 | 1.0 £002 | 1.07 £000 | 1.OI £001 | 1.00 £000 | 1.02 +£003 1.00/0.90

32F 1.02 001 | 1.04 + 001 1.00 000 | 1.00 £000 | 0.99 £000 | 0.96 +001 | 1.00 £002 | 1.00 £001 | 1.0l £000 | 1.00 £002 | 0.99/0.79

10 full (F) 64 F 1.00 £000 | 1.03 + 001 1.00 £000 | 1.00 000 | 1.00 £000 | 1.01 £001 | 0.98 o001 | 1.01 £o00 | 1.01 £000 | 1.00 £ o001 0.97/0.57
128 F 1.00 + 000 | 1.01 + 001 1.00 4000 | 1.00 +000 | 1.00 +000 | 1.00 000 | 0.99 000 | 1.00 000 | 1.00 000 | 1.00 +000 | 0.88/0.07

256 F 1.00 + 000 | 1.00 +0.00 1.00 + 000 | 1.00 +000 | 1.00 +000 | 1.00 +000 | 1.00 000 | 1.00 000 | 1.00 £000 | 1.00 000 | 0.50/-1.10

16D 0.98 +004 | 0.98 £001 0.92 +006 | 0.85+006 | 0.94 +002 | 0.69 +005 | 0.88 +0.10 | 0.88 +007 | 0.86 =001 | 0.90 +0.10 | 1.00/0.98

32D 1.00 £002 | 1.02 £002 0.99 £000 | 0.96 001 | 0.96 002 | 0.85 £002 | 1.00 £012 | 0.98 001 | 0.90 £000 | 0.97 006 | 1.00/0.96

50 diagonal (D) 64D 1.02 £000 | 1.05 002 1.00 £000 | 0.99 001 | 0.97 £001 | 0.99 001 | 1.09 =003 | 1.01 =001 | 0.94 £000 | 1.01 £004 | 1.00/0.92
128 D 1.01 =001 | 1.08 £001 | 1.00 000 | 1.00 £000 | 0.99 =001 | 0.98 =000 | 0.98 £002 | 1.10 £003 | 1.00 £000 | 1.01 o001 | 1.02 +004 | 1.00/0.84

256 D 1.01 001 | 1.03 001 | 1.00 000 | 1.00 £000 | 1.00 001 | 1.00 £000 | 0.97 003 | 1.00 £003 | 1.00 £001 | 1.01 £000 | 1.00 £002 | 1.00/0.68

16 F 0.99 004 | 1.00 £001 | 1.00 £001 | 0.96 +001 | 0.95+002 | 0.95+001 | 0.65+009 | 1.01 015 | 0.97 002 | 0.88 +001 | 0.94 +0.11 1.00/0.98

32F 1.02 +000 | 1.00 +002 | 1.00 +000 | 1.00 +000 | 0.98 +001 | 0.97 +000 | 0.96 +001 | 1.09 +003 | 1.0I +002 | 0.93 +000 | 0.99 +004 | 0.99/0.95

50 full (F) 64 F 1.02 001 | 1.06 +002 | 1.00 000 | 1.00 000 | 0.99 +001 | 0.98 o000 | 1.03 +001 | 1.11 000 | 1.00 £o001 | 0.99 001 | 1.02 +o004 0.97/0.89
128 F 1.02 £000 | 1.06 001 | 1.00 000 | 1.00 £000 | 1.00 001 | 0.98 000 | 0.98 £001 | 1.03 £004 | 1.00 001 | 1.01 £000 | 1.01 £002 | 0.88/0.72

256 F 1.00 £000 | 1.02 £000 | 1.00 000 | 1.00 £000 | 1.00 000 | 0.99 000 | 1.01 £001 | 1.00 £000 | 101 £000 | 1.01 £000 | 1.00 001 | 0.50/0.18

16 D 0.80 =007 | 0.89 £006 | 0.93 £003 | 0.96 £001 | 0.51 £009 | 0.81 002 | 0.30 007 | 0.54 £011 | 0.78 £003 | 0.83 £002 | 0.73 021 | 1.00/0.99

32D 0.95 =006 | 0.98 001 | 1.00 £000 | 0.91 006 | 0.80 013 | 0.91 £005 | 0.62 +010 | 0.78 £025 | 0.91 £002 | 0.85 001 | 0.87 +014 | 1.00/0.98

100 diagonal (D) 64 D 1.01 003 | 1.01 £0.01 0.98 002 | 0.96 001 | 0.95+001 | 0.90 005 | 1.11 007 | 0.96 £0.02 | 0.88 £0.02 | 0.98 007 | 1.00/0.96
128 D 1.01 000 | 1.02 + 001 1.00 +000 | 0.99 £001 | 0.98 £000 | 1.00 £003 | 111 £002 | 0.99 £001 | 0.92 £000 | 1.00 £00s | 1.00/0.92

256 D 1.00 + 000 | 1.06 + 000 1.00 000 | 0.99 +000 | 0.98 £000 | 1.00 £001 | 1.1 +£003 | 1.00 £001 | 0.99 £002 | 1.01 £004 | 1.00/0.84

16 F 0.95 =001 | 0.97 +003 0.97 +003 | 0.93 001 | 0.93 £001 | 0.66 +003 | 0.90 £0.16 | 0.87 £0.02 | 0.85 001 | 0.90 +0.10 1.00/0.99

32F 1.00 002 | 0.99 +0.01 1.00 £000 | 0.97 £001 | 0.96 000 | 0.87 £003 | 1.12 £003 | 0.96 001 | 0.89 000 | 0.98 £007 | 0.99/0.97

100 full (F) 64 F 1.02 000 | 1.00 +0.02 1.00 £000 | 0.98 000 | 0.97 000 | 0.99 001 | 1.10 001 | 0.99 £002 | 0.93 001 | 1.00 £004 | 0.97/0.93
128 F 101 001 | 1.05 001 0.99 £000 | 1.00 £000 | 0.98 £000 | 1.03 £001 | 1.10 =001 | 1.01 2000 | 1.00 £000 | 1.02 £003 | 0.88/0.80

256 F 101 001 | 1.03 £001 1.00 £000 | 101 000 | 1.00 £000 | 0.98 000 | 1.00 =003 | 1.01 £000 | 1.01 £000 | 1.00 £001 | 0.50/0.34

100 wiclusters (C) ‘ 16C5 ‘ 1.12 ‘ 1.02 ‘ ‘ 1.00 ‘ 0.98 ‘ 0.97 ‘ 1.01 ‘ 1.19 ‘ 1.04 ‘ 0.94 ‘ 1.03 ‘ 1.00/0.95
16C7 112 1.02 1.00 1.00 0.98 1.01 1.29 1.03 0.97 1.04 1.00/0.93

16D 0.57 £007 | 0.55 +003 0.78 + 016 | 0.85 +004 | 0.73 +007 | 0.24 +002 | 0.45 +001 | 0.76 +006 | 0.81 +000 | 0.66 +020 | 1.00/1.00

32D 0.61 012 | 0.55 +008 0.84 +012 | 0.91 002 | 0.75 +005 | 0.30 005 | 0.49 +007 | 0.79 +004 | 0.82 =001 | 0.69 +020 | 1.00/1.00

500 diagonal (D) 64 D 0.73 £ 002 | 0.63 +0.11 0.97 +000 | 0.94 +000 | 0.86 £003 | 0.46 +009 | 0.51 +007 | 0.82 +002 | 0.83 001 | 0.77 +015 | 1.00/0.99
128 D 0.84 000 | 0.92 +002 0.98 +001 | 0.94 000 | 0.90 +002 | 0.62 +0.14 | 0.54 +001 | 0.85+005 | 0.83 +001 | 0.84 +015 | 1.00/0.98

256 D 0.99 =003 | 0.99 +000 1.00 £000 | 0.96 £000 | 0.93 002 | 0.68 +005 | 0.85 +0.14 | 0.92 £002 | 0.85£000 | 0.92 £0m1 | 1.00/0.97

16 F 0.57 £001 | 0.43 £007 | 0.78 £001 | 0.97 £000 | 0.96 000 | 0.86 001 | 0.65 £000 | 0.55 002 | 0.83 £001 | 0.84 £000 | 0.76 017 | 1.00/1.00

32F 0.79 £005 | 0.54 £004 | 0.93 £002 | 0.98 £000 | 0.97 £000 | 0.92 +000 | 0.70 £ 001 | 0.52 +000 | 0.86 +002 | 0.85 =000 | 0.81 +016 | 0.99/0.99

500 full (F) 64 F 1.02 £000 | 0.96 +001 | 0.94 001 | 1.00 +001 | 0.96 000 | 0.97 +001 | 0.74 001 | 0.55 +001 | 0.91 +001 | 0.87 £000 | 0.89 +0.14 0.97/0.96
128 F 1.03 +001 | 0.97 +002 | 0.99 +000 | 1.00 +000 | 0.98 +000 | 0.97 +000 | 0.88 +001 | 1.07 £002 | 0.98 +000 | 0.90 £000 | 0.98 +00s | 0.88/0.86

256 F 1.03 000 | 1.03 £001 | 1.00 £000 | 1.00 £ 000 | 0.99 001 | 0.97 000 | 1.00 +002 | 1.04 £002 | 1.00 001 | 0.93 000 | 1.00 £003 | 0.50/0.47

16C7 1.09 1.00 0.99 1.00 0.98 0.96 0.72 0.88 0.98 0.93 0.95 1.00/0.98

16 C 10 1.10 1.01 1.00 0.99 0.97 0.94 0.72 1.29 1.02 0.92 1.00 1.00/0.98

500 wiclusters (C) 16C25 1.10 1.00 1.00 0.99 0.99 0.97 0.98 1.30 1.03 0.96 1.03 1.00/0.95
64C5 1.09 0.98 1.00 1.00 0.99 0.97 0.99 1.17 1.04 0.93 1.02 0.97/0.93

64C7 1.12 1.02 1.00 1.00 1.00 0.97 1.00 1.22 1.04 0.99 1.04 0.97/0.91

Table 6: Relative In-Distribution ROUGE-1
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scores for various tasks and methods



Under review as a conference paper at ICLR 2025

Tasks

| Para. Saved

Model Type | Method Type | Average
| | sk039 | tskI9 | task280 | task290 | task391 | taskdd2 | task620 | taskI342 | taskI391 | tasklS98 | |
base 2444 5000 | 160 £000 | 19.13 000 | 3922 4000 | 1042 000 | 39.88 £000 | 8.05 000 | 6.96 000 | 1782 £000 | 55.03 £000 | 22.43 £ 1649 | 1.00/1.00
lora 95.00 £000 | 86.00 £000 | 99.00 000 | 93.67 000 | 94.33 +000 | 7843 000 | 74.90 £000 | 26.87 £000 | 95.00 000 | 68.66 +000 | 81.14 £2067 | 0.00/0.00
10 7650 £000 | 49.00 173 | 44.33 4404 | 9.80 058 | 78.56 096 | 40.44 £000 | 53.10 £oar | 1548 £012 | 77.67 £ 115 | 54.89 +006 | 49.98 £ 2333 | 1.00/1.00
50 55.80 £000 | 35.00£000 | 18004520 | 2424050 | 85.78 2096 | 26.75 +000 | 49.96 £ow | 16.73 £000 | 30.00 £ 346 | 53.87 £002 | 3743 £2509 | 1.00/1.00
TIES 100 5243 200 | 3400 £000 | 19.67 4462 | 1.09£166 | 83.33 2000 | 28.57 £000 | 48.89 £ow | 15.18 2042 | 100000 | 53.44 2002 | 33.76 £2522 | 1.00/1.00
500 35.18 £000 | 22.00 +000 | 1.00 +000 | 0.00 000 | 78.00 <000 | 2432000 | 4380 +00s | 996 <013 | 1.00 000 | 27.90 £003 | 24.40 +2379 | 1.00/1.00
SVD2 | 93151277 | 9224 4185 | 99.09 £ors | 93.44 £ors | 93.89 £03s | 77.33£029 | 75404101 | 2690 2268 | 95.06 £ 135 | 67.71 £oao | 81.33 2085 | 0.8870.88
SVD SVD4 | 94.01 360 | 8921 £071 | 99.05 £00v | 93.65 £oos | 94.66 £0s3 | 78421023 | 74.09 112 | 2647 2206 | 93.98 £077 | 69.37 £o21 | 81.22 12080 | 0.75/0.75
SVDS | 9500000 | 87.40 050 | 99.05 £oos | 93.65 £oos | 9436 £oss | 78.21 £oos | 75.57 £ooo 95.51 109 | 69.33 008 | 83.02 £ 1957 | 0.50/0.50
SVD16 | 95.00 0w | 86.00 £000 | 99.00 £000 | 93.67 £o00 | 94.33 1000 | 7844 £o0s | 7473 tous 95.00 £ 000 | 68.62 +004 | 80.76 £ 2105 | 0.0070.00
16D 96.67 £055 | 87.00 + 100 | 99.00 £000 | 9400 07 | 93.11 x03s | 76.08 £017 | 77.26 + 147 94.00 £ 173 | 68.25 o1 | 81.55 £ 2003 | 1.00/0.90
32D 95.67 £055 | 90.00 + 100 | 99.00 £000 | 93.00 £033 | 94.89 xos1 | 77.46 024 | 7253 £ 100 94.67 +058 | 69.16 o041 | 81.44 £ 2050 | 1.00/0.80
10 diagonal (D) 64D 95.00 £000 | 88.33 055 | 99.00 +000 | 93.67 £000 | 9478 03 | 7828 +007 | 75.47 +0s8 | 26.5 96.00 000 | 69.36 + 005 | 81.64 + 2106 | 1.00/0.60
128D 95.00 £000 | 86.67 <058 | 99.00 +000 | 93.67 000 | 94.33 000 | 7845 +o.16 | 75.46 £051 | 2664 £021 | 95.00 000 | 68.70 £ 0.1 | 8129 £2092 | 1.00/0.20
256 D 95.00 +000 | 86.00 +000 | 99.00 +000 | 93.67 000 | 94.33 000 | 7843 £000 | 7490 £ow | 2687 £000 | 95.00 000 | 68.59 +003 | 8118 £ 2086 | 1.00/-0.60
16F 97.00 £000 | 9100 % 100 | 99.00 +000 | 93.56 019 | 93.56 069 | 77.64 +025 | 75.78 125 | 28.71 £009 | 96.00 + 100 | 68.69 +00s | 82.09 2068 | 1.00/0.90
32F 96.67 + 058 | 89.33 058 | 99.00 +000 | 9322 +019 | 94.4d 2019 | 77.84 +o21 | 7224 £os9 | 2684 £050 | 94.67 +oss | 69.55 +o0s | 8138 +2un | 0.99/0.79
10 full (F) 64F 95.00 £000 | 88.67 058 | 99.00 +000 | 93.67 000 | 94.56 038 | 78.19 +oos | 75.97 +oss | 2643 £034 | 96.00 000 | 69.38 £ | 8169 +2107 | 0.97/0.57
128 F 95.00 £000 | 8667 +05s | 99.00 +000 | 93.67 000 | 94.33 000 | 78.46 +003 | 7490 £ow | 2672 £013 | 95.00 £ 000 | 68.65 +003 | 8124 +2091 | 0.88/0.07
256 F 95.00 £000 | 86.00 £ 000 | 99.00 000 | 93.67 000 | 94.33 1000 | 7844 £003 | 7479 £019 | 2687 £000 | 95.00 000 | 68.64 £003 | 8117 £2086 | 0.50/-1.10
16D 9276 £353 | 84.67 115 | 99.00 £000 | 86.17 £5s1 | 79.83 2608 | 73.55 £ 139 | 51724378 83.90 £ 643 | 59.05 +094 | 73.44 £ 2208 | 1007098
32D 9533 £208 | 8733 £208 | 99.00 £000 | 92.60 £029 | 90.35 £ 100 | 75.43 £133 | 63.84 L1648 9333115 | 61.94 2032 | 78.61 L2160 | 1.007096
50 diagonal (D) 64D 97.00 200 | 9033 153 | 99.00 £000 | 93.78 £o1o | 93.00 058 | 76.27 £oss | 7439 £oon 95.67 £0ss | 64.84 1027 | 81.36 L2083 | 1.00/092
128D 9633 £058 | 92.67 £058 | 99.00 £000 | 93.56 £019 | 93.00 058 | 77.24 £o19 | 7376125 | 29.58 £003 | 95.00 £000 | 69.04 £oss | 8192 £204s | 1.00/0.84
256 D 95.67 +0ss | 88.33 £0ss | 99.00 £000 | 93.56 £019 | 94.67 1067 | 7845 £ors | 7286 £207 | 27.00 2077 | 95.33 2oss | 69.61 £ous | 8145 £200 | 1.00/0.68
16F 94.06 £354 | 85.67 115 | 98.67 £0ss | 90.35 £ 137 | 89.97 175 | 7446 £0ss | 49.03 £707 | 27.14 £304 | 9233 215 | 60.26 £ 105 | 76.19 £2250 | 1.00/0.98
32F 97.00 £000 | 85.67 153 | 99.00 £000 | 93.67 £000 | 92.22 069 | 75.86 £022 | 7168 + 065 70 | 95.67 £ 155 | 63.88 £0.10 | 8039 £2081 | 099095
50 full (F) 64F 96.67 £055 | 91.00 £200 | 99.00 £000 | 93.56 £019 | 93.22 051 | 77.17 £o3s | 77.11 £osi 03 | 95.33 058 | 68.13 £075 | 82.00 205 | 0.97/0.89
128F 97.00 £000 | 91.00 + 100 | 99.00 £000 | 9333 +000 | 9411 xos1 | 7723 £017 | 73.67 +oss 12 [ 95.00 100 | 69.40 +016 | 81.74 £2097 | 0.88/0.72
256 F 95.00 £000 | 88.00 £000 | 99.00 000 | 93.67 000 | 9444 019 | 77.97 x02¢ | 7547 £oss | 26.96 009 | 96.00 000 | 69.28 +00s | 81.58 £209 | 0.50/0.18
16D 7643 £ 707 | 7667 +493 | 91.61 4275 | 89.99 £ 107 | 47.89 +562 | 63.17 +131 | 2223 527 | 1446 £290 | 73.93 £313 | 57.17 £ 105 | 6135 +2578 | 1.00/0.99
32D 90.10 555 | 84.00 %100 | 99.00 4000 | 85.52 £53¢ | 75.88 £ 1257 | TLIS +361 | 46.10 £739 | 21.04 676 | 86.67 + 186 | 58.64 + 102 | 7181 £33 | 1.00/0.98
100 diagonal (D) 64D 95.56 + 249 | 86.67 +058 | 99.00 +000 | 92.24 £ s | 90.89 + 117 | T4.57 +050 | 67.07 £3s1 | 2978 £ 192 | 91.67 231 | 6028 £ 151 | 78.77 £2077 | 1.00/0.96
128D 96.00 £000 | 87.33 %115 | 99.00 000 | 93.89 £019 | 93.00 2058 | 76.68 +o1s | 7484 £223 | 29.79 £050 | 93.67 £o0ss | 63.49 £03s | 80.77 £20.47 | 1.00/0.92
256 D 95.00 £000 | 91.00 000 | 99.00 +000 | 93.56 019 | 93.11 2019 | 76.93 +023 | 75.13 +oss | 2075 2073 | 95.33 +o0ss | 67.89 + 134 | 8167 +202s | 1.00/0.84
16F 9070 £ 107 | 83.00 4265 | 96.00 300 | 91.22 £204 | 87.94 2054 | 73.07 £095 | 49.41 £204 | 2417 £422 | 82.33 £208 | 58.18 £04s | 73.60 £2223 | 1.00/0.99
32F 9533 £153 | 85.00 4100 | 99.00 £000 | 93.50 £022 | 9144 2084 | 75.00 £o19 | 65.09 223 9167 £0ss | 60.92 +026 | 7872 £2072 | 0.99/0.97
100 full (F) 64F 97.00 £000 | 85.67 %153 | 99.00 £000 | 93.78 £019 | 92.56 019 | 76.01 £0.13 | 73.96 089 9433 £153 | 64.07 £037 | 80.58 2050 | 0.97/0.93
128F 9633 £0ss | 9033 £oss | 99.00 £000 | 93.00 £000 | 93.89 £019 | 77.04 £o30 | 7733 101 96.00 £ 000 | 68.76 025 | 82.12 £2035 | 0.88/0.80
256 F 9633 £0ss | 88.67 £0ss | 99.00 £000 | 93.67 000 | 94.89 2019 | 78.16 £ous | 73.40 £orz 96.00 £ 000 | 69.47 +023 | 81.64 £211s | 0.50/0.34
100 wiclusters (€) ‘ 16C5 ‘ 98.00 ‘ 88.00 ‘ 99.00 ‘ 9338 ‘ 91.67 ‘ 75.97 ‘ 71.63 ‘ ‘ 96.00 ‘ 64.18 ‘ 81.17 ‘ 1.00/0.95
16C7 98.00 88.00 99.00 93.67 94.00 76.89 7161 95.00 66.78 81.91 1.00/0.93
16D 5444 1% | 47.00 2285 | 8221 4350 | 7338 £ 1497 | 80.13 2368 | 57422529 | 183313 72.67 £603 | 55.79 £020 | 55.64 £2025 | 1.00/1.00
32D 58.08 £ 1152 | 47.00 £707 | 82.06 + 169 | 78.62 £1123 | 85.57 148 | 59.19 370 | 22.76 + 305 7533 404 | 56.07 £0s2 | 58.16 £2456 | 1.00/1.00
500 diagonal (D) 64D 69.21 £203 | 54.50 9.9 | 8833 404 | 911 +o3s | 88.78 03 | 67.71 259 | 3479 £ass 77.67 £231 | 56.78 073 | 64.61 £ 2079 | 1.00/0.99
128D 79.77 2037 | 7950 £212 | 95.89 4253 | 91.89 £ 130 | 88.67 +000 | 7027 £173 | 46.64 + 1058 81.00 £500 | 56.88 £055 | 70.20 £ 2463 | 1.00/0.98
256 D 93.83 £252 | 85.00 £000 | 99.00 £000 | 93.78 £ 019 | 90.56 038 | 73.25 £ 156 | 5114 £3s 87.33 231 | 5848 o020 | 75.20 2390 | 1.00/097
16F 5430 £ 103 | 37.00 £566 | 77.67 055 | 91.00 £000 | 90.56 +0.19 | 67.63 +0.55 | 48.81 £035 | 1470 2065 | 79.00 £ 100 | 57.66 £0.19 | 6269 + 2146 | 1.00/1.00
32F 75.10 £492 | 4650 354 | 91.67 4153 | 9156 019 | 91.56 038 | 72.03 +ou1s | 52.63 £oso | 1393 2002 | 81.67 £ 153 | 58.50 £020 | 6824 +2429 | 0.99/0.99
500 full (F) 64F 96.94 +0.42 | 8250 £071 | 93.33 4055 | 93.89 £069 | 90.67 +000 | 75.99 +oes | 55.63 £ 107 | 1474 2027 | 86.33 £oss | 59.43 £00s | 7469 £2501 | 0.97/0.96
128 F 97.67 + 058 | 83.50 212 | 98.00 4000 | 93.56 019 | 92.00 000 | 75.80 +0.16 | 66.19 +os1 | 28.67 £049 | 93.00 000 | 61.53 £0.13 | 78.84 +2150 | 0.88/0.86
256 F 98.00 +000 | 8850 +071 | 99.00 000 | 93.78 +019 | 93.00 +0ss | 7633 +029 | 7460 +121 | 27.82 £042 | 95.33 £oss | 63.70 £ 014 | 8075 +2160 | 0500047
16C7 95.00 86.00 98.00 93.67 91.67 75.10 5552 20.50 90.00 6357 76.90 1.00/0.98
16C 10 96.00 87.00 99.00 93.00 91.33 74.17 55.14 30.29 94.00 63.09 78.30 1.00/0.98
500 wiclusters (C) | 16 C 25 96.00 86.00 99.00 9271 93.00 76.42 75.42 30.40 95.00 66.07 81.00 1.00/0.95
64C5 95.00 84.00 99.00 93.67 92.67 76.45 76.43 27.49 96.00 64.10 80.48 0.97/0.93
64C7 98.00 88.00 99.00 94.00 93.33 76.42 76.67 28.48 96.00 68.00 81.79 0.97/091

Table 7: Absolute In-Distribution ROUGE-1 scores for various tasks and methods
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Under review as a conference paper at ICLR 2025

Model Type ‘ Method Type ‘ Tasks Average ‘ Para. Saved
| | task039 | task190 | task280 | (ask200 | task391 | taskd42 | task620 | task1342 | taskI391 | task1598 |

base 0.00 000 | 0.00 £000 | 0.02+000 | 0.00 +000 | 0.00 +000 | 0.00 +000 | 0.00 +000 | 0.00 +000 | 0.00 +000 | 0.00 =000 | 0.00 +001 | 1.00/1.00

lora 1.00 000 | 1.00 +000 | 1.00 =000 | 1.00 +000 | 1.00 +000 | 1.00 +000 | 1.00 +0.00 | 1.00 £000 | 1.00 +000 | 1.00 £000 | 1.00 +000 | 0.00/0.00

10 0.69 £000 | 0.57 002 | 0.45 £004 | 0.10 £001 | 0.57 003 | 0.00 £000 | 0.39 001 | 0.21 000 | 0.82 x001 | 0.00 £000 | 0.38 028 | 1.00/1.00

50 045 =000 | 041 £000 | 0.1 0.03 £001 | 0.70 £002 | 0.00 £000 | 0.36 £0.00 | 0.21 000 | 0.32 £004 | 0.00 000 | 0.27 £022 | 1.00/1.00

TIES 100 041 =000 | 0.40 £000 | 0.2 0.01 £002 | 0.65 000 | 0.00 £000 | 0.36 £0.00 | 0.21 000 | 0.01 £000 | 0.00 £000 | 0.23 £022 | 1.00/1.00

500 0.22 £000 | 0.26 £000 | 0.01 £000 | 0.00 000 | 0.60 000 | 0.00 000 | 0.32 +000 | 0.07 000 | 0.01 000 | 0.00 =000 | 0.15 +020 | 1.00/1.00

SVD 2 0.98 £003 | 1.07 £002 | 1.00 £000 | 0.99 001 | 0.98 £001 | 0.98 003 | 0.94 £001 | 1.03 £017 | 1.00 001 | 0.15£029 | 0.91 +028 | 0.88/0.88

SVD SVD 4 0.99 004 | 1.04 £001 | 1.00 £000 | 1.00 £000 | 1.01 £002 | 1.11+000 | 0.97 £002 | 0.99 +013 | 0.99 +001 | 0.90 047 | 1.00 £008 | 0.75/0.75
SVD 8 1.00 +000 | 1.02 +001 | 1.00 +000 | 1.00 +000 | 1.00 +001 | 1.02 4005 | 1.00 +000 | 1.00 £000 | 1.OI £001 | 1.00 £000 | 1.00 £002 | 0.50/0.50

SVD 16 1.00 + 000 | 1.00 +000 | 1.00 +000 | 1.00 4000 | 1.00 000 | 1.00 +000 | 0.99 +001 | 1.00 000 | 1.00 +000 | 1.00 £000 | 1.00 000 | 0.00/0.00

16D 1.02 001 | 1.01 + o001 1.01 +002 | 0.96 +001 | LIL+011 | 0.89 +003 | 1.19 £004 | 0.99 £002 | 0.33 £058 | 0.95 £027 | 1.00/0.90

32D 1.01 o001 | 1.05 + 001 0.98 o001 | 1.02+002 | 1.11+000 | 0.93 001 | 1.10 004 | 1.00 +001 | 0.67 058 | 0.98 +0.19 | 1.00/0.80

10 diagonal (D) 64D 1.00 £0.00 | 1.03 001 1.00 £000 | 1.02 001 | 1.11 £000 | 0.99 £001 | 1.00 000 | 1.01 £000 | 0.67 =058 | 0.98 £019 | 1.00/0.60
128D 1.00 £000 | 1.01 £001 1.00 + 000 | 1.00 £000 | 1.00 000 | 1.00 001 | 1.00 £000 | 1.00 +000 | 1.00 £000 | 1.00 £000 | 1.00/0.20
256 D 1.00 =000 | 1.00 +000 1.00 £000 | 1.00 £000 | 1.00 +000 | 1.00 £000 | 1.00 =000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00/-0.60

16 F 1.02 + 000 | 1.06 + 001 1.00 £ 001 | 0.97 003 | 115 £006 | 0.92 £002 | 1.17 £004 | 1L.OI £001 | 0.67 £058 | 1.00 020 1.00/0.90

32F 1.02 001 | 1.04 + 001 0.98 001 | 1.00 £001 | 1.11+000 | 0.92 001 | 1.02 +004 | 1.00 +001 | 1.00 000 | 1.01 £005 | 0.99/0.79

10 full (F) 64 F 1.00 £000 | 1.03 + 001 1.00 £000 | 1.01 £001 | 1.07 006 | 1.01 £o01 | 1.00 £000 | 1.01 £o00 | 1.00 000 | 1.01 +003 0.97/0.57
128 F 1.00 + 000 | 1.01 + 001 1.00 4000 | 1.00 +000 | 1.00 000 | 1.00 000 | 1.00 +000 | 1.00 000 | 1.00 000 | 1.00 +000 | 0.88/0.07

256 F 1.00 + 000 | 1.00 +0.00 1.00 +000 | 1.00 +000 | 1.00 +000 | 1.00 +001 | 1.00 000 | 1.00 000 | 1.00 £000 | 1.00 +000 | 0.50/-1.10

16D 0.91 +006 | 0.98 +001 0.91 +009 | 0.78 £ 005 | 0.89 +029 | 0.34 +006 | 0.50 +045 | 0.86 +007 | 0.00 000 | 0.72 +035 | 1.00/0.98

32D 1.00 £002 | 1.02 £002 1.00 001 | 0.90 £003 | 0.85 042 | 0.56 £004 | 0.98 £023 | 0.98 001 | 0.00 £000 | 0.83 £034 | 1.00/0.96

50 diagonal (D) 64D 1.02 £000 | 1.05 002 1.00 £001 | 0.95 002 | 1.15+017 | 0.81 003 | 1.14 =000 | 1.01 2001 | 0.00 £000 | 0.91 £033 | 1.00/0.92
128 D 1.01 =001 | 1.08 £001 | 1.00 000 | 1.00 001 | 0.95 £002 | 1.04 2006 | 0.92 =003 | 1.21 £007 | 1.00 £000 | 0.67 058 | 0.99 +020 | 1.00/0.84

256 D 1.01 001 | 1.03 001 | 1.00 000 | 1.00 £001 | 1.OI 002 | L.11 £000 | 0.95 £004 | 1.02 £004 | 1.00 £001 | 1.00 £000 | 1.01 £004 | 1.00/0.68

16 F 0.96 +005 | 1.00 £ 001 | 1.00 £001 | 0.95 +004 | 0.87 2001 | 1.04 £006 | 0.31 008 | 0.98 +023 | 0.97 £002 | 0.00 £000 | 0.81 +035 1.00/0.98

32F 1.02 +000 | 1.00 £002 | 1.00 +000 | 1.00 +000 | 0.92 £003 | 1.15+006 | 0.73 +004 | 1.17 £004 | 1.01 002 | 0.00 =000 | 0.90 £033 | 0.99/0.95

50 full (F) 64 F 1.02 001 | 1.06 £0.02 | 1.00 £000 | 1.00 +001 | 0.96 002 | 1.22 +000 | 0.94 001 | 1.17 004 | 1.00 £001 | 0.00 000 | 0.94 +033 | 0.97/0.89
128 F 1.02 £000 | 1.06 001 | 1.00 000 | 0.99 £000 | 0.99 £002 | 1.15+006 | 0.92 £001 | 1.10 £008 | 1.00 001 | 1.00 £000 | 1.02 £007 | 0.88/0.72

256 F 1.00 £000 | 1.02 £000 | 1.00 000 | 1.00 £000 | 1.00 001 | 1.04 2006 | 0.99 £000 | 1.00 £000 | 101 £000 | 1.00 £000 | 1.01 £002 | 0.50/0.18

16 D 0.54 =016 | 0.89 £006 | 0.90 £004 | 0.89 005 | 0.42 +008 | 0.44 £000 | 0.08 £002 | 0.00 £000 | 0.76 £ 005 | 0.00 =000 | 0.49 +036 | 1.00/0.99

32D 0.85 =015 | 0.98 001 | 1.00 £000 | 0.86 013 | 0.70 £014 | 0.74 £028 | 0.28 £007 | 0.48 £055 | 0.91 £002 | 0.00 £000 | 0.68 +036 | 1.00/0.98

100 diagonal (D) 64 D 1.00 004 | 1.01 £0.01 0.98 +002 | 0.88 004 | 1.07 £006 | 0.58 £009 | 1.10 004 | 0.96 £0.02 | 0.00 =000 | 0.86 032 | 1.00/0.96
128 D 1.01 000 | 1.02 + 001 1.01 £001 | 0.95 002 | L.11 £000 | 0.81 £006 | 1.21 £000 | 0.99 £001 | 0.00 £000 | 0.91 £033 | 1.00/0.92

256 D 1.00 + 000 | 1.06 + 000 1.00 £001 | 0.96 001 | LIL £o011 | 0.92 £002 | 1.21 £007 | 1.00 £001 | 0.00 £000 | 0.93 £033 | 1.00/0.84

16 F 0.85 003 | 0.97 +003 0.95 +006 | 0.80 002 | 0.81 £0.17 | 0.29 +004 | 0.60 £034 | 0.87 £0.02 | 0.00 000 | 0.71 +033 1.00/0.99

32F 0.99 002 | 0.99 o001 1.00 + 001 | 0.90 +003 | 1.04 +006 | 0.5 +004 | 1.07 007 | 0.96 +001 | 0.00 000 | 0.85 +032 | 0.99/0.97

100 full (F) 64 F 1.02 000 | 1.00 +0.02 1.00 £001 | 0.94 001 | 1.04 £006 | 0.78 001 | 1.14 000 | 0.99 £002 | 0.00 000 | 0.89 031 0.97/0.93
128 F 101 001 | 1.05 001 0.98 £000 | 0.98 001 | 1.15+006 | 0.94 001 | 1.21 000 | 1.01 2000 | 0.33 £058 | 0.97 £028 | 0.88/0.80

256 F 101 001 | 1.03 £001 1.00 £000 | 1.02 001 | 119 +006 | 0.93 001 | 1.02 =004 | 1.01 2000 | 1.00 £000 | 1.02 £006 | 0.50/0.34

100 wiclusters (C) ‘ 16C5 ‘ 1.13 1.02 ‘ 1.01 ‘ 0.92 ‘ 1.24 ‘ 0.86 ‘ 1.33 ‘ 1.04 0.00 ‘ 0.96 ‘ 1.00/0.95
16C7 113 1.02 1.00 1.01 1.24 0.93 1.51 1.03 0.00 0.99 1.00/0.93

16 D 0.22 +0.10 | 0.55 +003 0.33 +049 | 0.70 £003 | 0.15 £017 | 0.03 +001 | 0.00 £000 | 0.76 £0.06 | 0.00 000 | 0.35 +035 | 1.00/1.00

32D 0.27 018 | 0.55 +008 0.49 +037 | 0.75 £ 001 | 0.22 4011 | 0.05+005 | 0.02 +004 | 0.79 +004 | 0.00 £000 | 0.39 +034 | 1.00/1.00

500 diagonal (D) 64D 0.40 004 | 0.63 £ 011 0.91 + 001 | 0.80 001 | 0.48 +006 | 0.13 004 | 0.05 +008 | 0.82 +002 | 0.00 000 | 0.51 +035 1.00/0.99
128 D 0.61 £004 | 0.92 +002 0.93 +005 | 0.80 +000 | 0.74 +017 | 0.22 +0.11 | 0.12 +008 | 0.85+005 | 0.00 000 | 0.61 +036 | 1.00/0.98

256 D 0.95 £002 | 0.99 +0.00 1.00 + 001 | 0.86 001 | 0.85+028 | 0.28 £0.06 | 0.55 £039 | 0.92 +002 | 0.00 £000 | 0.73 £036 | 1.00/0.97

16 F 0.21 £002 | 0.43 £007 | 0.78 001 | 0.90 £000 | 0.86 001 | 0.59 006 | 0.21 001 | 0.12 £ 004 | 0.83 001 | 0.00 =000 | 0.50 +034 | 1.00/1.00

32F 0.54 £008 | 0.54 £004 | 0.93 £002 | 0.92 001 | 0.90 £001 | 0.63 013 | 0.26 £ 002 | 0.14 £ 000 | 0.86 +002 | 0.00 =000 | 0.57 034 | 0.99/0.99

500 full (F) 64 F 0.99 +003 | 0.96 +001 | 0.94 +001 | 1.01 £003 | 0.87 £000 | 1.04 017 | 0.36 £000 | 0.14 000 | 0.91 £001 | 0.00 £000 | 0.71 +039 0.97/0.96
128 F 1.02 001 | 0.97 +002 | 0.99 +000 | 1.00 £001 | 0.92 +000 | 1.15+006 | 0.61 +001 | 1.07 £000 | 0.98 +000 | 0.00 £000 | 0.87 +033 | 0.88/0.86

256 F 1.03 +000 | 1.03 +001 | 1.00 +000 | 1.00 +001 | 0.95+003 | 1.00 +000 | 0.78 +001 | 1.07 £000 | 1.00 001 | 0.00 £000 | 0.88 +031 | 0.50/0.47

16C7 1.08 1.00 0.99 1.00 0.92 1.01 0.39 0.62 0.98 0.00 0.80 1.00/0.98

16 C 10 1.10 1.01 1.00 0.98 091 1.01 0.37 1.51 1.02 0.00 0.89 1.00/0.98

500 wiclusters (C) 16C25 1.10 1.00 1.00 0.99 0.97 112 0.81 1.42 1.03 0.00 0.95 1.00/0.95
64C5 1.09 0.98 1.00 1.00 0.96 112 0.83 1.33 1.04 0.00 0.94 0.97/0.93

64C7 1.13 1.02 1.00 1.01 0.98 112 0.90 1.42 1.04 0.00 0.96 0.97/0.91

Table 8: Relative In-Distribution exact match scores for various tasks and methods
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Under review as a conference paper at ICLR 2025

Model Type ‘ Method Type ‘ Tasks Average ‘ Para. Saved
| task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 |

base 8.59 £ 008 | 9.15 £000 | 2.55 000 | 2.88 000 | 2.34 £000 | 3.46 004 | 6.40 £ 018 | 5.55 £000 | 8.60 000 | 2.67 £000 | 5.19 £265 | 1.00/1.00

lora 0.36 001 | 0.17 =000 | 0.0 0.12 000 | 0.11 £000 | 0.76 £002 | 1.17 007 | 1.94 2000 | 0.16 2000 | 0.85 £000 | 0.57 £059 | 0.00/0.00

SVD2 0.32 =001 | 0.15 £000 0.12 000 | 0.10 £000 | 0.76 £002 | 1.13 £ 008 | 1.94 2000 | 0.13 £000 | 0.97 £000 | 0.57 £060 | 0.88/0.88

SVD SVD 4 0.33 001 | 0.16 000 0.12 +000 | 0.11 000 | 0.76 002 | 1.14 008 | 1.94 000 | 0.14 000 | 0.86 =000 | 0.56 059 | 0.75/0.75
SVD 8 0.35 001 | 0.17 000 0.12 +000 | 0.11 x000 | 0.77 002 | 1.16 007 | 1.94 000 | 0.15 +000 | 0.84 000 | 0.51 058 | 0.50/0.50

SVD 16 0.36 001 | 0.17 + 000 0.12 4000 | 0.11 +000 | 0.76 002 | 1.14 +006 | 1.94 £000 | 0.16 +000 | 0.85 £000 | 0.56 +059 | 0.00/0.00

16D 0.33 +001 | 0.15 001 | 0.01 £000 | 0.12 4000 | 0.10 000 | 0.76 +:003 | 1.13 +008 | 1.95+001 | 0.14 1000 | 1.00 +002 | 0.57 +061 | 1.00/0.90

32D 0.33 001 | 0.16 £000 | 0.01 £000 | 0.12 4000 | 0.10 £000 | 0.75 +002 | 1.11 +007 | 1.93 1000 | 0.14 1001 | 0.88 +000 | 0.55 +060 | 1.00/0.80

10 diagonal (D) 64D 0.35 001 | 0.17 £000 | 0.01 000 | 0.12 000 | 0.11 £000 | 0.75 002 | 1.11 £007 | 1.94 £ 000 | 0.15 £ 000 | 0.84 £000 | 0.55 +059 | 1.00/0.60
128 D 0.35 001 | 0.17 000 | 0.01 £000 | 0.12+000 | 0.11 +000 | 0.75 +002 | 1.11 +007 | 1.94 +000 | 0.16 +000 | 0.84 =000 | 0.56 +050 | 1.00/0.20
256 D 0.36 £001 | 0.17 000 | 0.01 £000 | 0.12£000 | 0.11 2000 | 0.75 002 | 1.12 £007 | 1.94 2000 | 0.16 £ 000 | 0.85 £000 | 0.56 059 | 1.00/-0.60

16 F 0.33 =000 | 0.15 £000 0.12 000 | 0.10 £000 | 0.76 £002 | 1.20 £0.02 | 1.95 =000 | 0.13 2000 | 0.97 000 | 0.57 £0.61 | 1.00/0.90

32F 0.33 £001 | 0.16 + 000 0.12 +000 | 0.10 £000 | 0.75 002 | 1.11 +007 | 1.94 000 | 0.14 000 | 0.86 =000 | 0.55 +060 | 0.99/0.79

10 full (F) 64 F 0.34 =001 | 0.16 + 000 0.12+000 | 0.11 £000 | 0.75 £002 | 1.11 +007 | 1.94 2000 | 0.15 £000 | 0.84 000 | 0.55 +059 | 0.97/0.57
128 F 0.35 001 | 0.17 + 000 0.12 4000 | 0.11 +000 | 0.75 4002 | 1.12 4007 | 1.94 2000 | 0.16 +-000 | 0.84 +000 | 0.56 +050 | 0.88/0.07

256 F 0.36 001 | 0.17 000 | 0.01 £000 | 0.12 4000 | 0.11 £000 | 0.75 +002 | 1.12 4007 | 1.94 1000 | 0.16 +000 | 0.85 +000 | 0.56 +059 | 0.50/-1.10

16D 0.61 006 | 0.19 002 | 0.03 £001 | 0.29 +004 | 0.36 £ 004 | 0.95+005 | 1.73 +021 | 2.66 +022 | 0.32 4011 | 1.98 +001 | 0.91 +o0ss | 1.00/0.98

32D 0.37 002 | 0.16 +0.00 0.19 +003 | 0.18 001 | 0.85 005 | 1.37 014 | 2.12 005 | 0.16 £000 | 1.65 003 | 0.71 073 | 1.00/0.96

50 diagonal (D) 64D 0.33 002 | 0.15 +000 0.12 000 | 0.10 000 | 0.79 002 | 1.12 +008 | 1.97 +001 | 0.13 001 | 1.13 £003 | 0.59 + 063 1.00/0.92
128D 0.33 £001 | 0.15+000 | 0.01 £000 | 0.12 £000 | 0.10 000 | 0.76 003 | 1.10 £005 | 1.93 001 | 0.14 +000 | 0.93 £001 | 0.56 060 | 1.00/0.84

256 D 0.34 =001 | 0.16 000 | 0.01 £000 | 0.12£000 | 0.10 £000 | 0.76 £005 | 1.11 £005 | 1.93 £000 | 0.15 £000 | 0.85 000 | 0.55+059 | 1.00/0.68

16 F 0.47 £006 | 0.17 £000 | 0.02 £000 | 0.20 £002 | 0.19 004 | 0.86 003 | 1.71 +0.10 | 2.20 004 | 0.17 001 | 1.84 007 | 0.78 £ 050 1.00/0.98

32F 0.36 £002 | 0.16 £000 | 0.01 £000 | 0.14 +000 | 0.11 000 | 0.80 +003 | 1.14 +008 | 2.00 001 | 0.14 £000 | 1.32 £002 | 0.62 +065 | 0.99/0.95

50 full (F) 64 F 0.33 £ 001 | 0.15£000 | 0.01 000 | 0.12 £ 000 | 0.10 000 | 0.77 £ 003 | 1.10 £006 | 1.94 000 | 0.13 £000 | 1.02 £000 | 0.57 + 061 0.97/0.89
128 F 0.33 001 | 0.16 £000 | 0.00 £000 | 0.12 +000 | 0.10 £000 | 0.76 003 | 1.11 +005 | 1.93 +000 | 0.14 +000 | 0.87 +000 | 0.5 +060 | 0.88/0.72

256 F 0.35 001 | 0.16 000 | 0.01 £000 | 0.12 +000 | 0.11 000 | 0.76 003 | 1.11 £005 | 1.94 000 | 0.15 £000 | 0.84 £000 | 0.55 +059 | 0.50/0.18

16 D 1.69 £ 049 | 0.26 £0.04 | 0.18 £007 | 034 £ 002 | 1.01 £020 | 1.45 +0.10 | 3.59 +025 | 3.72 072 | 0.44 020 | 2.37 009 | 1.51 132 | 1.00/0.99

32D 0.67 =024 | 0.18 001 | 0.06 =005 | 0.31 £006 | 0.35 008 | 1.04 2015 | 1.97 2013 | 288 £070 | 0.22 £001 | 2.12 =007 | 0.98 +09s | 1.00/0.98

100 diagonal (D) 64D 0.39 =006 | 0.16 =000 | 0.0 0.18 £002 | 0.14 £001 | 0.86 002 | 1.39 007 | 2.18 004 | 0.17 2000 | 1.79 £002 | 0.73 £076 | 1.00/0.96
128D 0.32 =000 | 0.15+000 | 0.01 £000 | 0.12£000 | 0.10 £000 | 0.79 2002 | 1.19 2002 | 2.00 =001 | 0.14 £001 | 1.24 004 | 0.61 £065 | 1.00/0.92

256 D 0.32 £000 | 0.15+000 | 0.01 £000 | 0.12+000 | 0.10 £000 | 0.77 002 | 1.16 000 | 1.94 000 | 0.13 £ 000 | 0.96 001 | 0.56 061 | 1.00/0.84

16 F 0.66 £007 | 0.19 001 | 0.03 £001 | 0.25 +002 | 0.29 £002 | 0.99 +007 | 2.50 £ 051 | 2.63 +003 | 0.24 +002 | 2.21 +008 | 1.00 + 101 1.00/0.99

32F 0.40 000 | 0.17 000 | 0.01 £000 | 0.15+001 | 0.13 +001 | 0.85+002 | 1.53 4012 | 2.17 2006 | 0.15 +001 | 1.93 +004 | 0.75 +050 | 0.99/0.97

100 full (F) 64 F 0.34 001 | 0.15 £ 000 0.12 4000 | 0.11 £000 | 0.79 001 | 1.23 £007 | 1.98 +001 | 0.15 +000 | 1.26 +001 | 0.61 + 065 0.97/0.93
128 F 0.32 +000 | 0.15 + 000 0.12 £000 | 0.10 000 | 0.77 002 | 1.16 001 | 1.94 £000 | 0.13 +000 | 0.99 £o01 | 0.57 £o6l 0.88/0.80

256 F 0.33 £000 | 0.16 +0.00 0.12 £000 | 0.10 000 | 0.76 £0.02 | 1.15 £001 | 1.93 2000 | 0.14 +000 | 0.86 £000 | 0.56 060 | 0.50/0.34

100 wielusters (C) ‘ 16C5 ‘ 033 ‘ 0.15 ‘ ‘ 0.14 ‘ 0.11 ‘ 0.76 ‘ 1.16 ‘ 1.97 ‘ 0.13 1.12 ‘ 0.59 ‘ 1.00/0.95
16C7 0.34 0.15 0.13 0.10 0.75 115 1.96 0.14 1.06 0.58 1.00/0.93

16D 2,95 +028 | 0.73 £029 | 0.27 2009 | 0.67 £028 | 0.52 £007 | 2.06 £030 | 4.85 £031 | 3.94 £042 | 0.50 £005 | 2.50 £003 | 1.94 £159 | 1.00/1.00

32D 2.33 £030 | 0.62 +017 | 0.24 £005 | 0.50 £0.16 | 0.37 £007 | 1.86 £025 | 473 £035 | 3.81 £059 | 0.39 £004 | 2.46 £005 | 1.77 £157 | 1.00/1.00

500 diagonal (D) 64D 1.67 018 | 0.43 +016 | 0.13 004 | 0.29 £002 | 0.23 2002 | 1.32 £028 | 3.99 +036 | 3.41 £028 | 0.32 005 | 235 011 | 1.45+139 | 1.00/0.99
128 D 1.12 002 | 0.23 +0.00 0.21 +004 | 0.22 £003 | 1.08 £006 | 3.05 087 | 3.09 037 | 0.26 £0.03 | 2.31 004 | 1.19+121 | 1.00/0.98

256 D 0.54 003 | 0.18 001 0.16 001 | 0.15 001 | 0.92 £008 | 242 +014 | 2.51 2013 | 0.19 £001 | 2.09 £002 | 0.94 +099 | 1.00/0.97

16 F 2.14 £006 | 0.70 £ 004 027 2001 | 021 £000 | 1.14 £004 | 3.06 £027 | 2.71 001 | 0.34 2001 | 221 001 | 1.33 £109 | 1.00/1.00

32F 1.17 £007 | 0.48 £0.03 021 £001 | 0.17 £000 | 0.99 £004 | 2.69 x0.10 | 2.47 002 | 0.25 £002 | 2.11 £004 | 1.08 £099 | 0.99/0.99

500 full (F) 64 F 0.51 003 | 0.21 £000 0.17 001 | 0.14 £000 | 0.88 £004 | 2.19 +0.14 | 2.34 +003 | 0.20 000 | 1.97 +0.02 | 0.89 +091 0.97/0.96
128 F 0.39 001 | 0.16 + 000 0.13 4000 | 0.11 +000 | 0.81 +003 | 1.42 +007 | 2.03 001 | 0.16 000 | 1.71 001 | 0.71 +074 | 0.88/0.86

256 F 0.32 +001 | 0.15 + 000 0.12 4000 | 0.10 £ 000 | 0.77 +001 | 1.18 +004 | 1.96 +000 | 0.14 1001 | 1.25 +000 | 0.61 +065 | 0.50/0.47

16C7 0.40 0.18 0.01 0.15 0.13 0.90 2.03 221 0.16 1.50 0.77 1.00/0.98

16 C 10 0.36 0.16 0.01 0.14 0.13 0.87 2.19 2.04 0.15 1.38 0.74 1.00/0.98

500 wiclusters (C) 16C25 0.32 0.16 0.01 0.13 0.10 0.81 1.28 1.96 0.12 1.07 0.60 1.00/0.95
64C5 0.36 0.16 0.01 0.12 0.10 0.80 1.17 1.98 0.14 1.17 0.60 0.97/0.93

64C7 0.34 0.15 0.01 0.12 0.10 0.79 1.14 1.96 0.13 1.08 0.58 0.97/0.91

Table 9: Absolute In-Distribution test loss for various tasks and methods

28



Under review as a conference paper at ICLR 2025

Model Type | Method Type | Tasks Average | Para. Saved
| k039 | tsk190 k280 | k290 | @sk39l | taskéd2 | k620 | tskI342 | k1391 | tskis98 | |
base 000 0w | 000 z0m | 1.00z0m | 000000 | 000000 | 0002000 | 0000 | 0.00am | 0.000m | 000 om0 | 0.10 0% | 1007100
lora 100.00 <000 | 100.00 <0 | 100.00 2000 | 100.00 =000 | 100.00 2000 | 100.00 £000 | 100.00 000 | 100.00 =000 | 100.00 =000 | 100.00 =000 | 100.00 =000 | 0.00/0.00
10 4100 2000 | 5367 tos | 4433 tam | 1033 205 | 4633 2405 | 100 £0m | 8000w | 800000 | 766715 | 1004000 | 29.03 225 | 1007100
50 24.00 + 000 38.67 + o058 17.67 +462 2.00 + 000 56.33 + 058 1.00 + 000 8.00 +0.00 8.00 +0.00 29.67 + 289 0.00 + 000 18.53 + 1807 1.00/1.00
TIES 100 22.00 + 000 38.00 +0.00 18.67 + 462 1.00 +1.73 51.67 +462 1.00 + 0.00 8.00 +0.00 7.33 £058 2.00 000 0.00 + 000 14.97 + 1720 1.00/1.00
500 8.00 +0.00 25.00 +0.00 1.00 + 000 0.00 + 0.00 59.00 + 0.00 0.00 + 000 3.00 £ 000 6.00 +0.00 2.00 +0.00 0.00 +0.00 9.90 + 1812 1.00/1.00
SVD2 | 8833 0w | 9191 tos | 10000 2000 | 9725 £0ss | 9283 0w | 7650 =151 | 660011 T | 98.67 20w | 583 1o | 7742 29 | 0887088
b SVD4 | 93004000 | 9664050 | 100.00 2000 | 10000 2000 | 9675 £os7 | 8883115 | 9067412 s | 9867 cow | 1667217 | 8524 120w | 0757075
SVDS | 9889 oc | 985505 | 10000 2000 | 10000000 | 9942 £osi | 9344 2075 | 9722 40us o | 990050 | 600005 | 937015 | 0507050
SVD 16 | 10000 <000 | 100.00 =000 | 100.00 <000 | 100.00 <000 | 100.00 000 | 99.67 <050 | 99.50 2055 | 99.67 <050 | 100.00 <000 | 98.11 <07 | 9969 <oss | 0.00/000
16D 83.33 £ 153 88.33 + 058 100.00 000 | 97.00 + 200 88.33 + 115 57.00 + 1.00 48.67 +321 50.67 +4.93 97.67 + 153 533 115 71.63 +2953 1.00/0.90
32D 93.00 + 100 95.33 + 058 100.00 + 000 | 98.00 + 1.00 93.67 +1.53 80.67 +231 78.67 +1.15 68.00 + 173 98.33 + 058 14.67 +252 82.03 + 2499 1.00/0.80
10 diagonal (D) 64D 99.00 + 0.00 97.00 + 100 100.00 + 000 | 100.00 +000 | 98.00 + 0.00 90.67 + 153 9533 £ 115 79.67 + 153 99.00 + 0.00 55.00 436 | 91.37 +13.78 1.00/0.60
128D 100.00 + 000 | 99.33 + 058 100.00 + 000 | 100.00 +000 | 100.00 £000 | 96.67 + 153 98.33 £ 1.15 100.00 =000 | 91.6° 98.17 + 294 1.00/0.20
256 D 100.00 000 | 100.00 +000 | 100.00 £000 | 100.00 £ 000 | 100.00 +000 | 100.00 +000 | 100.00 +0.00 100.00 £ 000 | 95.00 £ 1.00 99.43 + 157 1.00/-0.60
16 F 83.00 + 200 93.00 + 100 100.00 + 000 | 98.33 + o058 91.67 + 058 64.33 +321 59.33 £ 115 52.67 £153 98.33 + 058 6.33 + 115 74.70 + 2871 1.00/0.90
32F 91.33 + o058 96.00 + 1.00 100.00 + 000 | 98.33 + o058 94.33 + o058 84.00 + 200 83.00 +1.73 70.33 + 153 99.00 + 1.00 22.00 83.83 £+ 282 0.99/0.79
10 full (F) 64 F 99.00 + 0.00 97.33 1058 100.00 + 000 | 100.00 £000 | 99.33 + 115 91.33 + 153 96.33 +0.58 81.67 31 99.00 + 0.00 58. 92.23 + 1276 0.97/0.57
128 F 99.67 + 058 99.33 £ o058 100.00 £ 000 | 100.00 + 000 | 100.00 £000 | 97.67 + 115 100.00 o000 | 95.67 15 100.00 000 | 91.0( 00 98.33 + 289 0.88/0.07
256F | 100.00 <000 | 100.00 0w | 100.00 £0m | 100.00 2000 | 100.00 2000 | 99.67 205 | 99.67 £oss | 99.67 o5 | 100.00 <000 | 9800 =100 | 9970 <070 | 0.50-1.10
16D | 5267 2451 | 8667 <306 | 10000 2000 | 85.00 £3a6 | 6533 £37 | 25332505 | 1000 £ 100 | 1067 2102 | $1.00 265 | 000£000 | 5167 £361s | 1007098
2D | 69.6753n | 8867415 | 10000 om | 9500 <200 | 80.00 £3m | 3667513 | 17.00 £265 | 2633 2505 | 95004200 | 0.00 oo | 6083 <3602 | 1007096
50 diagonal (D) 64D | 7967225 | 9100 %100 | 100.00 0 | 9767 £oss | $8.00£im | 520010 | 366756 96005100 | 033205 | 6827 <0 | 1007092
128D | 9000 £1m | 9133 £os | 10000 <000 | 9833 +oss | 90674205 | 7367208 | 63674155 9800 000 | 733115 | 7693 12 | 1007084
256 D 94.67 + 058 96.33 + 058 100.00 + 000 | 99.67 + 058 96.33 + 115 87.33 + o058 87.00 + 265 99.67 +0.58 31.67 + 115 86.43 + 2041 1.00/0.68
16F 6167 2306 | 8967115 | 99.67 Loss | 90.67 225 | 7833 £3s1 | 34002100 | 700 <14 9000100 | 0002000 | 57.60 235 | 100/0.98
32F 71005100 | 8900175 | 10000 2000 | 98.00 000 | 8500 £ 100 | 47.00 %175 | 2900+ 300 9800100 | 000000 | 6520 <300 | 099/0.95
50 full (F) 61F 8167 £oss | 9367115 | 10000 000 | 9833 205 | 90.67 £205 | 6167215 | 5433415 9833 toss | 33320s | 7333 £mm | 097/0.89
128 F 91.00 + 1.00 94.33 + 058 100.00 + 000 | 99.00 +0.00 9333 +1.53 81.67 + 058 75.00 +1.73 98.67 +0.58 16.67 + 058 81.73 + 2446 0.88/0.72
256 F 97.00 + 0.00 98.00 +0.00 100.00 + 000 | 100.00 +000 | 99.67 + 058 92.00 +0.00 94.33 £ 115 99.00 + 0.00 5733 £252 | 9170 + 13.11 0.50/0.18
16D 33.00 +£8.19 79.33 £ 569 89.33 +£551 80.00 + 361 35.33 £6.03 4.00 +£1.73 3.00 £ 1.00 71.33 451 0.00 + 000 39.53 +36.15 1.00/0.99
32D 51.00 £ 781 90.00 £ 1.00 100.00 000 | 88.00 +7.00 58.67 + 11.68 17.67 + 1026 7.67 289 86.33 +252 0.00 + 000 50.87 + 3843 1.00/0.98
100 diagonal (D) 64D | 68.00 265 | 8733415 | 100.00 0w | 9433 taoi | 80331205 | 38.00 £3m | 19.67 £asi 92674115 | 033105 | 6090 £3401 | 1007096
128D | 8200200 | 90.00 £200 | 10000 <000 | 9733 055 | 8533 40ss | 5533 £20s | 3433 £am 9467 £oss | 000000 | 6757 L35 | 1007092
256D | 9000w | 93.00 1200 | 10000 <000 | 97.67 o5 | 9167 oss | 7167 <sm | 59674155 9767 toss | 4004100 | 7633 12w | 1007084
16 F 49.00 + 200 89.67 +321 97.00 + 3.00 84.33 +306 65.33 £252 20.67 833 6.33 £208 81.33 +208 0.00 + 000 50.20 + 37.06 1.00/0.99
2F 6500546 | 9033155 | 10000 000 | 9633 £ 150 | 8000 £26s | 41335321 | 1600 +000 92004265 | 0002000 | 61.03 <3545 | 099/0.97
100 full (F) 64 F 7233 s0ss | 8967155 | 10000 1000 | 97.67 £oss | 8600100 | 5300100 | 3533415 | 38 9167 £oss | 0002000 | 6667 <:s | 097/0.93
128F | 8433515 | 92331155 | 10000 000 | 98.00 000 | 9133 £oss | 68.67 o5 | 5600100 | 5767115 | 99.00 om | 533 oss | 75.27 507 | 0.88/080
256F | 9167115 | 9667 05 | 100.00 20w | 100.00 zom | 9433 £oss | 8467 <05 | 78.00 Lom | 69.67 05 | 99.00 000 | 2200 <100 | 8360 <208 | 0.5000.34
100 wielusers ©) ‘ 16C5 72.00 ‘ 9200 10000 ‘ 95.00 ‘ 56,00 ‘ 5200 ‘ 4100 ‘ 4700 99.00 0.00 ‘ 6850 ‘ 100095
16C7 78.00 9200 100.00 98.00 93.00 5800 51.00 4800 95.00 200 71580 100093
16D 800361 | 5150 2351 | 79.67 497 | 2800 56672 | 0672115 | 03320s | 000200 | 7067 £ans | 0.00 £om | 2890 35t | 100/1.00
2D | 1433200 | 525020 | 8067208 | 43.00 60.67 055 | 067<11s | 167115 | 000000 | 74334400 | 0002000 | 3210543 | 1007100
500 diagonal (D) 64D | 2567115 | 62501202 | 8733 a0s | 7833 1105 | 6533 130 | 5334351 | 367<11s | 100107 | 7667423 | 000000 | 3983 £3s50 | 1007099
128D 38.33 £321 85.50 +2.12 96.00 + 3.00 81.33 +231 65.67 +1.15 11.67 +473 533 £208 2.00 + 100 80.00 + 5.00 0.00 + 0.00 45.24 13178 1.00/0.98
256 D 53.33 +o058 91.00 + 2383 100.00 + 000 | 89.00 + 265 76.00 + 2.00 20.67 + 681 6.00 + 12.00 + 800 86.33 +231 0.00 + 0.00 52.14 + 3864 1.00/0.97
16F 833 2208 | 4100 2560 | 76.67 205 | 7800 2000 | 7267 2os | 6002000 | 567<os | 00000 | 7800100 | 0.00 20w | 3648 <3 | 1.00/1.00
32F 3367 £a16 | 5100141 | 9267415 | 77002175 | 75002200 | 14332153 | 8002000 | 000000 | 80.67 155 | 000000 | 4297 2350 | 0.99/099
500 full () 64F 5600265 | 8550 om | 9433 toss | 8933 s2m | 7433115 | 36335115 | 9002100 | 267215 | 8400w | 000000 | 5203239 | 097096
128 F 69.33 + 058 88.50 + 071 99.00 + 0.00 96.33 + 153 80.33 + 115 45.00 =200 16.33 + 058 31.00 + 173 92.00 + 0.00 0.00 + 0.00 60.86 + 35.07 0.88/0.86
256 F 79.67 +0.58 89.50 + 071 100.00 + 000 | 97.67 + 058 87.33 +058 57.00 + 100 35.00 + 1.00 42.00 = 100 95.00 + 1.00 0.00 + 000 67.59 + 3267 0.50/0.47
16C7 6300 90.00 99,00 96.00 7800 3100 9.00 15.00 §9.00 100 57.10 100098
16C 10 9,00 93,00 100.00 9800 8100 3400 800 33,00 9500 100 6120 1:00/098
500 w/clusters (C) 16C25 79.00 90.00 100.00 97.00 88.00 53.00 38.00 48.00 98.00 0.00 69.10 1.00/0.95
64CS5 77.00 88.00 100.00 98.00 89.00 56.00 39.00 42.00 99.00 0.00 68.80 0.97/0.93
64C7 76.00 90.00 100.00 97.00 89.00 60.00 48.00 49.00 99.00 3.00 71.10 0.97/0.91

Table 10: Absolute In-Distribution agreement for various tasks and methods
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Model Type ‘ Method Type ‘ Tasks Average

| | task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | taski391 | task1598 |

SVD 2 0.29 +0.00 | 0.43 000 | 0.31 +000 | 0.40 000 | 0.38 000 | 0.31 000 | 0.37 000 | 0.31 000 | 0.42 +000 | 0.30 000 | 0.35 +005
SVD SVD 4 0.16 +000 | 0.24 000 | 0.16 +0.00 | 0.25 000 | 0.23 +000 | 0.17 000 | 0.22 +000 | 0.16 £0.00 | 0.25 +000 | 0.16 000 | 0.20 +0.04
SVD 8 0.06 £000 | 0.09 £0.00 | 0.06 000 | 0.11 £000 | 0.10 000 | 0.07 £000 | 0.09 £0.00 | 0.06 000 | 0.11 £000 | 0.06 £0.00 | 0.08 +002
16D 0.37 £002 | 0.51 002 | 0.36 £ 001 | 0.57 £002 | 0.55 +000 | 0.39 £002 | 0.49 £001 | 0.36 =002 | 0.53 £003 | 0.39 001 | 0.45 +008
32D 0.21 £001 | 0.28 £000 | 0.20 £001 | 0.35 £000 | 0.33 £001 | 0.22 £001 | 0.31 £o01 | 0.20 001 | 0.32 £001 | 0.22 £0.00 | 0.26 +006
10 diagonal (D) 64D 0.10 £ 000 | 0.11 £001 | 0.09 000 | 0.18 001 | 0.18 £000 | 0.10 000 | 0.15 £ 001 | 0.09 £000 | 0.14 000 | 0.09 £000 | 0.12 £ 004
128D 0.02 +000 | 0.01 000 | 0.02 +000 | 0.03 000 | 0.04 +000 | 0.02 +000 | 0.03 000 | 0.02 +000 | 0.02 000 | 0.02 000 | 0.03 +0.01
256 D 0.00 +0.00 | 0.00 +000 | 0.00 +000 | 0.00 000 | 0.00 +0.00 | 0.00 000 | 0.00 +£0.00 | 0.00 £0.00 | 0.00 £0.00 | 0.00 £0.00 | 0.00 + 0.00
16 F 0.35 000 | 0.46 000 | 0.34 000 | 0.51 000 | 0.47 001 | 0.36 001 | 0.45 001 | 0.35 001 | 0.49 000 | 0.35 001 | 0.41 +0.06
32F 0.20 +0.00 | 0.24 +000 | 0.20 +0.00 | 0.30 000 | 0.29 +000 | 0.22 000 | 0.27 +0.00 | 0.20 000 | 0.27 +000 | 0.21 +000 | 0.24 +0.04
10 full (F) 64 F 0.10 £0.00 | 0.10 £0.00 | 0.09 000 | 0.13 000 | 0.13 £000 | 0.10 =000 | 0.12 £0.00 | 0.09 £000 | 0.12 000 | 0.10 £000 | 0.11 +002
128 F 0.02 £000 | 0.02 £000 | 0.02+000 | 0.01 £0.00 | 0.02 +000 | 0.02 000 | 0.02 +000 | 0.02+000 | 0.01 £000 | 0.02 +000 | 0.02 £ 000
256 F 0.00 +0.00 | 0.00 000 | 0.00 000 | 0.00 £000 | 0.00 £0.00 | 0.00 =000 | 0.00 £0.00 | 0.00 £0.00 | 0.00 £000 | 0.00 £0.00 | 0.00 £ 0.00
16D 0.66 £001 | 0.69 +001 | 0.88 001 | 0.76 £0.03 | 0.95+002 | 0.91 £001 | 0.83 £002 | 0.88 003 | 0.72 £0.02 | 0.88 002 | 0.82 £0.10
32D 0.50 001 | 0.52 002 | 0.73 001 | 0.58 £003 | 0.88 £003 | 0.79 £003 | 0.72 001 | 0.75 001 | 0.57 £002 | 0.75 001 | 0.68 +0.12
50 diagonal (D) 64D 0.34 001 | 0.37 001 | 0.52 +000 | 0.38 =001 | 0.71 £002 | 0.58 001 | 0.54 000 | 0.56 000 | 0.44 001 | 0.58 £0.01 | 0.50 £0.11
128 D 0.21 001 | 0.22 +001 | 0.31 +000 | 0.22 £000 | 0.51 001 | 0.42 001 | 0.38 000 | 0.39 000 | 0.27 £0.00 | 0.40 =000 | 0.33 £0.10
256D 0.10 £000 | 0.12 £0.00 | 0.16 000 | 0.10 £000 | 0.29 £ 001 | 0.21 £000 | 0.19 £0.00 | 0.23 001 | 0.15 £000 | 0.20 £0.00 | 0.18 + 006
16 F 0.57 +001 | 0.60 001 | 0.86 +001 | 0.71 002 | 0.95 +001 | 0.88 001 | 0.81 +000 | 0.83 001 | 0.67 001 | 0.86 +001 | 0.78 +0.12
32F 0.47 £001 | 0.48 001 | 0.71 000 | 0.55 001 | 0.78 001 | 0.69 £001 | 0.69 £0.00 | 0.65 =001 | 0.53 £001 | 0.71 000 | 0.63 +0.11
50 full (F) 64 F 0.33 000 | 0.35+000 | 0.45 +000 | 0.36 000 | 0.56 +000 | 0.50 001 | 0.47 000 | 0.49 +000 | 0.39 001 | 0.49 +000 | 0.44 +008
128 F 0.19 000 | 0.21 000 | 0.25 +000 | 0.19 000 | 0.35 000 | 0.30 000 | 0.28 000 | 0.31 000 | 0.24 000 | 0.30 000 | 0.26 +0.05
256 F 0.09 +0.00 | 0.10 +000 | 0.10 +0.00 | 0.08 000 | 0.16 000 | 0.13 000 | 0.12 +000 | 0.15+000 | 0.11 +000 | 0.13 000 | 0.12 +0.02
16D 0.90 +001 | 0.85+001 | 0.87 003 | 0.88 002 | 0.68 002 | 0.91 001 | 0.97 001 | 0.98 001 | 0.96 +001 | 1.00 +000 | 0.90 +0.09
32D 0.83 002 | 0.77 000 | 0.77 +001 | 0.78 000 | 0.55 +002 | 0.79 001 | 0.94 002 | 0.94 003 | 0.87 000 | 0.98 001 | 0.82 +0.12
100 diagonal (D) 64D 0.67 001 | 0.63 £000 | 0.59 +002 | 0.63 001 | 0.40 £000 | 0.62 001 | 0.86 +002 | 0.82 +002 | 0.71 003 | 0.93 000 | 0.68 +0.15
128D 0.49 001 | 0.47 000 | 0.42 001 | 0.45 000 | 0.27 002 | 0.44 001 | 0.73 £001 | 0.69 002 | 0.59 002 | 0.80 002 | 0.53 +o.16
256D 0.32 +000 | 0.31 000 | 0.26 +001 | 0.30 000 | 0.15 +001 | 0.28 000 | 0.51 +002 | 0.51 002 | 0.40 001 | 0.61 001 | 0.36 +0.14
16 F 0.88 £000 | 0.82 £000 | 0.84 001 | 0.86 £000 | 0.67 +001 | 0.88 £001 | 0.99 £0.00 | 0.96 001 | 0.91 £001 | 1.00 £0.00 | 0.88 +009
32F 0.78 000 | 0.72 000 | 0.73 000 | 0.74 000 | 0.52 000 | 0.74 001 | 0.94 001 | 0.89 000 | 0.77 002 | 0.99 000 | 0.78 +0.13
100 full (F) 64 F 0.60 +0.00 | 0.57 000 | 0.57 £000 | 0.57 000 | 0.39 000 | 0.56 000 | 0.76 £0.00 | 0.73 £000 | 0.60 +0.00 | 0.83 001 | 0.62 +0.12
128 F 0.40 +0.00 | 0.38 000 | 0.35 +000 | 0.37 £000 | 0.25 +000 | 0.37 000 | 0.52 +£0.00 | 0.54 000 | 0.45 £000 | 0.60 £0.00 | 0.42 +0.10
256 F 0.21 £000 | 0.20 £0.00 | 0.18 000 | 0.19 £000 | 0.13 £ 000 | 0.19 £000 | 0.30 £0.00 | 0.34 000 | 0.26 £000 | 0.38 £0.00 | 0.24 =008
100 wiclusters (C) ‘ 16C5 ‘ 0.46 ‘ 0.46 ‘ 0.44 ‘ 0.47 ‘ 0.62 ‘ 0.64 ‘ 0.61 ‘ 0.63 ‘ 0.45 ‘ 0.60 ‘ 0.54
16C7 0.42 0.43 0.40 0.42 0.50 0.55 0.52 0.55 0.42 0.55 0.48
16D 0.97 +0.00 | 0.73 000 | 0.96 +0.00 | 1.00 000 | 0.99 +001 | 0.96 001 | 0.90 +000 | 0.92 +000 | 1.00 +000 | 1.00 +0.00 | 0.94 +0.08
32D 0.96 £000 | 0.70 000 | 0.92+001 | 0.98 £001 | 0.96 +001 | 0.93 £001 | 0.86 £0.00 | 0.89 =000 | 1.00 £000 | 1.00 £0.00 | 0.92 +009
500 diagonal (D) 64D 0.90 001 | 0.65+000 | 0.86 001 | 0.96 +0.02 | 0.90 001 | 0.87 +001 | 0.81 000 | 0.83 001 | 0.99 +001 | 1.00 +0.00 | 0.88 +£0.10
128D 0.82 001 | 0.60 000 | 0.76 000 | 0.90 002 | 0.83 001 | 0.78 £002 | 0.74 000 | 0.74 001 | 0.97 001 | 1.00 £000 | 0.81 £0.12
256 D 0.59 +002 | 0.51 000 | 0.56 +001 | 0.81 002 | 0.70 +002 | 0.55 +001 | 0.57 001 | 0.54 001 | 0.91 001 | 1.00 001 | 0.67 +0.17
16 F 0.94 £000 | 0.67 £0.00 | 0.88 +000 | 1.00 £0.00 | 0.98 £000 | 0.90 £000 | 0.82 +0.00 | 0.83 £000 | 1.00 £0.00 | 1.00 £ 000 | 0.90 +0.10
32F 0.88 000 | 0.61 000 | 0.81 000 | 0.97 001 | 0.94 000 | 0.84 £000 | 0.75 000 | 0.77 000 | 0.99 000 | 0.99 +0.00 | 0.86 +0.12
500 full (F) 64 F 0.80 000 | 0.55+000 | 0.72 000 | 0.86 =000 | 0.82 £001 | 0.76 =000 | 0.67 £0.00 | 0.70 000 | 0.94 +0.00 | 0.99 £000 | 0.78 +0.13
128 F 0.64 £000 | 0.46 £000 | 0.60 000 | 0.74 £000 | 0.65 +000 | 0.63 £000 | 0.56 £0.00 | 0.58 =000 | 0.85+£000 | 0.96 £0.00 | 0.67 +0.14
256 F 0.43 £000 | 0.35 £000 | 0.44 +000 | 0.55 £000 | 0.49 £ 000 | 0.45£000 | 0.40 £0.00 | 0.42 +000 | 0.67 £000 | 0.84 £0.00 | 0.50 +0.14
16C7 0.68 0.70 0.64 0.72 0.85 0.90 0.93 0.92 0.71 0.83 0.79
16C10 0.61 0.65 0.61 0.66 0.84 0.86 0.88 0.84 0.62 0.76 0.73
500 wi/clusters (C) 16 C25 0.42 0.41 0.42 0.44 0.57 0.64 0.63 0.62 0.40 0.58 0.51
64CS5 0.49 0.49 0.45 0.51 0.64 0.66 0.62 0.67 0.50 0.65 0.57
64C17 0.45 0.45 0.41 0.45 0.56 0.58 0.55 0.59 0.44 0.57 0.51

Table 11: Reconstruction error In-Distribution for various tasks and methods

Model Type ‘ Method Type ‘ Tasks Average
| | task039 | taskl190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 |
16 F 0.46 001 | 0.63 £0.00 | 0.50 £0.00 | 0.55 £001 | 0.50 £000 | 0.49 £001 | 0.50 001 | 0.50 001 | 0.61 001 | 0.47 001 | 0.52 +0.06
32F 0.30 £001 | 0.37 000 | 0.31 £000 | 0.35x000 | 0.34 £000 | 0.31 000 | 0.33 £0.00 | 0.31 000 | 0.38 £0.00 | 0.30 £ 000 | 0.33 £0.03
10 full (F) 64 F 0.15 000 | 0.15+000 | 0.16 +000 | 0.17 £0.00 | 0.17 £000 | 0.16 000 | 0.16 £000 | 0.16 +000 | 0.17 £0.00 | 0.15 000 | 0.16 +0.01
16 F 0.80 002 | 0.82+001 | 0.85+001 | 0.90 £002 | 0.78 001 | 0.95 £001 | 0.76 £001 | 0.75 000 | 0.79 £ 001 | 0.82 +0.01 | 0.82 +0.06
32F 0.65 001 | 0.67 £001 | 0.72 001 | 0.76 £002 | 0.65 001 | 0.82 +002 | 0.66 001 | 0.65 =001 | 0.67 £0.02 | 0.69 +0.00 | 0.69 +0.06
50 full (F) 64 F 0.50 001 | 0.52 +000 | 0.52 +000 | 0.55 +001 | 0.52 +001 | 0.62 +000 | 0.54 +001 | 0.51 000 | 0.54 001 | 0.57 +000 | 0.54 +0.03
16 F 0.93 £002 | 0.90 £0.02 | 0.93 £001 | 0.91 £002 | 0.88 £003 | 0.98 001 | 0.96 +001 | 0.78 000 | 0.82 +000 | 0.93 +0.02 | 0.90 +0.06
32F 0.87 001 | 0.81 001 | 0.85+002 | 0.80 001 | 0.79 002 | 0.91 000 | 0.90 001 | 0.74 001 | 0.70 £0.02 | 0.85 002 | 0.82 +0.07
100 full (F) 64 F 0.65 004 | 0.69 +001 | 0.71 001 | 0.67 +001 | 0.64 +001 | 0.76 +001 | 0.77 +001 | 0.67 000 | 0.61 +000 | 0.75 +0.06 | 0.69 +0.06
16 F 0.98 004 | 0.98 £0.01 | 0.99 £001 | 1.00 £000 | 0.99 £000 | 0.96 +005 | 0.93 £0.10 | 0.94 009 | 1.00 +000 | 0.99 +000 | 0.98 +0.05
32F 0.92 007 | 0.84 +020 | 0.92+0.10 | 0.98 £002 | 0.97 002 | 0.89 008 | 0.82 +013 | 0.84 011 | 0.99 000 | 0.99 +0.02 | 0.92 +0.10
500 full (F) 64 F 0.80 000 | 0.67 +021 | 0.78 +0.11 | 0.90 £0.07 | 0.86 +008 | 0.76 +0.00 | 0.67 +0.00 | 0.70 £0.00 | 0.96 +0.03 | 0.99 000 | 0.81 +0.13

Table 12: Reconstruction error on random LoRAs The error is larger in comparison to recon-
structing trained (i.e., non-random) LoRAs in Table 11 for the corresponding compression methods.
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Model Type ‘ Method Type ‘ Tasks Average
| | task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 |
base 24.44 1.60 19.13 39.22 10.27 35.46 7.85 6.22 17.82 38.87 20.09
lora 95.00 86.00 99.00 93.67 94.33 74.88 74.40 26.68 95.00 50.32 78.93
32F 97.00 | 90.00 | 99.00 | 9333 | 9467 | 7409 | 72.13 27.83 94.00 50.71 79.28
10 full (F) 64 F 95.00 | 89.00 | 99.00 | 93.67 | 9467 | 7429 | 74.80 | 26.63 96.00 51.04 79.41
32F 96.00 | 88.00 | 99.00 | 93.67 | 9233 | 7230 | 7597 29.89 94.00 45.68 78.68
50 full (F) 64 F 98.00 | 89.00 | 99.00 | 93.67 | 9333 | 7274 | 7650 | 29.33 96.00 4571 79.33
32F 92.10 | 83.00 | 99.00 | 93.67 | 9200 | 71.09 | 63.29 27.87 88.00 42.36 75.24
100 full (F) 64 F 97.00 | 87.00 | 99.00 | 93.67 | 9233 | 7223 | 74.69 29.98 95.00 4471 78.56
32F 68.92 | 43.00 | 87.00 | 91.67 | 90.67 | 70.08 | 51.16 14.40 83.00 41.97 64.19
500 full (F) 64 F 9350 | 78.00 | 91.00 | 9233 | 9033 | 72.55 | 57.49 15.44 85.00 4231 71.80
Table 13: Performance with convergence In-Distribution Rouge-L
Table 14: Agreement Comparison. 100 LoRAs
Configuration Agreement (%)
Base Model 83.015
Uncompressed LoRAs 100.000
Joint Compression
Diagonal Rank 8 87.032
Rank 16 88.908
Rank 32 91.545
Rank 64 94.659
Full Rank 8 87.686
Rank 16 90.163
Rank 32 94.018
Rank 64 96.918
Table 15: Performance Comparison. 100 LoRAs
Configuration Average Performance
Base Model 32.28
Uncompressed LoRAs 48.32
Join Compression
Diagonal Rank 8 41.90
Rank 16 45.44
Rank 32 46.89
Rank 64 47.43
Full Rank 8 43.88
Rank 16 45.79
Rank 32 46.83
Rank 64 47.66
Table 16: Task-Based Performance Evaluation Across Different Models and Ranks
Task Base Model LoRA Diagonal R§ Diagonal R16 Diagonal R32 Diagonal R64
Causal Judgement 57.47 64.37 55.17 58.62 58.62 58.62
Date Understanding 15.33 23.33 20.67 22.00 21.33 22.67
Formal Fallacies 51.33 56.00 52.67 52.67 53.33 54.67
Hyperbaton 6.67 68.00 57.33 63.33 67.33 68.00
Logical Deduction (5 Objects) 21.33 37.33 32.00 36.67 37.33 37.33
Logical Deduction (7 Objects) 12.67 44.00 31.33 42.67 44.67 45.33
Movie Recommendation 62.67 67.33 62.00 64.67 66.67 67.33
Object Counting 34.67 38.00 35.33 36.67 36.67 38.00
Snarks 50.00 61.54 53.85 56.41 58.97 57.69
Temporal Sequences 16.67 23.33 18.67 20.67 24.00 24.67
Average 32.88 48.32 41.90 45.44 46.89 4743
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Table 17: Task-Based Performance Evaluation Across Different Models and Ranks

Task Base Model LoRA FullR8 FullR16 Full R32 Full R64
Causal Judgement 57.47 64.37 56.32 57.47 58.62 60.92
Date Understanding 15.33 23.33 19.33 22.00 22.67 22.67
Formal Fallacies 51.33 56.00 51.33 52.67 53.33 56.00
Hyperbaton 6.67 68.00 63.33 66.00 69.33 68.00
Logical Deduction (5 Objects) 21.33 37.33 35.33 36.00 35.33 37.33
Logical Deduction (7 Objects) 12.67 44.00 40.00 44.67 44.67 44.67
Movie Recommendation 62.67 67.33 63.33 65.33 67.33 67.33
Object Counting 34.67 38.00 35.33 36.67 37.33 37.33
Snarks 50.00 61.54 53.85 55.13 57.69 58.97
Temporal Sequences 16.67 23.33 20.67 22.00 22.00 23.33
Average 32.88 48.32 43.88 45.79 46.83 47.66
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