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Abstract

The generation of 3D molecules requires simultaneously deciding the categorical
features (atom types) and continuous features (atom coordinates). Deep generative
models, especially Diffusion Models (DMs), have demonstrated effectiveness in
generating feature-rich geometries. However, existing DMs typically suffer from
unstable probability dynamics with inefficient sampling speed. In this paper, we
introduce geometric flow matching, which enjoys the advantages of both equivariant
modeling and stabilized probability dynamics. More specifically, we propose a
hybrid probability path where the coordinates probability path is regularized by an
equivariant optimal transport, and the information between different modalities is
aligned. Experimentally, the proposed method could consistently achieve better
performance on multiple molecule generation benchmarks with 4.75× speed up of
sampling on average.2

1 Introduction

Geometric generative models aim to approximate the distribution of complex geometries and emerge
as an important research direction in various scientific domains. A general formulation of the
geometries in scientific fields could be the point clouds where each point is embedded in the Cartesian
coordinates and labeled with rich features. For example, the molecules are the atomic graphs in
3D [44] and the proteins could be seen as the proximity spatial graphs [15]. Therefore, with the
ability of density estimation and generating novel geometries, geometric generative models have
appealing potentials in many important scientific discovery problems, e.g., material science [36], de
novo drug design [11] and protein engineering [45].

With the advancements of deep generative modeling, there has been a series of fruitful research
progresses achieved in geometric generative modeling, especially molecular structures. For example,
[9, 30] and [42] proposed data-driven methods to generate 3D molecules (in silico) with autoregressive
and flow-based models respectively. However, despite great potential, the performance is indeed
limited considering several important empirical evaluation metrics such as validity, stability, and
molecule size, due to the insufficient capacity of the underlying generative models [40]. Most recently,
diffusion models (DMs) have shown surprising results on many generative modeling tasks which
generate new samples by simulating a stochastic differential equation (SDE) to transform the prior
density to the data distribution. With the simple regression training objective, several attempts [13]
on applying DMs in this field have also demonstrated superior performance. However, existing
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Figure 1: Illustration of EquiFM. We define a hybrid path for generating molecules g = ⟨x,h⟩,
where x is trained on an equivariant optimal transport path and h is trained on a path whose
information quantity is aligned with x’s path. The sampling is conducted by solving an ODE, i.e.
g0 = ODESolve(g1, vθ, 1, 0).
DM-based methods typically suffer from unstable probability dynamics which could lead to an
inefficient sampling speed also limit the validity rate of generated molecules.

In this work, we propose a novel and principled flow-matching objective, termed Equivariant Flow-
Matching (EquiFM), for geometric generative modeling. Our method is inspired by the recent
advancement of flow matching [26], a simulation-free objective for training CNFs that has demon-
strated appealing generation performance with stable training and efficient sampling. Nevertheless,
designing suitable geometric flow-matching objectives for molecular generation is non-trivial:

(1) the 3D skeleton modeling is sensitive, i.e., a slight difference in the atom coordinates could affect
the formulation of some certain types of bonds; (2) the atomic feature space consists of various
physical quantities which lies in the different data modality, e.g., charge, atom types, and coordinates
are correspondingly discrete, integer, and continuous variables. To this end, we highlight our key
innovations as follows:

• For stabling the 3D skeleton modeling, we introduce an Equivariant Optimal-Transport
to guide the generative probability path of atom coordinates. The improved objective
implies an intuitive and well-motivated prior, i.e. minimizing the coordinates changes during
generation, and helps both stabilize training and boost the generation performance.

• Towards the modality inconsistency issues, we proposed to differ the generative probability
path of different components based on the information quantity and thus introduce a hybrid
generative path. The hybrid-path techniques distinguish different modalities without adding
extra modeling complexity or computational load.

• The proposed model lies in the scope of continuous normalizing flow, which is parameterized
by an ODE. We can use an efficient ODE solver during the molecule generation process to
improve the inference efficiency upon the SDE simulation required in DMs.

A unique advantage of EquiFM lies in the framework enriching the flexibility to choose different
probability paths for different modalities. Besides, the framework is very general and could be
easily extended to various downstream tasks. We conduct detailed evaluations of the EquiFM on
multiple benchmarks, including both unconditional and property-conditioned molecule generation.
Results demonstrate that EquiFM can consistently achieve superior generation performance on all the
metrics, and 4.75× speed up on average. Empirical studies also show a significant improvement in
controllable generation. All the empirical results demonstrate that the EquiFM enjoys a significantly
higher modeling capacity and inference efficiency.

2 Related Work

Flow Matching and Diffusion Models Diffusion models have been studied in various research works
such as [47, 12, 49], and have recently shown success in fields like high-dimensional statistics [41],
language modeling [23], and equivariant representations [13]. Loss-rescaling techniques for diffusion
models have been introduced in [48], while enhancements to the architecture incorporating classifier
guidance are discussed in [8]. Noise schedule learning techniques have also been proposed in [33, 18].
Diffusion models suffer from unstable probability dynamics and inefficient sampling, which limits
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their effectiveness in some scenarios. Flow matching is a relatively new approach that has gained
attention recently. Research works such as [26, 1, 28] have proposed this simulation-free objective
for training continuous normalizing flow. It involves other probability paths besides the diffusion
path and could potentially offer better sampling efficiency through ODE solving. Furthermore, the
follow-ups [37, 50] proposed to use the OT couplings to straighten the marginal probability paths.
However, the application of flow matching to geometric domains requires designing appropriate
probability paths, which is an area that remains unexplored.

3D Molecule Generation Previous studies have primarily focused on generating molecules as 2D
graphs [14, 27, 46], but there has been increasing interest in 3D molecule generation. G-Schnet and
G-SphereNet [9, 30] have utilized autoregressive methods to construct molecules by sequentially
attaching atoms or molecular fragments. These frameworks have also been extended to structure-
based drug design [24, 35, 38]. However, this approach requires careful formulation of a complex
action space and action ordering. Other approaches use atomic density grids that generate the entire
molecule in a single step by producing a density over the voxelized 3D space [31]. Nevertheless,
these density grids lack the desirable equivariance property and require a separate fitting algorithm.

In the past year, the attention has shifted towards using DMs for 3D molecule generation [13, 52,
53], with successful applications in target drug generation [25], antibody design [29], and protein
design [2, 51]. However, our method is based on the flow matching objective and hence lies in a
different model family, i.e. continuous normalizing flow, which fundamentally differs from this line
of research in both training and generation.

3 Backgrounds

3.1 Flow Matching for Non-geometric Domains

In this section, we provide an overview of the general flow matching method to introduce the
necessary notations and concepts based on [26]. The data distribution is defined as q, x0 represents
a data point from q and x1 represents a sample from the prior distribution p1. The time-dependent
probability path is defined as pt∈[0,1] : Rd → R>0, and the time-dependent vector field is defined as
vt∈[0,1] : Rd → Rd. The vector field uniquely defines time-dependent flow ψt∈[0,1] : Rd → Rd by
the following ordinary differential equation (ODE):

d

dt
ψt(x) = vt(ψt(x)), ψ1(x) = x (1)

[4] proposed to train the parameterized flow model ψt called a continuous normalizing flow (CNF)
with black-box ODE solvers. Such a model could reshape a simple prior distribution p1 to the
complex real-world distribution q. CNFs are difficult to train due to the need for numerical ODE
simulations. [26] introduced flow matching, a simulation-free objective, by regressing the neural
network vθ(x, t) to some target vector field ut(x):

LFM(θ) = Et,pt(x) ∥vθ(x, t)− ut(x)∥2 (2)

The objective LFM requires access to the vector field ut(x) and the corresponding probability path
pt(x). However, these entities are difficult to define in practice. Conversely, the conditional vector
field ut(x | x0) and the corresponding conditional probability path pt(x | x0) are readily definable.

The probability path can be marginalized from a mixture of conditional probability path pt(x) =∫
pt(x | x0)q(x0)dx0, and the vector field ut(x) can be marginalized from conditional vector

field as ut(x) = Ex0∼q
ut(x|x0)pt(x|x0)

pt(x)
. This illustrates how ut(x) and pt(x) are related to their

conditional form, and [26] further proved that with the conditional vector field ut(x | x0) generating
the conditional probability path pt(x | x0), the marginal vector field ut(x) will generate the marginal
probability path pt(x). The observation inspires the new conditional flow matching (CFM) objective:

LCFM(θ) = Et,q(x0),pt(x|x0) ∥vθ(x, t)− ut(x | x0)∥22 (3)

The CFM objective enjoys the tractability for optimization, and optimizing the CFM objective is
equivalent to optimizing Eq. 2, i.e., ∇θLFM(θ) = ∇θLCFM(θ). For the inference phase, ODE
solvers could be applied to solve the Eq. 1, e.g., x0 = ODESolve(x1, vθ, 1, 0). In this paper, we
consider using the Gaussian conditional probability path, which lies in the form of pt(x | x0) =
N

(
x | µt(x0), σt(x0)2I

)
. We introduce two probability paths utilized in the following of paper:
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Conditional Optimal Transport Path With the prior distribution p1 defined as a standard Gaussian
distribution, the empirical data distribution p0 (x | x0) is approximated with a peaked Gaussian
centered in x0 with a small variance σmin as N

(
x | x0, σ2

minI
)
. The probability path is pt(x | x0) =

N
(
x | (1− t)x0, (σmin + (1− σmin)t)

2I
)

and the corresponding flow is ψt(x) = (σmin + (1 −
σmin)t)x + (1 − t)x0. Then the vector field could be obtained by Eq. 1 as: ut(ψt(x) | x0) =
d
dtψt(x) = −x0 + (1− σmin)x.

Put the above terms into Eq. 3, the reparameterized objective is as:

LOT
CFM(θ) = Et,q(x0),p1(x1) ∥vθ(ψt(x1), t)− (−x0 + (1− σmin)x1)∥2 (4)

Intuitively, the conditional optimal transport objective tends to learn the transformation direction
from noise to data sample in a straight line which could hold appealing geometric properties.

Variance Preserving Path The variance-preserving (VP) path is defined as pt(x | x0) =

N
(
x | αtx0, (1− α2

t )I
)
, where αt = e−

1
2T (t) and T (t) =

∫ t
0
β(s)ds. Here β is some noise

schedule function. Following the Theorem. 3 in [26], the target conditional vector field of VP path
could be derived as ut(x | x0) = α′

t

1−α2
t
(αtx − x0). α′

t denotes the derivative with respect to time.
And the objective for VP conditional flow matching is as:

LVP
CFM(θ) = Et,q(x0),pt(x|x0)

∥∥∥∥vθ(x, t)− α′
t

1− α2
t

(αtx− x0)

∥∥∥∥2 (5)

The VP path is flexible to control the information dynamics, e.g. correlation changes towards x0 on
the conditional probability path, by selecting different noise schedule functions.

4 Methodology

In this section, we formally describe the Equivariant Flow Matching (EquiFM) framework. The
proposed method is inspired by the appealing properties of recent advancements in flow matching [26],
but designing suitable probability paths and objectives for the molecular generation is however
challenging [13]. We address the challenges by specifying a hybrid probability path with equivariant
flow matching. The overall framework is introduced in Section. 4.1. And then we elaborate on the
design details of the hybrid probability path of the equivariant variable and invariant variable in
Section. 4.2 and Section. 4.3 respectively. A high-level schematic is provided in Figure. 1.

4.1 Equivariant Flow Matching

Recall molecule could be presented as the tuple g = ⟨x,h⟩, where x = (x1, . . . ,xN ) ∈ X is the
atom coordinates matrix and h = (h1, . . . ,hN ) ∈ RN×d is the node feature matrix, such as atomic
type and charges. Here X =

{
x ∈ RN×3 : 1

N

∑N
i=1 x

i = 0
}

is the Zero Center-of-Mass (Zero
CoM) space, which means the average of the N elements should be 0. We introduce the general form
of equivariant flow matching in the following.

SE(3) Invariant Probability Path For modeling the density function in the geometric domains, it is
important to make the likelihood function invariant to the rotation and translation transformations. We
could always make the probability path of equivariant variable x invariant to the translation by setting
the prior distribution and vector field in the Zero CoM space, i.e. 1

N

∑N
i=1 v(x, t)

i = 0. Formally,
the rotational invariance could be satisfied by making the parameterized vector field equivariant and
the prior p1 invariant to the rotational transformations as shown in the following statement:

Theorem 4.1. Let (vxθ (g, t), v
h
θ (g, t)) = vθ(g, t), where vxθ (g, t) and vhθ (g, t) are the parameterized

vector field for x and h. If the vector field is equivariant to any rotational transformation R, i.e.,
vθ(⟨Rx,h⟩, t) = (R(vxθ (g, t)), v

h
θ (g, t)). With an rotational invariant prior function p1(x,h), i.e.,

p1(Rx,h) = p1(x,h), then the probability path pθ,t generated by the vector field vθ(·) is also
rotational invariant.

To make the vector field satisfy the equivariance constraint, we parameterize it with an Equivariant
Graph Neural Network (EGNN) [43]. And more details can be found in Appendix C.
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(a) EquiFM (b) FM (c) EDM

Figure 2: Generation route visualization of different models. Note that a lighter color indicates an earlier step
of an atom and a denser color corresponds to a later step. A change of base color indicates a change of atom type.
EquiFM generates molecules in a straightforward route as shown in 2(a). Vanilla flow matching method 2(b)
on the other hand, takes a detour while generating molecules, resulting in a route inward then outward before
converging to a molecule. The generation process in EDM 2(c) is rather chaotic until the last few steps before
converging into a molecule.

Hybrid Probability Modeling We refer to the target conditional vector field on each part as
uxt (g | g0) and uht (g | g0) correspondingly, then we could get the objective in the following
formulation:

LCFM(θ) = Et,q(g0),pt(g|g0)[∥v
x
θ (g, t)− uxt (g | g0)∥22 +

∥∥vhθ (g, t)− uht (g | g0)
∥∥2
2
] (6)

Proposition 4.2. There could be joint probability path pt(g|g0) which satisfies that pt(g|g0) =
pt(x|x0)pt(h|h0), and the conditional vector field on x and h is independent: uxt (g | g0) = ut(x |
x0), u

h
t (g | g0) = ut(h | h0).

The above Proposition 4.2 states a special property of conditional flow matching, i.e., in the multi-
variable setting the probability path of each variable could be designed independently. Such property
is appealing in our setting, as x and h hold different data types and come from different manifolds,
thus it is intuitive to use different probability paths for modeling and generating the two variables.

4.2 Coordinates Matching with Equivariant Optimal Transport

We focus on the generation of coordinates variable x. The conditional OT path (Eq. 4) could be
a promising candidate as it tends to move the atom coordinates directly towards the ground truth
atom coordinates along a straight line. However, directly applying the objective could be problematic
in 3D molecule generation. With x0 as the point cloud from molecule distribution and x1 from
the prior distribution, the objective in Eq. 6 tends to move the atom based on a random alignment
between the atoms. Optimizing the vector field toward such a direction could involve extra variance
for training and lead to a twisted and unstable generation procedure as shown in molecule generation
visualization Fig. 2(b) and Fig. 2(c).

To address the above-mentioned issue, we first introduce the concept of equivariant optimal transport
(EOT) between two geometries as follows:
Definition 4.3. Given two point clouds, z = (z1, . . . , zN ) ∈ RN×3 and y = (y1, . . . ,yN ) ∈ RN×3.
We define the equivariant optimal transport plan as

π∗,R∗ = argmin
π,R

∥π(Rz1,Rz2, . . . ,RzN )− (y1,y2, . . . ,yN )∥2 (7)

Here π is a permutation of N elements and R ∈ R3×3 stands for a rotation matrix in the 3D space.
With and lie in the zero of mass space, the mappings in Eq. 7 are optimal towards any E(3) equivariant
operations on either side of the point clouds. Therefore, the mappings are referred to as equivariant
optimal transport(EOT).

The equivariant optimal transport finds the minimum straight-line distance between the paired atom
coordinates upon all the possible rotations and alignment. We could then build a probability path
based on the EOT map which could minimize the movement distance of atom coordinates for the
transformation between the molecule data from p0 and a sampled point cloud from p1 as:

pt = [ψEOT
t ]∗p1, where ψEOT

t (x) = (σmin + (1− σmin)t)π
∗(R∗x) + (1− t)x0 (8)
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Proposition 4.4. The probability path implied by the EOT map, i.e. Eq. 8, is also an SE(3) invariant
probability path.

The proposition could be proved following the Definition 4.3 and the Theorem 4.1. Combining the
above terms, the final equivariant optimal transport based training objective is:

LEOT
CFM(θ) = Et,q(x0),p1(x1)

∥∥vθ(ψEOT
t (x1), t)− (−x0 + (1− σmin)π

∗(R∗x1))
∥∥2 (9)

A good property of the objective with EOT is that the training characteristics are invariant to translation
and rotation of initial x1, and equivariant with respect to both sampled noise x1 and data point x0,
which empirically contributes to more effective training.

Solving Equivariant Optimal Transport We propose an iterative algorithm to obtain the equiv-
ariant optimal transport map. The algorithm first conducts the Hungarian algorithm [20] to align
the atoms between the initial geometry from p1 and the ground truth geometry from p0; and then
conducts the Kabsch algorithm [17] to solve the optimal rotation matrix based on the atom alignment.
The proposed algorithm asymptotically converges to the optimal solution. Besides, the method holds
a close relationship with the Iterative Closest Point (ICP) [5] algorithm, while our settings require the
node alignment could only be one-one mapping. We leave the detailed description in Appendix C.

4.3 Information Aligned Hybrid Probability Path

In this section, we address the challenges posed by the multi-modality nature of 3D molecular
data. Specifically, we focus on the distinct generation procedures required for various modalities,
such as coordinates and atom types, within the flow-matching framework. It is crucial to recognize
that altering atom types carries a different amount of chemical information compared to perturbing
coordinates. To better understand this intuition, we provide the following corner case:

Example 1: pt(x|x0) = p0(x|x0),∀t < ϵx and pt(x|x0) = p1(x|x0),∀t ≥ ϵx.

We define the pt(h|h0) similarly with a different parameter ϵh.Here we consider the corner case
that ϵx → 0 and ϵh → 1, i.e. no noise for atom types from timestep 0 to timestep ϵh and max
noise level from ϵh to timestep 1. (Reversely for ϵx ) Under such a probability path, the model will
be encouraged to determine and fix the node type at around ϵh step (very early step in the whole
generation procedure), even if the coordinates are far from reasonable 3D structures. However, this
particular case may not be optimal. The subsequent steps of updating the structure could alter the
bonded connections between atoms, leading to a potential mismatch in the valency of the atoms
with the early fixed atom types. Therefore, selecting a suitable inductive bias for determining the
probability paths of different modalities is crucial for generating valid 3D molecules. In this paper,
we utilize an information-theoretic inspired quantity as the measurement to identify probability paths
for learning the flow matching model on 3D molecules.

Definition 4.5. For distribution p0 on the joint space g, and two corresponding conditional probability
path pt(x|g0) and pt(h|g0), we denote the I(xt,ht) as the mutual information for xt with distribution∫
pt(x|g0)p0(g0)dg0 and ht with distribution

∫
pt(h|g0)p0(g0)dg0.

Proposition 4.6. For the independent conditional probability path pt(g|g0) = pt(x|x0)pt(h|h0),
when the conditional probability path of x and h lies in OT path or VP path, if I(x0,h0) > 0, then
∀t ∈ (0, 1), I(xt,ht) > 0 and I(xti ,hti) > I(xtj ,htj ),∀ti < tj .
We use the quantity It(xt,ht) as the key property to distinguish different probability paths. Given
the conditional probability path pt(x|x0), it implies an information quantity change trajectory from
I(x1,h1) = 0 to I(x0,h0) following I(xt,h0). Thus, one well-motivated probability path on h is
to align the information quantity changes by setting I(ht,h0) = I(xt,h0). Based on such intuition,
we design our probability path on h. We follow the data representation in [13]. This, for atom types,
we represent it by one-hot encoding and charges are represented as integer variables. Empirically, the
VP path involves a noise schedule function β which could naturally adjust the information change
by choosing different noise schedules, so we explore the probability path mainly on the VP path.
For I(ht,h0), we decompose it as I(ht,h0) = H(h0) −H(h0|ht) where H(h0) is constant and
H(h0|ht) is the conditional entropy towards h0 with ht as the logits. Similarly, the difficulty of
estimation I(xt,h0) lies in I(h0|xt). Following the difference of entropy estimator in [32], we
build prediction model pϕ(h0|xt) to estimate I(h0|xt) for selected time t. More details can be
found in Appendix C. We demonstrate 20 time steps for I(xt,h0), and I(ht,h0) for vanilla VP path
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Table 1: Results of atom stability, molecule stability, validity, and validity×uniqueness. A higher
number indicates a better generation quality. The results marked with an asterisk were obtained from
our own tests.

QM9 DRUG
# Metrics Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%) Atom Sta (%) Valid (%)

Data 99.0 95.2 97.7 97.7 86.5 99.9

ENF 85.0 4.9 40.2 39.4 - -
G-Schnet 95.7 68.1 85.5 80.3 - -
GDM 97.0 63.2 - - 75.0 90.8
GDM-AUG 97.6 71.6 90.4 89.5 77.7 91.8
EDM 98.7 82.0 91.9 90.7 81.3 92.6
EDM-Bridge 98.8 84.6 92.0* 90.7 82.4 92.8*

EQUIFM 98.9 ± 0.1 88.3 ± 0.3 94.7 ± 0.4 93.5 ± 0.3 84.1 98.9

with the linear schedule (VPlinear) on β, VP path with cosine schedules(VPcos) [33] and polynomial
schedules(VPpoly) [13], and the OT path in Fig. 4.

We observe that the information quantity of I(xt,h0) does not change uniformly, this is, it stays
stable at the start and drops dramatically after some threshold. It is in line with the fact that when the
coordinates x are away from the original positions to a certain extent, the paired distance between
the bonded atoms could be out of the bond length range [6]. In this case, the point cloud x then
loses the intrinsic chemical information. Reversely, the dynamics I(xt,h0) also implies a generation
procedure where the coordinates x transform first and the atom types h is then determined when x
are relatively stable.

5 Experiments

In this section, we justify the advantages of the proposed EquiFM with comprehensive experiments.
The experimental setup is introduced in Section 5.1. Then we report and analyze the evaluation
results for the unconditional and conditional settings in Section 5.2 and 5.3. We provide detailed
ablation studies in Section 5.4 to further gain insight into the effect of different probability paths. We
leave more implementation details in Appendix B.4.

5.1 Experiment Setup

Evaluation Task. With the evaluation setting following prior works on 3D molecules generation [9,
30, 42, 13, 52], we conduct extensive experiments of EquiFM on three comprehensive tasks against
several state-of-the-art approaches. Molecular Modeling and Generation assesses the capacity to
learn the underlying molecular data distribution and generate chemically valid and structurally diverse
molecules. Conditional Molecule Generation focuses on testing the ability to generate molecules
with desired chemical properties. Following [13], we retrain a conditional version EquiFM on the
molecular data with corresponding property labels.

Datasets We choose QM9 dataset [39], which has been widely adopted in previous 3D molecule
generation studies [9, 10], for the setting of unconditional and conditional molecule generation.
We also test the EquiFM on the GEOM-DRUG (Geometric Ensemble Of Molecules) dataset for
generating large molecular geometries. The data configurations directly follow previous work[3, 13].

5.2 Molecular Modeling and Generation

Evaluation Metrics. The model performance is evaluated by measuring the chemical feasibility of
generated molecules, indicating whether the model can learn underlying chemical rules from data.
Given molecular geometries, the bond types are first predicted (single, double, triple, or none) based
on pair-wise atomic distances and atom types [13].

Next, we evaluate the quality of our predicted molecular graph by calculating both atom stability and
molecule stability metrics. The atom stability metric measures the proportion of atoms that have a
correct valency, while the molecule stability metric quantifies the percentage of generated molecules
in which all atoms are stable. Additionally, we report validity and uniqueness metrics that indicate the
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Table 2: Mean Absolute Error for molecular property
prediction. A lower number indicates a better control-
lable generation result.

Property α ∆ε εHOMO εLUMO µ Cv
Units Bohr3 meV meV meV D cal

mol K

QM9* 0.10 64 39 36 0.043 0.040

Random* 9.01 1470 645 1457 1.616 6.857
Natoms 3.86 866 426 813 1.053 1.971
EDM 2.76 655 356 584 1.111 1.101
EQUIFM 2.41 591 337 530 1.106 1.033

Table 3: Ablation study, EquiFM models trained
with different probability path, the effect of EOT
is also evaluated.

Method Atom Stable (%) Mol Stable (%)
EquiFMEOT+VPLinear

98.9±0.1 88.3±0.3
EquiFMOT+VPLinear

98.7±0.1 84.9±0.4
EquiFMVP+VPLinear

98.4±0.1 81.6±0.3
EquiFMEOT+VPCos

98.7±0.1 84.7±0.2
EquiFMEOT+VPPoly

98.7±0.1 83.4±0.5
EquiFMEOT+OT 97.3±0.1 77.1±0.4

percentage of valid (determined by RDKIT) and unique molecules among all generated compounds.
Furthermore, we also explore the sampling efficiency of different methods.

Baselines. The proposed method is compared with several competitive baselines. G-Schnet [9]
is the previous equivariant generative model for molecules, based on autoregressive factorization.
Equivariant Normalizing Flows (ENF) [42] is another continuous normalizing flow model while the
objective is simulation-based. Equivariant Graph Diffusion Models (EDM) with its non-equivariant
variant (GDM) [13] are recent progress on diffusion models for molecule generation. Most recently,
[52] proposed an improved version of EDM (EDM-Bridge), which improves upon the performance
of EDM by incorporating well-designed informative prior bridges. To yield a fair comparison, all the
model-agnostic configurations are set as the same as described in Sec. 5.1.

Results and Analysis. We generate 10, 000 samples from each method to calculate the above metrics,
and the results are reported in Table 1. As shown in the table, EquiFM outperforms competitive
baseline methods on all metrics with an obvious margin. In the benchmarked 3D molecule generation
task, the objective is to generate atom types and coordinates only. To evaluate stability, the bonds
are subsequently added using a predefined module such as Open Babel following previous works. It
is worth noting that this bond-adding process may introduce biases and errors, even when provided
with accurate ground truth atom types and coordinates. As a result, the atom stability evaluated on
ground truth may be less than 100%. Note the molecule stability is approximately the N-th power of
the atom stability, N is the atom number in the molecule. Consequently, for large molecules in the
GEOM-DRUG dataset, the molecule stability is estimated to be approximately 0%. Furthermore,
as DRUG contains many more molecules with diverse compositions, we also observe that unique
metric is almost 100% for all methods. Therefore, we omit the molecule stability and unique metrics
for the DRUG dataset. Overall, the superior performance demonstrates EquiFM’s higher capacity to
model the molecular distribution and generate chemically realistic molecular geometries. We provide
visualization of randomly generated molecules Appendix F and the efficiency study in Appendix E.

5.3 Controllable Molecule Generation

Evaluation Metrics. In this task, we aim to conduct controllable molecule generation with the given
desired properties. This can be useful in realistic settings of material and drug design where we
are interested in discovering molecules with specific property preferences. We test our conditional
version of EquiFM on QM9 with 6 properties: polarizability α, orbital energies εHOMO, εLUMO and
their gap ∆ε, Dipole moment µ, and heat capacity Cv . For evaluating the model’s capacity to conduct
property-conditioned generation, we follow the [42] to first split the QM9 training set into two halves
with 50K samples in each. Then we train a property prediction network ω on the first half and train
conditional models in the second half. Afterward, given a range of property values s, we conditionally
draw samples from the generative models and then use ω to calculate their property values as ŝ. The
Mean Absolute Error (MAE) between s and ŝ is reported to measure whether generated molecules
are close to their conditioned property. We also test the MAE of directly running ω on the second
half QM9, named QM9 in Table 2, which measures the bias of ω. A smaller gap with QM9 numbers
indicates a better property-conditioning performance.

Baselines. We incorporate existing EDM as our baseline model. In addition, we follow [13] to also
list two baselines agnostic to ground-truth property s, named Random and Natoms. Random means
we simply do random shuffling of the property labels in the dataset and then evaluate ω on it. This
operation removes any relation between molecule and property, which can be viewed as an upper
bound of MAE metric. Natoms predicts the molecular properties by only using the number of atoms in
the molecule. The improvement over Random can verify the method is able to incorporate conditional
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property information into the generated molecules. And overcoming Natoms further indicates the
model can incorporate conditioning into molecular structures beyond the number of atoms.

Results and Analysis. The visualizations of conditioned generation can be found in Appendix F.
As shown in Table 2, for all the conditional generation tasks, our proposed EquiFM outperforms
other comparable models with a margin. This further demonstrates the generalization ability of the
proposed framework upon different tasks.

5.4 Ablations On the Impacts of Different Probability Paths

In this section, we aim to answer the following questions: 1) how is the impact of the different
probability paths on the coordinate variable x and the categorical variable h? 2) how does the
equivariant optimal transport path boost the generation?

To answer these questions, we apply several different probability paths and compare them on the
QM9 dataset, including the variance-preserving (VPLinear) path(Eq. 5), vanilla optimal transport (OT)
path(Eq. 4), and the equivariant optimal(Eq. 9) transport path(EOT) on the coordinate variable x;
And variance-preserving (VPLinear) path(Eq. 5), vanilla optimal transport (OT) (Eq. 4), the variance-
preserving path with polynomial decay (VPPoly), variance preserving path with cosine schedule
(VPCos). The result is illustrated in Tab. 3. We notice that OT-based paths on coordinates in general
show superior performance than the others due to the stability and simplicity of the training objective.
Furthermore, regularizing the path with the equivariant-based prior, the EOT path could further
boost the performance by a large margin. To gain a more intuitive understanding, we further provide
the generation dynamic comparison in Fig. 2(b). As shown, the generation procedure trained with
vanilla OT path, though more stable than the EDM generation procedure, also exits some twisted
phenomenon, i.e., all atoms tend to first contract together and then expand; Such phenomenon
disappears in the generation procedure of EOT path due to that the generation direction is well
constrained. For the probability path on the categorical variable, we find the VP path, holds the
superior performance due to the closest alignment with the information quantity changes. If there
is a significant discrepancy in the information quantity dynamics, e.g., OT path, it may result in a
substantial decline in performance.

5.5 Sampling Efficiency

We also evaluate the sampling efficiency of our model, as shown in Fig. 3, the results of EquiFM with
4 different integrating algorithms converge to state-of-the-art results in much less NFE compared to
baseline model EDM. Remarkably, the red triangle is the result of EquiFM with the Dopri5 integrating
algorithm, it converges in approximately 210 NFE to achieve 0.883 model stability, while EDM takes
1000 NFE to achieve only 0.820. With simple non-adaptive step integration algorithms such as Eulers
method and midpoint, the NFE required for convergence is much less than that of baseline models.
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This indicates that our proposed model has learned a much better vector field, and takes a much
shorter generation route during generation, this can be justified with visualization Fig. 2(a).

6 Conclusion and Future Work

We introduce the EquiFM, an innovative molecular geometry generative model that utilizes a
simulation-free objective. While flow matching has demonstrated excellent properties in terms
of stable training dynamics and efficient sampling in other domains, its application in geometric
domains poses significant challenges due to the equivariant property and complex data modality. To
address these challenges, we propose a hybrid probability path approach in EquiFM. This approach
regularizes the probability path on coordinates and ensures that the information changes on each
component of the joint path are appropriately matched. Consequently, EquiFM learns the underly-
ing chemical constraints and produces high-quality samples. Through extensive experiments, we
demonstrate that the EquiFM not only outperforms existing methods in modeling realistic molecules
but also significantly improves sampling speed, achieving a speedup of 4.75× compared to previous
advancements. In future research, as a versatile framework, EquiFM can be extended to various 3D
geometric generation applications, such as protein pocket-based generation and antibody design,
among others.
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A Sampling and Training Algorithm

We provide a detailed training and sampling pipeline in this section. The training algorithm with
EOT path on the equivariant variable x and VP path on the invariant variable h as an example is
demonstrated in Algorithm 1.

Algorithm 1 Training Algorithm of EquiFM
1: Input: geometric data distribution pg, g = ⟨x,h⟩
2: Initial: vector field network vθ, minimum constant variance σmin
3: while θ have not converged do
4: t ∼ U(0, 1), ϵ ∼ N (0, I), g0 ∼ pg
5: Subtract center of gravity from ϵx in ϵ = [ϵx, ϵh]
6: Obtaining the Equivariant Optimal Transport plan π∗,R∗ based on Algorithm 3
7: xt = (σmin + (1− σmin)t)π

∗(R∗ϵx) + (1− t)x0 {Eq. 8}
8: ht = αth0 + (1− α2

t )ϵh, αt = e−
1
2T (t) {Eq. 5}

9: LEquiFM = ||vxθ (⟨xt, ht⟩, t)−(−x0+(1−σmin)ϵx)||2+||vhθ (⟨xt, ht⟩, t)−
α′

t

1−α2
t
(αtht−h0)||2

10: end while
11: return vθ

The sampling algorithm can be found in Algorithm 2.

Algorithm 2 Sampling Algorithm of EquiFM
1: Input: vector field model vθ
2: g1 ∼ N (0, I)
3: Subtract center of gravity from x1 in g1 = [x1, h1]
4: g0 = ODESolve(g1, vθ, 1, 0)
5: {During the ODE solving, always subtract the center of gravity from vxθ }
6: sample p̂(x0, h0|g0)
7: return ⟨x0, h0⟩

Note the p̂(·|g0) stands for the procedure of transforming the continuous h0 into the specific data
modality. This is, for the categorical part, p̂(h|g0) = C(h|h0) and for the integer part p (h | g0) =∫ h+ 1

2

h− 1
2

N (u | h0, σ0) du.

B Formal Proof of Theorems and Propositions

B.1 Invariant Probability Path: Theorem 4.1

The key properties of the equivariant flow matching model here are the invariant density modeling.
For simplicity, here we omit the invariant feature, i.e. h, and focus on the variable x. Here we
demonstrated that with an invariant prior p1(x) and the equivariant vector field vθ(x, t), the marginal
distribution implied by the vector field of each time step, pθ,t(x) is also invariant.

Proof. We are given that p1(x) is invariant, and that vθ(x, t) is equivariant, i.e. for any ro-
tation R, p1(Rx) = p1(x), and vθ(Rx, t) = Rvθ(x, t). Our target is to prove that ∀t ∈
[0, 1], ∀R, pθ,t(Rx) = pθ,t(x). Then specifically, the sampling distribution p0(x) is invariant.

First recall that the way we generate the distribution pθ,t(x) is to exert a transformation ψθ,t to the
prior p1(x). And the definition of the vector field is vθ(x, t) = d

dtψθ,t(x).

We can derive the equivariance of ψθ,t by the following equations:
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ψ1(x)− ψθ,t(x) =

∫ 1

t

vθ(x, t)dt

ψ1(Rx)− ψθ,t(Rx) =

∫ 1

t

vθ(Rx, t)dt

=

∫ 1

t

Rvθ(x, t)dt

= R(ψ1(x)− ψθ,t(x))

Note that ψ1(Rx) = Rψ1(x) since ψ1(x) = x, we have ψθ,t(Rx) = Rψθ,t(x). That is to
say, ψθ,t is an equivariant transformation. Thus its inverse ψ−1

θ,t is also equivariant, since ∀y =

ψθ,t(x), we have Ry = Rψθ,t(x) = ψθ,t(Rx), so ψ−1
θ,t (Ry) = Rx = Rψ−1

θ,t (y). Also, the

Jacobian matrix ∂ψθ,t(x)
∂x is equivariant, i.e. ∂ψθ,t(u)

∂u |u=Rx = R
∂ψθ,t(u)
∂u |u=x, which implies that

det
∂ψθ,t(u)
∂u |u=Rx = det

∂ψθ,t(u)
∂u |u=x, since the det function keeps constant under any rotation.

According to the Change of Variable Theorem,

pθ,t(x) = p1(ψ
−1
θ,t (x))/

∣∣∣∣det ∂ψθ,t(u)∂u
|u=ψ−1

θ,t(x)

∣∣∣∣
pθ,t(Rx) = p1(ψ

−1
θ,t (Rx))/

∣∣∣∣det ∂ψθ,t(u)∂u
|u=ψ−1

θ,t(Rx)

∣∣∣∣
Applying the above conclusions together, we have

pθ,t(Rx) = p1(Rψ
−1
θ,t (x))/

∣∣∣∣det ∂ψθ,t(u)∂u
|u=ψ−1

θ,t(x)

∣∣∣∣
= p1(ψ

−1
θ,t (x))/

∣∣∣∣det ∂ψθ,t(u)∂u
|u=ψ−1

θ,t(x)

∣∣∣∣ = pθ,t(x).

B.2 Explanation of Proposition 4.2

Note for the initial prior distribution, p1(g|g0), could be the standard distribution, i.e. p1(g|g0) =
N (0, I). In this case, p1(g|g0) = p1(x|x0)p1(h|h0). And for the time step zero, if we assume the
distribution is a Gaussian centralized on the g0, i.e., p0(g|g0) = N (g0, σminI). And in this case we
also have that p0(g|g0) = p0(x|x0)p0(h|h0).
Example 2: For the Gaussian probability path,

pt (g | g1) = N
(
g | µt (g1) , σt (g1)2 I

)
(10)

where µ : [0, 1] × Rd → Rd is the time-dependent mean of the Gaussian distribution, while σ :
[0, 1]× R → R>0 describes a time-dependent scalar standard deviation (std).

The Gaussian probability path satisfies that pt(g|g0) = pt(x|x0)pt(h|h0). To better clarify, we
highlight the difference between the conditional probability path and the marginal probability path
with the following Remark B.1.
Remark B.1. With the conditional probability path on x and h being independent of each other, the
marginal distribution could be correlated, i.e. pt(g) ̸= pt(x)pt(h)

With this property, we could design different paths for modeling complex variables.
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B.3 Proof of Proposition 4.4

In the Proposition 4.4, we claim that the probability path under the EOT map is SE(3) invariant.
The invariant property under translations is guaranteed by the training and sampling setting within
Zero CoM space, and below we will focus on proving the path is invariant under rotations. The key
observation is that R∗ might be different for different x.

Specifically, for any rotation T acting on the point cloud x with N points, the new R∗ corresponding
with Tx (we denote it by R∗

rot) exactly offsetting the impact of T. Formally, let x0 denote the target
point cloud, we calculate

(π∗,R∗) = argmin
(π,R)

∥π(Rx1,Rx2, . . . ,RxN )− x0∥2

(π∗
rot,R

∗
rot) = argmin

(π,R)

∥π(RTx1,RTx2, . . . ,RTxN )− x0∥2

We claim that π∗
rot = π∗,R∗

rot = R∗T−1, and a strict proof follows.

Note that if ϕ(R) : R3×3 → R3×3 is a reversible map, then for any scalar function f(R),
argmin

R
f(ϕ(R)) = ϕ−1(argmin

R
f(R)). Here let ϕ(R) = RT, and ϕ−1(R) = RT−1, we get

(π∗
rot,R

∗
rot) = argmin

(π,R)

∥π(RTx1,RTx2, . . . ,RTxN )− x0∥2

= argmin
(π,R)

∥π(ϕ(R)x1, ϕ(R)x2, . . . , ϕ(R)xN )− x0∥2

= ϕ̂−1(argmin
(π,R)

∥π(Rx1,Rx2, . . . ,RxN )− x0∥2)

= ϕ̂−1((π∗,R∗)) = (π∗, ϕ−1(R∗)) = (π∗,R∗T−1)

where ϕ̂ is an natural extension of ϕ defined as ϕ̂((π,R)) = (π, ϕ(R)),∀(π,R).

Now we recheck the probability path pt in Eq. 8. Since p1 is invariant under rotations, and the
transformation ψEOT

t satisfies

ψEOT
t (x) = (σmin + (1− σmin)t)π

∗(R∗x) + (1− t)x0

ψEOT
t (Tx) = (σmin + (1− σmin)t)π

∗
rot(R

∗
rotTx) + (1− t)x0

= (σmin + (1− σmin)t)π
∗(R∗x) + (1− t)x0

i.e. ψEOT
t is invariant. So we conclude that pt = [ψEOT

t ]∗p1 is also invariant under rotations.

B.4 Explanation of Proposition 4.6

Here we provide the informal explanation of the Proposition 4.6. The proposition states that for
OT path or VP path on x or h, i.e. pt(x | x0) = N

(
x | (1− t)x0, (σmin + (1− σmin)t)

2I
)

or
pt(x | x0) = N

(
x | αtx0, (1− α2

t )I
)
, the mutual information between the marginal variable xt and

ht monotonically decays following the path from time step 0 to time step 1 where I0(x0,h0) > 0.
Note that the I1(x1,h1) = 0, as p1(g) = p1(x)p1(h). Recall the definition of signal-to-noise ratio
(SNR) as:

SNR =
µ2

σ2

For OT-path, SNR = (1−t)2
t2 ; and for VP-path SNR =

α2
t

1−α2
t

. The key observation is that the SNR
along the probability path of both x and h on either path will decay monotonically. Intuitively, with
t→ 1, xt has less information of x0 thus has less of h.
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Figure 5: The dependency relationship on the hybrid path. Note that 0 < t1 < t2 < 1, and the
direction of arrows indicate the flow corresponding to the target vector field ut running backward
(from t = 0 to 1, opposite of the sampling process) on a random molecule g (not in training data).
This can be regarded as a process similar to that of a diffusion model, but x and h have conditionally
independent paths.

B.5 Proof of Proposition 4.6

Proof. Firstly, we will prove the dependency relationship between the time-dependent variables in
the hybrid probability path as shown in Fig. 5.

To this end, we demonstrate the relationship between the x0,h0,xt1 . Recall the definition of
conditional independent probability path as pt(x | ⟨x0,h0⟩) = pt(x | x0). Thus we have the
distribution of random variable xt1 , pt1(x) =

∫
pt1(x | x0)p(x0)dx0. And hence, there is xt1 ⊥

h0 | x0. Similarly, we could also derive ht1 ⊥ x0 | h0.

Next, for any time step 0 < t1 < t2 < 1. We will then demonstrate the dependency relationship
between x0,xt1 ,xt2 . We denote the target vector field which generates the marginal probability
path pt(x) as ut(x), then the distribution of random variable xt2 could be then derived as pt2(x) =
[
∫ t2
t1
ut(x)dt]∗pt1(x) = [ψut2 − ψut1 ]∗pt1(x), where ψut denotes the transformation corresponding

with ut. Then we have xt2 ⊥ x0 | xt1 . Similarly, ht2 ⊥ h0 | ht1 could be also derived.

With the above two conclusions, we demonstrate the dependency relationship shown in Fig. 5 holds
in the hybrid probability path. Therefore, with the dependency relationship we could directly obtain
that I(xt2 ,ht2) ≤ I(xt1 ,ht1). If αt in VP path satisfies αt > 0 when 0 < t < 1, then for any
combination of such OT path and VP path, we always have I(xt,ht) > 0.

C Implementation Details

C.1 Solving EOT with a variant of iterative closest point (ICP) algorithm.

Problem definition. Given a point cloud z ∈ R3×N and its reference point cloud y ∈ R3×N ,
note they are point cloud representations in Euclidean space. The objective is to find an optimal
permutation matrix Π∗ ∈ RN×N and a rotation matrix R∗ ∈ R3×3 that minimizes the following
objective:

Π∗,R∗ = argmin
Π,R

∥Π(Rz)⊤ − y⊤∥2 (11)

We optimize the objective iteratively with a variant of the iterative closest point (ICP) algorithm,
where it iteratively obtains Π and R.

C.2 Model Architectures and Training Configurations

We use the open-source software RDKIT [21] to preprocess molecules. For QM9 we take atom types
(H, C, N, O, F) and integer-valued atom charges as atomic features, while for DRUG we only use
atom types.
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Algorithm 3 A variant of iterative closest point (ICP) algorithm.
1: Input: a point cloud z ∈ R3×N and it’s reference point cloud y ∈ R3×N .
2: while τ has not converged do
3: Obtain permutation matrix Π = argmin

Π
∥Π(Rz)⊤ − y⊤∥2 with Jonker-Volgenant algorithm

[7]
4: Obtain rotation matrix R = argmin

R
∥R(Πz)⊤ − y⊤∥2 with Kabsch algorithm [22]

5: τ = ∥Π(Rz⊤)⊤ − y⊤∥2
6: end while
7: return Π, R

The vector field network is implemented with EGNNs [43] by PyTorch [34] package. We set the
dimension of latent invariant features k to 1 for QM9 and 2 for DRUG, which extremely reduces the
atomic feature dimension. For the training of vector field network vθ: on QM9, we train EGNNs
with 9 layers and 256 hidden features with a batch size 64; and on DRUG, we train EGNNs with 4
layers and 256 hidden features, with batch size 64. The model uses SiLU activations. We train all
the modules until convergence. For all the experiments, we choose the Adam optimizer [19] with
a constant learning rate of 10−4 as our default training configuration. The training on QM9 takes
approximately 2000 epochs, and on DRUG takes 20 epochs.

D Number of Evaluation (NFE) analysis

We further explore the behavior of adaptive integrators during sampling with Dopri15 as an example.
In Fig. 7, we show the average NFE at different time intervals. We could observe that at time intervals
near 0 the NFE is much larger than at other time intervals. The underlying reason lies in the vector
field of h dramatically changes in these steps, which results in the frequent change of the atom type
in the last period of sampling. This behavior could be due to the unsmoothness of the categorical
manifold which could shed light on several future directions.

E Scalability

The proposed algorithm has a complexity of O
(
n2

)
for computing an OT map for a single molecule,

where n is the number of nodes. To understand the computational burden for different molecule sizes,
we evaluated the average computing time for OT maps with varying node numbers. The Tab. 4 below
shows the burden for three datasets/tasks. We also provide the curves of iteration and time needed to
solve the EOT map in Fig. 6.

(a) iterations towards atom numbers (b) time towards atom numbers

Figure 6: Time Cost for Solving EOT Maps

Even for the Antibody-CDR data, with an average of 150 atoms, the process time is only 18.84 ms,
which is acceptable in practice. Additionally, we can optimize the process further by leveraging its
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Table 4: Scalability to Different Molecule Size
Average atom number EOT mapping time per sample EOT mapping iteration per sample

QM9 18 1.10ms 4.67
GEOM DRUG 47 1.99ms 5.89
Antibody-CDR 150 18.84ms 7.14

Figure 7: Number of Evaluation analysis of EquiFM generation process with Dopri5 integrator.

parallelizable nature. By Enabling prefetch and multiprocessing, we can minimize the computational
overhead further and make it virtually inconsequential.

F More visualizations

This section presents additional visualizations of molecules generated by our EquiFM method. We
include samples from two datasets, QM9 and DRUG, in Fig. 8 and Fig. ??, respectively. All examples
are randomly generated without cherry-picking, but the viewing direction may affect the visibility of
some geometries.

As demonstrated in the figures, our model can generate realistic molecular geometries for small and
large molecules alike. However, the model occasionally generates disconnected components, which
is more common when trained on the large molecule DRUG dataset, as shown in the second molecule
in Fig. ??. This phenomenon is not unique to our model but is a common issue in non-autoregressive
molecule generative models [54, 16]. Nevertheless, it is easily solvable by filtering out the smaller
components.

We also present a qualitative assessment of controlled molecule generation by EquiFM in Fig. 9. We
interpolate the conditioning parameter, polarizability, with different values of α, while keeping the
prior g1 fixed. Polarizability measures the tendency of matter to acquire an electric dipole moment
when subjected to an electric field. In general, less isometric molecular geometries tend to correspond
to higher α values. This observation is consistent with our results in Fig. 9.
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Figure 8: Molecules generated from EquiFM trained on QM9.

63.11 66.76 70.41 74.06 77.71

81.36 85.01 88.66 92.31 95.96

99.62 103.27 106.92 110.57 114.22

Figure 9: Molecules generated from conditioned version of EquiFM trained on QM9. We conduct
controllable generation with interpolation among different polarizability α values with the same prior
g1. The given α values are provided at the bottom.
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