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Abstract
Long-term time series forecasting has been widely
studied, yet two aspects remain insufficiently
explored: the interaction learning between dif-
ferent frequency components and the exploita-
tion of periodic characteristics inherent in times-
tamps. To address the above issues, we propose
CFPT, a novel method that empowering time
series forecasting through Cross-Frequency In-
teraction (CFI) and Periodic-Aware Timestamp
Modeling (PTM). To learn cross-frequency in-
teractions, we design the CFI branch to pro-
cess signals in frequency domain and captures
their interactions through a feature fusion mecha-
nism. Furthermore, to enhance prediction per-
formance by leveraging timestamp periodicity,
we develop the PTM branch which transforms
timestamp sequences into 2D periodic tensors
and utilizes 2D convolution to capture both intra-
period dependencies and inter-period correlations
of time series based on timestamp patterns. Ex-
tensive experiments on multiple real-world bench-
marks demonstrate that CFPT achieves state-of-
the-art performance in long-term forecasting tasks.
The code is publicly available at this repository:
https://github.com/BUPT-SN/CFPT.
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Figure 1. Comparison of frequency component utilization in time
series forecasting.

1. Introduction
Temporal information data serves as one of the most funda-
mental and ubiquitous data types in real-world applications
and intelligent systems (Liang et al., 2023; Hu et al., 2024;
Liang et al., 2024a; Ilbert et al., 2024; Liang et al., 2024b).
Within the broader domain of temporal data analysis, long-
term time series forecasting has emerged as a particularly
critical task with applications spanning numerous sectors,
including energy consumption (Pinto et al., 2021), trans-
portation (He et al., 2022), financial markets (He et al., 2023)
and so on. Consequently, this task has garnered significant
attention from researchers, leading to the development of nu-
merous advanced methodologies (Nie et al., 2023; Yi et al.,
2023; Zeng et al., 2023; Wang et al., 2024b; Lin et al., 2024;
Luo & Wang, 2024; Xu et al., 2024a). Despite these ad-
vances, current research in long-term time series forecasting
leaves two important aspects insufficiently explored.

First, as shown in Figure 1(a), time series data inherently
contains signals of different frequencies with distinct charac-
teristics, where low-frequency components carry fundamen-
tal patterns and trends, high-frequency components reflect
short-term dynamics (Ye et al., 2024). The time series pre-
diction task is mainly to predict the future time points by
taking the historical time series as input and extracting their
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Figure 2. Illustration of intra-period dependencies and inter-period
correlations in Electricity Consuming Load (ECL) dataset.

features. Based on the way frequency information is uti-
lized during feature extraction, the existing methods can be
classified into four categories as shown on the left side of
Figure 1(b). The predominant approaches, classified as No-
Freq Methods (Zhou et al., 2021; Liu et al., 2024a; Wang
et al., 2024b), operate purely in the time domain and strug-
gle to effectively process signals across the full frequency
spectrum (Yi et al., 2024a). The other three categories at-
tempt to address this limitation through frequency-domain
processing: (1) Unified-Freq Methods (Yi et al., 2024b)
that process frequency components but treat them uniformly
without distinguishing their importance; (2) Only Low-Freq
Methods (Zhou et al., 2022a; Xu et al., 2024b) that exclu-
sively utilize low-frequency components while filtering out
high-frequency ones; and (3) Weighted-Freq Methods (Zhou
et al., 2022b; Zhang et al., 2024; Yi et al., 2024a) that com-
bine high and low frequencies through simple weighted sum-
mation. Recent empirical studies (Ye et al., 2024; Zhang
et al., 2024) reveal that the importance of different frequency
components varies across scenarios, with each component
potentially beneficial or detrimental to forecasting perfor-
mance depending on the specific context, indicating that
simply discarding certain frequency components or pro-
cessing them independently may be suboptimal. However,
although recent studies have introduced frequency-domain
processing, they primarily focus on processing different fre-
quency components independently, leaving the modeling of
cross-frequency interactions unexplored.

Second, timestamps naturally reflect the periodic character-
istics of time series data (Wang et al., 2024a). As shown
in Figure 2, analysis of the data across four consecutive
days (three weekdays and one weekend) in 24-hour peri-
ods reveals two distinct timestamp patterns. One is the
intra-period dependencies, where each day exhibits simi-
lar periodic variations with time series values rising and
falling at specific timestamps (as illustrated at the marked
points 7:00 and 21:00). The other is the inter-period correla-
tions, where load patterns at corresponding timestamps (e.g.,

values at 21:00) show strong consistency across weekdays
while displaying notable differences between weekdays and
weekends. Recent methods have demonstrated encouraging
improvements by treating timestamps as enhancement com-
ponents for time series forecasting (Wang et al., 2024a; Zeng
et al., 2024). Some approaches attempt to model timestamps
through feature embeddings (Zhou et al., 2021; Wu et al.,
2021; 2023) or attention mechanisms (Liu et al., 2024a;
Wang et al., 2024b), yet these methods have shown limited
effectiveness in practice (Wang et al., 2024a). Despite these
attempts in timestamp modeling, the periodic characteristics
inherent in timestamps remain insufficiently explored. To
fully harness the potential of timestamps for performance
enhancement, exploring their periodic patterns becomes a
promising direction.

In this paper, we propose CFPT, a novel framework that
enhances long-term time series forecasting through two spe-
cialized branches. Firstly, We propose the Cross-Frequency
Interaction (CFI) branch, it enables separate modeling of
different frequency components while capturing their inter-
actions through a carefully designed feature fusion mech-
anism. Thereby, It retains long-term evolutionary patterns
and short-term dynamic features and providing a comprehen-
sive representation across time scales. Secondly, we design
the Periodic-aware Timestamp Modeling (PTM) branch. It
transforms 1D timestamp sequences into 2D tensors based
on fixed period lengths. Through 2D convolution operations,
it captures both intra-period dependencies and inter-period
correlations, enhancing the temporal context of the predic-
tion and improving the prediction results.

Our main contributions can be summarized as follows:

• We propose CFPT, a novel dual-branch framework
for long-term time series forecasting. The framework
leverages both frequency dynamics and timestamp pat-
terns through Cross-Frequency Interaction (CFI) and
Periodic-aware Timestamp Modeling (PTM) branches
to enhance prediction accuracy.

• To effectively model frequency information in time
series data, we propose a CFI branch that captures
interactions between different frequency components
through a feature fusion mechanism for enhanced pre-
diction performance.

• To enhance forecasting, we develop a PTM branch that
transforms 1D timestamps into 2D tensors, capturing
intra- and inter-period relations via 2D convolutions.
Experiments on multiple real-world benchmarks show
our method’s superiority.
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Figure 3. Overview of the proposed CFPT architecture. The middle part shows the overall processing pipeline, while the upper and lower
parts illustrate the two main branches: Cross-Frequency Interaction (CFI) and Periodic-Aware Timestamp Modeling (PTM), respectively.
Detailed meaning of the symbols: E , extraction of real/imaginary parts; C , concatenation; S , splitting of processed features; R ,
reconstruction of complex numbers.

2. Related Work
2.1. Frequency Modeling in Time Series Forecasting

Time series forecasting with frequency analysis has attracted
increasing attention in deep learning research. Recent works
have explored various frequency-based approaches to en-
hance model performance. As illustrated in Figure 1(b),
These methods generally fall into four categories based on
their frequency processing strategies: (1) No-Freq Meth-
ods (Zhou et al., 2021; Liu et al., 2024a; Wang et al., 2024b)
that operate purely in the time domain, (2) Unified-Freq
Methods (Yi et al., 2024a) that process all frequencies uni-
formly, (3) Only Low-Freq Methods (Zhou et al., 2022a;
Xu et al., 2024b) that exclusively focus on low-frequency
components, and (4) Weighted-Freq Methods (Zhou et al.,
2022b; Zhang et al., 2024; Yi et al., 2024a) that combine
frequencies through weighted summation. While these ap-
proaches have shown promising results, they either ignore
frequency-domain information entirely or process different
frequency components independently. Unlike these meth-
ods, we propose to explicitly model cross-frequency interac-
tions, recognizing that the importance of different frequency
components varies across scenarios and their interactions
can significantly impact forecasting accuracy.

2.2. Timestamp Modeling in Time Series Forecasting

Timestamps have been increasingly utilized as enhance-
ment components for time series forecasting (Wang et al.,
2024a; Zeng et al., 2024). Early approaches like In-
former (Zhou et al., 2021), Autoformer (Wu et al., 2021),
FEDformer (Zhou et al., 2022b) and TimesNet (Wu et al.,
2023) utilize timestamps by adding timestamp embeddings
with data embeddings, while recent methods such as iTrans-
former (Liu et al., 2024a) and TimeXer (Wang et al., 2024b)
embed timestamp features as tokens for attention mecha-
nisms. Additionally, with the advancement of large lan-
guage models in time series forecasting (Zhou et al., 2023;
Jin et al., 2023; Cao et al., 2024; Pan et al., 2024), some
works (Liu et al., 2024b) have attempted to model times-
tamps through prompts. However, empirical studies (Wang
et al., 2024a; Tan et al., 2024) reveal that such timestamp
modeling approaches demonstrate limited effectiveness in
practice. Furthermore, despite these attempts in timestamp
modeling, the periodic characteristics inherent in times-
tamps remain insufficiently explored. To fully harness the
potential of timestamps for performance enhancement, we
propose to explicitly model both intra-period dependencies
and inter-period correlations of time series based on times-
tamp patterns.
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3. Preliminaries
3.1. Problem Statement

Given multivariate time series data X ∈ RN×T with N vari-
ables over T time steps and corresponding timestamp infor-
mation T ∈ RM×T , where X:,t ∈ RN×1 and T:,t ∈ RM×1

denote the observations and timestamps at time step t, re-
spectively. The forecasting task aims to predict future τ ′

steps X̂t+1:t+τ ′ based on historical observations Xt−τ :t,
accompanied by their corresponding future timestamps
Tt+1:t+τ ′ to enhance prediction performance. The fore-
casting process can be formulated as:

X̂t+1:t+τ ′ = F(Xt−τ :t, Tt+1:t+τ ′) (1)

where F(·) denotes the proposed forecaster.

3.2. Discrete Fourier Transform (DFT & IDFT)

Time series data can be viewed as discrete samples of con-
tinuous signals, which can be transformed into frequency
domain for spectral analysis. Given a multivariate time
series input X ∈ RN×T , we apply discrete Fourier trans-
form (DFT) independently to each channel x(i) ∈ R1×T .
For real-valued signals, we use the single-sided spectrum
representation F [k] ∈ C1×(T

2 +1):

DFT : F [k] =

T−1∑
n=0

x[n] · e−i2π kn
T (2)

where k ∈ [0, T
2 ] is the frequency index and n ∈ [0, T − 1]

is the time step index in the original signal. Once in
frequency domain, the components F [k] can be charac-
terized by their magnitude and phase, calculated from
their real part Re(F [k]) ∈ R1×(T

2 +1) and imaginary part
Im(F [k]) ∈ R1×(T

2 +1):

Magnitude : A[k] =
√

Re(F [k])2 + Im(F [k])2 (3)

Phase : θ[k] = atan2(Im(F [k]),Re(F [k])) (4)

where atan2 is the two-argument arctangent function that
determines the angle in all four quadrants. The real and
imaginary parts of frequency components represent symmet-
ric and asymmetric patterns respectively. After modifying
these components to adjust signal characteristics, we can
transform the signal back to time domain using IDFT:

IDFT : x[n] =
1

T

T/2∑
k=0

F [k] · ei2π kn
T (5)

where n ∈ [0, T − 1] represents the reconstructed time in-
dices. These transformations enable precise control over
signal properties while maintaining the fundamental peri-
odic patterns. In our implementation, the transformations
are performed using Fast Fourier Transform (FFT) with a
computational complexity of O(T log T ).

3.3. Instance Normalization (Norm & InverseNorm)

Time series data often exhibits non-stationarity, where sta-
tistical properties like mean and variance shift over time.
This can degrade model performance when making predic-
tions on future data with different distributions (Kim et al.,
2021; Fan et al., 2023; Han et al., 2024; Fan et al., 2025).
To address this issue, we apply instance normalization to
both input time series X and predicted values X̂ . For input
normalization:

Norm : Xnorm
t−τ :t =

Xt−τ :t − µ√
σ + ϵ

(6)

where µ and σ are the mean and standard deviation of the
input window respectively, and ϵ is a small constant for
numerical stability. After obtaining predictions, we apply
inverse normalization:

InverseNorm : X̂t+1:t+τ ′ = X̂norm
t+1:t+τ ′ ×

√
σ + ϵ+µ (7)

where X̂norm
t+1:t+τ ′ is the predicted normalized data. This

normalization strategy helps maintain consistent statistical
properties across different time periods, enabling more ro-
bust forecasting performance.

3.4. Timestamp Hierarchical Processing (THP)

To better serve periodic-aware timestamp modeling, we
first process the raw timestamp information Tt+1:t+τ ′ ∈
RM×τ ′

through a Timestamp Hierarchical Processing
(THP) (Alexandrov et al., 2020) module that extracts in-
herent timestamp hierarchies. Specifically, THP is a feature
engineering module that decomposes timestamps into hier-
archical timestamp features at different granularities. Using
the notation “X of Y” (written as XOfY) where X repre-
sents a finer time unit and Y represents its parent unit, we
extract timestamp features including MinuteOfHour in [0,
59] for minute-level fluctuations, HourOfDay in [0, 23] for
diurnal patterns, DayOfWeek in [0, 6] for weekly cycles,
MonthOfYear in [0, 11] for monthly patterns, and SeasonO-
fYear in [0, 3] for quarterly patterns, among others. Each
timestamp component is normalized to [-0.5, 0.5] through
carefully designed transformations that preserve their cyclic
characteristics. The processed hierarchical timestamp fea-
tures are denoted as T P

t+1:t+τ ′ ∈ Rm×τ ′
, where m indicates

the number of selected timestamp features.

4. Methodology
4.1. Structure Overview

The middle part of Figure 3 shows the overall architec-
ture of our model, which consists of two branches: Cross-
Frequency Interaction (CFI) and Periodic-Aware Timestamp
Modeling (PTM). Specifically, as shown in the upper part
of Figure 3, the CFI branch first applies DFT to decompose
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time series into high and low frequency components. The
frequency components are then processed by extracting and
concatenating their real and imaginary parts, followed by
separate linear projections. A coupling layer with L itera-
tions enables interactions between different frequency bands.
The interacted features are transformed back to complex do-
main and combined through inverse Fourier transform to
generate frequency-aware predictions.

Meanwhile, as illustrated in the lower part of Figure 3, the
PTM branch first processes raw timestamps through THP
to obtain m representative timestamp features from M po-
tential hierarchical features that capture patterns at different
granularities. These features are then passed through a sim-
ple linear feature extraction module to align with the N
dimensional time series space. The aligned features are
sliced and reshaped according to period length P , enabling
2D convolution to capture both intra-period dependencies
(within each period) and inter-period correlations (across
different periods) of time series based on timestamp patterns.
Two dimension-preserving linear mappings further refine
the timestamp representations.

Finally, outputs from both branches are combined through
weighted addition. Based on the detailed description above
of our two complementary branches and their integration,
the complete pipeline of CPFT can be mathematically for-
mulated as follows:

Xnorm
t−τ :t = Norm(Xt−τ :t) (8)

T P
t+1:t+τ ′ = THP(Tt+1:t+τ ′) (9)

X̂CFI = CFI(Xnorm
t−τ :t ) (10)

X̂PTM = PTM(T P
t+1:t+τ ′) (11)

X̂norm
t+1:t+τ ′ = γ · X̂CFI + (1− γ) · X̂PTM (12)

X̂t+1:t+τ ′ = InverseNorm(X̂norm
t+1:t+τ ′) (13)

where γ ∈ (0, 1) serves as a constant weight coefficient.
This dual-branch design leverages both frequency dynamics
and timestamp patterns to enhance prediction accuracy.

4.2. Cross-Frequency Interaction (CFI)

To effectively capture and leverage both long-term trends
and short-term fluctuations in time series forecasting, we
propose the Cross-Frequency Interaction (CFI) branch that
explicitly models the interactions between high-frequency
and low-frequency components.

Frequency Division. First, we transform the normalized
input Xnorm

t−τ :t ∈ RN×τ into frequency domain through DFT,
yielding F ∈ RN×ω, where ω = τ

2 + 1. Using the median
frequency as threshold, we separate F into low-frequency
components FL ∈ RN×ω and high-frequency components
FH ∈ RN×ω through complementary binary masks.

Initial Feature Processing. The real and imaginary parts
of FL and FH are extracted as RL, IL ∈ RN×ω and
RH , IH ∈ RN×ω respectively, and then concatenated to ob-
tain gL, gH ∈ RN×2ω before passing through separate lin-
ear layers, producing feature representations hL ∈ RN×D

and hH ∈ RN×D, where D is the hidden dimension. This
separation allows independent processing of symmetric and
asymmetric patterns while preserving their mathematical
relationships.

Cross-Frequency Interaction. Given the feature represen-
tations hL and hH , a coupling network with L layers is
designed to model their interactions. Each coupling layer
contains four MLPs with identical architecture (ρ, η, ν, and
ω) that transform the features through:

hk+1
L = hk

L ⊙ exp(ρ(hk
H)) + η(hk

H) (14)

hk+1
H = hk

H ⊙ exp(ν(hk+1
L )) + ω(hk+1

L ) (15)

where ⊙ denotes element-wise multiplication, and k indi-
cates the layer index. The multiplicative terms modulate
the magnitude of frequency components while preserving
their phase relationships, and the additive terms enable ad-
justments to both symmetric and asymmetric patterns. This
coupling mechanism allows comprehensive feature inter-
action between different frequency bands, facilitating the
modeling of how long-term trends influence short-term vari-
ations and vice versa. The resulting representations ĥL,
ĥH ∈ RN×D are then projected through linear layers to
obtain ĝL, ĝH ∈ RN×2w′

, where w′ = τ ′

2 + 1.

Frequency Recombination. Finally, the processed fea-
tures ĝL and ĝH are split to obtain the real and imagi-
nary parts for each frequency component. Specifically, we
split ĝL ∈ RN×2w′

to obtain low-frequency components
R̂L, ÎL ∈ RN×w′

and split ĝH ∈ RN×2w′
to obtain high-

frequency components R̂H , ÎH ∈ RN×w′
, where the first

w′ features represent the real parts and the remaining w′ fea-
tures represent the imaginary parts. This splitting operation
exactly reverses the concatenation performed in the initial
feature processing stage, ensuring mathematical consistency
when reconstructing complex numbers for the IDFT process.
These parts are then used to reconstruct complex numbers
F̂L ∈ RN×w′

and F̂H ∈ RN×w′
respectively. These com-

ponents are summed and transformed back through IDFT to
obtain the prediction X̂CFI ∈ RN×τ ′

.

4.3. Periodic-Aware Timestamp Modeling (PTM)

While the CFI branch effectively captures frequency-domain
interactions, timestamp patterns and periodicities in times-
tamps also provide crucial information for forecasting. To
further enhance the prediction accuracy, we propose the
Periodic-Aware Timestamp Modeling (PTM) branch that hi-
erarchically processes timestamp information and leverages
2D convolution to capture both intra-period dependencies
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and inter-period correlations.

Feature Space Alignment. After obtaining the processed
hierarchical timestamp features T P

t+1:t+τ ′ ∈ Rm×τ ′
, we

need to align them with the dimensionality of the time se-
ries variables to enable effective timestamp pattern model-
ing. This alignment is achieved through a lightweight fea-
ture extraction module consisting of two sequential Linear-
LayerNorm-ReLU blocks, which maps the m-dimensional
timestamp features to the N -dimensional time series space.
The aligned features ZA ∈ RN×τ ′

retain the original se-
quence length while matching the variable dimension for
subsequent periodic-aware modeling.

Period-Aware Pattern Recognition. To effectively cap-
ture periodic patterns in the aligned timestamp features
ZA, we first reorganize them into a 2D structure accord-
ing to the given period length P . Specifically, we re-
shape ZA ∈ RN×τ ′

into ẐA ∈ RN×P×⌊τ ′/P⌋, where each
slice along the last dimension represents one complete pe-
riod. This transformation enables us to apply dimension-
preserving 2D convolution operations with kernel size k×k
that can simultaneously model both intra-period dependen-
cies and inter-period correlations. The 2D convolution struc-
ture facilitates the modeling of complex periodic patterns in
timestamp features by capturing both local periodic struc-
tures and their long-range relationships. After the convolu-
tion operations, we employ two dimension-preserving linear
mappings along the variable and timestamp dimensions
respectively to further refine these learned periodic repre-
sentations. Finally, we obtain X̂PTM ∈ RN×τ ′

to enhance
the prediction performance through subsequent integration.

4.4. Dual-Branch Integration

The CFI and PTM branches are designed to capture com-
plementary aspects of time series patterns. While the CFI
branch focuses on modeling frequency-domain interactions
between different frequency components, the PTM branch
specializes in extracting periodic patterns from timestamp
dependencies. As shown in Equation (12), these comple-
mentary features are integrated through weighted addition
with a constant coefficient γ, allowing the model to effec-
tively combine frequency-domain knowledge with times-
tamp pattern awareness. This dual-branch design creates
a synergistic effect where the strengths of both frequency-
based decomposition and periodic-aware timestamp model-
ing are leveraged to enhance the overall prediction accuracy.

4.5. Optimization Objective

For our forecasting task, we employ the squared loss (L2)
to measure the discrepancy between the prediction and the
ground truth. The overall training objective is:

L = ∥X̂t+1:t+τ ′ −Xt+1:t+τ ′∥22 (16)

where X̂t+1:t+τ ′ is computed following Equation (13) and
Xt+1:t+τ ′ represents the ground truth values.

5. Experiments
In this section, we conduct extensive experiments on real-
world time series datasets to evaluate the effectiveness of our
proposed CFPT. We first introduce the experimental setup,
followed by comprehensive performance comparisons with
state-of-the-art methods. Furthermore, we perform detailed
ablation studies on both CFI and PTM branches, analyze hy-
perparameter sensitivity and computational efficiency, and
visualize prediction results to demonstrate the effectiveness
of our framework.

5.1. Experimental Setup

Dataset. We conduct long-term forecasting experiments
on seven popular real-world benchmarks including the ETT
series (Zhou et al., 2021), ECL (Wu et al., 2021), Traffic
(Wu et al., 2021), and Weather (Wu et al., 2021). These
datasets span multiple domains including electricity trans-
former data, power consumption patterns, highway traffic
monitoring, and meteorological measurements. To maintain
consistency and enable direct performance comparison, we
adopt identical data preprocessing steps (e.g.,TimesNet (Wu
et al., 2023), iTransformer (Liu et al., 2024a)) to ensure
fair comparison. The detailed statistics of these datasets are
summarized in Appendix A.

Baselines. We compare our proposed CFPT with represen-
tative and state-of-the-art models, including: (1) TimeXer
(Wang et al., 2024b), a parallel multivariate forecasting
model leveraging exogenous variables; (2) FilterNet (Yi
et al., 2024a), a signal processing-based model utilizing
frequency filters; (3) iTransformer (Liu et al., 2024a), which
treats series as variate tokens to capture multivariate correla-
tions; (4) PatchTST (Nie et al., 2023), which extracts local
patterns through subseries patches with channel indepen-
dence; (5) FEDformer (Zhou et al., 2022b), implementing
sparse attention in frequency domain; (6) TimesNet (Wu
et al., 2023), capturing multi-scale temporal dependencies;
(7) DLinear (Zeng et al., 2023) and (8) RLinear (Li et al.,
2023), utilizing linear mappings for forecasting.

Implementation Details. Our experiments are performed
with PyTorch 2.0.0 (Paszke et al., 2019) on a single NVIDIA
RTX 3090 GPU. For forecasting task, we choose an input
sequence length of τ = 96 and evaluate on varying fore-
casting horizons τ ′ ∈ {96, 192, 336, 720}. For timestamp
features, we consider MinuteOfHour, HourOfDay, Day-
OfWeek, MonthOfYear, and SeasonOfYear in the Times-
tamp Hierarchical Processing (THP). And for the period
length P in the periodic timestamp slicing of PTM branch,
we empirically set it to 24 to maintain a consistent gran-
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ularity across all datasets. We adopt the mean absolute
error (MAE) and the mean square error (MSE) as evaluation
metrics. Additional implementation details are provided in
Appendix B.

5.2. Main Results

Table 1 shows the strong performance of CFPT in long-
term time series forecasting. Compared with forecasters
of different structures, CFPT achieves robust performance
across various datasets. Although not achieving the best
results on the Traffic dataset, CFPT demonstrates superior
generalization ability on other benchmarks, validating its
effectiveness in handling diverse time series patterns.

From the frequency modeling perspective, models like
TimeXer (Wang et al., 2024b), iTransformer (Liu et al.,
2024a), and RLinear (Li et al., 2023) that operate solely in
the time domain show limited capability in capturing com-
plex frequency patterns. While FilterNet (Yi et al., 2024a)
and FEDformer (Zhou et al., 2022b) attempt to process
different frequency components through weighted summa-
tion, they fail to model the intricate interactions between
frequency bands. Taking the ETT series as an example,
where both high-frequency fluctuations and low-frequency
trends coexist, our cross-frequency interaction mechanism
effectively captures the dynamic relationships between dif-
ferent frequency components. This advantage is particularly
evident on the ECL dataset, which exhibits rich periodic pat-
terns at multiple frequency scales due to daily and weekly
electricity consumption cycles, leading to more accurate
predictions.

From the timestamp modeling perspective, methods such as
DLinear (Zeng et al., 2023) and FilterNet (Yi et al., 2024a)
that do not utilize timestamp information show limitations
in capturing timestamp patterns. While TimesNet (Wu et al.,
2023) incorporates timestamps through simple addition with
positional encodings, and TimeXer (Wang et al., 2024b) and
iTransformer (Liu et al., 2024a) treat timestamps as attention
tokens, these approaches cannot fully exploit the inherent pe-
riodic characteristics of time series. This is particularly cru-
cial for the ECL dataset, which contains complex temporal
dependencies due to its regular daily patterns overlaid with
weekly variations and seasonal trends. Our periodic-aware
timestamp modeling explicitly captures both intra-period
dependencies and inter-period correlations, enabling better
understanding of these hierarchical timestamp patterns. The
experimental results on ECL validate the effectiveness of
our timestamp modeling approach.

The superior performance across different benchmarks
demonstrates that our dual-branch architecture, which com-
bines frequency interaction and periodic-aware timestamp
modeling, provides a more comprehensive solution for long-
term time series forecasting.

5.3. Ablation Study

Using Frequency Division. In this section, we experiment
with the effect of frequency decomposition by comparing
CFPT with its variant without separating high- and low-
frequency components (w/o CFI-D). As shown in Table 2,
the average results demonstrate that removing frequency de-
composition consistently leads to performance degradation,
indicating the importance of modeling frequency compo-
nents separately.

Using Cross-Frequency Interaction. In this section, we
study the effectiveness of the cross-frequency interaction
by comparing CFPT with its variant without couple layers
(w/o CFI-C). As shown in Table 2, removing the coupling
layers leads to consistent performance degradation across
all datasets, with particularly notable drops on ETTh2 (from
0.364 to 0.394 in MSE). These results demonstrate the im-
portance of modeling interactions between different fre-
quency components.

Using CFI Branch. In this section, we investigate the neces-
sity of frequency-based modeling by completely removing
the CFI branch (w/o CFI). As shown in Table 2, the model
performance significantly degrades without frequency anal-
ysis, with MSE increasing from 0.374 to 0.391 on ETTm1,
0.364 to 0.390 on ETTh2, and 0.240 to 0.251 on Weather.
The substantial performance drop validates the effectiveness
of our frequency-based design in CFPT.

Using Future Timestamps. In this section, we compare
CFPT with its variant using historical timestamps (CFPT-
HT), where the final linear layer in PTM branch maps from
historical to future sequence length instead of directly mod-
eling future timestamps. As shown in Figure 4, the perfor-
mance gap between these two models widens as the pre-
diction length increases from 96 to 720 steps, with CFPT
consistently outperforming CFPT-HT (0.499 vs 0.544 in
MSE at 720 steps). This suggests that using future times-
tamps becomes increasingly crucial for longer horizons,
likely due to the information loss when mapping historical
patterns to extended forecasting windows.

Using 2D Timestamp Modeling. In this section, we com-
pare CFPT with its variant using 1D convolution without
periodic slicing (CFPT-1DT). As shown in Table 3, imple-
menting 2D timestamp modeling consistently yields better
performance across all datasets, with MSE improving from
0.376 to 0.374 on ETTm1, 0.369 to 0.364 on ETTh2, and
0.242 to 0.240 on Weather. These results demonstrate the
advantage of our period-based 2D modeling strategy.

Using PTM Branch. In this section, we study the effec-
tiveness of timestamp modeling by completely removing
the PTM branch. As shown in Table 3, removing times-
tamp modeling leads to significant performance degradation
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Table 1. Forecasting results with look-back window τ = 96 and prediction lengths τ ′ ∈ {96, 192, 336, 720}. The MSE and MAE metrics
are averaged across all prediction horizons, with lower values indicating better performance. The best results are shown in bold. Our full
results are in Appendix D.

Methods CFPT TimeXer FilterNet iTransformer PatchTST FEDformer TimesNet DLinear RLinear

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.374 0.393 0.382 0.397 0.384 0.398 0.407 0.410 0.387 0.400 0.448 0.452 0.400 0.406 0.403 0.407 0.414 0.407
ETTm2 0.269 0.315 0.274 0.322 0.276 0.322 0.288 0.332 0.281 0.326 0.305 0.349 0.291 0.333 0.350 0.401 0.286 0.327
ETTh1 0.433 0.429 0.437 0.437 0.440 0.432 0.454 0.448 0.469 0.454 0.440 0.460 0.458 0.450 0.456 0.452 0.446 0.434
ETTh2 0.364 0.393 0.367 0.396 0.378 0.404 0.383 0.407 0.387 0.407 0.437 0.449 0.414 0.427 0.559 0.515 0.374 0.398
ECL 0.164 0.259 0.171 0.270 0.201 0.285 0.178 0.270 0.205 0.290 0.214 0.327 0.192 0.295 0.212 0.300 0.219 0.298

Traffic 0.470 0.289 0.466 0.287 0.521 0.340 0.428 0.282 0.481 0.304 0.610 0.376 0.620 0.336 0.625 0.383 0.626 0.378
Weather 0.240 0.267 0.241 0.271 0.248 0.274 0.258 0.278 0.259 0.281 0.309 0.360 0.259 0.287 0.265 0.317 0.272 0.291

1st Count 6 6 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

Table 2. Ablation study on frequency modeling. Results are aver-
aged from all forecasting horizons.

Methods CFPT w/o CFI-D w/o CFI-C w/o CFI
Metrics MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.374 0.393 0.379 0.394 0.391 0.398 0.391 0.398

ETTh2 0.364 0.393 0.369 0.397 0.394 0.410 0.390 0.407

Weather 0.240 0.267 0.242 0.269 0.250 0.275 0.251 0.276

96 192 336 720
Prediction Length

0.44

0.46

0.48

0.50

0.52

0.54

M
SE

0.444

0.460

0.477

0.499

0.444

0.461

0.483

0.544
CFPT
CFPT-HT

Figure 4. MSE comparison between CFPT (using future times-
tamps) and CFPT-HT (using history timestamps) on Traffic dataset.

across all datasets, with MSE increasing from 0.374 to 0.385
on ETTm1, 0.364 to 0.370 on ETTh2, and 0.240 to 0.255 on
Weather. These results validate the importance of explicit
timestamp modeling in our framework.

5.4. Hyperparameter and Efficiency Analysis

We analyze CFPT’s hyperparameter sensitivity by examin-
ing critical parameters including weight coefficient γ, kernel
size k, number of coupling layers L, and model dimension
D, as well as evaluate its computational efficiency in terms
of training time and resource consumption. CFPT achieves
robust performance while maintaining high computational

Table 3. Ablation study on timestamp modeling. Results are aver-
aged from all forecasting horizons.

Methods CFPT CFPT-1DT w/o PTM
Metrics MSE MAE MSE MAE MSE MAE

ETTm1 0.374 0.393 0.376 0.394 0.385 0.395

ETTh2 0.364 0.393 0.369 0.398 0.370 0.396

Weather 0.240 0.267 0.242 0.269 0.255 0.276

efficiency. Detailed analyses on hyperparameter sensitivity
and computational efficiency are referred to Appendix C.

5.5. Visualization of Prediction Performance

We present a prediction showcase on the ECL dataset, as
shown in Figure 5. We select TimeXer (Wang et al., 2024b),
FilterNet (Yi et al., 2024a), and iTransformer (Liu et al.,
2024a) as the representative comparison methods. Com-
paring with these state-of-the-art models, we observe that
CFPT delivers more accurate predictions of future series
variations, demonstrating superior forecasting performance.

6. Conclusion
In this paper, we propose CFPT, a novel framework that
empowers long-term time series forecasting through cross-
frequency interaction and periodic-aware timestamp mod-
eling. The Cross-Frequency Interaction (CFI) branch and
Periodic-Aware Timestamp Modeling (PTM) branch work
collaboratively, where CFI explicitly models interactions be-
tween different frequency components through a dedicated
coupling mechanism, while PTM enhances prediction by
capturing both intra-period dependencies and inter-period
correlations based on timestamp patterns via 2D convolution
on period-based tensors. Our comprehensive experiments
across multiple benchmarks demonstrate the superiority of
CFPT, achieving robust performance especially on datasets
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Figure 5. Visualization of prediction on the ECL dataset with look-
back and horizon length as 96.

with complex periodic patterns like ECL. For future work,
incorporating adaptive period detection mechanisms could
further enhance our PTM branch to better accommodate
datasets with irregular periodicity patterns. We hope our
work can inspire future research to explore more sophis-
ticated frequency interaction mechanisms and timestamp
modeling strategies for enhancing long-term time series
forecasting capabilities.
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A. Dataset Descriptions
We evaluate CFPT on seven widely-used time series benchmarks: ETT series (Zhou et al., 2021) (ETTh1, ETTh2,
ETTm1, ETTm2), ECL (Wu et al., 2021), Traffic (Wu et al., 2021), and Weather (Wu et al., 2021). The ETT series
contains transformer temperature records with different sampling rates (hourly and 15-minute). ECL consists of electricity
consumption data from multiple clients, Traffic records road occupancy rates from highway sensors, and Weather includes
various meteorological measurements. These datasets cover diverse scenarios with different sampling frequencies and
variable dimensions, providing a comprehensive testbed for long-term forecasting. The detailed statistics of these datasets
are summarized in Table 4.

Table 4. Statistical Properties of Experimental Datasets.

Dataset ETTm1&2 ETTh1&2 ECL Traffic Weather

Timesteps 69,680 17,420 26,304 17,544 52,696

Channels 7 7 321 862 21

Dataset Size (34465, 11521, 11521) (8545, 2881, 2881) (18317, 2633, 5261) (12185, 1757, 3509) (36792, 5271, 10540)

Granularity 15 mins 1 hour 1 hour 1 hour 10 mins

Periodicity Daily Daily Daily & Weekly Daily & Weekly Daily & Seasonly

B. Implementation Details
All experiments are implemented in PyTorch 2.0.0 (Paszke et al., 2019) and conducted on a single NVIDIA RTX 3090 GPU.
We utilize ADAM optimizer (Kingma, 2014) with learning rate searched from {0.01, 0.005, 0.0001, 0.0005} and L2 loss
for model optimization. The training process is fixed to 10 epochs with batch size selected from {4, 8, 16, 128}. For model
architecture, we conduct grid search over several key hyperparameters: (a) Weight coefficient γ from {0.1, 0.2, ..., 0.9},
(b) Kernel size k from {2, 3, 4, 5}, (c) Number of coupling layers L from {1, 3, 6, 12}, and (d) Model dimension D
from {128, 256, 512}. For timestamp features, we consider MinuteOfHour, HourOfDay, DayOfWeek, MonthOfYear, and
SeasonOfYear in the Timestamp Hierarchical Processing (THP). Additionally, a fixed period length P = 24 is applied
in PTM branch. All experiments are repeated with seed 2025. We reproduced all baseline models following the official
implementation of TimesNet (Wu et al., 2023).

C. Model Analysis
C.1. Hyperparameter Sensitivity Analysis

To evaluate the parameter sensitivity of CFPT, we conduct ablation studies by varying key hyperparameters: (a) Weight
coefficient γ from {0.1, 0.2, ..., 0.9}, (b) Kernel size k from {2, 3, 4, 5}, (c) Number of coupling layers L from {1, 3, 6, 12},
and (d) Model dimension D from {128, 256, 512}. The results on ETTm1, ETTh2 and Weather datasets with lookback
length of 96 and horizon length of 720 are illustrated in Figure 6. The model shows optimal performance when γ is in [0.1,
0.7], with relatively stable or degraded performance beyond 0.7. A kernel size of k = 2 generally yields better results. The
impact of coupling layers L varies across datasets, which may be attributed to their different frequency characteristics. The
model achieves optimal performance with hidden dimension D = 512.
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Figure 6. Sensitivity analysis of hyperparameters on ETTm1, ETTh2 and Weather datasets with lookback length of 96 and horizon length
of 720.

C.2. Efficiency Analysis

As shown in Table 5, we evaluate CFPT’s efficiency based on model parameters, GPU memory usage, and training time per
iteration on ETTm1, ETTh2 and Weather datasets with lookback window size fixed as 96 while varying prediction horizons
from 96 to 720 timesteps. The results demonstrate that our model maintains stable training speed around 0.8s per iteration
and exhibits low resource requirements with moderate parameter sizes and GPU memory usage across all settings, even for
the Weather dataset with higher dimensionality and longer prediction horizons. These results indicate that CFPT achieves
strong performance with modest computational costs, making it suitable for practical deployment.

Table 5. Model efficiency analysis with fixed lookback window size of 96 and varying prediction horizons, evaluated on different datasets
in terms of model parameters, GPU memory usage, and training time.

Dataset Horizon Parameter GPU Memory Running Time
(MB) (MiB) (s / iter)

ETTm1

96 48.971 75.675 0.813
192 4.744 15.982 0.804
336 1.879 12.780 0.805
720 7.631 20.341 0.831

ETTh2

96 1.243 10.925 0.781
192 17.344 33.619 0.789
336 25.460 190.327 0.819
720 21.262 52.163 0.789

Weather

96 12.507 248.786 0.793
192 3.474 148.505 0.812
336 3.924 167.071 0.800
720 3.246 169.071 0.804
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D. Performance of Long-term Multivariate Forecasting
To comprehensively evaluate CFPT, we conduct long-term multivariate forecasting experiments on various real-world
benchmarks. With lookback window size fixed as 96, we test the model’s performance across different prediction horizons
ranging from {96, 192, 336, 720}. The detailed results are presented in Table 6.

Table 6. Full results of the long-term multivariate forecasting task.

Methods CFPT TimeXer FilterNet iTransformer PatchTST FEDformer TimesNet DLinear RLinear

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.316 0.356 0.318 0.356 0.318 0.358 0.334 0.368 0.329 0.367 0.379 0.419 0.338 0.375 0.345 0.372 0.355 0.376
192 0.354 0.380 0.362 0.383 0.364 0.383 0.377 0.391 0.367 0.385 0.426 0.441 0.374 0.387 0.380 0.389 0.391 0.392
336 0.383 0.400 0.395 0.407 0.396 0.406 0.426 0.420 0.399 0.410 0.445 0.459 0.410 0.411 0.413 0.413 0.424 0.415
720 0.444 0.434 0.452 0.441 0.456 0.444 0.491 0.459 0.454 0.439 0.543 0.490 0.478 0.450 0.474 0.453 0.487 0.450
Avg. 0.374 0.393 0.382 0.397 0.384 0.398 0.407 0.410 0.387 0.400 0.448 0.452 0.400 0.406 0.403 0.407 0.414 0.407

ETTm2

96 0.167 0.249 0.171 0.256 0.174 0.257 0.180 0.264 0.175 0.259 0.203 0.287 0.187 0.267 0.193 0.292 0.182 0.265
192 0.232 0.292 0.237 0.299 0.240 0.300 0.250 0.309 0.241 0.302 0.269 0.328 0.249 0.309 0.284 0.362 0.246 0.304
336 0.290 0.331 0.296 0.338 0.297 0.339 0.311 0.348 0.305 0.343 0.325 0.366 0.321 0.351 0.369 0.427 0.307 0.342
720 0.385 0.389 0.392 0.394 0.392 0.393 0.412 0.407 0.402 0.400 0.421 0.415 0.408 0.403 0.554 0.522 0.407 0.398
Avg. 0.269 0.315 0.274 0.322 0.276 0.322 0.288 0.332 0.281 0.326 0.305 0.349 0.291 0.333 0.350 0.401 0.286 0.327

ETTh1

96 0.372 0.391 0.382 0.403 0.375 0.394 0.386 0.405 0.414 0.419 0.376 0.419 0.384 0.402 0.386 0.400 0.386 0.395
192 0.425 0.421 0.429 0.435 0.436 0.422 0.441 0.436 0.460 0.445 0.420 0.448 0.436 0.429 0.437 0.432 0.437 0.424
336 0.467 0.442 0.468 0.448 0.476 0.443 0.487 0.458 0.501 0.466 0.459 0.465 0.491 0.469 0.481 0.459 0.479 0.446
720 0.466 0.461 0.469 0.461 0.474 0.469 0.503 0.491 0.500 0.488 0.506 0.507 0.521 0.500 0.519 0.516 0.481 0.470
Avg. 0.433 0.429 0.437 0.437 0.440 0.432 0.454 0.448 0.469 0.454 0.440 0.460 0.458 0.450 0.456 0.452 0.446 0.434

ETTh2

96 0.285 0.336 0.286 0.338 0.292 0.343 0.297 0.349 0.302 0.348 0.358 0.397 0.340 0.374 0.333 0.387 0.288 0.338
192 0.363 0.388 0.363 0.389 0.369 0.395 0.380 0.400 0.388 0.400 0.429 0.439 0.402 0.414 0.477 0.476 0.374 0.390
336 0.413 0.426 0.414 0.423 0.420 0.432 0.428 0.432 0.426 0.433 0.496 0.487 0.452 0.452 0.594 0.541 0.415 0.426
720 0.396 0.422 0.408 0.432 0.430 0.446 0.427 0.445 0.431 0.446 0.463 0.474 0.462 0.468 0.831 0.657 0.420 0.440
Avg. 0.364 0.393 0.367 0.396 0.378 0.404 0.383 0.407 0.387 0.407 0.437 0.449 0.414 0.427 0.559 0.515 0.374 0.398

ECL

96 0.136 0.231 0.140 0.242 0.176 0.264 0.148 0.240 0.181 0.270 0.193 0.308 0.168 0.272 0.197 0.282 0.201 0.281
192 0.153 0.246 0.157 0.256 0.185 0.270 0.162 0.253 0.188 0.274 0.201 0.315 0.184 0.289 0.196 0.285 0.201 0.283
336 0.168 0.265 0.176 0.275 0.202 0.286 0.178 0.269 0.204 0.293 0.214 0.329 0.198 0.300 0.209 0.301 0.215 0.298
720 0.199 0.293 0.211 0.306 0.242 0.319 0.225 0.317 0.246 0.324 0.246 0.355 0.220 0.320 0.245 0.333 0.257 0.331
Avg. 0.164 0.259 0.171 0.270 0.201 0.285 0.178 0.270 0.205 0.290 0.214 0.327 0.192 0.295 0.212 0.300 0.219 0.298

Traffic

96 0.444 0.274 0.428 0.271 0.506 0.336 0.395 0.268 0.462 0.295 0.587 0.366 0.593 0.321 0.650 0.396 0.649 0.389
192 0.460 0.280 0.448 0.282 0.508 0.333 0.417 0.276 0.466 0.296 0.604 0.373 0.617 0.336 0.598 0.370 0.601 0.366
336 0.477 0.289 0.473 0.289 0.518 0.335 0.433 0.283 0.482 0.304 0.621 0.383 0.629 0.336 0.605 0.373 0.609 0.369
720 0.499 0.313 0.516 0.307 0.553 0.354 0.467 0.302 0.514 0.322 0.626 0.382 0.640 0.350 0.645 0.394 0.647 0.387
Avg. 0.470 0.289 0.466 0.287 0.521 0.340 0.428 0.282 0.481 0.304 0.610 0.376 0.620 0.336 0.625 0.383 0.626 0.378

Weather

96 0.154 0.200 0.157 0.205 0.164 0.210 0.174 0.214 0.177 0.218 0.217 0.296 0.172 0.220 0.196 0.255 0.192 0.232
192 0.203 0.242 0.204 0.247 0.214 0.252 0.221 0.254 0.225 0.259 0.276 0.336 0.219 0.261 0.237 0.296 0.240 0.271
336 0.261 0.286 0.261 0.290 0.268 0.293 0.278 0.296 0.278 0.297 0.339 0.380 0.280 0.306 0.283 0.335 0.292 0.307
720 0.340 0.339 0.340 0.341 0.344 0.342 0.358 0.347 0.354 0.348 0.403 0.428 0.365 0.359 0.345 0.381 0.364 0.353
Avg. 0.240 0.267 0.241 0.271 0.248 0.274 0.258 0.278 0.259 0.281 0.309 0.360 0.259 0.287 0.265 0.317 0.272 0.291

1st Count 29 30 3 3 0 0 4 4 0 0 2 0 0 0 0 0 0 0
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