
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BUILDING SOCIAL WORLD MODEL
WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding and predicting how social beliefs evolve in response to events,
ranging from policy changes to scientific breakthroughs, remains a fundamental
challenge in social science research. Given that Large Language Models (LLMs)
have demonstrated commonsense knowledge and social intelligence, a natural
question arises: Can LLMs be used to model the dynamics of social beliefs fol-
lowing social events? Addressing this problem can deepen our understanding of
community dynamics and inform better decision-making in the real world. In
this work, we introduce the concept of the Social World Model (SWM), a general
framework designed to capture how social beliefs evolve in response to major
events. SWM learns state-transition functions for social beliefs by mining temporal
patterns in social data and optimizing evidence lower bound, without the need for
explicit human annotations that link events to belief shifts or expensive census
data. To evaluate SWM’s effectiveness in predicting social belief transitions, we
introduce a benchmark, SWM-Bench, derived from real-world Polymarket data.
SWM-Bench includes over 300,000 data samples for social belief prediction tasks
spanning diverse domains such as politics, sports, cryptocurrency, and elections.
Our experimental results show that SWM significantly outperforms traditional time-
series models, achieving a 21.56% reduction in RMSE while offering interpretable
insights into the underlying mechanisms of social belief dynamics.

1 INTRODUCTION

Diverse social beliefs shape different human communities and the future of mankind (Greif, 1994; Bar-
Tal, 2000; Zou et al., 2009). Examples of impactful social beliefs include whether AGI will emerge
within the next five years (Feng et al., 2024) or who will be the next U.S. president (Barberá González
& Lohan, 2024). While some widely accepted beliefs are unlikely to drastically change, other social
beliefs are more volatile, shifting dramatically in response to societal events (Campbell, 1986). For
example, as is shown in Fig 1, the U.S. presidential election results influence public expectations
about the Federal Reserve’s policy in December 2024 (Orphanides, 2024), the price of Solana (a
cryptocurrency) (Song et al., 2024), and other political events (Tourangbam, 2024). Understanding
how social beliefs evolve is crucial for a wide range of societal applications, from forecasting social
events (Spilerman, 1975) to improving decision-making in business and economics (Ariely, 1998).
This naturally leads to the question: Can LLMs be used to model the dynamics of social beliefs in
response to significant events?

Modeling the dynamics of social beliefs is a complex challenge for several reasons. First, social
beliefs are not independent with each other; they are deeply interconnected. A shift in one belief
can ripple across multiple domains, influencing related beliefs simultaneously. This interdependence
makes modeling social dynamics particularly intricate. Second, identifying the temporal relationship
between a social event and its impact on social beliefs is challenging. The influence of an event
may not be immediate or direct, and multiple factors often interact in complex ways to shape public
opinion. It requires advanced social reasoning abilities to understand temporal relationships between
events and beliefs. Finally, evaluating models of social belief dynamics is challenging due to the lack
of well-established tasks or metrics to measure their effectiveness. These challenges underscore the
complexity of accurately capturing how social beliefs evolve over time.

Building on these challenges, we introduce the Social World Model (SWM), a general framework
designed to predict the social belief dynamics based on different social events. SWM adopts a
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Figure 1: Social events shape future social beliefs. Each line tracks social beliefs on a social
event over time, collected from Polymarket. A notable social event will create a sudden change in
social beliefs. The Social World Model aims to predict how these social beliefs will evolve based on
historical social beliefs and a (hypothetical) social event.

state-transition style world model framework, modeling the probability P (St | S<t, et), where state
S<t represents the community’s historical social beliefs, St represent the future social belief at time
t, and action et denotes a (hypothetical) social event that impact the future social belief at specific
time t. A concrete use case of a social world model is shown in Fig 1; suppose today is 11/05/2024,
based on the historical social beliefs over different events S<t, stored as a multi-variate time series,
conditioned on an action et, Trump wins the election on 11/06/2024, which is a hypothetical social
event, can we predict the remaining future beliefs St on 11/06/2024?

We argue that advanced social reasoning (Sap et al., 2020) and implicit social knowledge are crucial
in shaping this transition function and that LLMs are essential for this task, as their large-scale
training on human data enables them to capture these underlying social dynamics (Halawi et al.,
2024). To leverage this capability, we develop a training framework based on LLMs that predicts
potential belief shifts and infer the likely events driving these changes. Our approach utilizes purely
time-series social belief data and incorporates posterior guidance to enhance social event inference.

Beyond developing SWM, we introduce SWM-Bench, the first benchmark for real-world social belief
prediction that is tailored for both LLMs and time-series models. We collected extensive real-world
time-series event data from sources such as daily win rates on Polymarket, one of the world’s largest
social prediction platforms. In SWM-Bench, each topic on Polymarket represents a social belief, and
every belief change over a given threshold is treated as a natural event. SWM-Bench includes social
belief prediction tasks spanning diverse domains, including elections, politics, cryptocurrency, and
sports. This comprehensive benchmark enables a thorough evaluation of SWM ’s ability to model
and predict belief shifts across different domains.

Based on the experiments, we find that utilizing the proposed SWM to conduct social belief predic-
tions provides better results on SWM-Bench compared with time-series-based methods or LLM-based
methods. Specifically, the proposed social world model outperforms baselines by 10∼39% in our
real-world experiments. Overall, our contributions include: (1) We are one of the first to formally pro-
pose the concept of the social world model, defining the task of predicting shifts in social belief given
specific social events; (2) We collected a novel benchmark from PolyMarket named SWM-bench to
quantify the performance; (3) We introduce a belief-change modeling method that marginalizes over
diverse social events while decoupling the task into two components: social reasoning and social
world modeling; (4) We propose a novel training framework using a posterior-guided social reasoner
and an ELBO-based optimization objective for both components.

2 RELATED WORKS

World model. A world model can be formulated as state transition probabilities, which characterize
a generative mechanism of how the world state changes after an agent’s actions (Hu & Shu, 2023).
The most recent solution considers each state in the accurate dynamics model in reaction to control in
the pixel space (e.g.video frame) instead of the low-dimensional space. Each action is also described
in the text as human instructions. A world model can be a task-specific simulator for robotics
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manipulation or self-driving (Wang et al., 2023). Our proposed social world model simulates societal
dynamics. Notably, the social world model represents human beliefs as the state and physical events
as actions, forming a dual to the existing world models, where states come from the physical world
and actions from human instructions.

Commonsense social reasoning. Commonsense social reasoning (Sap et al., 2020) refers to the
ability to understand the motivation, results, and emotional reactions (Rashkin et al., 2018) of specific
social events. Such understanding relies heavily on the commonsense knowledge of social rules.
Understanding social reasoning can conduct better social interaction in our daily life (Sap et al.,
2019). Neural symbolic structures or language models (LLMs) are utilized as a knowledge base
to conduct social reasoning Zhong et al. (2019). However, commonsense social reasoning mainly
focuses on individual-level social events like daily routes or conversation (Tenney et al., 2019) while
the social world model focuses more on community-level social events (Petroni et al., 2019) that
brings benefits to multiple individuals in the community and change the future of some overall trend
at the community level. Complicated consensus and controversy within the community requires more
complicated analysis on the community level.

Social event forcasting. Event prediction involves forecasting future events based on historical
data (Hendrycks et al., 2021; Jin et al., 2020). Traditional approaches rely on semantic information
and time-series modeling (Zou et al., 2022). Moreover, language models have been proven to
be useful in providing high-quality forecasting results since it is able to conduct social reasoning
and identify temporal relationships between events (Halawi et al., 2024; Abolghasemi et al., 2024;
Schoenegger & Park, 2023). However, the social world model has a different target compared with
event forecasting. Instead of targeting forecasting the final results of the events (Woo et al., 2024), the
social world model tries to model the community and predict the change of public opinions after the
occurrence of certain events. The final results of the events are highly uncertain and hard to predict
even with crowdsourcing power. Moreover, some outbreaking news like natural disasters and political
changes are considered as unpredictable. However, people’s reactions towards social events can be
valuable and predictable with a high-quality modeling of the community itself.

3 PRELIMINARIES

Data selection for social modeling. Our society is a highly dynamic and complex system where
individuals with diverse cultural, political, and educational backgrounds often hold different opinions
about the same social events. Admittedly, selecting the ideal data for modeling our society is a critical
challenge, as available social opinion data are often noisy, vague, and inauthentic. Our insight is that
free markets, where rational individuals freely exchange transactions to maximize self-utilities, serve
as a classical example of aggregated public opinions; therefore, we argue that market-related data
imply a high-quality social opinions data source with clearer signals and more authentic opinions
compared to other popular dataset options. Among the publicly available market data, Polymarket,
one of the largest online prediction markets, offers a comprehensive platform that effectively captures
a wide range of social beliefs and is being faithfully traded among the participants.

Polymarket prediction market. Polymarket markets span multiple domains including politics,
technology, cryptocurrency, sports, and more, making it a versatile source for studying social beliefs.
Several key features make Polymarket particularly suited for analyzing the dynamics of social belief
changes: (1)Uncertainty and popularity: Markets listed on Polymarket inherently involve uncertain
outcomes. Events with widely predictable outcomes or generally agreed-upon knowledge typically
do not appear on Polymarket because they lack potential financial incentives (Wolfers & Zitzewitz,
2004). (2)Diversity and scale: Participants in Polymarket come from diverse backgrounds, bringing
varied perspectives into their predictions. This broad participant base ensures that shifts in predictions
effectively reflect changes in general societal consensus (Arrow et al., 2008). (3)Investment-driven
quality: The financial stakes involved ensure participants’ decisions are deliberate and thoughtful
rather than arbitrary or influenced by random noise (Manski, 2006). The monetary investment
component thereby improves the reliability and quality of the collected social belief data. Conse-
quently, Polymarket serves as an exemplary platform for capturing and analyzing the dynamic shifts
in social beliefs (Ottaviani & Sørensen, 2007), making it particularly effective for research on opinion
formation, public decision-making processes, and societal forecasting.

Social belief. We consider a social belief as a collective opinion on a yes/no question referring to a
future time T . Concretely, each market in the Polymarket data can be considered as an observation
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point about social belief. Formally, at time t (with t < T ), each social belief is represented by an
ordered pair st =

(
qiT , a

i
t

)
, where qiT is a yes/no question about an event or outcome by the future

time T , and ait is the community’s numerical expectation (e.g., the fraction of “Yes” votes). For
instance, the question “Will OpenAI release GPT-5 in February 2025?” can be represented by qiT , and
the community’s aggregated belief ait is the average of the individual votes at time t. In Polymarket,
real-time prices (win rates) often serve as a proxy for these collective beliefs.

Social event. A social event is a real-world occurrence at a specific time t. Concretely, a social event
is referred to a real-world news as specific time. We denote such an event by et = (x, t), where x
is a textual description of the occurrence, and t is a timestamp. For example, “Donald Trump is
inaugurated on January 20, 2025, as the 47th President of the United States” could be annotated as
et. Some social events are surprising or especially impactful, causing major shifts in social beliefs,
while others are routine or expected and thus have minimal effect.

Belief space. A belief space at time t is the collection of all social beliefs held by the community at
that time, which can be estimated by all data from PolyMarket. Formally, a social state is a set of
social beliefs St = {s1t , s2t , . . . , snt }. A larger set of social beliefs (n being large) typically yields a
more detailed depiction of the community’s collective stance. As new information or events emerge,
a community may update its beliefs, causing St to evolve over time.

Event space. The event space at time t is the set of all social events that occur at that time. Formally,
we define Et = { e1t , e2t , . . . , emt }. As Et encompasses all real-world events at time t, it can be
quite large, with each event carrying a potential influence on the community’s beliefs.

4 PROPOSED CONCEPT: SOCIAL WORLD MODEL

The social world model seeks to predict how social states St evolve over time in response to social
events et (both real-world and hypothetical). This model captures the dynamic temporal relationships
between these events and social states, aiming to understand and simulate the complex behaviors of
human social communities. For instance, when a significant social event like policy announcement
et occurs at time t, the current state of social state St reflects varying levels of support, concern, or
other sentiments related to the event’s implications for future outcomes. Concretely, we parameterize
the modeling approach by Pθ

(
St | S<t, et

)
, where θ represents the model parameters that capture

the relationships and dynamics. The concept of social world model can be formally defined as below:

Definition 1 (Social World Model (SWM)). Let St = {s1t , s2t , . . . , snt } be the set of social beliefs at
time t. Let S<t = {St−1,St−2, . . . ,St−k} be the collection of historical social states. Finally, let
et be any hypothetical social event that occurs at time t. The social world model is defined as the
following state-transition function: St ∼ Pθ

(
St | S<t, et

)
, where θ are the model parameters.

Comparison to existing world models definition. In classical world models (Hu & Shu, 2023), one
often sees an equation of the form St+1 ∼ Pθ

(
St+1 | St, at

)
, where St is the current world state

(e.g., a video frame), at is an action taken by an agent (e.g., an human instruction), and St+1 is the
next world state after the action. This assumes a Markovian property (Norris, 1998), whereby only St

(rather than all previous states) is needed. By contrast, the social world model uses S<t (a history of
states) and a social event et that can be described in text form. Historical information can play a key
role in social belief prediction, making the evolution of social states St beyond Markovian property.
Additionally, the social world model instantiates actions as hypothetical social events, so that it can
be trained with historical data without external supervision.

5 BUILDING SOCIAL WORLD MODEL WITH LLMS

Parameterizing the social world model Pθ

(
St | S<t, et

)
with LLMs faces two main challenges: (1)

collecting paired state-action training data {(S(i)
<t,S

(i)
t , e

(i)
t )}Ni=1 is hard and (2) the large size of

event space Et. To address these challenges, we observe that events can be categorized based on
their impact on social beliefs: (1) consensus events are those with widely expected outcomes, such as
routine daily occurrences like sunrise; (2) controversial events are those with uncertain or contested
outcomes, like presidential elections. These events often significantly shift social beliefs as they either
confirm or challenge existing expectations within communities. Overall, in Section §5.1 and §5.2, we
propose two complementary strategies to account for belief changes for social world modeling. We
design an inference algorithm based on its hybrid version in Section §5.5.
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Figure 2: Posterior-guided training and social belief prediction for both social reasoner and
social world model. Pη stands for social reasoner, Qϕ stands for posterior-guided social reasoner,
Pθ stands for social world model. Pθ and Pη are jointly used for social belief prediction. Each piece
of news collected from the real world at the date of Nov 6, 2024, is considered a social event et. A
social world model Pθ can be independently utilized given hypothetical events and social states, but
for social belief prediction, it requires the help from Pη. Pθ, Pη, and Qϕ are parameterized with
different LLMs separately.

5.1 DESIGNING SWM WITHOUT EVENT MODELING

Within the event space Et, consensus events make up the majority. Humans, as intelligent agents,
actively observe the world and therefore have already incorporated these consensuses in the prior
social states S< t. Therefore, we assume consensus social events can be ignored in the condition and
the conditional probability can be simplified as: P (St | S<t, et) ≈ P (St | S<t). The setting over
consensus events allows us to train a social world model using only social state data {(S(i)

<t,S
(i)
t )}Ni=1,

eliminating the need for explicit event annotations.

Furthermore, since each social belief st ∈ St is determined simultaneously at time t, we assume that
each belief is conditionally independent given the historical social states. Reasons why we think such
an assumption is necessary in this case is in Appendix §G. This allows the joint probability to be
factorized, giving us the first learning objective of SWM in this case:

P (St | S<t) ≈
∏

st∈St

Pθ(st | S<t). (1)

5.2 DESIGNING SWM WITH EVENT MODELING

More rigorously, our social world model should account for both consensus and controversial events,
where controversial events could dramatically alter social states St. Here, we consider the event space
as Et = {e∅t , e1t , · · · , emt }, where e∅t compress all routine, predictable events into one event. For
all other controversial events {e1t , · · · , emt } that can cause surprising changes, we need to explicitly
model their impact through P (St+1 | St, et) in a SWM.

Event as latent variable. Due to the lack of paired state-action training data {(S(i)
<t,S

(i)
t , e

(i)
t )}Ni=1,

we treat each social event et as latent variables that drive temporal changes. This allows us to
marginalize the social world model to P (St | S<t) with event distribution:

P (St | S<t) =
∑

et∈Et

Pθ(St | S<t, et)Pη(et | S<t) (2)

This equation consists of two components: a social world model Pθ that predicts event impacts on
social states and a social reasoner Pη that evaluates event importance. For example, when considering
presidential election results as a social event et, the social world model predicts its impact on
cryptocurrency prices while the social reasoner assesses the election’s relevance to the crypto market.

Posterior guidance. Due to the vast diversity of events, |Et| can be extremely large, making the direct
calculation of Equation 2 impractical for training. Thus, we observe that Pη is sharply distributed
since each social belief would not be related to a large number of events, consequently, we can switch
our optimization target with the Evidence Lower Bound (ELBO) (Kingma et al., 2013) for each
P (sit | S<t):

logP (st | S<t) ≥ Eet∼Qϕ(·|S<t,st)

[
logPθ(st | S<t, et)

]
−DKL

[
Qϕ(et | S<t, st) ∥Pη(et | S<t)

]
.

(3)
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where Qϕ is a posterior-guided social reasoner that identifies related events driving changes in social
states, and similar to Equation 1 we assume each belief is conditionally independent. For example,
Qϕ is responsible for identifying which events (like a highly related political announcement) triggered
a sudden shift in policy expectations.

5.3 COMPONENTS OF SWM FOR TRAINING

In the following parts, we discuss the implementation of three components: (1) posterior-guided
social reasoner Qϕ; (2) social reasoner Pη; (3) social world model Pθ.

Posterior-guided social reasoner Qϕ. The posterior-guided social reasoner Qϕ operates on a limited
event space Et and leverages future data during training to provide sharp, accurate estimates of
important events. For example, given known presidential election results, Qϕ is responsible for
reasoning and identifying which social events were most influential and critical in shaping the
outcome. For simplicity, here we approximate Et to be the top-k most popular news that occurs
every day. This requires multi-step temporal reasoning with social knowledge to understand temporal
relationships between events and belief changes. Due to the lack of training data for Qϕ, we leverage
the in-context learning and parametric knowledge of state-of-the-art LLMs (specifically gpt-4o1) to
score event importance.

Social reasoner Pη . The key distinction between Qϕ and Pη is their access to information: Qϕ can
use future social beliefs St during training, while Pη cannot. Such lack of information makes the
social reasoning tasks much harder. Pη is responsible for predicting which events are likely to impact
future social states, requiring strong social reasoning capabilities as well. We optimize the social
reasoner model Pη by deriving and minimizing the reverse KL divergence with the posterior-guided
reasoner.

DKL

[
Qϕ(et | S<t, st) ∥Pη(et | S<t)

]
=

∑
et∼Qϕ

Qϕ(et | S<t, st)(logQϕ(et | st,S<t)− Pη(et | S<t))

(4)
where the importance scores from Pη are again weighted by Qϕ, following a probabilistic implication:
if Qϕ assigns high importance to an event, Pη should do likewise. Intuitively Qη teaches advanced
social knowledge that can be useful for measuring the importance of one event based on its experience.

Social world model Pθ. Our target model Pθ is optimized with guidance from Qϕ, using the
posterior-weighted expectation:

Eet∼Qϕ(·|S<t,st)

[
logPθ(st | S<t, et)

]
=

∑
et∈Et

Qϕ(et | S<t, st) logPθ(st | S<t, et) (5)

The social world model weights each event et by Qϕ during training, enabling it to focus on learning
true temporal relationships between events and state changes. This training approach, guided by Qϕ’s
distribution, also enhances the model’s performance when using Pη for social belief prediction.

Social belief retriever. After addressing the large size of Et, the remaining challenges for using
LLMs to parameterize these three components are LLM’s limited context window and the large size
of |St|. Therefore, a social belief retriever Retro(q,D) that finds d ∈ D related to query q is required
to retrieve useful and related historical social beliefs to augment the modeling process. For example,
when implementing the social world model Pθ, we use:

Pθ(St | S<t, et) ≈
n∏

i=1

Pθ(st | Retro(st−1,S<t), et) (6)

Similar use of a retriever is often required for the training and inference of social reasoner Pη and
Qϕ as well to overcome the large size of |St|, e.g., Equation 5 becomes∑

et∈Et

Qϕ(et | Retro(st−1,S<t), st) logPθ(st | Retro(st−1,S<t), et) (7)

5.4 SWM TRAINING ALGORITHM

Based on the previous discussion of model components for training, the detailed training algorithm
for our social world model can be described as an algorithm below:

1We specifically use gpt-4o-2024-08-06 API
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5.5 SWM INFERENCE ALGORITHM

Algorithm: SWM Training Pass

Input: Historical states S<t, belief st,
possible events Et, generative model fθ ,
prior Pη , posterior Qϕ

Output: Loss L
S′
<t ← Retro(st−1,S<t)

qt(·)← Qϕ(· | S′
<t, st)

pt(·)← Pη(· | S′
<t)

LKL ← DKL(qt∥pt)
ŝt ←

∑
et∈Et

qt(et) · fθ(S′
<t, et)

L ← MSE(ŝt, st) + LKL
return L

After training with time-series data pairs for social be-
lief prediction, we obtain a social world model Pθ(St |
S<t, et) and a social reasoner Pη(et | S<t). During infer-
ence, we jointly use both models with and without explicit
event modeling to adapt to a generic scenario. If a pro-
vided event êt is considered to be not related to the current
social state and has importance score lower than thresh-
old δ, we classify it as e∅t and the model degenerates to
Pθ(St | S<t). The joint inference process is written as:

St ∼
{
Pθ(St | S<t) if Pη(et | S<t) < δ,

Pθ(St | S<t, et) otherwise.

More discussion related to the analysis of inference algorithm (including δ) is in Appendix §H.

6 EXPERIMENTAL SETTINGS

Data settings. We collect all market data from Polymarket from the beginning to January 05, 2025,
as shown in Table 4. The dataset is manually split into five domains based on provided Polymarket
tags: Politics, Sports, Crypto, Election, and Other. For testing, we focus on time points t where social
beliefs show dramatic changes (|st − st−1| > 0.25), resulting in 360 samples. These sudden shifts
indicate significant external event influences, presenting a more challenging scenario than standard
time-series prediction. We denote this subset as SWM-Bench (test-hard), distinct from the complete
SWM-Bench (test).

Task settings. We evaluate our social world model on social belief prediction tasks. Each task
requires predicting social belief st given historical social states S<t containing n beliefs and an event
space Et with k social events, where s<t is included in the historical states. Such tasks require joint
usage of social reasoner and social world model.

Baseline settings. We compare SWM against two families of methods: (i) time-series forecasting
models—LSTM (Hochreiter, 1997), Transformer (Vaswani, 2017), Autoformer (Wu et al., 2021),
Informer (Zhou et al., 2021), Reformer (Kitaev et al., 2020), the linear baseline DLinear (Su, 2022),
and ChatTime-base/chat (Wang et al., 2025)—each trained within domain on SWM-Bench; and
(ii) LLMs with time-series conditioning (LLM w/TS), where closed-source models gpt-4o and o3-
mini are prompted with a standardized template that concatenates the recent domain-specific time
series and a brief event description, without fine-tuning. All baselines are evaluated under identical
protocols, and we report RMSE/MAE per domain in Table 1.

Metric settings. We evaluate social belief prediction using two standard regression metrics: Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE). RMSE is sensitive to larger errors,
while MAE provides the average absolute difference between predicted and actual values.

7 EXPERIMENTAL RESULTS

In this section, we present our main results for SWM-Bench in Table 1 and analyze the insights.

SWM outperforms baselines. Our proposed SWM significantly outperforms all baselines (including
time-series models and LLMs). Time-series baselines perform poorly as they can only rely on
historical patterns, making them inadequate for predicting sudden changes. These models do not
have access to social knowledge to facilitate their predictions. While LLM baselines better capture
temporal patterns, they still fall short compared to SWM. By incorporating social event modeling
as latent variables, SWM effectively captures the reason behind potential changes and demonstrates
superior performance across all domains.

Different domains show different trends with SWM.. Our SWM model delivers significant
performance improvements across multiple domains. In politics, it reduces RMSE by 13.72% and
MAE by 8.19%. In sports, the gains are smaller, 9.95% in RMSE and 11.31% in MAE, likely due
to the high uncertainty of sports-related social events, making daily news an unreliable signal. The
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Table 1: Evaluation results for social belief prediction on SWM-Bench (test-hard). Each model
is trained and tested with data of the same domain. The improvement rate is calculated between the
best baseline and SWM. LLM w/TS means including time-series data inside the prompt.

Model
Politics Sports Crypto Election Other

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

LSTM 0.413 0.396 0.368 0.360 0.431 0.403 0.440 0.424 0.377 0.362
Transformer 0.414 0.396 0.360 0.350 0.433 0.405 0.437 0.422 0.378 0.363
Autoformer 0.398 0.321 0.382 0.310 0.383 0.308 0.418 0.340 0.396 0.327
Informer 0.397 0.319 0.381 0.310 0.384 0.310 0.415 0.336 0.398 0.329
Reformer 0.398 0.318 0.381 0.309 0.383 0.309 0.415 0.335 0.394 0.325
DLinear 0.396 0.317 0.380 0.307 0.383 0.309 0.414 0.334 0.393 0.322
ChatTime-base 0.392 0.336 0.305 0.271 0.393 0.345 0.436 0.386 0.398 0.356
ChatTime-chat 0.387 0.338 0.299 0.266 0.421 0.389 0.451 0.408 0.396 0.357
gpt-4o w/TS 0.428 0.403 0.369 0.356 0.421 0.391 0.438 0.418 0.389 0.372
o3-mini w/TS 0.415 0.388 0.387 0.368 0.419 0.388 0.444 0.423 0.378 0.368

SWM-0.5B 0.339 0.292 0.292 0.257 0.271 0.225 0.327 0.283 0.255 0.201
SWM-1.5B 0.337 0.291 0.295 0.258 0.270 0.224 0.331 0.291 0.254 0.202
SWM-3B 0.333 0.288 0.296 0.258 0.264 0.214 0.330 0.286 0.250 0.196
SWM-7B 0.334 0.294 0.270 0.236 0.253 0.212 0.329 0.289 0.249 0.196

Table 2: RMSE on SWM-Bench (test-hard)
with different social reasoners. Marginal uses
the social reasoner; ELBO uses the posterior-
guided reasoner.

Method Poli. Sports Crypto Elec. Other

Marginal 0.266 0.241 0.256 0.288 0.340
ELBO 0.326 0.312 0.276 0.324 0.283

Table 3: RMSE on SWM-Bench (test). Most
data in SWM-Bench (test) change smoothly. We
conduct evaluations with SWM on the complete
time-series data besides significant change.

Model Poli. Sports Crypto Elec. Other

Transformer 0.0193 0.0504 0.0435 0.0274 0.0177
SWM 0.0435 0.0661 0.0714 0.0597 0.0628

crypto domain shows the most significant improvements, with RMSE and MAE reductions of 33.91%
and 30.61%, respectively, this is mainly because crypto-related events are highly sensitive to the
occurrence of related news and event modeling works the best. For election forecasting, the model
reduces RMSE by 21.06% and MAE by 15.49%, reflecting its strength in analyzing human-centric
data. The other category also shows robust enhancements, with reductions of 29.13% in RMSE and
39.21% in MAE, demonstrating SWM ’s broad applicability.

Overall, SWM integrates social events into its modeling framework, addressing the limitations
commonly found in traditional time-series models for social belief prediction. These results strongly
advocate for adopting SWM in diverse and complex social tasks across various fields.

8 ABLATION STUDY

Ablation on model size. One key factor influencing social belief prediction performance is the
capacity of the underlying language model. As shown in Table 1, our social world model is fine-tuned
on Qwen2.5-Instruct models of varying sizes: 0.5B, 1.5B, 3B, and 7B. The predictive accuracy
consistently improves as the model size increases, suggesting that stronger base models lead to better
social belief forecasting. This highlights the critical role of model capacity in enhancing predictive
performance for socially grounded tasks. We include more ablation study results on model families
in Appendix §D.

Ablation on window size. Another key factor in the social world model Pθ(St | S<t, et) is the
amount of historical data used to model S<t = {St−1, . . . ,St−k}. A larger k includes more past
data for prediction. However, as shown in Fig 3, adding more time-series data does not necessarily
improve performance, particularly for predicting dramatic changes. It indicates that for sudden
change prediction case, historical data only has limited use.

Ablation on event space size. The size of the event space Et plays a crucial role in training the
social world model. When optimizing the ELBO loss, training is performed under

∑
et∈Et

Qϕ(et |
S<t, s

i
t) logPθ(s

i
t | S<t, et), where Et determines the number and diversity of events dt used for
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training. As shown in Fig 4, a larger event space allows the model to incorporate more social events.
We observe that reducing the latent variable size from 10 to 5 increases the RMSE for the Crypto
category from 0.2759 to 0.2788. Further reducing it to 3 increases RMSE to 0.2867. This suggests
that incorporating a greater variety of events during training improves generalization, leading to better
performance on unseen events during testing.

9 DISCUSSION

Q1. Is the posterior-guided social reasoner useful? The posterior-guided social reasoner serves
two key roles in ELBO loss training: (1) providing soft labels for KL divergence calculation for
the training of the social reasoner, and (2) generating expectation targets to reweight each event
during the training of the social world model. As shown in Fig 5, the posterior-guided social reasoner
produces a sharp distribution indicating the importance of social events for the current social state.
On average, the top-ranked social event in Et has an importance score of 0.62, while the 10th-ranked
event has only 0.04. It allows efficient training for both social world models and social reasoners by
selecting top-10 events in the event space. We provide a detailed example in Appendix §J, which
illustrates how indirect connection between events is detected by posterior-guided social reasoner
and included in the training process. Additionally, as shown in Table 2, the posterior-guided social
reasoner provides more accurate predictions across multiple domains. This leads to improved final
results when weighting with the posterior distribution rather than the prior social reasoner. These
findings indicate that the posterior-guided social reasoner effectively enhances the training process by
providing more reliable event weighting, ultimately improving the performance of the SWM.

Q2. What do social worlds models use for prediction? As shown in Table 3, when tested on
all available sequential data in the test split, our social world model performs worse than pure
time-series models such as Transformer, which rely solely on time-series data. However, in cases
of sudden changes, the social world model outperforms these baselines. This suggests that while
our model may not match the fluency of pure time-series models in continuous trend prediction, it
effectively leverages social knowledge from LLMs to improve predictions in dynamic scenarios.
To further analyze the role of social events, we conduct an ablation study by removing text-based
event information from the social world model during training. This results in an RMSE increase
from 0.2759 to 0.2857, indicating that incorporating text-based social event information enhances
prediction accuracy. A detailed case study is presented in Appendix §J illustrates how the social
world model incorporates relevant events, such as ETF filings and Bitcoin price surges, to adapt its
predictions. This demonstrates that the social world model can dynamically adapt to evolving social
events, leading to more responsive and accurate forecasts.

10 CONCLUSION

In this work, we introduce the concept of the social world model (SWM), which we define as a
state-transition function that models social states based on specific social events. Since paired data
for states and events is scarce, we treat events as latent variables and optimize the social world model
with event modeling using ELBO loss. To evaluate the effectiveness of our approach, we design social
belief prediction tasks and construct a benchmark dataset, SWM-Bench, containing over 300,000
datapoints. Experimental results show that SWM significantly outperforms LLM and time-series
baselines, particularly in predicting sudden shifts in social belief states. Looking ahead, we believe
that social world models have broad real-world applications.

9
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REPRODUCIBILITY STATEMENT

We include our full codebase in the supplementary material, and we will put the code on GitHub. In
addition, we described the overall pipeline of our method in detail in Section §6 and Appendix §B
and §C, facilitating readers to reproduce the work.

ETHICS STATEMENT

Our work models aggregate social beliefs using publicly available, topic-level time series (e.g.,
Polymarket markets). We do not collect or infer personally identifiable information, and we operate at
the level of beliefs about events (elections, crypto, sports) rather than individual users, in accordance
with platform terms. The Social World Model (SWM) is designed to forecast belief dynamics—not
to establish causality; causal interpretations of outputs would be inappropriate. Because both LLMs
and source platforms can encode historical biases or reflect unequal media attention, we emphasize
transparency and reproducibility by releasing code, documenting data coverage and preprocessing,
and reporting uncertainty alongside predictions.

Potential social impact. Positively, SWM can help journalists, researchers, and policymakers
understand opinion dynamics, perform “what-if” stress tests around salient events, and compare
methods on SWM-Bench, which bridges time-series modeling and LLM-based reasoning. However,
risks include misuse for targeted persuasion or market manipulation, amplification of rumor-driven
shocks, overconfidence in forecasts in high-stakes settings, entrenchment of upstream biases, and
feedback loops whereby public forecasts shift beliefs or prices, degrading calibration and potentially
harming less-informed participants. Affected stakeholders include news consumers, retail traders,
civil society groups, election observers, and platforms that host belief markets.

Mitigations and responsible use. We (i) restrict inputs to aggregate, public data and disallow
individual-level predictions; (ii) document limitations, known biases, and distribution-shift tests;
(iii) publish calibrated uncertainty (e.g., intervals, reliability diagnostics) and support abstention
when confidence is low; (iv) avoid micro-targeted outputs (e.g., rate-limit or aggregate forecasts)
and provide delayed or batched reporting to reduce feedback effects; (v) conduct red-teaming with
counterfactual events and adversarial perturbations; (vi) include model cards and data statements
detailing provenance, coverage, and compute; and (vii) add usage terms prohibiting deployment
for electoral manipulation, deceptive practices, or harms to vulnerable populations. Environmental
impact is considered by reporting compute and preferring efficient training/evaluation settings.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT as a writing assistant to help us write part of the paper. Additionally, we utilize
the power of CodePilot to help us code faster. However, all the AI-generated writing and coding
components are manually checked and modified. There is no full AI-generated content in the paper.

B ASSET DETAILS

B.1 CODE AND DATA OPEN-SOURCE

We will release both our code and the complete dataset upon acceptance of the paper. The dataset
will be shared under the Open Database License (ODbL), allowing use, sharing, and adaptation with
proper attribution and requiring that derivative datasets remain open. Our data is collected from
publicly accessible sources, and we ensure full compliance with the terms of those platforms.

B.2 DATASET DETAILS

We outline below the technical details of our dataset collection, which includes both news data and
social belief data from PolyMarket.

News data collection We use the API service provided by thenewsapi, specifically https:
//api.thenewsapi.com/v1/news/headlines, to collect daily news from 2021 to 2025.
The API returns more than 10 significant news headlines and descriptions each day. These news
items serve as part of the input for our Social World Model.

News data statistics In total, our news data includes 79,431 news items. The overall available dates
range across 1463 days. The average news per day is 54.29. The earliest day included is 01/01/2021
and the latest day included is 01/02/2025.

PolyMarket data collection To collect real-world belief data, we use the publicly accessible API
from the PolyMarket platform: https://gamma-api.polymarket.com. We gather both
metadata (e.g., market title, status, tags) and historical time-series data for each market, using various
parameter settings. Our dataset includes all available PolyMarket data prior to January 1, 2025.

PolyMarket categorization Each PolyMarket event includes multiple tags in its metadata that
indicate both fine-grained and coarse-grained topic classifications. We use these tags to classify each
event into one of five broad categories: politics, sports, crypto, election, or other. If a tag corresponding
to one of these categories is present, we assign the event to that category for downstream use.

PolyMarket data splitting In PolyMarket data, each event can have multiple options and each
option can have one time-series. For example, the event about the NBA championship can include
multiple NBA teams and each of them includes a time series about the social belief. Within one
event, the time-series data for multiple options are highly correlated with each other and can cause
data leakage for testing. Therefore, we directly split all events into train, dev, and test based on 80%,
10%, and 10%. Since we split based on events, we do not guarantee that the market number in train,
dev, and test is strictly 8:1:1. Table 4 shows the split number of train/dev/test. Our motivation for
conducting market-level splitting is to verify that the SWM has good out-of-distribution capability,
potentially being able to generalize to fully unobserved events; therefore, we split the train/test by
event. For example, testing whether training on time-series of "Will ETH hit $2000 by EOY? " can
generalize to predicting "The Fed raises interest rates by June?". We do not enforce an out-of-time
split. Instead, we ensure that no two time-series curves from the same market that are semantically
similar appear in both train and test sets with the motivation to test the generalization ability of SWM.

PolyMarket time-series data For more fine-grained details, we provide more details about the
statistics about the time-series data from the PolyMarket. Table 5 indicates the average time-series
length for each category.
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Category Train Dev Test

Crypto 895 71 91
Election 2433 307 315
Politics 4088 505 487
Sports 5775 625 579
Other 4386 553 620

Overall 14894 1882 1884

Table 4: Splitting of the dataset. We include the market number for each category.

Hard Subset of PolyMarket Data During evaluation, we do not test the model at every time step,
as our goal is to capture sudden shifts in social belief. Instead, we select a subset of time steps within
each time-series that reflect significant changes (|st+1 − st| ≥ 0.25). The number of selected time
steps varies by domain: Crypto includes 26 points, Election 51 points, Other 48 points, Politics 95
points, and Sports 18 points.

Category Train Dev Test

Crypto 36.15 27.62 42.24
Election 41.28 26.57 22.33
Other 30.25 37.41 26.73
Politics 34.02 49.10 47.07
Sports 17.67 10.57 9.51

Overall Bench 27.44 27.60 26.61

Table 5: Time-series length of the dataset. We include the length of time-series data for each
category.

B.3 DATASET LICENSE

We plan to release our dataset under the Open Database License (ODbL), which permits use, sharing,
and modification of the data while requiring proper attribution and that any derivative works remain
openly available under the same license. Since our dataset is derived from publicly accessible
information on Polymarket, we ensure compliance with Polymarket’s Terms of Service by avoiding
any restricted activities and including clear attribution in our release materials. This licensing choice
supports open research while safeguarding both ethical reuse and legal compliance.

B.4 MODEL DETAILS

SWM training framework includes (1) a Social Reasoner trained with posterior guidance, (2) a
Posterior-Guided Social Reasoner providing pseudo-labels, and (3) a Social World Model trained
with pseudo-labels and integrated with the reasoner. All with LLMs. The training pipeline is shown
in Figure 2: (1) train reasoner, (2) train predictor, (3) combine for inference.

We select the Qwen model family as our backbone for both social reasoner and predictor mainly due
to: (1) Efficiency: Small models are faster and more deployable for real-time trading on PolyMarket.
(2) Resource constraints: Our budget allows training only small models. (3) Performance: Qwen
models are recognized for strong results with compact sizes. For the posterior-guided social reasoner,
we require a state-of-the-art model to generate reliable pseudo-labels. A pilot human evaluation
showed that GPT-4o achieves the lowest MSE (0.0234), outperforming DeepSeek-V3 (0.0250),
DeepSeek-R1 (0.0830), GPT-o3-mini (0.0234), and Qwen2-72B (0.0309). Thus, we use GPT-4o as
the posterior-guided social reasoner for its superior human-aligned performance.
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B.4.1 REASONER MODULES

Posterior Reasoner The posterior reasoner uses a structured prompt passed to the GPT-4o model.
The full prompt template is:

Prompt for posterior reasoner

Analyze market price change causation for date:
Market: {question}
Current Price Change: {direction} from {current_price:.3f} ({current_date}) to
{next_price:.3f} ({next_date}) ({change_pct:.1f}%)
Historical Price Data (Previous 5 days): {historical_data}
News: {news_items}
Task: Rate each news item’s likelihood (0-100) of causing this price change.
Format: Return JSON array of objects with "news_id" and "score" fields. Example:
[{"news_id": 0, "score": 85}, {"news_id": 1, "score": 15}]

Prior Reasoner The prior reasoner is a LoRA-adapted causal language model
Qwen2.5-0.5B-Instruct with a regression head, trained to reproduce the posterior
belief distribution obtained above. The training objective is to match the agent-assigned
posterior scores (normalized as a probability distribution p) using the model’s predicted soft-
max output q over multiple candidate inputs per group (i.e., per market-day tuple). The loss
function is the KL divergence KL(p∥q). The model is trained using a custom Hugging Face
Trainer class KLDivergenceTrainer. All prior reasoner models are trained using
transformers.TrainingArguments.

Prompt for prior reasoner

You are given an event: {market_question}
{market.description}
On {date1}, price(Yes) = {win_rate1}
On {date2}, price(Yes) = {win_rate2}
On {date3}, price(Yes) = {win_rate3}
On {date4}, price(Yes) = {win_rate4}
On {date5}, price(Yes) = {win_rate5}
We want to predict the possibility on {date} based on this news:
Description: {news_description}
Rate how relevant this news is (0–100) to the next day’s price.

B.4.2 PREDICTOR MODULES

The predictor model is trained to estimate the aggregated reward for a set of evidence sentences
(e.g., filtered news) with respect to their alignment with posterior scores. For each market-day
example, the model receives multiple evidence items with learned weights, and is trained to output a
single score that matches the known reward (ground-truth label). The predictor is built on top of a
pretrained causal language model (Qwen2.5-0.5B-Instruct, Qwen2.5-1.5B-Instruct,
Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct), extended with a lightweight regression
head. The predictor is trained with a custom Trainer class (WeightedTrainer) that handles
group-based weighted loss computation.

We argue that prompt design can be a minor part of both our social world model and social reasoner
because we conduct training on it. Training makes the model less reliant on the prompt engineering.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt for predictor

The news description: {news_description}
Please predict the possibility to happen on date {target_date} based on the following news:
{news_content}

At date {date1}, its possibility to be ‘Yes’ to the event is {number1}.
At date {date2}, its possibility to be ‘Yes’ to the event is {number2}.
At date {date3}, its possibility to be ‘Yes’ to the event is {number3}.
At date {date4}, its possibility to be ‘Yes’ to the event is {number4}.
At date {date5}, its possibility to be ‘Yes’ to the event is {number5}.

Return a single number in [0, 1] for the predicted probability on {target_date}, and a one–two
sentence rationale.

B.5 MODEL LICENSE

We include all the licenses for models that we use during training, inference, and data collection:

Qwen2-0.5B-Instruct License: Apache 2.0
Qwen2-1.5B-Instruct License: Apache 2.0
Qwen2-3B-Instruct License: Apache 2.0
Qwen2-7B-Instruct License: Apache 2.0
GPT-4o License: Proprietary (OpenAI)
We used OpenAI’s GPT-4o (gpt-4o-2024-08-06), a proprietary large language model accessible
via API (https://openai.com/gpt-4o). Usage complies with OpenAI’s Terms of Use
(https://openai.com/policies/terms-of-use).

C EXPERIMENTAL DETAILS

C.1 COMPUTING SOURCE

For all training experiments, they are conducted on ≤4 A100 80GB GPUs. For its inference
experiments, they are conducted on 1 A100 80GB GPUs.

C.2 TRAINING DETAILS

In our SWM, there are two important components for training: SWM reasoner and SWM predictor.

SWM reasoner We fine-tuned the Qwen2.5-0.5B-Instruct 1 checkpoints using batch size 8, with a
maximum sequence length 1024 tokens. LoRA config is lora alpha is 32, lora dropout is 0.1, r is 16.

SWM predictor We fine-tuned the Qwen2.5-0.5B-Instruct, Qwen2.5-1.5B-Instruct, Qwen2.5-3B-
Instruct, Qwen2.5-7B-Instruct checkpoints using batch size 4, with a maximum sequence length 512
tokens. LoRA config is lora alpha is 32, lora dropout is 0.1, r is 16.

C.3 INFERENCE DETAILS

For model inference, we integrate both the reasoner and the predictor to form a complete Social
World Model. Given a time-series input, the reasoner first ranks the news items based on their
relevance. These relevance scores are then used as weights to combine the ranked news with the
original time-series data. The resulting weighted representation is passed to the predictor, which
generates the final prediction.

1https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
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C.4 SIGNIFICANCE TEST

To assess the statistical significance of our results, we conducted multiple training runs of the
Qwen2.5-0.5B-Instruct reasoner under identical settings. We trained the model indepen-
dently for 8 runs with different random seeds. A significance test (e.g., paired t-test) between
the best-performing configuration and the baselines yielded p < 0.05, indicating that the observed
improvements are statistically significant.

D ADDITIONAL RESULTS ON OTHER OPEN-SOURCE LLM FAMILY

Beyond the Qwen family, we also add experiments with the Gemma family, specifically using Gemma-
2-2b-it as the backbone for the social world model. This broadens the evaluation of our framework
across different open-source LLMs. Based on the Table, we find that even though we utilize the same
training receipt, Gemma-2-2b-it does not match the performance of qwen2.5-0.5B-Instruct with the
same amount of training.

E POLYMARKET AS DATA SOURCE

Based on the publicly avaiable informtion, Polymarket’s audience is predominantly male, accounting
for approximately 73% of users, with 27% female, and the largest segment falling in the 25–34 age
range. While detailed data on education, income, or ethnicity is not publicly available, active users
are generally tech-savvy, digitally native individuals with strong interests in DeFi, cryptocurrency,
predictive analytics, and speculation markets. Geographically, about 32% of visits come from the
United States, followed by Germany, Canada, South Korea, and the United Kingdom. Device usage
is nearly evenly split, with roughly 53% accessing via desktop and 47% via mobile devices. Such
biased user group can potentially make our social world model biased.

F GENERALIZATION ABILITY OF SWM

We believe our SWM can be generally applied to the analysis of multiple types of social events. The
reason is that LLMs have a large amount of world and social knowledge. Even though different social
beliefs and social events have different dependencies and hierarchical structures (like predicting
basketball game results and predicting the world economy), they can all be handled by an LLM-based
model thanks to its strong in-context learning abilities. Therefore, we believe that an LLM-based
social world model can be applied to different event-belief relationship analyses.

For our benchmark limited to PolyMarket, although we currently only include its data, given its
scale and data richness, we plan to extend our work to other platforms such as Kalshi and Manifold.
Each market has different APIs and user bases, making real-time data collection challenging within
the rebuttal period. Nonetheless, because these markets also track high-stakes social beliefs, we
expect that their reactions to shocking events will mirror those observed in PolyMarket, allowing our
approach to generalize effectively.

G CONDITIONAL INDEPENDENT BELIEF ASSUMPTION

To better train and inference implementation, we adopt a conditional independence assumption. At
each time step, the belief space St may involve more than 1,000 time series, which far exceeds
the context window of current LLMs. Modeling the full joint distribution P (St | S<t) is therefore
infeasible. For efficiency, we approximate independence and restrict the conditioning set to the most
relevant prior signals: topk(S<t) ⊆ S<t. This approach allows parallel training while keeping the
optimization process within the feasible context length of LLMs.

We detect time points where a belief trajectory shows significant shifts using z-score thresholding on
price changes. For each event, we extract these change points and compute a synchrony score: the
fraction of change points in belief A that occur within a short time window δ of any change point in
belief B. This reflects the idea that beliefs with simultaneous fluctuations are likely correlated:
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Table 6: Ablation study on model family. We include performance on Politics and Election tasks
with different modal backbone.

Model
Politics Sports Crypto Election Other

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Qwen2.5-0.5B-Instruct 0.3955 0.3215 0.3351 0.2822 0.3129 0.2564 0.4277 0.3534 0.2728 0.2349
gemma-2-2b-it 0.3834 0.2936 0.4607 0.3982 0.5053 0.4219 0.4256 0.3288 0.4769 0.4203

s(A,B) =
1

|TA|
∑
t∈TA

1
[
∃ t′ ∈ TB ; |t− t′| < δ

]
. (8)

Applying this metric to SWM-bench shows that only a small fraction of belief pairs exhibit high
change-point synchrony (> 0.7), indicating that few beliefs share similar transition dynamics around
social events.

H INFERENCE ALGORITHM ANALYSIS

Thresholding δ plays a central role in our hybrid inference design. The event-aware SWM specializes
in dramatic changes, while the time-series-focused model handles smooth trends. Incorrect switching
between them could misclassify belief changes. To address this, thresholds are dynamically guided
by the LLM-based social reasoner: we use higher thresholds for domains like elections and macroe-
conomics, where changes are clearly event-driven, and lower thresholds for volatile areas such as
cryptocurrency. Designing a more adaptive hybrid mechanism remains an open challenge for future
work, but current thresholds effectively balance accuracy across domains.

I BROADER IMPACT

This paper introduces the Social World Model (SWM), a machine learning framework designed
to analyze and forecast the evolution of population-level social beliefs using data from publicly
available sources. On the positive side, such predictive models can support informed decision-making,
anticipate societal shifts, and assist policymakers, journalists, and researchers in understanding
public opinion trends. However, we also recognize the potential risks associated with misusing these
technologies—for instance, influencing public perception through targeted messaging, reinforcing
biases, or undermining democratic processes. While our dataset poses minimal privacy concerns, we
urge responsible deployment and emphasize the need for ongoing ethical reflection. Our research is
guided by a commitment to maximizing societal benefit while minimizing unintended consequences.

J CASE ANALYSIS

J.1 CASE STUDY ON SUCCESSFUL CASES

For example, on January 22, 2024, the social belief regarding OpenSea’s potential bankruptcy by
March 1 suddenly surged from 2.5% to 50.0%. The social reasoner identified a possible cause:
Terraform Labs, the parent company of the now-defunct TerraUSD stablecoin, filed for Chapter 11
bankruptcy protection. While this event is not directly linked to OpenSea, OpenSea had previously
supported Terra-based NFTs, allowing users to trade them on its marketplace.

For example, when predicting whether OpenSea would announce a token by May 1, 2024, given
historical data up to January 1, 2024, a time-series model consistently estimates the probability at
0.12. However, the actual probability collected from PolyMarket jumps to 0.5 in a single day. In
contrast, our social world model identifies key social events, such as BlackRock and VanEck updating
their SEC filings for Bitcoin ETFs and Bitcoin surging above $46,000, adjusting its prediction to
0.43. This demonstrates that the social world model can dynamically adapt to evolving social events,
leading to more responsive and accurate forecasts.
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J.2 CASE STUDY ON FAILED CASES

We also identify failure cases of SWM in handling dramatic changes. For example, markets such as
“Will Trump say ‘Green New Scam’ 3 or more times during a rally?” exhibit abrupt changes but do
not represent meaningful shifts in collective belief, instead reflecting entertainment-driven betting.
Similarly, in sports prediction markets, our model struggles due to its daily prediction granularity;
sports outcomes often hinge on developments within hours. As a result, SWM fails on cases like “Will
the Celtics win the 2024 NBA Finals 4-1?”, where real-time feedback is critical. These examples
illustrate limits in domains where belief changes are either trivial or too rapid. Sports are generally
considered unsuitable for modeling with SWM due to their rapid change property.

K LIMITATIONS

Our approach has several limitations. First, the reasoning module of the agent is trained using
annotations generated by GPT-4o rather than human-labeled reasoning traces. While GPT-4o produces
high-quality outputs, these model-generated annotations may contain stylistic artifacts or patterns
that differ from human logic. Second, our dataset is sourced from PolyMarket, an open prediction
platform that, despite offering diverse and realistic data, may include noise or inconsistencies in
market resolution, potentially introducing hidden biases or variance that affect model robustness and
interpretability. Lastly, since both the dataset and reasoning traces rely on large language models,
which can reflect societal biases present in their training data, there is a risk that the resulting agents
may inherit or amplify these biases, raising concerns about fairness, representation, and unintended
discriminatory behavior in real-world deployment.
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