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Abstract

Text anomaly detection is crucial for identify-001
ing spam, misinformation, and offensive lan-002
guage in natural language processing tasks.003
Despite the growing adoption of embedding-004
based methods, their effectiveness and gener-005
alizability across diverse application scenar-006
ios remain insufficiently explored. To ad-007
dress this, we present TAD-Bench, a compre-008
hensive benchmark designed to systematically009
evaluate embedding-based approaches for text010
anomaly detection. TAD-Bench integrates mul-011
tiple datasets spanning different domains, com-012
bining state-of-the-art embeddings from large013
language models with a variety of anomaly014
detection algorithms. Through extensive ex-015
periments, we analyze the interplay between016
embeddings and detection methods, uncover-017
ing their strengths, weaknesses, and applica-018
bility to different tasks. These findings offer019
new perspectives on building more robust, effi-020
cient, and generalizable anomaly detection sys-021
tems for real-world applications. All the code022
are available at https://anonymous.4open.023
science/r/TAD-Bench-B4C6/.024

1 Introduction025

Anomaly detection (AD) is a critical task in ma-026

chine learning, widely applied in fraud detection027

and content moderation to user behavior analy-028

sis (Pang et al., 2021). Within natural language029

processing (NLP), anomaly detection has become030

increasingly relevant for identifying outliers such031

as harmful content, phishing attempts, and spam032

reviews. However, while AD tasks in structured033

data (e.g., tabular, time series, graphs) (Steinbuss034

and Böhm, 2021; Blázquez-García et al., 2021;035

Qiao et al., 2024) have been extensively studied,036

anomaly detection in the unstructured and high-037

dimensional domain of text remains underexplored.038

The inherent complexity of textual data, driven by039

its diverse syntactic, semantic, and pragmatic struc-040

tures, presents significant challenges for robust and041

reliable anomaly detection. 042

The rise of deep learning and transformer-based 043

models has revolutionized NLP, enabling the devel- 044

opment of contextualized embeddings that encode 045

rich semantic and syntactic information. Tech- 046

niques such as BERT (Devlin et al., 2019) and 047

OpenAI’s text-embedding models (OpenAI, 2024) 048

have demonstrated remarkable success across a 049

wide range of NLP tasks, offering dense, high- 050

dimensional representations that effectively cap- 051

ture linguistic nuances. These embeddings have 052

become a cornerstone for many downstream tasks, 053

providing powerful tools for applications such as 054

text classification (da Costa et al., 2023) and re- 055

trieval (Zhu et al., 2023). Their ability to gener- 056

alize across tasks and domains positions them as 057

a promising foundation for complex challenges, 058

including anomaly detection. 059

Figure 1: t-SNE visualization of SMS_Spam dataset’s
embedding extracted by OpenAI model. Blue and red
points are normal and anomaly points, respectively.

In recent years, embedding-based methods have 060

gained significant attention in anomaly detection 061

tasks due to their ability to capture semantic and 062

contextual nuances in data (Wang et al., 2024). 063

These methods typically involve two key stages: 1) 064

extracting high-dimensional representations from 065

textual data using pre-trained language models, 066

which encode rich contextual and semantic features. 067
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Figure 1 demonstrates the anomaly distribution of068

SMS_Spam dataset embedding extracted from Ope-069

nAI model. 2) Applying specialized algorithms070

to identify anomalies based on these embeddings.071

The embeddings serve as a compact and expres-072

sive feature space, enabling downstream algorithms073

to efficiently identify deviations or outliers. Fig-074

ure 2 shows the steps involved in embedding-based075

anomaly detection.076

Recent efforts, such as AD-NLP (Bejan077

et al., 2023), TAD (Xu et al., 2023) and NLP-078

ADBench (Li et al., 2024), have significantly ad-079

vanced anomaly detection in NLP. AD-NLP (Bejan080

et al., 2023) finds that semantic and stylistic anoma-081

lies are easier to detect than those partially depen-082

dent on text; TAD (Xu et al., 2023) shows the effec-083

tiveness of embedding-based methods on multi lan-084

guage applications; NLP-ADBench (Li et al., 2024)085

reveals that no single model performs best across086

all datasets and high-dimensional embeddings im-087

prove detection. However, they only use a few em-088

bedding models, none of them explore the impact089

of embeddings quality to anomaly detection perfor-090

mance and tradeoffs between embedding models091

and anomaly detectors, raising questions about gen-092

eralization capabilities of embedding-based meth-093

ods in complex, real-world scenarios.094

Our work aims to move beyond simply filling095

these gaps, by systematically exploring the follow-096

ing questions: 1) What types of tasks are LLMs097

(Large Language Models) embeddings paired with098

anomaly detectors most suitable for, and where do099

they face limitations? 2) Which embedding meth-100

ods consistently excel across different anomaly de-101

tection tasks? 3) Which anomaly detection algo-102

rithms perform robustly across various embeddings103

and tasks?104

In this work, we introduce TAD-Bench, a novel105

benchmark specifically designed for text anomaly106

detection. Our objective is to enable a more com-107

prehensive and systematic evaluation of state-of-108

the-art embeddings, anomaly detection techniques,109

and their various combinations, offering valuable110

insights for a broad spectrum of NLP applications.111

The main contributions of this work are summa-112

rized as follows:113

• Propose TAD-Bench, a benchmark integrating114

diverse datasets for text anomaly detection115

across domains such as spam, fake news, and116

offensive language.117

• Conduct a systematic evaluation of LLM-118

based embeddings and anomaly detection al- 119

gorithms, revealing their relative strengths and 120

weaknesses. 121

• Provide insights into effective embedding- 122

detector configurations for improving robust- 123

ness and generalizability in NLP anomaly de- 124

tection tasks. 125

The key insights of TAD-Bench have been sum- 126

marized as follows: 1) The effectiveness of em- 127

bedding models varies significantly by task type: 128

they can extract meaningful embeddings on tasks 129

with explicit patterns (e.g. email spam with gib- 130

berish text) but struggle with context-dependent 131

anomalies (e.g. offensive language). 2) Among 132

different detection algorithms applied to various 133

embeddings, there are significant performance dif- 134

ferences, but with default parameters, nearest- 135

neighbor-based methods including kNN and INNE 136

show better robustness. 3) Clustering patterns in 137

embedding spaces reveal that spam anomalies form 138

distinct, compact clusters, whereas hate speech and 139

offensive language anomalies are scattered among 140

normal instances, explaining why detection per- 141

formance varies across domains despite using the 142

same embedding-detector combinations. 4) On 143

texts with explicit linguistic patterns like email 144

spam, lightweight embedding models (MINILM) 145

perform comparably to larger models (e.g. OpenAI, 146

Llama), suggesting efficient model selection based 147

on task characteristics. 148

2 Related Work 149

2.1 Text representations 150

Early methods like TF-IDF (Term Frequency- 151

Inverse Document Frequency) (Salton and Buckley, 152

1988) represented text in sparse vector spaces by 153

measuring word importance relative to a corpus. 154

While interpretable and computationally efficient, 155

TF-IDF could not capture semantic relationships 156

between words. Later, dense embeddings such 157

as Word2Vec (Word to Vector) (Mikolov, 2013) 158

and GloVe (Global Vectors for Word Representa- 159

tion) (Pennington et al., 2014) addressed this lim- 160

itation by mapping words into continuous vector 161

spaces based on their co-occurrence patterns in 162

large corpora. However, these embeddings were 163

static, assigning the same vector to a word regard- 164

less of its context. 165

To overcome the limitations of static embed- 166

dings, contextualized embeddings were introduced, 167
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Figure 2: Illustration of the embedding-based anomaly detection pipeline, encompassing embedding extraction and
anomaly scoring.

with models like ELMo (Embeddings from Lan-168

guage Models) (Peters et al., 2018) producing169

word representations that vary based on con-170

text. This innovation was further advanced by171

transformer-based models like BERT (Bidirec-172

tional Encoder Representations from Transform-173

ers) (Devlin et al., 2019), which used bidirectional174

attention mechanisms to simultaneously capture175

left and right context. BERT set new benchmarks176

in NLP and inspired numerous improvements, in-177

cluding RoBERTa (Robustly Optimized BERT Ap-178

proach) (Zhuang et al., 2021) and ALBERT (A Lite179

BERT) (Lan et al., 2020).180

More recently, large language models such as181

GPT (Generative Pre-trained Transformer (Brown182

et al., 2020) have significantly advanced the ca-183

pabilities of embedding methods. These models,184

trained on massive and diverse datasets, generate185

highly expressive embeddings that capture both186

deep semantic relationships and rich generative187

properties of text. LLMs have exhibited unprece-188

dented performance across a broad spectrum of189

NLP tasks, solidifying their role as dominant tools190

for text representation in numerous applications,191

including anomaly detection, information retrieval,192

and text generation.193

2.2 Anomaly Detection194

Distance-based methods, such as kNN (k-Nearest195

Neighbors) (Ramaswamy et al., 2000), identify196

anomalies by measuring the distance of a given197

data point to its nearest neighbors. Points that are198

far from their neighbors are considered anomalous.199

These methods are intuitive and straightforward200

but suffer from the curse of dimensionality in high-201

dimensional spaces, where distances lose their dis-202

criminative power, reducing their effectiveness.203

Density-based methods identify points with sig-204

nificantly lower local density compared to their205

surroundings as anomaly. LOF (Local Outlier Fac- 206

tor) (Breunig et al., 2000) measures the local den- 207

sity of a point relative to its neighbors. HBOS 208

(Histogram-Based Outlier Score) (Goldstein and 209

Dengel, 2012) estimates densities using histograms 210

for individual features. 211

Isolation-based methods assume anomalies are 212

rare and different, iForest (Isolation Forest) (Liu 213

et al., 2008, 2012), detect anomalies by recursively 214

partitioning the feature space where anomalies re- 215

quire fewer partitions than normal points. Im- 216

proved techniques, such as iNNE (Isolation-based 217

Nearest Neighbor Ensembles) (Bandaragoda et al., 218

2018), use hypersphere to partition data space and 219

assigns larger hyperspheres to anomalies, improv- 220

ing robustness in detecting local anomalies. 221

Probabilistic and statistical methods identify 222

anomalies based on deviations from the data dis- 223

tribution. These approaches assume that nor- 224

mal instances follow a certain statistical pattern, 225

and anomalies appear as outliers that do not con- 226

form to this pattern. ECOD (Empirical Cumu- 227

lative Distribution Function-based Outlier Detec- 228

tion) (Li et al., 2022) uses cumulative distribu- 229

tion functions for efficient anomaly scoring, while 230

COPOD (Copula-Based Outlier Detection) (Li 231

et al., 2020) leverages copulas to model feature de- 232

pendencies, handling multivariate data effectively. 233

Projection-based methods, such as OCSVM (One- 234

Class SVM) (Schölkopf et al., 2001), separate 235

normal and anomalous data by learning a deci- 236

sion boundary in a high-dimensional feature space. 237

While effective for complex distributions. 238

Deep learning-based methods train on normal 239

data to learn representations, identifying anoma- 240

lies as deviations. Approaches like Deep SVDD 241

(Deep Support Vector Data Description) (Ruff et al., 242

2018) and LUNAR (Unifying Local Outlier Detec- 243

tion Methods via Graph Neural Networks) (Goodge 244
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Table 1: Dataset description. Nor. and Ano. stand for
Normal and Anomaly.

Dataset # Samples # Nor. # Ano. % Ano.
Email Spam 3578 3432 146 4.0805
SMS Spam 4969 4825 144 2.8980
COVID-Fake 1173 1120 53 4.5183
LIAR2 2130 2068 62 2.9108
OLID 641 620 21 3.2761
Hate Speech 4287 4163 124 2.8925

et al., 2022) capture nonlinear patterns but require245

substantial data and computational resources.246

3 Benchmark Settings247

3.1 Datasets248

The scarcity of dedicated datasets poses a chal-249

lenge to the development and evaluation of effec-250

tive anomaly detection methods in NLP. To address251

this gap, we curated and transformed 6 existing252

classification datasets from three common NLP do-253

mains: spam detection, fake news detection, and254

offensive language detection. By incorporating255

datasets from diverse domains, our benchmark fa-256

cilitates a comprehensive evaluation of embedding-257

based anomaly detection methods across various258

NLP tasks.259

Anomalies, as defined in our problem, are in-260

herently rare. However, due to the lack of ded-261

icated datasets for text anomaly detection, we262

adapted classification datasets by designating spe-263

cific classes as anomalies and down-sampling them264

to simulate realistic anomaly rates (Li et al., 2024).265

For each dataset, the anomaly rate was set to ap-266

proximately 3%, reflecting the typical rarity of267

anomalies in real-world scenarios.268

While some studies treat anomaly detection269

as novelty detection—assuming only normal in-270

stances in training (e.g., NLP-ADBench (Li et al.,271

2024)). TAD-Bench removes this constraint and272

directly utilizes all available data for anomaly de-273

tection. Additionally, we retain the original text274

without extra pre-processing, as any token, word,275

or symbol may carry critical information indicative276

of an anomaly. This approach preserves linguis-277

tic, structural, and contextual features essential for278

detecting anomalies. Table 1 presents the statis-279

tics of the six pre-processed datasets used in this280

benchmark, including Email-Spam(Metsis et al.,281

2006), SMS-Spam(Almeida et al., 2011), COVID-282

Fake(Das et al., 2021), LIAR2(Xu and Kechadi,283

2024), OLID(Zampieri et al., 2019a), and Hate-284

Speech(Davidson et al., 2017). 285

3.2 Embedding Models 286

To extract high-quality embeddings from the 287

datasets, 8 embedding models were utilized. 288

These include BERT (bert-base-uncased) (Devlin 289

et al., 2019), MiniLM (all-MiniLM-L6-v2) (Wang 290

et al., 2020), LLAMA (Llama-3.2-1B), stella 291

(stella_en_400M_v5) (Zhang et al., 2024), and 292

Qwen (Qwen2.5-1.5B) (Yang et al., 2024a; Team, 293

2024) from the HuggingFace platform, as well as 294

OpenAI-provided models: O-ada (text-embedding- 295

ada-002), O-small (text-embedding-3-small), and 296

O-large (text-embedding-3-large) (OpenAI, 2024). 297

All these models are based on the Transformer ar- 298

chitecture, which has become the standard for rep- 299

resentation learning in NLP tasks. The OpenAI 300

models (O-ada, O-small, O-large) are specifically 301

designed for embedding generation, offering em- 302

beddings with varying levels of granularity. On 303

the other hand, LLAMA and Qwen are primar- 304

ily auto-regressive language models optimized for 305

text generation. In this paper, we repurposed these 306

models for embedding extraction by computing the 307

attention-weighted mean of their last hidden states, 308

ensuring that only valid tokens contribute to the 309

final sentence embeddings. 310

Notably, LLAMA and Qwen were constrained 311

to a maximum token length of 512 tokens, same as 312

BERT, due to computational resource limitations. 313

Other models, such as MiniLM, Stella, and the 314

OpenAI embeddings, utilized automatic truncation 315

to process longer input sequences. This limitation 316

may restrict LLAMA and Qwen’s ability to fully 317

leverage their extended context capabilities, partic- 318

ularly for datasets with longer text instances, such 319

as LIAR2 and Hate-Speech. However, this unified 320

token length ensures a fair comparison of runtime 321

efficiency across models under consistent experi- 322

mental conditions. It also highlights the trade-offs 323

between computational cost and embedding quality, 324

particularly when resource constraints are a factor 325

in model deployment. 326

3.3 Anomaly Detectors 327

The embeddings derived from these models were 328

subsequently used as input features for anomaly 329

detection algorithms. To identify anomalous in- 330

stances, we employed 8 anomaly detection methods 331

sourced from the PyOD library1 (Zhao et al., 2019). 332

1PyOD: https://pyod.readthedocs.io/en/latest/
index.html
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These algorithms include KNN, LOF, OCSVM,333

iForest, INNE, ECOD, HBOS and COPOD .334

These algorithms were selected to capture diverse335

anomaly detection paradigms, ensuring robust de-336

tection across datasets with varying characteristics,337

structures, and distributions.338

For reproducibility and consistency, we imple-339

mented all algorithms using their default hyperpa-340

rameter settings as specified in their original im-341

plementations and research papers. This approach342

minimizes subjective bias and enables fair com-343

parison across different embedding models. Addi-344

tionally, we conducted comprehensive grid search345

for optimal hyperparameter configurations, with346

search ranges detailed in Table 4. By evaluating347

both default and optimized settings across our di-348

verse collection of embedding models and detec-349

tion algorithms, we provide a thorough assessment350

of text anomaly detection performance in terms of351

both computational efficiency and detection effec-352

tiveness.353

3.4 Evaluation Criteria and Trials354

Performance was evaluated using the Area Under355

the Receiver Operating Characteristic Curve (AU-356

ROC), a widely adopted metric in anomaly detec-357

tion tasks for measuring the trade-off between true358

positive and false positive rates. To ensure the359

reliability and robustness of the results, each ex-360

periment was repeated 5 times, and the average361

AUROC score was reported.362

4 Experiments363

4.1 Domain Generalization364

Table 5 summarizes the performance of various365

anomaly detectors combined with LLM-derived366

embeddings across different datasets, while Fig-367

ure 1 highlights their strong performance in spe-368

cific tasks, particularly spam detection. In both the369

email spam and SMS spam detection tasks (Fig-370

ure 5a and Figure 5d, many embedding-detector371

combinations achieve high AUC scores, with sev-372

eral exceeding 0.8. This strong performance can373

be attributed to the explicit nature of spam-related374

features, such as the presence of URLs, nonsensi-375

cal text, or repetitive patterns. An example Case 1376

from the Email Spam dataset is shown below:377

Case 1: Subject: oxyccontttin no script
needeeed your place to ggo too for all
ur prreexxxxiscrlpt 10 n pi sx , paaaaain
killerzxss noeoo presscippt http : / / hyyy-
droccodeeeine vicccodinne / vic geeet reeel-
iefff noowee http : / / offfmeebabyy

378

Figure 3: t-SNE demonstration of Case 1 (green star)
embedding extracted by O-large.

Figure 3 shows that case 1 is located at the edge 379

of the embedding space and deviates from the main 380

data distribution, thus making it easy to be detected. 381

These features are effectively represented in the 382

semantic spaces created by general-purpose embed- 383

dings, enabling anomaly detectors to distinguish 384

spam messages from legitimate ones. Addition- 385

ally, the relatively small variance in detection per- 386

formance across embeddings suggests that spam 387

detection primarily relies on surface-level linguis- 388

tic patterns, which are effectively captured by the 389

embeddings employed in this study. 390

For fake news detection, the results indicate 391

a more mixed performance across datasets. On 392

the Covid Fake News dataset (Figure 5b, multiple 393

embedding-detector combinations achieve AUC 394

scores close to or exceeding 0.8, suggesting that 395

these methods are capable of identifying subtle 396

stylistic and linguistic differences between fake and 397

real news. These differences may include devia- 398

tions in tone, phrasing, or structural composition of 399

the text. However, on the LIAR2 dataset (Figure 5e, 400

the AUC scores exhibit much greater variability 401

across different combinations of embeddings and 402

detectors. This variability likely stems from the 403

greater factual complexity of the LIAR2 dataset, 404

where detecting anomalies may require external 405

knowledge or sophisticated reasoning that is not in- 406

herently encoded within the embeddings. Despite 407

this variability, the relatively strong performance 408

on the Covid Fake News dataset underscores the 409

potential of embedding-based approaches for fake 410
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news detection, particularly when the anomalies411

are stylistic or linguistic in nature.412

In contrast, the performance on hate speech413

and offensive language detection tasks (Figure 5c414

and Figure 5f) is consistently weaker, with AUC415

scores rarely exceeding 0.6 across embedding-416

detector combinations. This suggests that the417

embeddings struggle to capture the nuanced and418

context-dependent features necessary for these419

tasks. For instance, hate speech often relies on420

implicit cues such as sarcasm, cultural references,421

or subtle forms of hostility, which may not be422

fully captured by standard embeddings. Similarly,423

offensive language detection, as observed in the424

OLID dataset, requires identifying fine-grained dif-425

ferences in tone, intent, and subjectivity, such as426

distinguishing between neutral, offensive, and sar-427

castic expressions. These distinctions often depend428

on broader contextual information, such as the dis-429

course or dialogue in which the language appears.430

For example, without additional context, such431

as the speaker’s intent or the conversational back-432

ground, the following statement from OLID dataset433

remains ambiguous whether this statement quali-434

fies as hate speech:435

Case 2: @USER #metoo are all racist!
436

Figure 4: t-SNE demonstration of Case 2 (green star)
embedding extracted by O-large.

Figure 4 shows that case 2 is mixed in the normal437

data distribution, making it difficult to be detected.438

4.2 Comparative Effectiveness of Embeddings439

in Anomaly Detection440

The results in Table 2 demonstrate the remark-441

able capabilities of the OpenAI family of embed-442

dings (O-ada, O-small, and O-large), consistently443

outperforming other embeddings across a variety444

of anomaly detection tasks. Specifically, O-ada445

achieves the highest average AUC scores with 446

the ECOD detector (0.8822) on the SMS Spam 447

dataset and with kNN (0.7921) on the LIAR2 448

dataset. Similarly, O-small demonstrates outstand- 449

ing performance, achieving the highest AUC scores 450

with kNN on the Hate Speech (0.6416) and OLID 451

(0.5587) datasets. Additionally, O-large secures 452

top AUC scores with COPOD (0.9639) on the 453

Email Spam dataset and with kNN (0.9537) on 454

the COVID Fake News dataset. 455

In comparison, other embeddings, such as 456

MINILM, exhibit strong performance in specific 457

tasks but lack consistency across more complex 458

datasets. For instance, MINILM achieves excep- 459

tional AUC scores of 0.9526 and 0.9626 on the 460

Email Spam datasets when paired with INNE and 461

OCSVM, respectively. However, its performance 462

declines significantly on datasets like OLID and 463

LIAR2, suggesting limitations in capturing deeper 464

contextual or domain-specific cues essential for 465

these tasks. Similarly, embeddings such as stella 466

and Qwen exhibit moderate performance, excelling 467

in a limited subset of tasks but failing to match 468

the versatility of OpenAI embeddings. Their in- 469

consistent performance across datasets indicates 470

that while they may effectively capture certain lin- 471

guistic patterns, they struggle with tasks requiring 472

a broader understanding of context, intent, or nu- 473

anced semantics. 474

These observations suggest that OpenAI embed- 475

dings, deliver the most robust and consistent per- 476

formance across a diverse set of tasks. Their abil- 477

ity to effectively capture both explicit textual fea- 478

tures (e.g., in spam detection) and nuanced con- 479

textual variations (e.g., in Covid Fake News and 480

OLID) highlights their versatility. This underscores 481

their suitability for anomaly detection scenarios 482

that demand both surface-level pattern recognition 483

and deeper linguistic comprehension, making them 484

well-equipped for handling a wide range of text- 485

based anomalies. 486

4.3 Performance Across Anomaly Detectors 487

To evaluate the robustness of anomaly detection 488

algorithms across various embeddings and tasks, 489

we analyze their average rankings using OpenAI 490

embeddings (O-ada, O-small, and O-large) as rep- 491

resentative examples (Figure 6). These embeddings 492

were selected based on their strong and consistent 493

performance across datasets, as demonstrated in 494

Section 4.2. The rankings provide insight into 495

which detection algorithms perform reliably regard- 496
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Table 2: Evaluation across 6 datasets in terms of AUROC.

Embeddings Detectors Email-Spam SMS-Spam COVID-Fake LIAR2 Hate-Speech OLID Average

BERT

kNN 0.7625 0.4484 0.8467 0.6594 0.5033 0.5137 0.6223
OCSVM 0.7362 0.6323 0.7867 0.6237 0.4866 0.4866 0.6254
IForest 0.7152 0.6164 0.7701 0.6051 0.4925 0.4783 0.6129
LOF 0.6786 0.3230 0.8713 0.6717 0.4632 0.4970 0.5841
ECOD 0.7309 0.6235 0.7722 0.6175 0.4889 0.4933 0.6211
INNE 0.7732 0.6497 0.8012 0.6362 0.4850 0.4740 0.6366
HBOS 0.7145 0.6251 0.7698 0.6190 0.4935 0.5002 0.5317
COPOD 0.6454 0.5929 0.7714 0.6242 0.4971 0.5189 0.5214

MINILM

kNN 0.9414 0.3180 0.8413 0.7249 0.5804 0.5063 0.6520
OCSVM 0.9626 0.5915 0.7843 0.6470 0.4062 0.4520 0.6406
IForest 0.9078 0.5472 0.7455 0.5936 0.4697 0.4531 0.6195
LOF 0.5587 0.5024 0.7433 0.6804 0.5078 0.5422 0.5891
ECOD 0.9525 0.5934 0.7581 0.6532 0.3786 0.4208 0.6261
INNE 0.9526 0.5737 0.8035 0.6601 0.4223 0.4824 0.6491
HBOS 0.9478 0.6137 0.7441 0.6447 0.3888 0.4316 0.5387
COPOD 0.9453 0.6317 0.7416 0.6695 0.3710 0.4037 0.5375

O-ada

kNN 0.8865 0.3212 0.9094 0.7921 0.6341 0.5243 0.6779
OCSVM 0.9310 0.8221 0.8143 0.7169 0.4807 0.5048 0.7116
IForest 0.8872 0.7376 0.7432 0.6421 0.4632 0.4891 0.6604
LOF 0.3808 0.5033 0.7316 0.7541 0.4328 0.5376 0.5567
ECOD 0.9380 0.8822 0.8150 0.7200 0.4610 0.4986 0.7191
INNE 0.8507 0.8031 0.8533 0.7378 0.4820 0.5102 0.7062
HBOS 0.9433 0.8813 0.8164 0.7186 0.4583 0.5098 0.6182
COPOD 0.9502 0.8759 0.8153 0.7201 0.4513 0.4811 0.6134

O-small

kNN 0.8921 0.2290 0.9400 0.7756 0.6416 0.5587 0.6728
OCSVM 0.9475 0.5755 0.8932 0.7024 0.4577 0.5547 0.6885
IForest 0.9058 0.6177 0.8085 0.5973 0.5025 0.5580 0.6650
LOF 0.3863 0.5257 0.7809 0.7489 0.4139 0.5581 0.5690
ECOD 0.9481 0.6301 0.8808 0.7022 0.4249 0.5295 0.6859
INNE 0.8673 0.6080 0.9185 0.7198 0.4491 0.5382 0.6835
HBOS 0.9522 0.6273 0.8719 0.7008 0.4245 0.5157 0.5846
COPOD 0.9605 0.5722 0.8664 0.6974 0.4017 0.4963 0.5706

O-large

kNN 0.8292 0.1698 0.9537 0.7687 0.6291 0.5497 0.6500
OCSVM 0.9403 0.5630 0.8924 0.6621 0.4260 0.4971 0.6635
IForest 0.8999 0.5297 0.8041 0.5687 0.4516 0.5068 0.6268
LOF 0.4048 0.4719 0.8233 0.7356 0.3833 0.5167 0.5559
ECOD 0.9487 0.6422 0.8875 0.6540 0.3959 0.4967 0.6708
INNE 0.8230 0.5970 0.9261 0.6876 0.4197 0.5170 0.6617
HBOS 0.9538 0.6525 0.8849 0.6404 0.3835 0.4989 0.5734
COPOD 0.9639 0.6798 0.8854 0.6536 0.3537 0.4980 0.5763

Llama

kNN 0.8715 0.3655 0.8668 0.7229 0.4991 0.4081 0.6223
OCSVM 0.9023 0.7379 0.8132 0.6892 0.4774 0.4057 0.6710
IForest 0.8962 0.7275 0.7833 0.6860 0.4647 0.4082 0.6610
LOF 0.6056 0.4053 0.8673 0.7274 0.4376 0.3972 0.5734
ECOD 0.8844 0.7573 0.7819 0.6989 0.4643 0.3998 0.6644
INNE 0.9122 0.7065 0.8160 0.6935 0.4702 0.3917 0.6650
HBOS 0.9017 0.7895 0.7758 0.7064 0.4580 0.3898 0.5745
COPOD 0.9153 0.8163 0.7584 0.7291 0.4435 0.3526 0.5736

stella

kNN 0.8654 0.3212 0.9034 0.6884 0.4746 0.5016 0.6258
OCSVM 0.8922 0.7165 0.8063 0.5103 0.3729 0.4439 0.6237
IForest 0.8862 0.7377 0.7738 0.4999 0.3545 0.4325 0.6141
LOF 0.3931 0.4733 0.7129 0.6549 0.4036 0.5285 0.5277
ECOD 0.9075 0.7894 0.8115 0.5023 0.3421 0.4395 0.6321
INNE 0.8271 0.6926 0.8366 0.5330 0.3325 0.4532 0.6125
HBOS 0.9178 0.8017 0.8086 0.4952 0.3355 0.4252 0.5406
COPOD 0.9300 0.8589 0.8167 0.4936 0.3018 0.3797 0.5401

Qwen

kNN 0.8618 0.2110 0.8438 0.6626 0.5163 0.4602 0.5926
OCSVM 0.8804 0.6229 0.7868 0.6216 0.4916 0.4882 0.6486
IForest 0.8829 0.6195 0.7686 0.6155 0.4825 0.4869 0.6427
LOF 0.6043 0.3600 0.8555 0.6894 0.4600 0.4518 0.5702
ECOD 0.8678 0.6648 0.7680 0.6172 0.4852 0.4773 0.6467
INNE 0.8839 0.5940 0.7833 0.6339 0.4902 0.4693 0.6424
HBOS 0.8854 0.6877 0.7638 0.6170 0.4847 0.4685 0.5582
COPOD 0.9044 0.7393 0.7463 0.6291 0.4794 0.4336 0.5617
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(a) Email Spam (b) Covid Fake News (c) Hate Speech

(d) SMS Spam (e) LIAR2 (f) OLID

Figure 5: Boxplot of AUCROC scores for anomaly detectors on different embeddings across 6 datasets.

less of the embedding or task.497

(a) O-ada

(b) O-small

(c) O-large

Figure 6: Average rank (lower the better) of 3 differ-
ernt OpenAI embeddings-based methods on AUCROC
across 6 datasets.

Across all three embeddings, kNN and INNE498

consistently rank as the top-performing algorithms.499

This indicates their robustness and adaptability to500

the semantic structures of LLM-derived embed-501

dings. kNN, in particular, excels due to its ability502

to effectively model local density variations in fea-503

ture space, making it well-suited for both explicit-504

pattern tasks like spam detection and nuanced tasks505

like fake news and hate speech detection. INNE,506

with its efficiency and strong generalization capa-507

bilities, complements kNN as a reliable alternative508

in diverse anomaly detection scenarios.509

ECOD also ranks highly, consistently appear- 510

ing among the top three detectors across embed- 511

dings. Its lightweight design and ability to estimate 512

density-based anomalies make it a strong candi- 513

date for scenarios where computational efficiency 514

is critical. On the other hand, methods like LOF, 515

COPOD, and iForest consistently rank lower, high- 516

lighting their limitations in high-dimensional and 517

semantically complex embedding spaces. These 518

methods struggle with noise, data sparsity, and 519

the nuanced patterns encoded in LLM embed- 520

dings, which limits their effectiveness across di- 521

verse tasks. 522

5 Conclusion 523

In this paper, we present a comprehensive bench- 524

mark for embedding-based text anomaly detection, 525

systematically evaluating the interplay between 526

LLM embeddings and classical anomaly detec- 527

tion algorithms across three diverse domains. Our 528

results reveal both the strengths and limitations 529

of embedding-based anomaly detection methods, 530

demonstrating their effectiveness in tasks with ex- 531

plicit and well-defined patterns while highlighting 532

challenges in capturing implicit, context-dependent 533

anomalies that require broader contextual cues. 534

These findings emphasize the need for more adap- 535

tive embeddings and hybrid detection strategies 536

that integrate external knowledge and contextual 537

reasoning. 538
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Limitations539

TAD-Bench evaluates anomaly detection across540

three domains: spam detection, fake news detec-541

tion, and offensive language detection. While these542

tasks provide diverse and relevant benchmarks,543

they do not fully capture the complexity of real-544

world applications. Strong performance in spam545

detection highlights the ability of LLM embeddings546

to capture explicit patterns, while mixed results in547

fake news detection and poor performance in of-548

fensive language detection reveal their limitations549

in modeling implicit, context-sensitive cues. Ex-550

panding to domains like medical, financial, or legal551

texts that involve unique challenges, and exploring552

datasets with more implicit anomalies, could better553

evaluate the adaptability and robustness of these554

methods.555

Moreover, TAD-Bench focuses solely on556

embedding-based methods, excluding end-to-end557

approaches that directly process raw text because558

due to modularity and efficiency of embedding-559

based methods, and NLP-ADBench has also shown560

better performance of embedding-based methods561

than end-to-end methods. However, end-to-end562

models like autoencoders or transformer-based563

methods may capture richer contextual informa-564

tion and handle more complex anomalies. Future565

work should incorporate end-to-end models and ex-566

plore hybrid approaches that combine the strengths567

of both paradigms, providing a more comprehen-568

sive evaluation of anomaly detection methods in569

NLP.570

Ethic Statement571

This study adheres to ethical research practices and572

considerations in the development and evaluation573

of text anomaly detection methods.574

Use of Potentially Offensive Language. Some575

examples in this paper may contain offensive, harm-576

ful, or misleading language. These examples are577

used purely for illustrative purposes to demonstrate578

the challenges of text anomaly detection in real-579

world scenarios. They do not reflect the opinions,580

beliefs, or endorsements of the authors.581

Data Sources and Usage. All datasets used582

in this study are sourced from publicly available583

research datasets that have been previously used584

in NLP and anomaly detection research. Proper585

citations and references to the original datasets are586

provided in the paper. No private, proprietary, or587

personally identifiable information was used in this588

study. 589

Risks and Responsible Use. Because anomaly 590

detection models can be misused for purposes such 591

as censorship, surveillance, or unfair content mod- 592

eration. We strongly emphasize that our benchmark 593

is intended for research and academic purposes 594

only and should be used responsibly with consider- 595

ation of ethical and societal implications. 596

Use of AI Assistance We acknowledge the use 597

of AI-based writing assistants for grammar refine- 598

ment, spelling correction, and improving the clar- 599

ity of our manuscript. However, all intellectual 600

contributions, experimental designs, analyses, and 601

conclusions in this paper are solely the work of the 602

authors. 603
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A Problem Definitions822

Let D = {x1, x2, . . . , xN} represent a corpus con-823

sisting of N textual instances, where each instance824

xi ∈ X is represented as a sequence of tokens:825

xi = [t1, t2, . . . , tLi ],826

where Li denotes the sequence length of xi. The827

goal of text anomaly detection is to identify a sub-828

set of instances Danomaly ⊂ D, such that Danomaly829

contains samples that deviate significantly from the830

majority of the dataset Dnormal = D \ Danomaly.831

To achieve this, an anomaly detection algo-832

rithm g is applied to the representations of the833

textual instances to identify potential anomalies.834

(1) Each text instance xi is first mapped to a fixed-835

dimensional vector zi ∈ Rd using an embedding836

model ϕ : X → Rd, such that zi = ϕ(xi).837

(2) The anomaly detection algorithm then assigns838

an anomaly score si = g(zi) to each instance,839

si ∈ [0, 1]. Based on a predefined threshold τ ,840

an instance xi is classified as anomalous if:841

xi ∈ Danomaly ⇐⇒ si ≥ τ.842

The objective of text anomaly detection is to843

ensure that g effectively distinguishes between nor-844

mal and anomalous instances, even in the absence845

of labeled data, while being robust to the inherent846

variability and high dimensionality of textual data.847

B Clarification Between Anomaly and848

Novelty Detection849

Text Anomaly Detection (TAD), as defined in Sec-850

tion A, focuses on identifying instances that de-851

viate significantly from the majority of a dataset,852

regardless of whether anomalies are present dur-853

ing training. While some prior studies (e.g., AD-854

NLP (Bejan et al., 2023), NLP-ADBench (Li et al.,855

2024) and AD-LLM (Yang et al., 2024b)) assume856

training data contains only normal instances and857

testing data includes both normal and anomalous858

samples, this setup aligns more closely with novelty859

detection (Pimentel et al., 2014). Novelty detec-860

tion specifically targets never-before-seen anoma-861

lies that are absent from the training phase, often862

treating anomalies as entirely novel classes.863

In contrast, our benchmark evaluates a broader864

spectrum of anomaly detection scenarios. We do865

not restrict the training data to purely normal in-866

stances, allowing for potential partial supervision867

or contaminated training sets (e.g., realistic sce- 868

narios where anomalies may unintentionally exist 869

in training data). This setup reflects real-world 870

applications where anomaly types are not always 871

fully known a prior, and detection systems must 872

generalize across domains and anomaly types. 873

This distinction underscores our goal of advanc- 874

ing generalizable anomaly detection systems for 875

real-world NLP applications, where anomalies may 876

exhibit both explicit and context-dependent pat- 877

terns. 878

C Datasets 879

Email-Spam 2 (Metsis et al., 2006) contains 5,171 880

emails labeled as spam or ham, with spam treated 881

as the anomaly class. We utilized the preprocessed 882

version provided in (Li et al., 2024). 883

SMS-Spam 3 (Almeida et al., 2011) comprises 884

5,574 SMS messages originally labeled as spam 885

or ham. Spam messages are designated as the 886

anomaly. 887

COVID-Fake 4 (Das et al., 2021) comprises 888

posts collected from social media platforms and 889

fact-checking websites. Real news items were 890

sourced from verified outlets providing accurate 891

COVID-19 information, while fake news was gath- 892

ered from tweets, posts, and articles containing 893

misinformation about COVID-19. Fake news is 894

treated as the anomaly class. 895

LIAR2 5 (Xu and Kechadi, 2024) consists of 896

approximately 23,000 statements manually labeled 897

by professional fact-checkers for fake news detec- 898

tion tasks. The "True" class, representing accurate 899

statements, is considered the normal class, while 900

the "Pants on Fire" class, representing highly mis- 901

leading statements, is treated as the anomaly. 902

OLID 6 (Zampieri et al., 2019b) (Zampieri et al., 903

2019a) contains 14,200 annotated English tweets, 904

categorized using a three-level annotation model. 905

For this benchmark, only the Level A (Offen- 906

sive Language Detection) annotations are used, 907

where tweets labeled as offensive are considered as 908

anomalies, and non-offensive tweets are considered 909

2https://huggingface.co/datasets/kendx/
NLP-ADBench/tree/main/datasets/email_spam

3https://archive.ics.uci.edu/dataset/228/sms+
spam+collection

4https://github.com/diptamath/covid_fake_news?
tab=readme-ov-file

5https://github.com/chengxuphd/liar2?tab=
readme-ov-file

6https://sites.google.com/site/
offensevalsharedtask/olid
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https://github.com/chengxuphd/liar2?tab=readme-ov-file
https://github.com/chengxuphd/liar2?tab=readme-ov-file
https://sites.google.com/site/offensevalsharedtask/olid
https://sites.google.com/site/offensevalsharedtask/olid


Table 3: Embedding time of 6 datasets in seconds.

Embeddings Email-Spam SMS-Spam COVID-Fake LIAR2 Hate-Speech OLID
BERT 64.95 s 10.87 s 4.48 s 3.7 s 9.79 s 1.81 s

MINILM 3.58 s 1.48 s 0.64 s 0.52 s 1.50 s 0.45 s
O-ada 154.08 s 33.76 s 17.35 s 16.67 s 35.57 s 8.9 s

O-small 166.73 s 34.16 18.32 16.10 34.09 s 9.0 s
O-large 206.07 s 41.78 s 20.58 s 29.97 s 44.20 s 10.72 s
Llama 545.51 s 129.16 s 38.15 s 28.93 s 71.49 s 18.02 s
stella 99.75 s 19.38 s 12.41 s 9.95 s 20.18 s 5.72 s
Qwen 745.85 s 129.16 s 58.19 s 40.29 s 183.24 s 20.49 s

as normal.910

Hate-Speech 7 (Davidson et al., 2017) contains911

tweets annotated by CrowdFlower users. The tweet912

content is used as data, with "hate speech" treated913

as anomalies.914

D Evaluation with Hyperparameter915

Search916

Experiments with hyperparameter search reveal sig-917

nificant insights into the performance dynamics of918

anomaly detection algorithms when paired with919

various embedding models. The hyperparameters920

for LOF and HBOS are searched in {5, 10, 20, 40}.921

For iForest and iNNE, sample points are searched922

in {2, 4, 8, 16, 32, 64, 128, 256} and with defalt923

t = 200. γ of OCSVM are searched in924

{0.05, 0.1, 0.5, 1} and with RBF kernel. Both CO-925

POD and ECOD don’t have hyperparameters.926

When comparing Table 4 with the default pa-927

rameters results in Table 2, we observe that kNN928

emerges as a particularly strong performer across929

multiple embedding models, especially with the930

OpenAI family of embeddings. This suggests that931

distance-based approaches effectively leverage the932

semantic information captured by these models,933

particularly in tasks like spam and fake news detec-934

tion.935

INNE demonstrates the most balanced and ro-936

bust performance profile when considering average937

scores across all datasets and embedding combi-938

nations. Its isolation-based approach with hyper-939

sphere partitioning appears particularly well-suited940

to the complex topological structure of embedding941

spaces, allowing it to identify local anomalies that942

other methods might miss. The performance im-943

provement of INNE after hyperparameter optimiza-944

tion is especially notable with embedding models945

7https://github.com/t-davidson/
hate-speech-and-offensive-language

like Llama and stella, suggesting a strong comple- 946

mentarity between isolation-based algorithms and 947

these embedding architectures. 948

E Embedding Models 949

To effectively represent textual data, we use vari- 950

ous pre-trained embedding models that transform 951

text into dense vector representations. Table 5 sum- 952

marizes the embedding models employed in this 953

paper. These embeddings serve as feature inputs 954

for anomaly detection models, enabling them to 955

capture semantic similarities and deviations in text. 956

We selected a diverse set of embedding models, 957

balancing between model size, token length limits, 958

and computational efficiency. The models used in 959

this study are: 960

• BERT 8 (bert-base-uncased) 961

• MINILM 9 (all-MiniLM-L6-v2) 962

• O-ada 10 (text-embedding-ada-002) 963

• O-small 11 (text-embedding-3-small) 964

• O-large 12 (text-embedding-3-large) 965

• LLAMA 13 (Llama-3.2-1B) 966

• stella 14 (stella_en_400M_v5) 967

8https://huggingface.co/google-bert/
bert-base-uncased

9https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

10https://platform.openai.com/docs/guides/
embeddings/

11https://platform.openai.com/docs/guides/
embeddings/

12https://platform.openai.com/docs/guides/
embeddings/

13https://huggingface.co/meta-llama/Llama-3.
2-1B

14https://huggingface.co/NovaSearch/stella_en_
400M_v5
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Table 4: Evaluation across 6 datasets in terms of AU-ROC under parameter search.

Embeddings Detectors Email-Spam SMS-Spam COVID-Fake LIAR2 Hate-Speech OLID Average

BERT

kNN 0.7707 0.5663 0.8467 0.6594 0.5033 0.5164 0.6438
OCSVM 0.5862 0.5322 0.4868 0.5059 0.5154 0.4982 0.5208
IForest 0.7187 0.6307 0.7794 0.6178 0.4957 0.5315 0.6290
LOF 0.7014 0.3531 0.8707 0.676 0.4636 0.5018 0.5944
ECOD 0.7309 0.6235 0.7722 0.6175 0.4889 0.4933 0.6211
INNE 0.7748 0.6551 0.8381 0.6572 0.4897 0.5078 0.6538
HBOS 0.717 0.6252 0.7711 0.6209 0.4935 0.5065 0.6224
COPOD 0.6454 0.5929 0.7714 0.6242 0.4971 0.5189 0.6083

MINILM

kNN 0.9669 0.3537 0.8413 0.7249 0.5804 0.5063 0.6623
OCSVM 0.6929 0.582 0.5241 0.5549 0.5538 0.5988 0.5844
IForest 0.9112 0.5655 0.7373 0.5982 0.4582 0.4872 0.6263
LOF 0.6896 0.5507 0.8095 0.6759 0.5286 0.5689 0.6372
ECOD 0.9525 0.5934 0.7581 0.6532 0.3786 0.4208 0.6261
INNE 0.9603 0.6531 0.8226 0.6754 0.5019 0.5381 0.6919
HBOS 0.9489 0.6177 0.7447 0.6614 0.3937 0.4333 0.6333
COPOD 0.9453 0.6317 0.7416 0.6695 0.371 0.4037 0.6271

O-ada

kNN 0.9506 0.3535 0.9094 0.7921 0.6341 0.5243 0.6940
OCSVM 0.7535 0.5633 0.56 0.4513 0.5049 0.6474 0.5801
IForest 0.8826 0.7168 0.7493 0.6268 0.5137 0.5194 0.6681
LOF 0.4203 0.536 0.798 0.7568 0.4683 0.5368 0.5860
ECOD 0.938 0.8822 0.815 0.72 0.461 0.4986 0.7191
INNE 0.9469 0.8905 0.8633 0.7558 0.5236 0.5319 0.7520
HBOS 0.9438 0.8851 0.8194 0.7212 0.4692 0.5124 0.7252
COPOD 0.9502 0.8759 0.8153 0.7201 0.4513 0.4811 0.7157

O-small

kNN 0.9637 0.229 0.94 0.7872 0.6416 0.5587 0.6867
OCSVM 0.5716 0.5253 0.5165 0.4664 0.5505 0.6059 0.5394
IForest 0.9021 0.6007 0.7871 0.6086 0.4805 0.5388 0.6530
LOF 0.4642 0.5215 0.8596 0.7491 0.4509 0.5602 0.6009
ECOD 0.9481 0.6301 0.8808 0.7022 0.4249 0.5295 0.6859
INNE 0.9572 0.6471 0.9295 0.7374 0.5234 0.5884 0.7305
HBOS 0.953 0.6284 0.8738 0.7009 0.4245 0.5301 0.6851
COPOD 0.9605 0.5722 0.8664 0.6974 0.4017 0.4963 0.6658

O-large

kNN 0.9121 0.1698 0.9537 0.7687 0.6291 0.5497 0.6639
OCSVM 0.7794 0.5353 0.5124 0.4302 0.5086 0.5938 0.5600
IForest 0.9142 0.5603 0.8089 0.5887 0.507 0.554 0.6555
LOF 0.5009 0.4748 0.8736 0.7435 0.4296 0.5429 0.5942
ECOD 0.9487 0.6422 0.8875 0.654 0.3959 0.4967 0.6708
INNE 0.9537 0.6765 0.9295 0.7125 0.4899 0.519 0.7135
HBOS 0.9552 0.6562 0.8866 0.6458 0.3882 0.5108 0.6738
COPOD 0.9639 0.6798 0.8854 0.6536 0.3537 0.498 0.6724

Llama

kNN 0.9323 0.5389 0.8668 0.7241 0.4991 0.4081 0.6616
OCSVM 0.8929 0.5431 0.5785 0.5045 0.5224 0.529 0.5951
IForest 0.8971 0.7509 0.7815 0.6833 0.4691 0.4267 0.6681
LOF 0.7188 0.461 0.8704 0.7286 0.4564 0.5093 0.6241
ECOD 0.8844 0.7573 0.7819 0.6989 0.4643 0.3998 0.6644
INNE 0.918 0.8083 0.8666 0.7074 0.4778 0.4929 0.7118
HBOS 0.9029 0.7908 0.7782 0.7064 0.4606 0.3961 0.6725
COPOD 0.9153 0.8163 0.7584 0.7291 0.4435 0.3526 0.6692

stella

kNN 0.935 0.3451 0.9034 0.6884 0.4746 0.5016 0.6414
OCSVM 0.8655 0.5818 0.5701 0.5071 0.5516 0.5084 0.5974
IForest 0.8884 0.7398 0.7927 0.517 0.4284 0.4716 0.6397
LOF 0.4722 0.5159 0.7749 0.6575 0.4341 0.5598 0.5691
ECOD 0.9075 0.7894 0.8115 0.5023 0.3421 0.4395 0.6321
INNE 0.927 0.8139 0.8466 0.6266 0.4118 0.5243 0.6917
HBOS 0.9178 0.8038 0.8161 0.4952 0.3391 0.4276 0.6333
COPOD 0.93 0.8589 0.8167 0.4936 0.3018 0.3797 0.6301

Qwen

kNN 0.9171 0.2671 0.8438 0.6626 0.4991 0.4602 0.6083
OCSVM 0.8304 0.5431 0.5279 0.5105 0.5224 0.5712 0.5843
IForest 0.8758 0.6552 0.7598 0.6169 0.4691 0.4948 0.6453
LOF 0.6915 0.4299 0.8575 0.6972 0.4564 0.4894 0.6037
ECOD 0.8678 0.6648 0.768 0.6172 0.4643 0.4773 0.6432
INNE 0.8989 0.7057 0.8639 0.6733 0.4778 0.518 0.6896
HBOS 0.8877 0.6886 0.7644 0.6187 0.4606 0.4741 0.6490
COPOD 0.9044 0.7393 0.7463 0.6291 0.4435 0.4336 0.6494

14



Table 5: Embedding Models Overview. M and B are for
million and billion, respectively.

Models Max Tokens # Dimensions # Parameters
BERT 512 768 110 M
MINILM 512 384 22.7 M
O-ada 8191 1536 -
O-small 8191 1536 -
O-large 8191 3072 -
LLAMA 4096 2048 1.24 B
stella 2048 1024 435 M
Qwen 8192 1536 1.54 B

• Qwen 15 (Qwen2.5-1.5B)968

Beyond model size and token limits, computa-969

tional efficiency is a key factor in selecting em-970

bedding models, particularly for real-world ap-971

plications where inference speed is critical. Ta-972

ble 3 presents the embedding time (in seconds)973

required to process six datasets using each embed-974

ding model.975

From the Table 3, we observe a significant vari-976

ation in embedding extraction time. MINILM is977

the fastest across all datasets, taking only a few978

seconds, making it ideal for applications requiring979

real-time embedding generation. BERT offers a980

moderate trade-off, with embedding times signif-981

icantly lower than larger models but higher than982

MINILM. OpenAI’s embeddings (O-ada, O-small,983

O-large) are relatively slow, likely due to their high-984

dimensional output and extended token support.985

Llama and Qwen models require the most compu-986

tation, with Qwen taking up to 745.85 seconds on987

the Email-Spam dataset, reflecting the high compu-988

tational cost of large autoregressive models.989

F Comparative Analysis of Anomaly990

Detection Algorithms991

Anomaly detection algorithms vary in their under-992

lying assumptions, computational efficiency, and993

effectiveness across different types of data distri-994

butions. In this section, we provide a comparative995

analysis of the eight anomaly detection methods996

used in this study: kNN, OCSVM, iForest, LOF,997

HBOS, ECOD, INNE and COPOD.998

Distance-based methods, such as kNN, define999

anomalies based on their relative distance to sur-1000

rounding points. kNN anomaly detection computes1001

the distance between a data point and its kth nearest1002

neighbor, with larger distances indicating potential1003

anomalies. This method is conceptually simple1004

15https://huggingface.co/Qwen/Qwen2.5-1.5B

and effective in low-dimensional spaces with clear 1005

separation between normal and anomalous points. 1006

However, its primary drawback is the curse of di- 1007

mensionality, where distance metrics lose discrim- 1008

inative power as dimensionality increases. Addi- 1009

tionally, kNN is computationally expensive, with a 1010

worst-case complexity of O(n2), making it imprac- 1011

tical for large datasets without optimizations such 1012

as approximate nearest neighbor search. 1013

Density-based approaches assume that anoma- 1014

lies reside in low-density regions relative to normal 1015

points. LOF estimates the local density of a point 1016

by comparing it with the densities of its neigh- 1017

bors. It is highly effective in detecting anomalies 1018

in datasets with non-uniform density distributions, 1019

where global models may fail. However, LOF is 1020

computationally expensive complexity O(n2) in 1021

the worst case and sensitive to the choice of neigh- 1022

borhood size, requiring careful hyperparameter tun- 1023

ing. 1024

A more efficient density estimation approach is 1025

HBOS, which models feature distributions indepen- 1026

dently using histograms. This makes it computa- 1027

tionally extremely fast O(n) and scalable to large 1028

datasets. However, HBOS assumes feature inde- 1029

pendence, limiting its effectiveness when strong 1030

feature correlations exist. In such cases, its effec- 1031

tiveness diminishes as it fails to capture intricate 1032

relationships between features, potentially leading 1033

to suboptimal anomaly detection performance. 1034

Isolation-based approaches, such as iForest, take 1035

a different perspective by recursively partitioning 1036

the feature space. Since anomalies are typically iso- 1037

lated with fewer splits, iForest identifies them based 1038

on the depth required to isolate each point. iFor- 1039

est is computationally efficient O(nlogn) and per- 1040

forms well in high-dimensional spaces compared 1041

to distance-based methods, but it is struggle with 1042

local anomalies. An extension of iForest, INNE, 1043

replaces axis-aligned splits with hypersphere-based 1044

partitions. This enhances robustness in detecting 1045

anomalies in complex distributions, particularly 1046

local anomalies. 1047

Statistical approaches model the underlying dis- 1048

tribution of data and identify anomalies as points 1049

that significantly deviate from expected behavior. 1050

ECOD estimates anomaly scores based on the em- 1051

pirical cumulative distribution function (ECDF) 1052

for each feature independently. It is parameter- 1053

free and computationally efficient O(n), making 1054

it highly scalable. However, like HBOS, ECOD 1055

assumes feature independence, which can limit its 1056
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effectiveness in multivariate settings. COPOD im-1057

proves upon ECOD by leveraging copula functions1058

to model dependencies between features, making it1059

more effective for detecting anomalies in correlated1060

data. However, this comes at the cost of increased1061

computational complexity, making COPOD less1062

scalable for very large datasets.1063

G Embedding Analysis1064

To better understand how different embedding mod-1065

els encode normal and anomalous instances, we1066

visualize their embedding spaces using t-SNE pro-1067

jections across 6 datasets. Figure 6 presents the1068

t-SNE plots for embeddings extracted from 8 em-1069

bedding models, blue points represent normal in-1070

stances, while red points denote anomalies.1071

Separation of Normal and Anomalous In-1072

stances. As defined in Section A, anomalies should1073

ideally exhibit significant deviation from normal1074

instances in the embedding space. The extent to1075

which embeddings separate anomalies from nor-1076

mal data is a crucial factor in determining their1077

effectiveness for anomaly detection.1078

Most embedding models exhibits clear separa-1079

tion, particularly in the Email Spam dataset, where1080

anomalous points form distinct regions away from1081

the normal distribution. BERT struggles with clear1082

separation, with many anomalies still embedded1083

within normal clusters. This indicates that these1084

models may not encode sufficient discriminative1085

features for anomaly detection tasks.1086

Dataset-Specific Challenges. The effectiveness1087

of embedding-based anomaly detection varies sig-1088

nificantly across datasets, highlighting the influ-1089

ence of domain characteristics:1090

• Spam Detection (Email Spam, SMS Spam):1091

most embedding models perform well, reflect-1092

ing their ability to capture explicit spam pat-1093

terns (e.g., domain-specific keywords, unusual1094

syntax). In contrast, BERT shows more over-1095

lap between spam and normal messages, lead-1096

ing to weaker anomaly separation.1097

• Fake News Detection (COVID-Fake, LIAR2):1098

The separation of anomalies is less pro-1099

nounced across most embeddings, likely due1100

to the subtle and nuanced nature of misinfor-1101

mation. This suggests that effective detection1102

may require external knowledge or factual rea-1103

soning beyond what standard embeddings can1104

provide.1105

• Offensive Language (Hate Speech, OLID): 1106

All embeddings perform poorly, with anoma- 1107

lies scattered among normal instances. This 1108

suggests that hate speech and offensive lan- 1109

guage often depend on implicit contextual 1110

cues rather than explicit linguistic differences, 1111

making them harder to distinguish using stan- 1112

dard embeddings. 1113

Clustered Anomalies in Spam Detection. For 1114

both Email Spam and SMS Spam datasets, the 1115

anomalies tend to form compact clusters rather than 1116

being scattered as isolated points. This behavior 1117

contrasts with other datasets, where anomalies are 1118

often more dispersed. 1119

Unlike anomalies in misinformation or hate 1120

speech detection, which can manifest in subtle lin- 1121

guistic variations, spam messages tend to exhibit 1122

repetitive patterns, including URLs, phone num- 1123

bers, irregular word spacing and excessive punc- 1124

tuation. Since these patterns are highly distinct 1125

but internally consistent, embeddings may cluster 1126

them into a well-defined anomaly group rather than 1127

spreading them across the feature space. 1128

H Experiments Environment 1129

The entire pipeline, including embedding extrac- 1130

tion and anomaly detection, was implemented in 1131

Python 3.9. Experiments were executed on a com- 1132

putational setup equipped with a Ryzen 9 5900X 1133

12-core CPU for data preprocessing and model or- 1134

chestration, and an Nvidia RTX 3060 GPU with 1135

12GB of memory for model inference and embed- 1136

ding generation. 1137
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Table 6: t-SNE visualization of embeddings from 8 models across 6 datasets. Blue points represent normal instances,
while red points denote anomalies.

Embeddings Email-Spam SMS-Spam COVID-Fake LIAR2 Hate-Speech OLID

BERT

MINILM

O-ada

O-small

O-large

Llama

stella

Qwen
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